

Undergraduate Topics in Computer
Science

Series Editor

Ian Mackie, University of Sussex, Brighton, France

Advisory Editors

Samson Abramsky , Department of Computer Science, University of Oxford,
Oxford, UK

Chris Hankin , Department of Computing, Imperial College London, London,
UK

Mike Hinchey , Lero—The Irish Software Research Centre, University of
Limerick, Limerick, Ireland

Dexter C. Kozen, Department of Computer Science, Cornell University, Ithaca,
USA

Andrew Pitts , Department of Computer Science and Technology, University of
Cambridge, Cambridge, UK

Hanne Riis Nielson , Department of Applied Mathematics and Computer
Science, Technical University of Denmark, Kongens Lyngby, Denmark

R. D. Deshpande, Department of Computer Science, Stony Brook University,
Stony Brook, USA

Iain Stewart , Department of Computer Science, Durham University, Durham,
UK

Joseph Migga Kizza, Engineering and Computer Science, University of Tennessee
at Chattanooga, Chattanooga, USA

Roy Crole, School of Computing and Mathematics Sciences, University of
Leicester, Leicester, UK

Elizabeth Scott, Department of Computer Science, Royal Holloway University of
London, Egham, UK

https://orcid.org/0000-0003-3921-6637
https://orcid.org/0000-0001-9149-8577
https://orcid.org/0000-0001-5110-561X
https://orcid.org/0000-0001-7775-3471
https://orcid.org/0000-0002-2484-5580
https://orcid.org/0000-0002-0752-1971

‘Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are
authored by established experts in their fields, reviewed by an international advisory
board, and contain numerous examples and problems, many of which include fully
worked solutions.

The UTiCS concept centers on high-quality, ideally and generally quite
concise books in softback format. For advanced undergraduate textbooks that are
likely to be longer and more expository, Springer continues to offer the highly
regarded Texts in Computer Science series, to which we refer potential authors.

Patricio Bulić

Understanding Computer
Organization
A Guide to Principles Across RISC-V,
ARM Cortex, and Intel Architectures

Patricio Bulić
Faculty of Computer Science
University of Ljubljana
Ljubljana, Slovenia

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-031-58074-1 ISBN 978-3-031-58075-8 (eBook)
https://doi.org/10.1007/978-3-031-58075-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-58075-8

To my Dearest Wife and Precious Sons,
In the world of bits and bytes, algorithms,

and circuits, your love has been the
unshakable foundation upon which I’ve built
this journey into the realm of technology.
Your unwavering support, patience, and
understanding have fueled my passion and
sustained my spirit.

To my Wife, your patience and
understanding have been the guiding light
through countless hours of writing and
exploring the depths of technology. Your
unwavering encouragement and belief in my
endeavors have been the compass guiding me
through the complexities of computer systems.

To my Sons, you are the future, the next
generation of dreamers. Your boundless
curiosity and the joy you bring have inspired
the creativity embedded in every line of this
book. May these pages serve as an invitation
to explore the wonders of technology and
encourage you to dream and create.

With love and appreciation, Patricio

Preface

In today’s digital age, where computing technologies are advancing at an unprece-
dented pace, understanding the fundamental principles that govern computer
organization and the intricate interplay between hardware and software is essen-
tial for students and professionals alike. Welcome to “Understanding Computer
Organization: A Guide to Principles Across RISC-V, ARM Cortex, and Intel
Architectures.” This book aims to serve as a comprehensive guide to the intri-
cate world of computer organization, offering practical insights and real-world
examples from RISC-V, ARM, and Intel-based computer systems. As technology
continues to advance rapidly, it becomes increasingly crucial for both students
and professionals to grasp the fundamental principles that govern computer
organization.

Our journey begins with exploring memory-mapped I/O, where we unravel the
mechanisms by which the CPU communicates with peripherals through memory
addresses.

From there, we venture into the realm of interrupts, examining how various
architectures handle asynchronous events and prioritize tasks efficiently. Real-
world examples from RISC-V, ARM, and Intel-based systems illuminate these
concepts, providing practical insights into their implementation and significance.

Chapter 3 delves into the intricacies of Direct Memory Access (DMA), shed-
ding light on the controllers responsible for managing data transfers between
peripherals and main memory.

We then focus on the main memory, exploring the different types of memory
technologies, including DRAMs, SDRAMs, and DDR SDRAMs, and their roles
in storing and accessing data effectively.

Moving forward, we delve into the critical role of cache memory in improving
system performance through data locality and access speed optimizations.

Finally, we explore the concept of virtual memory, unraveling how modern
operating systems manage memory resources efficiently by leveraging secondary
storage devices.

Throughout this journey, our goal is to provide readers with a comprehensive
understanding of computer organization principles, grounded in real-world exam-
ples and practical applications. Whether you are a student embarking on your
journey into the world of computer architecture or a seasoned professional seek-

vii

viii Preface

ing to deepen your knowledge, this book is designed to be your companion in
unraveling the complexities of modern computing systems. So, without further
ado, let us unravel the mysteries of hardware and software and pave the way into
the field of computer organization.

Ljubljana, Slovenia
February 2024

Patricio Bulić

Contents

1 Memory-Mapped Input/Output . 1
1.1 Introduction . 2
1.2 A Memory-Mapped Register . 3
1.3 Two Memory Mapped Registers . 5
1.4 Several Memory Mapped Registers . 8
1.5 Registers Mapped at Consecutive Addresses . 9
1.6 Partial Versus Full Address Decoding . 11
1.7 Case Study: Using the GPIO Interface in FE310-G002

RISC-V Based System-on-Chip . 12
1.7.1 Program GPIO in Assembly . 14
1.7.2 Program GPIO in C . 18

1.8 Case Study: Using the GPIO Interface in ARM Cortex-M
Based STM32H7 System-on-Chip . 20
1.8.1 Cortex-M Fixed Memory Address Space 20
1.8.2 GPIO Interface in STM32H7 . 21
1.8.3 Functional Description of the GPIO Interface

in STM32H7 . 27
1.8.4 Program GPIO in C Using HAL . 28

1.9 Case Study: Using the UART Interface in FE310-G002
RISC-V Based System-on-Chip . 30
1.9.1 Universal Asynchronous Receiver Transmitter 30
1.9.2 The UART Interface in the SiFive FE310 32
1.9.3 Program UART in C . 34
1.9.4 UART Pins . 35

2 Interrupts and Interrupt Handling . 39
2.1 Introduction . 40
2.2 Why Having Interrupts? . 41
2.3 Interrupts . 42

2.3.1 Types of Interrupts . 44
2.3.2 Handling Interrupts . 45

ix

x Contents

2.4 ARM Cortex-M7 Interrupts . 46
2.4.1 ARM Cortex-M7 Programmer’s Model 46
2.4.2 System Control Block . 49
2.4.3 Exceptions . 49
2.4.4 Exception Numbers and Priorities . 52
2.4.5 Vector Table and Exception Handlers 53
2.4.6 Exception Entry and Exit . 55
2.4.7 Case Study: A Simple Task Scheduler on ARM

Cortex-M7 . 59
2.5 RISC-V Interrupts and Exceptions . 77

2.5.1 RISC-V Privileged Modes . 78
2.5.2 RISC-V Machine Modes Exceptions 79
2.5.3 FE-310 Interrupts . 84
2.5.4 Interrupt Entry and Exit . 86
2.5.5 Implementing Vector Table and Handlers 86
2.5.6 Case Study: A Simple Task Scheduler on RISC-V

Based FE310 . 93
2.6 ARM 9 Exceptions and Interrupts . 104

2.6.1 Vector Table and Interrupt Priorities . 105
2.6.2 ARM9 Interrupt Handling . 106
2.6.3 Interrupt Handlers in C . 108

2.7 Intel Interrupts . 110
2.8 Interrupt Controllers . 112

2.8.1 ARM Advanced Interrupt Controller 115
2.8.2 RISC-V Platform-Level Interrupt Controller

in FE310 . 118
2.8.3 ARM Cortex-M Nested Vectored Interrupt

Controller . 122
2.8.4 Case Study: External Interrupts in STM32H7xx

Microcontrollers . 126
2.8.5 Intel 8259A Programmable Interrupt Controler 132
2.8.6 8259A PIC Cascading . 135
2.8.7 Intel Advanced Programmable Interrupt Controler 138

2.9 PCI Interrupts . 145
2.9.1 PCI Legacy Interrupts . 145
2.9.2 PCI Interrupts Routing . 147
2.9.3 Message Signaled Interrupts . 151

3 Direct Memory Access . 155
3.1 Introduction . 156
3.2 Programmed Input/Output . 156
3.3 Interrupt-Driven I/O . 159
3.4 Direct Memory Access . 159

Contents xi

3.5 Real-World DMA Controllers . 164
3.5.1 Intel 8237A DMA Controller . 165
3.5.2 STM32H7 Series DMA Controller . 167

3.6 Bus Mastering DMA . 174

4 Main Memory . 177
4.1 Introduction . 178
4.2 Basics of Digital Circuits: A Quick Review . 179

4.2.1 MOS Transistor as a Switch . 180
4.2.2 CMOS Inverter . 180
4.2.3 Bistable Element . 181

4.3 SRAM Cell . 182
4.4 DRAM Cell . 184

4.4.1 Basic Operation of DRAM . 185
4.4.2 Basic Operation of Sense Amplifiers 187

4.5 DRAM Arrays and DRAM Banks . 188
4.6 DRAM Chips . 189
4.7 Basic DRAM Operations and Timings . 192

4.7.1 Reading Data from DRAM Memory 193
4.7.2 Writing Data to DRAM Memory . 194
4.7.3 Refreshing the DRAM Memory . 195

4.8 Improving the Performance of DRAMs . 197
4.8.1 Fast Page Mode DRAM . 197
4.8.2 Extended Data Output DRAM . 198

4.9 Synchronous DRAM . 199
4.9.1 Functional Description . 200
4.9.2 Basic Operations and Timings . 203
4.9.3 Case Study: Using the STM32F Flexible Memory

Controller to Access SDRAM . 210
4.10 Double Data Rate SDRAM . 231

4.10.1 Functional Description . 232
4.10.2 DDR SDRAM Timing Diagrams . 235
4.10.3 Address Mapping . 238
4.10.4 Memory Timings: A Summary . 239
4.10.5 DDR Versions . 240

4.11 DIMM Modules . 241
4.11.1 Micron DDR4 DIMM Module . 244

4.12 Memory Channels . 245
4.12.1 Case Study: Intel i7-860 Memory . 248
4.12.2 Case Study: i9-9900K Memory . 250

5 Caches . 251
5.1 Introduction . 252
5.2 Memory Hierarchy . 252
5.3 Cache Structure and Organisation . 255

xii Contents

5.4 Direct Mapped Cache . 257
5.4.1 Read Operations in Direct-Mapped Caches 259
5.4.2 Handling Writes in Direct-Mapped Caches 259

5.5 Set Associative Cache . 260
5.5.1 Replacing a Block in a Set-Associative Cache 262
5.5.2 Choosing the Associativity Level . 263

5.6 Cache Controller . 263
5.7 Case Study: Cache in STM32F7 and STM32H7 Series

Devices . 265
5.8 Case Study: Cache in Processors

with ARMv8-A Architecture . 265

6 Virtual Memory . 267
6.1 Introduction . 268
6.2 The Benefits and Downsides of Virtual Memory 268
6.3 Memory Management Unit . 270
6.4 Virtual Address Translation . 271
6.5 One-Level Paging . 274
6.6 Two-Level Paging . 276
6.7 Translation Lookaside Buffers . 280

6.7.1 Multilevel Translation Lookaside Buffers 282
6.8 Integrating Caches and Virtual Memory . 283

6.8.1 Physically Indexed and Physically Tagged (PIPT)
Cache . 283

6.8.2 Virtually Indexed and Virtually Tagged (VIVT)
Cache . 284

6.8.3 Virtually Indexed and Physically Tagged (VIPT)
Cache . 284

6.9 Case Study: AMD64 5-Level Paging . 286
6.10 Summary of Memory Hierarchy . 288
6.11 Case Study: The Memory Hierarchy in an Intel Core i7 289

Index . 293

About the Author

Patricio Bulić is a computer engineering professor at the University of Ljubljana,
Slovenia, with over 25 years of experience in computer science and engineer-
ing. As a university teacher, Patricio Bulić has inspired and mentored countless
students, instilling in them a passion for computer systems and technology. His
dynamic teaching style, pedagogical techniques, and profound knowledge of com-
puter architecture and organization have garnered him recognition as a beacon of
excellence in higher education. Patricio Bulić has been honored multiple times as
Teacher of the Year, a testament to his unwavering commitment to teaching.

In the realm of research, Patricio Bulić has contributed to advancing the
frontiers of computer science, particularly in digital design, embedded systems,
parallel processing, computer arithmetics, and approximate computing. Drawing
on his experience as an educator and researcher, this book offers insights into
the principles, design methodologies, and emerging trends in computer system
organization.

Outside academia, Patricio Bulić is a passionate cross-country mountain biker
who finds solace and inspiration in the great outdoors. Whether navigating chal-
lenging trails or conquering rugged terrain, he approaches each ride with the same
determination that defines his professional endeavors. He finds balance and per-
spective in the exhilarating rush of adrenaline and the breathtaking beauty of
nature, fueling his creativity and drive to excel in all aspects of life.

As the author of a forthcoming book on computer systems, Patricio Bulić invites
readers on a journey through the intricacies of computer organization and design,
offering insights that are both enlightening and engaging.

xiii

1Memory-Mapped Input/Output

CHAPTER GOALS

Have you ever wondered how your computer seamlessly interacts with exter-
nal devices, such as storage drives, network interfaces, and peripherals? The
answer lies in a clever memory-mapped I/O (Input/Output) technique. Unlike
traditional I/O methods that involve separate address spaces for memory and
I/O devices, memory-mapped I/O integrates device communication directly
into the memory address space. A memory-mapped I/O device is a computer
hardware component that uses a portion of the system’s memory address
space and is accessible by load and store instructions, while address decoding
determines which device or peripheral in a computer system should respond
to a particular load or store instruction. This chapter will explore the fas-
cinating world of memory-mapped I/O, uncovering its principles, benefits,
and applications.

Upon completion of this chapter, you will be able to:

• Understand and explain memory mapping.
• Understand and explain address decoding.
• Gain a clear understanding of the fundamental concept of memory-mapped
I/O and its role in computer systems.

• Learn about memory-mapped registers and control structures used for
configuring and interacting with I/O devices directly through memory
addresses.

• Explore real-world case studies showcasing the use of memory-mapped
I/O in diverse embedded devices.

• Able to program a memory-mapped general-purpose IO device.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
P. Bulić, Understanding Computer Organization, Undergraduate Topics in Computer
Science, https://doi.org/10.1007/978-3-031-58075-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58075-8_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58075-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-58075-8_1
https://doi.org/10.1007/978-3-031-58075-8_1
https://doi.org/10.1007/978-3-031-58075-8_1
https://doi.org/10.1007/978-3-031-58075-8_1
https://doi.org/10.1007/978-3-031-58075-8_1
https://doi.org/10.1007/978-3-031-58075-8_1
https://doi.org/10.1007/978-3-031-58075-8_1
https://doi.org/10.1007/978-3-031-58075-8_1
https://doi.org/10.1007/978-3-031-58075-8_1
https://doi.org/10.1007/978-3-031-58075-8_1
https://doi.org/10.1007/978-3-031-58075-8_1

2 1 Memory-Mapped Input/Output

1.1 Introduction

Recall that the only way for modern processors (e.g., RISC-V) to access data (read
or write) is by using memory load and store instructions. These instructions are a
fundamental part of an instruction set architecture (ISA) and allow the processor to
interact with various types of memory. An important consequence of this principle
is that if we want the CPU to read or write data from input/output (I/O) devices, all
I/O devices should be visible to the CPU as a set of memory words. We also say that
I/O devices should be memory-mapped. A memory-mapped I/O (MMIO) device is
a computer hardware component that uses a portion of the system’s memory address
space for data transfer and control. This approach simplifies device interaction for
software developers and is commonly used in modern computer systems.

In particular, these MMIO devices incorporate a small memory (actually, the
memory size depends on the device type and its functionality, but in general, this
memory has only a few memory words). Each memory word within this on-device
memory is assigned a memory address within the system’s memory map and, conse-
quently, is accessible through load and store instructions. Besides, each word within
this on-device memory has a dedicated meaning (for example, it can be used by the
CPU to monitor the device status, to set some features of the device or to read/write
data). Because these on-chip memory words have distinct meanings, each memory
location is called a register. In other words, these registers control various aspects
of the device’s operation, such as configuration settings, data transfer, and status
checks.

In order to assign a unique memory address to each I/O device and its registers,
computer systems rely on address decoding. Address decoding is crucial in com-
puter architecture and design, particularly in systems that use memory-mapped I/O,
as it determines which device or peripheral in a computer system should respond to a
particular load or store instruction provided by the CPU. To determine which device
should respond to a specific address provided within a load or store instruction,
address decoding logic involves a combination of simple digital logic gates, such as
AND gates, OR gates, and NOT gates, or even the usage of decoders. When the CPU
wants to read from or write to a specific I/O device register or memory location, it
places the desired address on the address bus. For example, RISC-V would place
this address on the address bus in the fourth pipeline stage (MEM stage) after the
memory address has been calculated from the base address and offset within its third
pipeline stage (EXE stage). Besides the address, the CPU would also activate the
read-write (R/W signal), which tells the addressed device whether the CPU would
like to read from or write to. The address decoding logic continuously monitors
the address bus. It compares the incoming address on the bus to predefined address
ranges for each device. When it detects a match between the incoming address and
one of the assigned address ranges, it generates a so-called chip-select (CS) signal
for that device. When the chip-select signal for a specific device becomes active
(typically pulled low), that device knows it should respond to the CPU’s request.
It enables its data bus interface so that data can be read from or written to the
device according to the R/W signal. Once the correct device is selected, data can be

1.2 A Memory-Mapped Register 3

transferred between the CPU and the selected device through the data bus. The CPU
reads from or writes to the device’s registers or memory locations based on the oper-
ation it wants to perform. When the CPU puts another address onto the address bus,
the address decoding logic deactivates the select signal for the device, allowing other
devices to respond to subsequent address requests. In the following subsection, we
will explain this important concept in detail using a simple example.

1.2 A Memory-Mapped Register

Suppose we would like to connect a single 32-bit register to a 32-bit CPU (e.g.,
RISC-V). Also, suppose that the register has chip-enable (CE), output-enable (OE)
and chip-select (CS) signals besides the standard data input, data output and clock
signals. Such a register is presented in Fig. 1.1.

A register with chip-enable, output-enable and chip-select signals is a common
component in digital systems, especially those that involve memory-mapped I/O.
These signals control the register’s behaviour, specifying when it should be enabled
or disabled for data read and write operations. Here’s how such a register typically
works:

1. The output-enable signal (OE) connects or disconnects the output data signal
to/from the data bus. When the OE signal is active (high), the register output
becomes connected to the data bus. Data stored within the registers appears on
the data bus and is accessible for reading. When the OE signal is inactive (low),
the data output is disconnected from the data bus, and other components in the
computer system can use the data bus.

2. The chip-enable signal (CE) enables the clock signal connected to the register.
Hence, when the CE signal is active, data from the data bus will be stored in the
register on the rising edge of the clock signal.

3. The chip select signal (CS) is used to activate or deactivate the register. When the
CS signal is active, the register is selected and becomes available for read and
write operations. When the CS signal is inactive, the register is deselected, and
any access to it is disabled.

Fig. 1.1 A 32-bit register
with the CS, OE and CE
signals

32
-b

it
re

gi
st

er

32 32

data_in data_out

CLK

CE

CS
OE

4 1 Memory-Mapped Input/Output

Fig. 1.2 A 32-bit register
connected to the data bus and
to the CPU’s R/W signal

32
-b

it
re

gi
st

er

32 32

data_in data_out

CE

CS

OE

32
-b

it
CP

U

32

 ADDR

32

 DATA

R/W

CLK

Using enable and chip select signals provides fine-grained control over register
access. It allows us to isolate specific registers or components in a digital system,
preventing unintended or erroneous data transfers. These signals are particularly use-
ful in memory-mapped I/O scenarios, where multiple registers or devices share the
same address bus.

This control mechanism is essential in digital systems to prevent unintended data
transfers and efficiently manage communication with various components. A register
with CE, OE and CS signals reads data from or outputs data to the data bus only
when it is addressed (selected), and the proper combination of the CE and OE signals
is present. But how do we know when to activate these signals? Well, the OE and CE
signals depend solely on the R/W signal from the CPU. When the CPU executes a
load instruction (reads from memory), the R/W signal is high, and we should activate
the OE signal and deactivate the CE signal. On the contrary, when the CPU executes
a store instruction, the R/W signal is deactivated, and we should activate the CE
signal and deactivate the OE signal. This simple logic is implemented in Fig. 1.2.

But how about the CS signal? Well, this signal should be active only when the
register is selected. But wait, what does this mean? Who selects the register? The
register is selected when the CPU addresses it. Hence, the CS signal depends solely
on the content on the address bus. Previously, we said that each memory-mapped
register is assigned its own unique address from the CPU address space. The CPU
address space is the set of all possible addresses that the CPU can generate. For a
32-bit CPU, the address is 32-bit long, and the CPU can issue any address from
0x00000000 to 0xFFFFFFFF.

Suppose that we would like to connect a register at address 0x80000000. Now, we
can use a 32-input AND logical gate to compare the address lines with the desired
address. For our example, we should create a logic expression that activates the chip
select signal when the address matches 0x800000000. Figure 1.3 shows the solution.
This AND gate activates the CS signal when all the specified address lines match their

1.3 Two Memory Mapped Registers 5

Fig. 1.3 A 32-input AND
gate used to decode address
0x80000000

A31
A30
A29
A28
A27
A26
A25

A3
A2
A1
A0

CS

Fig. 1.4 A 32-input AND
gate used to decode address
0x80000000

32
-b

it
re

gi
st

er

32 32

data_in data_out

CE

CS

OE

32
-b

it
CP

U

32

 ADDR

32

 DATA

R/W

CLK

A31
A30
A29
A28
A27
A26
A25

A3
A2
A1
A0

respective logic levels (high or low) as in the assigned address. This process is called
address decoding. Figure 1.4 presents the final digital circuitry used to connect the
register to the CPU. Now, the register is memory-mapped into the CPU address
space, and it is accessible for reading and writing at the address 0x800000000.

We see that address decoding involves constantly comparing the addresses on
the address bus and generating the CS signal when the address on the address bus
matches the address assigned to an I/O device.

1.3 Two Memory Mapped Registers

Now that we understand how a register can be memory-mapped into the CPU address
space and which signals are used in this process, we can try to memory-map and con-
nect two registers to a CPU. Suppose we connect one register at address 0x80000000
and the other to address 0xC0000000. Actually, this task is straightforward and is

6 1 Memory-Mapped Input/Output

32
-b

it
re

gi
st

er

m
ap

pe
d

at
 0

x8
00

00
00

0

32 32

data_in data_out

CE

CS

OE

32

 ADDR

32

DATA

R/W

CLK

A31
A30
A29
A28
A27
A26
A25

A3
A2
A1
A0

32
-b

it
re

gi
st

er

m
ap

pe
d

at
 0

xC
00

00
00

0

32 32

data_in data_out

CE

CS

OE

 ADDR

A31
A30
A29
A28
A27
A26
A25

A3
A2
A1
A0

32

CS1 CS2

Fig. 1.5 Two memory-mapped registers at addresses 0x80000000 and 0xC0000000, respectively

depicted in Fig. 1.5. We should use two AND gates to decode two addresses. One
AND gate decodes address 0x80000000 and selects the first register, while the sec-
ond AND gate decodes address 0xC0000000 and selects the second register. Both
registers can share the address, CE and OE signals because address decoding logic
ensures that registers cannot be selected (active) simultaneously. Hence, we can see
that address decoding isolates two or more registers or components in a computer
system and is a crucial concept in memory-mapped I/O systems, where multiple
registers or devices share the same address bus.

Although the presented address decoding with AND gates seems very simple, it
has a serious drawback. In CMOS technology used to implement basic logic gates,
we can usually implement only 2- or 3-input logic gates. In our example, we used
32-input AND gates that do not exist in the real world. Hence, in the real world, we
would use tens of 2-input AND gates to implement the address decoding for only
one address. In real-world computer systems with tens of I/O devices and hundreds
of memory-mapped registers, this solution would be very inefficient in terms of the
number of logic gates used. Hence, we should use a different solution to decode the
addresses and select the I/O devices and their registers.

Let us return to our simple example with two memory-mapped registers. Recall
that one register is accessible at address 0x80000000 and the other at address
0xC0000000. The two addresses differ only in address bit A30. Hence, we could
select the registers based only on this bit and ignore all other address bits. We could

1.3 Two Memory Mapped Registers 7

32
-b

it
re

gi
st

er

m
ap

pe
d

at
 0

x8
00

00
00

0

32 32

data_in data_out

CE

CS

OE

32

DATA

R/W

CLK

32
-b

it
re

gi
st

er

m
ap

pe
d

at
 0

xC
00

00
00

0

32 32

data_in data_out

CE

CS

OE

CS1 CS2

A30

Fig. 1.6 Partial address decoding

select the first register when the address bit A30 is low and the second register when
the address bit A30 is high. This solution is depicted in Fig. 1.6.

But wait! The CS signal for the first register will now be active when CPU issues
addresses 0x00000000, 0x80000000 or 0xA03F0147. Actually, it is selected when-
ever the CPU issues an address with bit A30 set low. The second register will be
selected when the CPU issues any address with the address bit A30 set high. In other
words, each register is assigned exactly half of the CPU address space and not only
one particular address! But this is not a problem at all if we have only these two reg-
isters in the system. Even now, they can be selected with their previously assigned
addresses 0x80000000 and 0xC0000000. This method of address decoding is called
partial address decoding. This is contrary to the previously presented method,
called full address decoding, where each register is assigned only one address
from the address space. Here, using partial address decoding, both 0x80000000 or
0xA03F0147 addresses point to the same memory location (the first register). In
general, a set of memory addresses that point to the same memory location or an
I/O device is called aliases. Modern computer systems use partial address decoding
whenever possible to reduce the number of logic gates required to implement address
decoding logic.

8 1 Memory-Mapped Input/Output

1.4 Several Memory Mapped Registers

This time, we want to connect eight registers to a CPU and map them into the
CPU address space. Again, we will use partial address decoding to simplify the logic
required to decode the addresses and select the registers. For this purpose, we will use
an address decoder. Address decoders are fundamental logic components in digital
systems, often used for selecting input/output devices. Recall that a 3-to-8 address
decoder is a combinational logic circuit that takes a 3-bit binary input and activates
one of its eight output lines based on the input value. Figure 1.7 depicts a 3-to-8
address decoder. The decoder has three input lines (A0, A1, and A2), representing
a 3-bit binary number. These input lines can be either high (1) or low (0), creating
eight possible binary combinations: 000 to 111. The decoder has eight output lines
(Y0 to Y7), and each output corresponds to one of the possible input combinations.
The operation of a 3-to-8 decoder can be described using the following truth table:

A2 A1 A0 Y 7 Y 6 Y 5 Y 4 Y 3 Y 2 Y 1 Y 0
0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0

When we provide a 3-bit binary number as input to the decoder, it decodes that
binary value and activates the corresponding output line while setting all other output
lines to 0. This operation allows us to select one of the eight output lines based on the
input value. A 3-to-8 address decoder simplifies selecting devices based on a 3-bit
binary input value and is used in address decoding to select one of eight memory-
mapped I/O devices in a digital system.

Figure 1.8 shows the application of a 3-to-8 address decoder to select one of
eight registers mapped into the CPU memory space. Each of the eight registers is
assigned 1/8 of the CPU memory space in this case. For example, the first register
will be accessible at addresses 0x00000000 to 0x1FFFFFFF. The second register is
accessible at addresses 0x20000000 to 0x3FFFFFFF and so on, until the last one,

Fig. 1.7 A 3-to-8 address
decoder Y7

Y6
Y5
Y4
Y3
Y2
Y1
Y0

A2

A1

A0

1.5 Registers Mapped at Consecutive Addresses 9

32
-b

it
re

gi
st

er

0x
80

00
00

00
-0

x9
FF

FF
FF

F

CE

CS

OE

32
-b

it
re

gi
st

er

0x
A

00
00

00
0-

0x
BF

FF
FF

FF

CE

CS

OE

32
-b

it
re

gi
st

er

0x
C0

00
00

00
-0

xD
FF

FF
FF

F

CE

CS

OE

32
-b

it
re

gi
st

er

0x
E0

00
00

00
-0

xF
FF

FF
FF

F

CE

CS

OE

32
-b

it
re

gi
st

er

0x
00

00
00

00
-0

x1
FF

FF
FF

F

CE

CS

OE
32

-b
it

re
gi

st
er

0x

20
00

00
00

-0
x3

FF
FF

FF
F

CE

CS

OE

32
-b

it
re

gi
st

er

0x
40

00
00

00
-0

x5
FF

FF
FF

F

CE

CS

OE

32
-b

it
re

gi
st

er

0x
60

00
00

00
-0

x7
FF

FF
FF

F

CE

CS

OE

Y7
Y6
Y5
Y4
Y3
Y2
Y1
Y0

A2

A1

A0

3-to-8
address decoder

A31

A30

A29

A
D

D
RE

SS
 B

U
S

R/W

Fig. 1.8 Partial address decoding using a 3-to-8 address decoder to select eight registers

which is accessible at addresses 0xE0000000 to 0xFFFFFFFF. Because of partial
address decoding, the registers do not have only one address; instead, each register
is assigned 512 MB (one-eighth of a 4 GB) of address space.

1.5 Registers Mapped at Consecutive Addresses

In the previous section, we have learned how to memory map a set of registers over
the whole memory space using partial address decoding. However, we often aim
to map several registers belonging to the same IO device at consecutive memory
addresses. Suppose we want to map eight 32-bit registers at the following addresses:
0x80000000, 0x80000004, 0x80000008, 0x8000000C, 0x80000010, 0x80000014,
0x80000018, and 0x8000001C. To decode the registers’ addresses, we would use:

1. 2-input AND gates to decode whether the most significant bit A31 is set, and
2. a 3-to-8 address decoder to decode the address bits A4, A3 and A2 and select a

particular register.

Figure 1.9 illustrates the solution.

10 1 Memory-Mapped Input/Output

32
-b

it
re

gi
st

er
 R

EG
4

0x
80

00
00

10

CE

CS

OE

32
-b

it
re

gi
st

er
 R

EG
5

0x
80

00
00

14

CE

CS

OE

32
-b

it
re

gi
st

er
 R

EG
6

0x
80

00
00

18

CE

CS

OE

32
-b

it
re

gi
st

er
 R

EG
7

0x
80

00
00

1C

CE

CS

OE

32
-b

it
re

gi
st

er
 R

EG
0

0x
80

00
00

00

CE

CS

OE
32

-b
it

re
gi

st
er

 R
EG

1
0x

80
00

00
04

CE

CS

OE

32
-b

it
re

gi
st

er
 R

EG
2

0x
80

00
00

08

CE

CS

OE

32
-b

it
re

gi
st

er
 R

EG
3

0x
80

00
00

0C

CE

CS

OE

Y7
Y6
Y5
Y4
Y3
Y2
Y1
Y0

A2

A1

A0

3-to-8
address decoder

A4

A3

A2

A
D

D
RE

SS
 B

U
S

R/W

A31 A31 A31 A31

A31 A31 A31 A31

Fig. 1.9 Eight 32-bit registers mapped at consecutive addresses

There is a positive side-effect of consecutively memory-mapped registers that
belong to the same IO device. Using a C structure and pointers, we can conve-
niently work with the consecutively memory-mapped registers as if they were C
structure members, making the IO device’s driver code well-organized and readable.
This approach is commonly used when working with memory-mapped peripherals
and hardware registers in embedded systems and microcontroller programming. To
represent consecutively mapped registers using a C structure, we define a C struc-
ture where each member corresponds to a specific register at consecutive addresses.
Here’s an example for the registers from Fig. 1.9:

1 #define BASE_ADDRESS 0x80000000

3 // Define a structure to represent the memory -mapped registers

typedef struct {

5 volatile uint32_t REG0;

volatile uint32_t REG1;

7 volatile uint32_t REG2;

volatile uint32_t REG3;

9 volatile uint32_t REG4;

volatile uint32_t REG5;

11 volatile uint32_t REG6;

volatile uint32_t REG7;

13 } Registers_t;

1.6 Partial Versus Full Address Decoding 11

15 // Define a pointer to the base address of the memory -mapped registers

Registers_t *pMMIORegs = ((Registers_t *) BASE_ADDRESS);

17

int main() {

19 // Access and manipulate the registers:

pMMIORegs ->REG0 = 0x12345678; // Write to REG0

21 pMMIORegs ->REG2 |= 0x01 << 13; // Set bit 13 in REG2

pMMIORegs ->REG7 &= ~(0x01 << 27); // Clear bit 27 in REG2

23 uint32_t value = pMMIORegs ->REG6; // Read from REG6

...

25 return 0;

}

Listing 1.1 Representing and manipulating consecutively memory-mapped registers in C.

In the above code, we define a structure type named Registers_t, where each
member represents a specific register at consecutive addresses. Then, we create
the pointer pMMIORegs to the Registers_t type structure. We assume that
the registers are memory-mapped to the base address 0x80000000, and we set this
address to the pointer pMMIORegs. Finally, as shown in the above example, we can
access and manipulate the registers using the pMMIORegs pointer and the structure
members.

1.6 Partial Versus Full Address Decoding

Let us summarize what we have learned so far. Partial address decoding and full
address decoding are two different methods used in computer memory and memory-
mapped I/O systems to determine which memory locations or I/O devices are
accessed at a particular address.

Full address decoding involves all address lines generated by the CPU or pro-
cessing unit to select a specific memory location or I/O device. It is usually used
when we need to uniquely identify and select individual memory locations or I/O
devices, each with a distinct address. Full address decoding provides precise control
over memory or I/O access but requires more complex hardware, especially when
dealing with a large number of unique addresses.

On the contrary, partial address decoding involves examining only a portion of
the address lines generated by the CPU to decode an address and select a mem-
ory location or an I/O device. For example, suppose you have a memory system
with 16 memory locations or I/O devices. In that case, we may use partial address
decoding and compare only four higher-order address lines (e.g., A31-A28) to deter-
mine which device is being accessed. The lower-order address lines (e.g., A27-A0)
are ignored. This method is more efficient regarding hardware complexity than full
address decoding because it reduces the number of logic gates required to decode an
address.

In partial address decoding, aliases occur. Aliases are multiple addresses that map
to the same memory location or I/O device. Aliases occur because only a portion of the

12 1 Memory-Mapped Input/Output

address lines is used to select a specific memory location or device, allowing multiple
addresses to access the same location due to address overlap. In general, aliases are not
a problem. If address decoding is carefully designed and with appropriate software
handling, aliases do not lead to conflicts in accessing memory or I/O resources.
Despite aliases, partial address decoding offers several advantages over full address
decoding. It reduces hardware complexity, lowers power consumption, simplifies
PCB (printed circuit board) design and enables faster decoding.

The choice between partial address decoding and full address decoding depends on
the specific requirements of the system design. Partial address decoding is often used
when memory banks or I/O devices are organised in a structured way, with common
prefixes, while full address decoding is necessary when each memory location or
I/O device must have a unique address.

1.7 Case Study: Using the GPIO Interface in FE310-G002 RISC-V
Based System-on-Chip

GPIO stands for General Purpose Input/Output, and it refers to a type of interface
on a microcontroller that is used for simple digital input or output operations. GPIO
interface controls GPIO pins that can be configured to serve various purposes, such
as reading digital signals (input) or sending digital signals (output). GPIO pins are
“general purpose” because they are not dedicated to a specific function. Instead, we
can program them to perform various tasks based on the needs of your project.

GPIO pins can be configured as either input or output. Through input pins, the
GPIO interface can detect whether the logical level on the pin is high (usually 3.3V
or 5V) or low (0V). Through output pins, the GPIO interface can set the logic level
on the pin to high or low, which we often use for tasks such as controlling external
devices like LEDs, controlling actuators (motors, relays), and interfacing with other
digital devices.

A GPIO interface comprises a set of memory-mapped registers. These registers
allow us to set the pin direction (input or output), read or write values to the pins,
and handle events triggered by changes in the pin’s state.

The SiFive Freedom FE310 is a microcontroller-based system-on-a-chip (SoC)
developed by SiFive. The FE310 is built around the RISC-V E31 CPU core. The E31
CPU 32-bit core is based on the RISC-V RV32IMAC instruction-set architecture
(ISA), which is an open-source and royalty-free ISA. RISC-V is gaining popularity
in the embedded and processor design communities due to its flexibility, simplicity,
and extensibility. The E31 RISC-V CPU comprises a single-issue, in-order pipeline.
The pipeline comprises five stages: instruction fetch, instruction decode and register
fetch, execute, data memory access, and register writeback. The pipeline has a peak
execution rate of one instruction per clock cycle and is fully bypassed so that most
instructions have a one-cycle result latency.

The FE310 includes on-chip memory components such as SRAM for program and
data storage. Besides, it offers various peripherals and I/O options, including GPIO
pins, UART (serial communication), SPI (Serial Peripheral Interface), I2C (Inter-

1.7 Case Study:Using the GPIO Interface in FE310-G002 RISC-V Based System-on-Chip 13

Table 1.1 SiFive FE310 GPIO peripheral register offsets. All registers are reset to 0

Offset Name Description

0x00 GPIO_INPUT_VAL Pin input value

0x04 GPIO_INPUT_EN Pin input enable

0x08 GPIO_OUTPUT_EN Pin output enable

0x0C GPIO_OUTPUT_VAL Pin output value

Integrated Circuit), and timers. These peripherals enable the FE310 to interface with
other hardware components and sensors.

The SiFive FE310 microcontroller has 32 GPIO pins. The GPIO interface in the
SiFive FE310 comprises a set of special registers. Each bit in these registers manages
the state and behaviour of a corresponding individual GPIO pin. These registers are
part of the microcontroller’s memory-mapped I/O (MMIO) address space. The GPIO
interface is mapped at address 0x10012000 and comprises 19 data and control
registers. To keep the description simple, we will focus only on four data and control
registers. The memory map for the selected four GPIO control and data registers is
shown in Table 1.1. Each register is 32 bits wide.

Figure 1.10 presents a simplified structure of the GPIO interface in the SiFive
FE310. Several registers that are present in the GPIO interface are omitted for the
sake of simplicity and clarity.

There are several key registers involved in configuring and controlling GPIO pins
on the SiFive FE310:

1. GPIO_INPUT_VAL: This register stores the current input values of all GPIO
pins. Each bit in this register corresponds to a specific pin, with ‘1’ indicating a
high voltage (logic level 1) and ‘0’ indicating a low voltage (logic level 0).

2. GPIO_OUTPUT_VAL: This register stores the values to be output on the GPIO
pins when they are configured as outputs.

3. GPIO_OUTPUT_EN: This register controls whether a GPIO pin is enabled as
output by driving its tri-state buffer. When a bit in this register is ‘1’, the cor-
responding bit in the GPIO_OUTPUT_VAL register is connected to the GPIO
pin through the corresponding tri-state buffer. When the specific GPIO pin is out-
put enabled, the content of the corresponding bit in the GPIO_OUTPUT_VAL
register appears at the GPIO pin.

4. GPIO_INPUT_EN: This register controls whether a GPIO pin is enabled as
input. When a bit in this register is ‘1’, the GPIO pin is connected to the cor-
responding bit in the GPIO_INPUT_VAL register through the tri-state buffer.
When the specific GPIO pin is input enabled, the content of the GPIO pin is stored
in the corresponding bit in the GPIO_INPPUT_VAL register.

14 1 Memory-Mapped Input/Output

G
PI

O
_O

U
TP

U
T_

EN

0x
10

01
20

08

G
PI

O
_O

U
TP

U
T_

VA
L

0x
10

01
20

0C

G
PI

O
_I

N
PU

T_
VA

L
0x

10
01

20
00

G

PI
O

_I
N

PU
T_

EN

0x
10

01
20

04

D
AT

A
 B

U
S

D0

D1

D30

D31

D0

D1

D30

D31

D0

D1

D30

D31

D0

D1

D30

D31

GPIO PIN 0

GPIO PIN 1

GPIO PIN 30

GPIO PIN 31

Fig. 1.10 A simplified structure of the GPIO interface in SiFive Freedom FE310

1.7.1 Program GPIO in Assembly

Using the GPIO interface to control the pins on the SiFive FE310 microcontroller in
assembly language involves configuring the GPIO registers to control the behaviour
of individual pins. To enable a GPIO pin as an output on the SiFive FE310 micro-
controller using assembly language, we need to configure the GPIO_OUTPUT_EN
register appropriately. Below is an example of enabling a GPIO pin as an output in
assembly for the SiFive FE310. The pin number is given as the function parameter
in the register a0:

1 ; /* GPIO output enable
2 ; Input: a0 - pin number
3 ; Output: None */
4 .align 2
5 .global gpio_output_en
6 .type gpio_output_en , @function

1.7 Case Study:Using the GPIO Interface in FE310-G002 RISC-V Based System-on-Chip 15

7 gpio_output_en:
8 # prologue:
9 addi sp , sp, -16 # Allocate the routine

10 # stack frame
11 sw ra , 12(sp) # Save the return address
12 sw fp , 8(sp) # Save the frame pointer
13 sw s1 , 4(sp)
14 sw s2 , 0(sp)
15 addi fp , sp, 16 # Set the framepointer
16

17 # function body :
18 li t0 , 0x10012000 # load GPIO base address
19 lw t1 , 0x08(t0) # read GPIO_OUTPUT_EN
20 li t2 , 0x01
21 sll t2 , t2, a0 # shift 1 to pin position
22 or t1 , t1, t2 # set the bit @ pin position
23 sw t1 , 0x08(t0) # Store back
24

25 # epilogue:
26 lw s2 , 0(sp)
27 lw s1 , 4(sp)
28 lw fp , 8(sp) # restore the frame pointer
29 lw ra , 12(sp) # restore the return address
30 addi sp , sp, 16 # de-allocate the routine
31 # stack frame
32 ret

Listing 1.2 Assembly code used to implement the function that enables output on a GPIO pin.

Similarly, to enable a GPIO pin as an input on the SiFive FE310 microcontroller
using assembly language, we need to configure the GPIO_INPUT_EN register
appropriately. Below is an example of enabling a GPIO pin as an input in assembly
for the SiFive FE310. The pin number is given as the function parameter in the
register a0:

1 ; /* GPIO input enable
2 ; Input: a0 - pin number
3 ; Output: None */
4 .align 2
5 .global gpio_input_en
6 .type gpio_input_en , @function
7 gpio_input_en:
8 # prologue:
9 addi sp , sp, -16 # Allocate the routine

10 # stack frame
11 sw ra , 12(sp) # Save the return address
12 sw fp , 8(sp) # Save the frame pointer
13 sw s1 , 4(sp)
14 sw s2 , 0(sp)
15 addi fp , sp, 16 # Set the framepointer
16

17 # function body :
18 li t0 , 0x10012000 # load GPIO base address
19 lw t1 , 0x04(t0) # read GPIO_INPUT_EN
20 li t2 , 0x01
21 sll t2 , t2, a0 # shift 1 to the pin position
22 or t1 , t1, t2 # set the bit @ pin position
23 sw t1 , 0x04(t0) # Store back
24

25 # epilogue:

16 1 Memory-Mapped Input/Output

26 lw s2 , 0(sp)
27 lw s1 , 4(sp)
28 lw fp , 8(sp) # restore the frame pointer
29 lw ra , 12(sp) # restore the return address
30 addi sp , sp, 16 # de-allocate the routine
31 # stack frame
32 ret

Listing 1.3 Assembly code used to implement the function that enables input on a GPIO pin.

To set a GPIO pin, we need to set the corresponding bit in the
GPIO_OUTPUT_VAL register:

1 ; /* GPIO set pin
2 ; Input: a0 - pin number
3 ; Output: None */
4 .align 2
5 .global gpio_set_pin
6 .type gpio_set_pin , @function
7 gpio_set_pin:
8 # prologue:
9 addi sp , sp, -16 # Allocate the routine

10 # stack frame
11 sw ra , 12(sp) # Save the return address
12 sw fp , 8(sp) # Save the frame pointer
13 sw s1 , 4(sp)
14 sw s2 , 0(sp)
15 addi fp , sp, 16 # Set the framepointer
16

17 # function body :
18 li t0 , 0x10012000 # load GPIO base address
19 lw t1 , 0x0C(t0) # read GPIO_OUTPUT_VAL
20 li t2 , 0x01
21 sll t2 , t2, a0 # shift 1 to pin position
22 or t1 , t1, t2 # set the bit @ pin position
23 sw t1 , 0x0C(t0) # Store back
24

25 # epilogue:
26 lw s2 , 0(sp)
27 lw s1 , 4(sp)
28 lw fp , 8(sp) # restore the frame pointer
29 lw ra , 12(sp) # restore the return address
30 addi sp , sp, 16 # de-allocate the routine
31 # stack frame
32 ret

Listing 1.4 Assembly code used to implement the function for setting a GPIO pin.

To reset a GPIO pin, we need to reset the corresponding bit in the
GPIO_OUTPUT_VAL register:

1 ; /* GPIO clear pin
2 ; Input: a0 - pin number
3 ; Output: None */
4 .align 2
5 .global gpio_clear_pin
6 .type gpio_clear_pin , @function
7 gpio_clear_pin:
8 # prologue:

1.7 Case Study:Using the GPIO Interface in FE310-G002 RISC-V Based System-on-Chip 17

9 addi sp , sp, -16 # Allocate the routine
10 # stack frame
11 sw ra , 12(sp) # Save the return address
12 sw fp , 8(sp) # Save the frame pointer
13 sw s1 , 4(sp)
14 sw s2 , 0(sp)
15 addi fp , sp, 16 # Set the framepointer
16

17 # function body :
18 li t0 , 0x10012000 # load GPIO base address
19 lw t1 , 0x0C(t0) # read GPIO_OUTPUT_VAL
20 li t2 , 0x01
21 sll t2 , t2, a0 # shift 1 to pin position
22 not t2 , t2 # 1’ complement
23 and t1, t1, t2 # clear pin
24 sw t1 , 0x0C(t0) # Store back
25

26 # epilogue:
27 lw s2 , 0(sp)
28 lw s1 , 4(sp)
29 lw fp , 8(sp) # restore the frame pointer
30 lw ra , 12(sp) # restore the return address
31 addi sp , sp, 16 # de-allocate the routine
32 # stack frame
33 ret

Listing 1.5 Assembly code used to implement the function for resetting a GPIO pin.

A handy function is to toggle a GPIO pin. To toggle a GPIO pin, we need to
EXOR the corresponding bit in the GPIO_OUTPUT_VAL register with ‘1’:

1 ; /* GPIO clear pin
2 ; Input: a0 - pin number
3 ; Output: None */
4 .align 2
5 .global gpio_toggle_pin
6 .type gpio_toggle_pin , @function
7 gpio_toggle_pin:
8 # prologue:
9 addi sp , sp, -16 # Allocate the routine

10 # stack frame
11 sw ra , 12(sp) # Save the return address
12 sw fp , 8(sp) # Save the frame pointer
13 sw s1 , 4(sp)
14 sw s2 , 0(sp)
15 addi fp , sp, 16 # Set the framepointer
16

17 # function body :
18 # function body :
19 li t0 , 0x10012000 # load GPIO base address
20 lw t1 , 0x0C(t0) # read GPIO_OUTPUT_VAL
21 li t2 , 0x01
22 sll t2 , t2, a0 # shift 1 to pin position
23 xor t1 , t1, t2 # toggle the bit @ pin position
24 sw t1 , 0x0C(t0) # Store back
25

26 # epilogue:
27 lw s2 , 0(sp)
28 lw s1 , 4(sp)
29 lw fp , 8(sp) # restore the frame pointer
30 lw ra , 12(sp) # restore the return address

18 1 Memory-Mapped Input/Output

31 addi sp , sp, 16 # de-allocate the routine
32 # stack frame
33 ret

Listing 1.6 Assembly code used to implement the function for toggling a GPIO pin.

1.7.2 Program GPIO in C

We can also program a memory-mapped I/O device in C. We abstract an MMIO
device with a C structure that represents and mirrors the layout of the registers in the
MMIO device. We will present this concept using the GPIO Interface in FE310-G002
RISC-V based System-On-chip. To abstract GPIO registers with a C structure, we
create a structure that mirrors the layout of the GPIO registers:

1 typedef struct
{

3 volatile int GPIO_INPUT_VAL;
volatile int GPIO_INPUT_EN;

5 volatile int GPIO_OUTPUT_EN;
volatile int GPIO_OUTPUT_VAL;

7 } GPIO_Registers_t;

Listing 1.7 A C structure that mirrors the GPIO registers layout.

This abstraction makes it easier to access and manipulate GPIO registers and
pins and control their behaviour. Each member of the structure corresponds to a
specific register in the GPIO interface, such as the input value register, output value
register, etc. The layout of the members of the structure exactly mirrors the layout
of the registers in memory, i.e., the members are in the same order as the registers
in memory space. Recall that in C, the volatile keyword is used to indicate
to the compiler that a variable can change its value at any time, even if it doesn’t
appear to be modified by the program. It informs the compiler that the variable
should always be fetched from memory when needed rather than relying on cached
values or optimizations that could result in unexpected behaviour. When working
with hardware peripherals, we often access memory-mapped registers that control
or represent hardware components. These registers can be modified by the hardware
(e.g., GPIO pins) at any time outside our program, and the compiler might not
be aware of these changes. By declaring such registers as volatile, you ensure the
compiler generates code that correctly reflects the behaviour of hardware registers,
making it suitable for hardware interaction.

Next, we define a pointer (in our example, the pointer is named GPIO, but you are
free to use any name you wish) that holds the base address of the GPIO interface:

1 #define GPIO_BASEADDR 0x10012000

3 GPIO_Registers_t *GPIO = (GPIO_Registers_t *) GPIO_BASEADDR;

Listing 1.8 A pointer that holds the base address of the GPIO interface.

1.7 Case Study:Using the GPIO Interface in FE310-G002 RISC-V Based System-on-Chip 19

This pointer is used to access the GPIO registers as if they were part of a C
structure. For example, we set pin 19 as output in the output enable register and
toggle the state of pin 19 in the output value register:

1 GPIO ->GPIO_OUTPUT_EN |= (0x01 << 19);
GPIO ->GPIO_OUTPUT_VAL ^= (0x01 << 19);

Listing 1.9 Enabling and setting a GPIO in C.

Instead of using the above GPIO pointer to access the GPIO registers directly,
we usually define an initialization structure and implement several access functions.
This is especially true when we implement the hardware abstraction layer (HAL) of
a MMIO device that other users will use. In the hardware abstraction layer, we try to
provide more user-friendly way to configure the peripheral without forcing the pro-
grammers to know how to configure its registers in detail. For example, to configure
and use GPIO, we define several other constants and the GPIO_InitTypeDef
structure in C:

#define GPIO_MODE_INPUT 0x00U
2 #define GPIO_MODE_OUTPUT 0x01U

4 /* GPIO pins define
*

6 */
#define GPIO_PIN_0 ((uint32_t)0x00000001)

8 #define GPIO_PIN_1 ((uint32_t)0x00000002)
#define GPIO_PIN_2 ((uint32_t)0x00000004)

10 #define GPIO_PIN_3 ((uint32_t)0x00000008)

12 ...

14 #define GPIO_PIN_30 ((uint32_t)0x40000000)
#define GPIO_PIN_31 ((uint32_t)0x80000000)

16

typedef struct
18 {

uint32_t Pin; /* GPIO pins to be configured. */
20 uint32_t Mode; /* Operating mode for the selected pins */

} GPIO_InitTypeDef;

Listing 1.10 Pins definition and a C structure used to configure the GPIO.

The meaning of each field of the struct is:

1. Pin: it is the position of the pin in a 32-bit word, starting from 0, of
the pins we will configure. For example, for pin 22 it assumes the value
GPIO_PIN_22. Take note that the GPIO_PIN_x is a bit mask, where the
i-th pin corresponds to the i-th bit of a uint32_t datatype. For exam-
ple, the GPIO_PIN_9 has a value of 0x00000200. We can use the same
GPIO_InitTypeDef instance to configure several pins at once, doing a bit-
wise OR (e.g., GPIO_PIN_1|GPIO_PIN_21|GPIO_PIN_22).

20 1 Memory-Mapped Input/Output

2. Mode: it is the operating mode of the pin, and it can be GPIO_MODE_INPUT or
GPIO_MODE_OUTPUT.

We can now write HAL functions in C that will provide manipulation routines to
initialize and change the state of GPIO pins. For example, to initialize and toggle
GPIO pins, we implement the following C functions:

1 void HAL_GPIO_Init(GPIO_Registers_t *GPIO , GPIO_InitTypeDef *GPIO_Init){

3 if (GPIO_Init ->Mode == GPIO_MODE_INPUT) {

GPIO ->GPIO_INPUT_EN |= GPIO_Init ->Pin;

5 GPIO ->GPIO_OUTPUT_EN &= ~(GPIO_Init ->Pin);

}

7

else if (GPIO_Init ->Mode == GPIO_MODE_OUTPUT) {

9 GPIO ->GPIO_OUTPUT_EN |= GPIO_Init ->Pin;

GPIO ->GPIO_INPUT_EN &= ~(GPIO_Init ->Pin);

11 }

}

13

void HAL_GPIO_TogglePin(GPIO_Registers_t *GPIO , uint32_t GPIO_Pin){

15 GPIO ->GPIO_OUTPUT_VAL ^= GPIO_Pin;

}

Listing 1.11 Hardware abstraction layer functions for the GPIO.

The HAL_GPIO_Init function accepts the GPIO register and the initialization
structures. For example, to initialize pins 19, 21 and 22 as outputs, we use the
following C code:

GPIO_Registers_t *GPIO = (GPIO_Registers_t *) GPIO_BASEADDR;
2 GPIO_InitTypeDef GPIO_InitStruct;

4 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT;
GPIO_InitStruct.Pin = GPIO_PIN_19 | GPIO_PIN_21 | GPIO_PIN_22;

6 HAL_GPIO_Init(GPIO , &GPIO_InitStruct);

Listing 1.12 GPIO pins initialization.

1.8 Case Study: Using the GPIO Interface in ARM Cortex-M Based
STM32H7 System-on-Chip

1.8.1 Cortex-M Fixed Memory Address Space

ARM defines a fixed memory address space common to all Cortex-M cores. This fixed
memory space ensures code portability among different silicon manufacturers, which
incorporate ARM Cortex-M cores into their systems-on-chip. The ARM Cortex-M
processors have a fixed default memory map that provides up to 4 GB of addressable
memory. The memory map of ARM Cortex-M processors is split into regions with
different aims. Figure 1.11 shows the memory map of a Cortex-M processor. All
on-chip peripherals should be mapped to a specific region, starting from 0x4000
0000 and lasting up to 0x5FFF FFFF. This region is further divided into several

1.8 Case Study:Using the GPIO Interface in ARM Cortex-M Based… 21

Fig. 1.11 Cortex-M fixed
memory address space

sub-regions, each one mapped to a specific peripheral. For example, STM32H750
system-on-chip comprises 11 16-bit GPIO interfaces, GPIOA to GPIOK. Each GPIO
interface is mapped to a 1 kB memory region using partial address decoding. For
example, the GPIOI interface is mapped to 0x58022000-0x580223FF. The
reader should look for more details in a reference manual for a specific SoC.

1.8.2 GPIO Interface in STM32H7

The STM32H7 microcontrollers come with 176 GPIO pins organized into 11 GPIO
interfaces (or ports), named GPIOA to GPIOK. Each GPIO port contains 16 pins
that can be configured individually. We can configure GPIO pins for various modes,
including input, output, alternate function, and analog. Additionally, depending on
our requirements, we can configure GPIO output speed to low, medium, or high.
Similar to FE310, many GPIO pins in STM32H7 microcontrollers have alternate
functions, allowing them to be used for tasks other than general-purpose I/O. These
alternate functions may include UART, SPI, I2C, PWM, or other peripherals.

In STM32H7 microcontrollers, GPIO functionality is managed through a set of
registers that control the configuration, state, and behaviour of individual GPIO pins
and their associated ports. Each GPIO interface in an STM32H7 microcontroller has:

1. four 32-bit configuration registers (GPIOx_MODER, GPIOx_OTYPER,
GPIOx_OSPEEDR and GPIOx_PUPDR),

22 1 Memory-Mapped Input/Output

2. two 32-bit data registers (GPIOx_IDR and GPIOx_ODR),
3. a 32-bit set/reset data register (GPIOx_BSRR), and
4. two 32-bit alternate function selection registers (GPIOx_AFRH and

GPIOx_AFRL).

The reader should reference the STM32H7 reference manual and the HAL (Hardware
Abstraction Layer) library provided by STMicroelectronics for detailed information
on using these registers. Here, we provide only a brief description of GPIO regis-
ters. Table 1.2 provides the memory map for a GPIO interface data and control and
registers in STM32H7.

GPIOx_MODER (Port Mode Register):
This register (Fig. 1.12) configures the mode of each pin within a GPIO port (x).
Each pin can be set to one of the following modes: input, output, alternate function,
or analog mode. For example, setting two bits for a pin to ‘01’ configures it as a
general-purpose output pin.

GPIOx_OTYPER (Output Type Register):
This register (Fig. 1.13) configures the output type of each pin within a GPIO port.
We can select either push-pull (default) or open-drain output modes for each pin. In
open-drain mode, the pin can only pull the signal low; it needs an external pull-up
resistor for logic high.

Let us simply and briefly explain the difference between output configurations
without diving into the electrical details of both. Push-pull and Open-Drain are
two different output configurations for digital pins in electronics, particularly in
microcontrollers and digital logic circuits. These configurations determine how a
pin drives or controls an external circuit and have different characteristics and use
cases.

In the push-pull output configuration, a digital pin can actively pull the output
to either a high voltage level or a low voltage level. A push-pull pin can output both
high and low logic levels, making it suitable for driving both high and low states.

Table 1.2 STM32H7 GPIO peripheral register offsets

Offset Name Description

0x00 GPIOx_MODER GPIO port mode register

0x04 GPIOx_OTYPER GPIO port output type register

0x08 GPIOx_OSPEEDR GPIO port output speed register

0x0C GPIOx_PUPDR GPIO port pull-up/pull-down register

0x10 GPIOx_IDR GPIO port input data register

0x14 GPIOx_ODR GPIO port output data register

0x18 GPIOx_BSRR GPIO port bit set/reset register

0x20 GPIOx_AFRL GPIO alternate function low register

0x24 GPIOx_AFRH GPIO alternate function high register

1.8 Case Study:Using the GPIO Interface in ARM Cortex-M Based… 23

Fig. 1.12 GPIOx_MODER (Port Mode Register)

Fig. 1.13 GPIOx_OTYPER (Output Type Register)

Push-pull configuration is commonly used for general-purpose digital signal output.
It can drive both high and low signals directly, providing faster signal transitions. The
main disadvantage of the push-pull configuration is that it can consume considerably
high power when actively driving a high state.

In an open-drain output configuration, a digital pin can only actively pull the
output to a low voltage level. It relies on an external pull-up resistor to pull the
output to a high voltage level. Open-drain output configuration is often used when
multiple devices need to share a single bus (e.g., I2C or SMBus). It allows multiple
devices to communicate without conflicts. The main disadvantage of the open-drain
output configuration is that it is slower and consumes more power when actively
pulling the output low because it depends on the external pull-up resistor. Let us
summarize the key differences between the two output configurations:

24 1 Memory-Mapped Input/Output

Fig. 1.14 GPIOx_OSPEEDR (Output Speed Register)

Output Range: Push-pull can drive both high and low states, while open-drain
can only drive low states.

Speed: Push-pull typically provides faster signal transitions.
Applications: Open-drain is often used in bidirectional communication buses

(e.g., I2C), while push-pull is commonly used for general-purpose digital sig-
nal output.

The choice between push-pull and open-drain configurations depends on the
application’s specific requirements.

GPIOx_OSPEEDR (Output Speed Register):
This register (Fig. 1.14) configures the output speed of each pin within a GPIO port.
We can choose from various output speed options, such as low, medium, or high.
The speed setting affects the rise and fall times of the output signal. A higher GPIO
speed increases the EMI noise from STM32 and the power consumption. It is good
to adapt the GPIO speed to the peripheral speed. For example, low speed is optimal
for toggling GPIO at 1 Hz, while fast serial communication at 45 MHz requires a
very high-speed setting.

GPIOx_PUPDR (Pull-Up/Pull-Down Register):
This register (Fig. 1.15) configures the pull-up and pull-down resistors for each pin
within a GPIO port. We can select pull-up, pull-down, or neither (floating) for each
pin. Pull-up and pull-down resistors are useful for input pins to provide defined logic
levels when no external signal is applied.

Pull-up and pull-down resistors are commonly used in digital electronics to set
the default logic state of a digital input pin when it is not actively being driven to a
logic high or low level. They are often used to ensure that an input pin has a defined
logic state in situations where no active signal is present.

A pull-up resistor is connected between a digital input pin and the positive voltage
supply. It “pulls up” the voltage level of the input pin to a high logic state when there

1.8 Case Study:Using the GPIO Interface in ARM Cortex-M Based… 25

Fig. 1.15 GPIOx_PUPDR (Pull-Up/Pull-Down Register)

is no other signal driving the pin. It prevents floating or undefined states on input
pins, which can lead to unreliable circuit behaviour. Besides, it is also often used in
conjunction with open-drain outputs (common in communication interfaces like I2C
and UART) to provide a defined high state of the communication line when there is
no active communication.

A pull-down resistor is connected between a digital input pin and the ground.
It “pulls down” the voltage level of the pin to a low logic state when there is no
other signal driving the pin. It ensures that digital input is in a known low state when
not actively being driven high. It is often used in scenarios where a digital input
should default to a low state in the absence of an external signal or when a pin is
unconnected.

The choice between pull-up and pull-down resistors depends on the desired default
state for the input and the specific requirements of the circuit. Without pull-up or
pull-down resistors, digital inputs can be left in a floating or undefined state when not
actively driven high or low, which can lead to erratic behaviour or excessive power
consumption. Both pull-up and pull-down resistors are essential tools for maintaining
stable and predictable logic states in digital circuits and ensuring reliable operation,
especially in microcontroller-based systems, digital communication interfaces, and
any situation where digital signals need to be defined in the absence of active signals.

GPIOx_IDR (Input Data Register):
This register (Fig. 1.16) reads the input state of each pin within a GPIO port. Each
bit corresponds to a pin, reflecting the pin’s logic level (0 or 1). Reading this register
allows us to determine the state of input pins.

GPIOx_ODR (Output Data Register):
This register (Fig. 1.17) controls the output state of each pin within a GPIO port.
Each bit corresponds to a pin, and writing a 0 or 1 to a bit sets the pin’s output state
accordingly.

26 1 Memory-Mapped Input/Output

Fig. 1.16 GPIOx_IDR (Input Data Register)

Fig. 1.17 GPIOx_ODR (Output Data Register)

Fig. 1.18 GPIOx_BSRR (Bit Set/Reset Register)

GPIOx_BSRR (Bit Set/Reset Register):
This register (Fig. 1.18) allows us to atomically set or reset individual bits (pins) in
the ODR register. Writing a ‘1’ to a bit in this register sets the corresponding bit in
ODR, and writing a ‘1’ to the upper 16 bits resets the corresponding bits in ODR.

GPIOx_AFRL and GPIOx_AFRH (Alternate Function Registers Low/High):
These registers configure the alternate function of pins when they are used for alter-
nate functions (e.g., UART, SPI). Each pin’s alternate function is selected by writing
a specific value to the corresponding bits in these registers.

1.8 Case Study:Using the GPIO Interface in ARM Cortex-M Based… 27

VDD

GND

PIN

Push-pull
Open-Drain

Pull-up
ON/OFF

Pull-down
ON/OFF

M
O

D
ER

ID
R

O
D

R

PU
PD

R

O
TY

PE
R

BS
RR

A
FR

Pull-up

Pull-down

Alternate Function

CPU

CPU

CPU

CPU

CPU

CPU

CPU

Fig. 1.19 Basic structure of an I/O port bit

1.8.3 Functional Description of the GPIO Interface in STM32H7

STM32 MCUs provide flexible GPIO management. Figure 1.19 shows the simplified
hardware structure of a single I/O port of an STM32 microcontroller. Each port bit
of the GPIO ports can be individually configured by software in several modes:

1. Input floating.
2. Input pull-up.
3. Input pull-down.
4. Output open-drain with pull-up or pull-down capability.
5. Output push-pull with pull-up or pull-down capability.
6. Alternate function output push-pull with pull-up or pull-down capability.
7. Alternate function output open-drain with pull-up or pull-down capability.

Each I/O port bit is freely programmable; however, the I/O port registers have
to be accessed as 32-bit words. Changing the memory-mapped GPIO registers, the
MCU changes the way the hardware of an I/O bit (pin) works. Let us have a look at
the main modes.

28 1 Memory-Mapped Input/Output

To configure an I/O pin as input, we should write ‘00’ to the corresponding bits in
the MODER register. When the I/O is configured as input the output is disabled. The
pull-up and pull-down resistors are activated depending on the value of the PUPDR
register. The data present on the I/O pin are sampled into the input data register
(ADR) every clock cycle. A read access to the IDR register provides the I/O state.

To configure an I/O pin as output, we should write ‘01’ to the corresponding bits
in the MODER register. The output buffer is enabled when the I/O is configured
as output according to the OTYPER. If the corresponding bit in OTYPER is 0, the
output is push-pull; otherwise, it is open-drain. Besides, The pull-up and pull-down
resistors are activated depending on the value of the PUPDR register. The CPU can
set the state of a pin by writing to the ODR register. The CPU can also control the
state of an output pin through the BSRR register. The purpose of the BSRR register
is to allow atomic read/modify accesses to the ODR register, avoiding the risk of an
interrupt request occurring between the read and the modify access.

1.8.4 Program GPIO in C Using HAL

To configure and use peripherals in STM32H7 systems on a chip, we often use
the hardware abstraction library. The HAL (Hardware Abstraction Layer) library
for STM32 microcontrollers is a high-level, platform-independent library provided
by STMicroelectronics. It serves as an abstraction layer between the low-level hard-
ware of STM32 microcontrollers and the application code, making it easier to develop
embedded applications for STM32 devices. The HAL library simplifies hardware ini-
tialization, peripheral configuration, and low-level I/O operations, enabling devel-
opers to focus on application-level code. The HAL library provides a consistent
and abstracted API for STM32 peripheral control. This allows developers to write
portable code that can be used across different STM32 microcontroller families.
Besides, HAL provides drivers for various STM32 peripherals, including GPIO,
UART, SPI, I2C, timers, and more. These drivers are used to configure and control
the peripherals. STMicroelectronics provides extensive documentation, including
reference manuals, datasheets, application notes, and examples, to help developers
use the HAL library effectively. The description of the HAL library is beyond the
scope of this textbook; however, we will try to explain its usage in a simple example
of using the GPIO interface.

The STM32H7 GPIO interface is abstracted in HAL in the same way as
we abstracted the GPIO interface for FE310 SoC in Sect. 1.7.2. HAL uses two
structures: GPIO_TypeDef for GPIO registers abstraction (Listing 1.13) and
GPIO_InitTypeDef to facilitate the initialization of GPIO (Listing 1.14).

typedef volatile __IO;
2 typedef struct
{

4 __IO uint32_t MODER; // Address offset: 0x00
__IO uint32_t OTYPER; // Address offset: 0x04

6 __IO uint32_t OSPEEDR; // Address offset: 0x08
__IO uint32_t PUPDR; // Address offset: 0x0C

8 __IO uint32_t IDR; // Address offset: 0x10

1.8 Case Study:Using the GPIO Interface in ARM Cortex-M Based… 29

__IO uint32_t ODR; // Address offset: 0x14
10 __IO uint32_t BSRR; // Address offset: 0x18

__IO uint32_t LCKR; // Address offset: 0x1C
12 __IO uint32_t AFR [2]; // Address offset: 0x20 -0x24

} GPIO_TypeDef;

Listing 1.13 A C structure that mirrors the GPIO registers layout.

1 #define GPIO_PIN_0 ((uint16_t)0x0001)
#define GPIO_PIN_1 ((uint16_t)0x0002)

3 #define GPIO_PIN_2 ((uint16_t)0x0004)
#define GPIO_PIN_3 ((uint16_t)0x0008)

5 ...
#define GPIO_PIN_15 ((uint16_t)0x8000)

7 #define GPIO_PIN_All ((uint16_t)0xFFFF)

9 typedef struct
{

11 uint32_t Pin; // GPIO pins to be configured.
uint32_t Mode; // Pin mode

13 uint32_t Pull; // Pull -up or Pull -Down
uint32_t Speed; // Speed

15 uint32_t Alternate; // Alternate function
} GPIO_InitTypeDef;

Listing 1.14 Pins definition and a C structure used to configure the GPIO.

Using the HAL library in STM32 microcontrollers to work with GPIO pins is a
common and convenient approach for configuring and controlling GPIO pins. The
HAL library provides a set of functions and macros that abstract the hardware-specific
details, making it easier to work with GPIO pins. Suppose we want to configure pin
2 in the GPIOJ interface in the STM32H7 microcontroller as output. Here are the
general steps:

1. Include the appropriate HAL header for the STM32H7 microcontroller, initialize
the HAL Library and enable Clock for GPIOJ Peripheral in the main() function:

1 #include "stm32h7xx_hal.h"

3 int main(void)
{

5 /* Init HAL: reset of all peripherals ,
initialize the Flash interface and the Systick. */

7 HAL_Init ();

9 /* GPIO Ports Clock Enable */
__HAL_RCC_GPIOJ_CLK_ENABLE();

11

...
13 }

Listing 1.15 Include HAL header, initialize HAL and enable GPIO clock.

2. Create a GPIO_InitTypeDef structure, configure the desired parameters for
the GPIO pin and initialize the GPIO pin:

30 1 Memory-Mapped Input/Output

1 /* Configure GPIO pin : Pin 2 */
GPIO_InitStruct.Pin = GPIO_PIN_2;

3 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP ; // push -pull
GPIO_InitStruct.Pull = GPIO_PULLUP; // pull up

5 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH ;

7 /* Initialize GPIO pin : Pin 2 */
HAL_GPIO_Init(GPIOJ , &GPIO_InitStruct);

Listing 1.16 Configure and initialize GPIO pin.

3. Read, Write or Toggle the GPIO Pin:

GPIO_PinState bitstatus;
2 bitstatus = HAL_GPIO_ReadPin(GPIOJ , GPIO_PIN_2);

4 HAL_GPIO_WritePin(GPIOJ , GPIO_PIN_2 , GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOJ , GPIO_PIN_2 , GPIO_PIN_RESET);

6

HAL_GPIO_TogglePin(GPIOJ , GPIO_PIN_2);

Listing 1.17 Read, Write or Toggle pin.

1.9 Case Study: Using the UART Interface in FE310-G002 RISC-V
Based System-on-Chip

Here, we will show how to program another handy memory-mapped IO device,
Universal Asynchronous Receiver Transmitter (UART), but we will use only C this
time. This is indeed possible for all memory-mapped IO devices, and there is no
need to use an assembler. UART is a commonly used serial communication interface
that allows asynchronous data transfer between a microcontroller, such as the SiFive
FE310, and external devices like sensors, displays, other microcontrollers or even
desktop computers. The SiFive FE310 microcontroller features two memory-mapped
UART interfaces that provide serial communication capabilities.

1.9.1 Universal Asynchronous Receiver Transmitter

Before we start explaining the Universal Asynchronous Receiver Transmitter
(UART) provided in SiFive FE310, let us briefly describe the UART interface and its
communication protocol. When we want to exchange data between two devices, we
generally have two alternatives. Firstly, we can simultaneously transmit all bits in
parallel using a number of GPIO lines. The number of GPIO lines would be equal
to the size of the data word (e.g., eight GPIO lines for a word made of eight bits).
Secondly, we can transmit each bit, constituting a data word, one by one serially, i.e.,
in a continuous stream of bits flowing on a single wire. A UART is a device that trans-
lates parallel bits in a data word (usually grouped in a byte) into a continuous stream
of bits and puts them one by one on a single wire. When the data flows between two
devices serially (here, we refer to them as the sender and the receiver), they have to
agree on the timing. Timing defines how long it takes to transmit each individual bit

1.9 Case Study:Using the UART Interface in FE310-G002… 31

Fig. 1.20 Two UARTs
directly communicate with
each other

UART UART

TX

RX

TX

RX

Fig. 1.21 UART frame
format

IDLE IDLE

STOPSTART

8 DATA BITS

T
bit

T
bit

T
bit

T
bit

T
bit

T
bit

T
bit

T
bit

T
bit

T
bit

BAUD RATE = 1 / T
bit

of the data. In synchronous serial transmission, the sender and the receiver share a
common clock generated by the sender. The clock’s frequency determines how fast
we can transmit a single bit. But if both devices involved in data transmission agree
on how long it takes to transmit a single bit and how to distinguish the start and finish
of transmission, then we can avoid using a dedicated clock line. In this case, we have
asynchronous serial transmission.

A Universal Asynchronous Receiver/Transmitter interface is a device able to trans-
mit data word serially using two I/O lines, one acting as a transmitter (TX) and one
as a receiver (RX) (Fig. 1.20). One of the big advantages of UART is that it is
asynchronous—the transmitter and receiver do not share a common clock signal.
Although this greatly simplifies the protocol, it does place certain requirements on
the transmitter and receiver. Since they do not share a clock, both ends must transmit
at the same agreed speed for the same bit timing. Communication in UART can be
simplex (data is sent in one direction only), or full-duplex (both sides can transmit
simultaneously).

Data in UART is transmitted in the form of frames. Figure 1.21 shows a UARTS’s
typical frame and the timing diagram. The high signal on the transmission line
represents the idle state (that is, no transmission occurring). Because UART is asyn-
chronous, the transmitter must signal that data bits are coming. This is accomplished
by using the start bit. The start bit is a transition from the idle high state to a low
state and is immediately followed by eight data bits. The data bits are the user data
that come immediately after the start bit. There can be 5–9 user data bits, although
8 bits is most common. The least significant bit (LSB) is typically transmitted first.
An optional parity bit is then transmitted (for error checking of the data bits). Often,
this bit is omitted.

After the data bits are transmitted, the stop bit indicates the end of user data. The
stop bit is either a transition back to the high or idle state or remaining at the high state

32 1 Memory-Mapped Input/Output

for an additional bit-time. A second (optional) stop bit can be configured, usually
to give the receiver time to get ready for the next frame, but this is uncommon in
practice.

The time it takes to transmit a single bit determines the baud rate. The baud rate
specifies how fast data is sent over a serial line. It’s usually expressed in units of
bits-per-second (bps). If we invert the baud rate, we can find out just how long it
takes to transmit a single bit. This value determines how long the transmitter holds a
serial line high/low or at what period the receiver samples its line. Baud rates can be
just about any value within reason. The only requirement is that both devices agree
upon the same rate. The standard baud rates are 1200, 2400, 4800, 19200, 38400,
57600, and 115200 bits per second.

1.9.2 The UART Interface in the SiFive FE310

The UART interface in the SiFive FE310 supports the following features:

1. frames formats: 8 data bits, no parity bit, 1 start bit, 1 or 2 stop bits,
2. 8-entry transmit and receive FIFO buffers with programmable watermark inter-

rupts.

FE310 SoC contains two memory-mapped UART interfaces. The interface UART0 is
mapped at address 0x10013000, while the interface UART1 is mapped at address
0x10023000. We will focus on UART0 only.

The UART0 interface in the SiFive FE310 comprises several memory-mapped
data and control registers. Table 1.3 presents the memory map for the UART data and
control and registers. The UART registers are 32-bit wide, requiring only naturally
aligned 32-bit memory accesses.

Here, we will describe only a few registers required to transmit and receive data
without using interrupts:

Table 1.3 Register offsets within UART memory map

Offset Name Description

0x00 txdata Transmit data register

0x04 rxdata Receive data register

0x08 txctrl Transmit control register

0x0C rxctrl Receive control register

0x10 ie UART interrupt enable

0x14 ip UART interrupt pending

0x18 div Baud rate divisor

1.9 Case Study:Using the UART Interface in FE310-G002… 33

Fig. 1.22 The txdata register

Fig. 1.23 The rxdata register

Fig. 1.24 The txctrl register

1. Transmit Data Register (txdata) (Fig. 1.22). Writing to the txdata register
enqueues the character contained in the data field to the transmit FIFO if the
FIFO is able to accept new entries. Reading from txdata returns the current value
of the FULL flag and zero in the data field. The FULL flag indicates whether the
transmit FIFO is able to accept new entries; when set, writes to data are ignored.

2. Receive Data Register (rxdata) (Fig. 1.23). Reading the rxdata register
dequeues a character from the receive FIFO and returns the value in the data
field. The EMPTY flag indicates if the receive FIFO was empty; when set, the
data field does not contain a valid character. Writes to rxdata are ignored.

3. Transmit Control Register (txctrl) (Fig. 1.24). The read-write txctrl register
controls the operation of the transmitter. The TXEN bit controls whether the
transmitter is enabled. When cleared, the transmission is suppressed, and the TX
pin is driven high. The NSTOP field specifies the number of stop bits: 0 for one
stop bit and 1 for two stop bits.

4. Receive Control Register (rxctrl) (Fig. 1.25). The read-write rxctrl register
controls the receiver’s operation. The RXEN bit controls whether the receive
is enabled. When cleared, the state of the RX pin is ignored.

5. Baud Rate Divisor Register (div) (Fig. 1.26). The read-write, div register speci-
fies the divisor used by the baud rate generator to divide the CPU’s clock frequency
to generate a desired baud rate. For example, to set the baud rate of 115200 bits
per second, the div register should be set to 139. We should refer to the SiFive
FE310 documentation and reference manual for precise details on configuring
the div register.

34 1 Memory-Mapped Input/Output

Fig. 1.25 The rxctrl register

031 15

DIV

Fig. 1.26 The div register

1.9.3 Program UART in C

To abstract UART registers with a C structure, we create a structure that mirrors the
layout of the UART registers:

1 typedef struct
{

3 volatile int UART_TXDATA;
volatile int UART_RXDATA;

5 volatile int UART_TXCTRL;
volatile int UART_RXCTRL;

7 volatile int UART_IE;
volatile int UART_IP;

9 volatile int UART_DIV;
} UART_Registers_t;

Listing 1.18 A C structure that mirrors the UART registers layout.

Next, we define a pointer (in our example, the pointer is named UART0, but
you are free to use any name you wish) that holds the base address of the UART0
interface:

#define UART0_BASEADDR 0x10013000
2

UART_Registers_t *UART0 = (UART_Registers_t *) UART0_BASEADDR;

Listing 1.19 A pointer that holds the base address of the UART interface.

This pointer is used to access the UART registers as if they were part of a C
structure. Here, we present a few useful UART functions:

1 /*
* Set Baud Rate to 115200

3 * With tlclk at 16Mhz , to achieve 115200 baud ,
* divisor should be 139. SiFive FE310 -G002 Manual:, page 85

5 * @arguments:
* uart: UART0 or UART1

7 */
void uart_set_baud(UART_Registers_t *uart){

9 uart ->UART_DIV = 139;
}

1.9 Case Study:Using the UART Interface in FE310-G002… 35

11

/*
13 * Enable TX

* @arguments:
15 * uart: UART0 or UART1

*/
17 void uart_enable_tx(UART_Registers_t *uart){

uart ->UART_TXCTRL |= 0x00000001;
19 }

21 /*
* Set No. stop bits

23 * @arguments:
* uart: UART0 or UART1

25 * nstop: UART_1_STOP_BIT or UART_2_STOP_BIT
*/

27 void uart_set_nstop(UART_Registers_t *uart , unsigned int nstop){

29 if (nstop == UART_1_STOP_BIT) {
uart ->UART_RXCTRL &= 0xfffffffd;

31 }
else if (nstop == UART_2_STOP_BIT) {

33 uart ->UART_RXCTRL |= 0x00000002;
}

35 }

Listing 1.20 Enabling transmission and setting baud rate and the number of stop bits for UART
in C.

1.9.4 UART Pins

Many GPIO pins on the FE310 can serve dual purposes. In addition to their basic
input and output capabilities that we presented in Sect. 1.7, these pins can be con-
trolled by other IO devices in the FE310 SoC. Each GPIO pin can implement up to
two so-called IO functions (IOF) enabled with the GPIO_IOF_EN register. Which
IOF is used is selected with the GPIO_IOF_SEL register. These alternative functions
are often related to various peripherals or communication interfaces available on the
microcontroller. IOF allows us to assign alternative functions to GPIO pins, such as
enabling them as inputs or outputs for specific peripherals or features like UART.
We should refer to the SiFive FE310 datasheet and reference manual for precise
information on configuring IOF and alternative functions for GPIO pins on your par-
ticular hardware setup. For example, GPIO pin 17 can be used by UART0 transmitter
(UART0_TX). Figure 1.27 shows all registers that control the behaviour of the GPIO
pin 17. In Sect. 1.7, we have already explained the purpose of GPIO input, output and
enable registers. These registres are depicted in light grey in Fig. 1.27. Besides these
registers, there are two more registers, GPIO_IOF_SEL and GPIO_IOF_EN. These
two registers enable and select an IO function for a particular pin. For example, for
the GPIO pin 17, bit 17 in GPIO_IOF_SEL selects an IO function. If this bit is 0,
the UART0 transmitter can drive GPIO pin 17. Bit 17 in GPIO_IOF_SEL enables
the IO function on pin 17. If bit 17 is set, IOF is enabled for pin 17.

36 1 Memory-Mapped Input/Output

G
PI

O
_O

U
TP

U
T_

EN

BI
T

17

G
PI

O
_O

U
TP

U
T_

VA
L

V
BI

T
17

G

PI
O

_I
N

PU
T_

VA
L

V
BI

T
17

G

PI
O

_I
N

PU
T_

EN

BI
T

17

D
ATA

 A
 B

U
S

TT

D17

D17

D17

D17

GPIO PIN 17

GPIO_IOF_EN
BIT 17

GPIO_IOF_SEL
BIT 17

UART0_TX

1

0

some IO device

Fig. 1.27 The IO function for GPIO pin 17

In order to set the UART IO function for GPIO pin 17, we should implement
a complete C data structure that mirrors all GPIO registers (refer to SiFive FE310
Manual):

1 typedef struct
{

3 volatile int GPIO_INPUT_VAL;
volatile int GPIO_INPUT_EN;

5 volatile int GPIO_OUTPUT_EN;
volatile int GPIO_OUTPUT_VAL;

7 volatile int GPIO_PUE;
volatile int GPIO_DS;

9 volatile int GPIO_RISE_IE;
volatile int GPIO_RISE_IP;

11 volatile int GPIO_FALL_IE;
volatile int GPIO_FALL_IP;

13 volatile int GPIO_HIGH_IE;
volatile int GPIO_HIGH_IP;

15 volatile int GPIO_LOW_IE;
volatile int GPIO_LOW_IP;

17 volatile int GPIO_IOF_EN;
volatile int GPIO_IOF_SEL;

19 volatile int GPIO_OUT_XOR;
} GPIO_Registers_t;

Listing 1.21 A complete C structure for GPIO.

1.9 Case Study:Using the UART Interface in FE310-G002… 37

To set up UART0 IOF, we need to configure the GPIO_IOF_EN and
GPIO_IOF_SEL registers appropriately. These registers control which alternative
functions are enabled for specific GPIO pins. Below is an example of how to con-
figure UART0 IOF for UART TX on GPIO pin 17:

GPIO ->GPIO_IOF_SEL &= (1 << 17);
2 GPIO ->GPIO_IOF_EN |= (1 << 17);

Listing 1.22 A code for setting up UART0 IO function.

2Interrupts and Interrupt Handling

CHAPTER GOALS

Have you ever wondered how computer components demand and get atten-
tion from the CPU? How do they tell the CPU or operating system that some-
thing important has just happened in the computer system, which requires
an immediate response from the CPU, e.g., new data has just arrived at an
I/O interface and should be processed immediately? This is done using so-
called interrupts. This chapter will cover the theory and practice of interrupts
and their handling. An interrupt is a hardware-initiated procedure that inter-
rupts whatever program the CPU is currently executing and requests that the
CPU immediately start running another program that is written to service the
particular interrupt request.

In this chapter, you will:

• Explore the fundamental concepts of interrupts in computer systems.
• Distinguish between interrupts and traps.
• Examine the sequence of steps involved in processing interrupts.
• Learn about interrupt vector tables and their role in routing interrupts to
the appropriate interrupt service routines (ISRs).

• Understand the interactions between hardware components, the operating
system, and application software during interrupt handling.

• Explain the operation of the interrupt signals.
• Understand the mechanisms for handling nested interrupts and resolving
interrupt conflicts.

• Understand the role of interrupts in operating system design and kernel
development.

• Learn about interrupt-driven I/O and its impact on system architecture and
performance.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
P.Bulić, Understanding Computer Organization, Undergraduate Topics in Computer,
Science, https://doi.org/10.1007/978-3-031-58075-8_2

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58075-8_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58075-8_2&domain=pdf
https://doi.org/10.1007/978-3-031-58075-8_2
https://doi.org/10.1007/978-3-031-58075-8_2
https://doi.org/10.1007/978-3-031-58075-8_2
https://doi.org/10.1007/978-3-031-58075-8_2
https://doi.org/10.1007/978-3-031-58075-8_2
https://doi.org/10.1007/978-3-031-58075-8_2
https://doi.org/10.1007/978-3-031-58075-8_2
https://doi.org/10.1007/978-3-031-58075-8_2
https://doi.org/10.1007/978-3-031-58075-8_2
https://doi.org/10.1007/978-3-031-58075-8_2
https://doi.org/10.1007/978-3-031-58075-8_2

40 2 Interrupts and Interrupt Handling

• Explore real-world examples and case studies illustrating the importance
of interrupts in diverse computing scenarios.

• Explain the function of interrupt vectors and vector tabels.
• Explain the function of an interrupt controller.
• Learn from practical examples of interrupt-driven programming and sys-
tem design in various domains, including networking, storage, and multi-
media processing.

• Explain the interrupts and interrupt handling in the Intel, RISC-V, and
ARM family of processors.

2.1 Introduction

In the dynamic landscape of computer systems, where tasks are executed concurrently
and hardware resources are shared among multiple processes, interrupts and traps
emerge as fundamental mechanisms for managing and responding to asynchronous
events. As crucial elements of system operation, interrupts play a pivotal role in
maintaining system stability, responsiveness, and reliability in the face of unforeseen
circumstances and external stimuli.

At their core, interrupts and traps serve as mechanisms for diverting the pro-
cessor’s attention from its current task to handle urgent or exceptional events that
require immediate attention. Whether triggered by external hardware devices, soft-
ware instructions, or exceptional conditions within the processor itself, interrupts and
traps provide a means for prioritizing and responding to critical events in real-time.

Interrupts are signals generated by hardware peripherals or devices to signal the
processor of an event that requires attention. These events can range from user input
(e.g., keyboard strokes, mouse movements) to hardware errors (e.g., disk errors,
network interrupts) and are typically handled asynchronously, allowing the processor
to respond promptly while continuing normal execution.

Traps, on the other hand, are internally generated signals that indicate exceptional
conditions or errors encountered during the execution of program instructions. These
conditions may include arithmetic errors (e.g., dividing by zero), memory access
violations, or illegal instructions. Traps disrupt the normal flow of program execution
and typically require special handling by the processor or operating system to resolve
and recover from the error.

Throughout this exploration of interrupts in computer systems, we will delve into
the fundamental principles, mechanisms, and implications of their operation. From
their role in ensuring system responsiveness and reliability to their impact on software
design and system architecture, we will unravel the intricacies of interrupts and their
indispensable contribution to the robustness of modern computing environments.

2.2 Why Having Interrupts? 41

2.2 Why Having Interrupts?

During my childhood, there were two powerful military blocs in Europe and the
world: the Eastern (Soviet) Bloc and the Western (USA) Bloc. That was a period
of geopolitical tension between the Soviet Union and the United States and their
respective allies, the Eastern Bloc and the Western Bloc. The country where I grew
up, former Yugoslavia, was not part of any of these military blocs, though politically, it
was closer to the eastern bloc. In the 1970s, the former Yugoslav Air Force purchased
a number of Soviet MIG-21 fighter aircraft from the USSR. The MIG-21 aircraft
sold to the Yugoslav Air Force had virtually no modern electronic devices, and the
Yugoslavian military wanted to install missile sensors in the planes. However, the
USA and its allies have imposed an embargo on the purchase of electronic and
computer components against Yugoslavia. Among all the universities in Yugoslavia,
only the University of Ljubljana was allowed to purchase a few pieces (up to 20)
of each chip that would be used only in the educational process. That’s why the
Yugoslav Army approached the University of Ljubljana to buy all the necessary
electronic and computer components and develop a system that would be installed
on the aircraft and would detect missiles. The system at the time had to be based
on the modern Motorola 6800 microprocessors from the US. At its core, the system
had a microcomputer built on the Motorola 6800 processor and a missile sensor.
In addition to detecting missiles, the microcomputer also had to do other things. If
the missile sensor detected a rocket, the computer system had to immediately stop
whatever it was currently doing and alert the pilot to the approaching missile. But
how would a missile sensor communicate with the CPU if the CPU could do nothing
but fetch and execute instructions from memory? Remember that the CPU fetches
and executes instructions every clock cycle. That’s all it can do. So, there must be
some mechanism by which the CPU can be immediately interrupted and required to
start another program. In our case, the CPU would run another program (e.g., display
the current altitude and speed of the aircraft). If the sensor detects a missile, it must, in
some way, immediately suspend the currently running program and require the CPU
to execute a program to flash the warning lights and alert the pilot. So, the CPU must
have some mechanism in place to immediately stop the execution of one program
and start another program. This mechanism is called interrupts, and the program
that the CPU starts running in response to is called interrupt service program (ISP)
or interrupt handler.

Interrupts and interrupt handling must be transparent. This means that the
stopped (interrupted) program must not know that it has been stopped and must
continue after the termination of the interrupt handler as if it had not been inter-
rupted at all.

42 2 Interrupts and Interrupt Handling

2.3 Interrupts

As we said in the previous section, we want to be able to service external interrupts.
This is useful if a device external to the processor needs attention. Figure 2.1 illus-
trates a simplified system with a CPU and a peripheral device. To respond to interrupt
requests from a peripheral device, a CPU usually has at least one interrupt request
(IRQ) pin and one interrupt acknowledge (INTA) pin. The IRQ pin is the input a
peripheral device uses to interrupt the processor (i.e., to interrupt the normal program
flow in the CPU). Since the CPU should finish executing the current instruction(s)
before servicing any external interrupts, the peripheral device may have to wait for
several clock cycles before the CPU responds to the interrupt request. The INTA pin
is the output used to signal the peripheral device, which has requested an interrupt
via the IRQ signal, that the CPU has started servicing the interrupt request, and that
the IRQ signal can be deactivated. Both pins in Fig. 2.1, IRQ and INTA, are active
low. Two resistors are used to establish a logic one on IRQ and INTA signals (i.e.,
both signals are deactivated) when no one drives them.

In general, CPUs can respond to interrupts in two different ways: in either an
edge-sensitive or level-sensitive manner. In an edge-sensitive manner, the interrupt
signal input is designed to be triggered by a particular signal edge (level transition):
either a falling edge (high to low) or a rising edge (low to high). In a level-sensitive
manner, the interrupt signal input is designed to be triggered by a logic signal level.
A peripheral device invokes a level-triggered interrupt by driving the signal to and
holding it at the active level. We refer to this operation as asserting the signal. It
de-asserts the signal when the processor signals it to do so. One advantage of level-
triggered interrupt inputs is that they allow multiple devices to share a common
interrupt signal. Most often, the active level of an interrupt input signal is LOW. In
such a case, the interrupt signal is tied to the HIGH voltage level using a pull-up
resistor. When multiple peripheral devices share one level-triggered interrupt input
signal, the device that wants to assert the interrupt request simply connects the signal
to the ground (pulls the signal LOW). The system in Fig. 2.1 uses level-sensitive
interrupt signals.

Fig. 2.1 A simplified block
diagram of a computer
system with interrupt
controlling signals

CPU

IRQ#

I/O
Device

INT

Vdd

INTA# INTA

Vdd

RR

2.3 Interrupts 43

Summary: Assering and de-asserting a signal

Some signals are active high, and some signals are active low. To avoid the
problem of high versus low and the fact that for some signals, active means
high, and for some signals, active means low, we just say asserted (activated)
versus de-asserted (deactivated).

When the device needs attention from the CPU, it activates (asserts) the IRQ
pin on the CPU. During the normal execution flow through a program, the program
counter increases sequentially through the address space, with branches to nearby
labels or branches and links to subroutines. The CPU checks the status of the IRQ
pin every time before a new instruction pointed to by the program counter is fetched
from memory. When a peripheral device requests the interrupt, it is necessary to
preserve the previous processor status while handling the interrupt, so that execution
of the program that was running when the interrupt request occurred can resume
when the appropriate interrupt handler has completed. We say that the interrupts
must be 100% transparent. So, when an interrupt request occurs, the CPU completes
the current instruction and asserts the INTA signal. When a peripheral device sees
the INTA signal, it de-asserts the IRQ signal. Figure 2.2 shows the timing diagram
for an external interrupt request for the simple system from Fig. 2.1.

Then, the CPU saves the part of the context of the interrupted program in the
stack. A context is the state of the program counter, status register, stack pointer,
and all other program-visible CPU registers. Some CPUs save the whole context in
the stack, while others save only a part of the context in the stack. Since interrupts

CPU executes the fetched
instructions from the
interrupted program

CPU starts executing
the interrupt service routine

CLK

IRQ

INTA

The I/O device
asserts the IRQ signal

CPU sees the IRQ
signal and stops

instruction fetching

The I/O device
de-asserts the IRQ signal

CPU asserts
the INT signal

CPU de-asserts
the INT signal

Fig. 2.2 A timing diagram for an external interrupt request

44 2 Interrupts and Interrupt Handling

can happen at any time, there is no way for the active programs to prepare for the
interrupt (e.g., by saving registers that the interrupt handler might write to). It is
important to note that calling conventions do not apply when handling interrupts:
the interrupt is not being “called” by the active program; it is interrupting the active
program. Thus, the interrupt handler code must preserve the content and ensure it
does not overwrite any registers the program may use before their content is saved.
After the CPU has saved the context, the CPU automatically loads the address of
the interrupt handler into the program counter. The interrupt handler is a program
written by the user and depends on the peripheral device’s functionality. Depending
on how much of the context is automatically saved by the CPU, the interrupt handler
must first save every register it intends to use in the stack or somewhere in memory.

Figure 2.3 shows the procedure involved in interrupts: the CPU executes the
sequence of instructions from a user program until an interrupt request occurs at
the time. t1. When the IRQ signal is asserted, the CPU stops executing the user code
and starts executing the interrupt handler. But before executing the interrupt handler
at time . t2, the CPU must finish the execution of already fetched instructions, save
the (part of) context, and obtain the address of the interrupt handler. The time. t2 − t1
required for this procedure is called interrupt latency. In general, interrupt latency
is the time that elapses from when the IRQ signal is asserted to when the CPU starts
to execute the interrupt handler. Interrupt latency duration is usually not predeter-
mined and depends on how many instructions are already in the CPU’s pipeline, how
the CPU saves the context, and whether any new interrupt requests are temporarily
disabled. Once the CPU completes the execution of the interrupt handler at time . t3,
it returns to the execution of the user code at time . t4. Before returning to the user
code, the CPU must automatically restore the previously saved context.

2.3.1 Types of Interrupts

There are typically three types of interrupts (also called exceptions) regarding the
source of the interrupt (exception): external interrupts (or simply interrupts), traps,
and software interrupts. An external device triggers external interrupts by activating
the interrupt request pin on the CPU. Traps are activated internally in the CPU, usually
as a result of some exceptional condition caused by instruction. For example, traps
are caused when an illegal or undefined instruction is fetched or when the CPU
attempts to execute an instruction that was not fetched because of the illegal address.
A special instruction triggers software interrupts. Such instructions function similarly
to subroutine calls, but the subroutine, in this case, the interrupt handler, is not being
“called”, but an interrupt-like sequence occurs. These software-interrupt instructions
are useful when the user program does not know or is not allowed to know the address
of the routine that it would like to “call,” e.g., they are usually used for requesting
operating system services and routines.

External interrupts are divided into two types: maskable and non-maskable inter-
rupts. Maskable interrupts can be enabled or disabled by setting a bit in the CPU’s
control register or executing a special instruction. For example, Intel has the CLI
instruction to mask the interrupts, and ARM has CPSID instruction for this purpose.

2.3 Interrupts 45

Fig. 2.3 The procedure
involved in interrupts

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction i

Instruction i+1

Instruction i+2

Instruction i+3

Instruction i+4

Instruction n

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction m

INTERRUPT
HANDLER

USER
PROGRAM

t 1

t 2

t 3
t 4

tim
e

Non-maskable interrupts have a higher priority than maskable interrupts. That means
that if both maskable and non-maskable interrupts are activated simultaneously, the
CPU will service the non-maskable interrupt first.

2.3.2 Handling Interrupts

In a situation where multiple types of interrupts can occur, there must be a mechanism
where different handler codes can be executed for different types of events. In general,
there are two methods for handling this problem: polled interrupts and vectored
interrupts.

In polled interrupts, the processor branches to a specific address that begins a
sequence of instructions that check the cause of the interrupt or exception and branch
to handler code for the type of interrupt/exception encountered. This is also called
polled interrupt/exception handling.

46 2 Interrupts and Interrupt Handling

In vectored interrupts, the processor branches to a different address for each type
of interrupt or exception. Each exception address is separated by only one word,
and these addresses form a table called interrupt vector table. Each entry of the
interrupt vector table is called interrupt vector, and it is the address of an interrupt
handler. Hence, the vector table contains the start addresses, called interrupt vectors,
for all exception handlers. This method is called vectored interrupt handling. This
concept is common across many processor architectures, although interrupt vector
tables may be implemented in other architecture-specific fashions. For example,
another common concept is to place a jump instruction (instead of vectors) at each
entry in the table. Each jump instruction forces the processor to jump to the handler
code for each type of interrupt/exception. In this case, the address of each table entry
is considered an interrupt vector.

2.4 ARM Cortex-M7 Interrupts

In the terminology ARM uses, all events or conditions that can interrupt the normal
program flow and transfer control to a specific handler (service) routine are referred
to as exceptions. ARM Cortex-M7 processors support a variety of exceptions, and
they are essential for handling events like interrupts, faults, and system calls. In
general, exceptions can originate both by the hardware and the software.

2.4.1 ARM Cortex-M7 Programmer’s Model

In this subsection, we will briefly describe the ARM Cortex-M7 programmer’s model.
The ARM Cortex-M7 processor core features a set of registers used for various
purposes in program execution and system control. These registers can be categorized
into two groups: register bank and special registers (see Fig. 2.4).

2.4.1.1 Register Bank
The register bank contains 16 32-bit registers. Thirteen of them are general-purpose
registers, and the other three have special uses:

1. Registers R0 to R12 are general-purpose registers for data storage and data oper-
ations.

2. R13 is Stack Pointer (SP) for maintaining the stack, typically used for local vari-
ables and function call frames. The Cortex-M7 contains two physically different
stack pointers for different privilege levels:

a. The Main Stack Pointer (MSP) is the default Stack Pointer after reset and is
mainly used when the processor runs in privileged or system mode.

b. The Process Stack Pointer (PSP) can only be used in unprivileged or user
mode.

2.4 ARM Cortex-M7 Interrupts 47

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

SP(R13)
LR(R14)
PC(R15)

xPSR
PRIMASK

FAULTMASK
BASEPRI

CONTROL

MSP

PSP
Stack Pointer
Link Register
Program Counter

G
en

er
al

 P
ur

po
se

 R
eg

is
te

rs

Program Status Register
Interrupt Mask Register

Base priority mask register
Fault mask register

SPECIAL REGISTERSREGISTER BANK

Main Stack Pointer

Process Stack Pointer

Fig. 2.4 ARM Cortex-M7 core registers

3. R14 is Link Register (LR), which stores the return address when calling subrou-
tines or functions. On reset, the processor sets the LR value to 0xFFFFFFFF.

4. R15 is Program Counter (PC), which holds the memory address of the currently
executing instruction.

Because the stack pointer register in ARM Cortex-M7 has two physical copies, we
say it is banked. In the context of ARM Cortex processors, the term ‘banked register’
refers to a type of register that has multiple copies or ‘banks’, each associated with
a specific execution mode or privilege level. These banks allow the processor to
maintain separate register sets for different execution contexts, such as user mode,
privileged mode, and exception modes. The selection of the stack pointer is deter-
mined by a special register called the CONTROL register, which is a part of the
special register set.

2.4.1.2 Special Registers
Besides the registers in the register bank, there are several special registers. These reg-
isters contain the processor status and define the operation states and
interrupt/exception masking. The special registers are:

1. xPSR is a 32-bit Program Status Register. Some of the bit fields in the xPSR
register are N (negative flag), Z (zero flag), V (overflow flag), C (carry flag),
T (Thumb state) and EXCEPTION NUMBER representing the number of the
current exception (interrupt) (Fig. 2.5).

2. CONTROL register is a 32-bit register that allows the processor to manage priv-
ileged and unprivileged execution modes and select the active stack pointer. It
includes the following fields: nPRIV (Privilege Level Bit) determines the priv-
ilege level of the processor (0 for privileged, 1 for unprivileged), and SPSEL

48 2 Interrupts and Interrupt Handling

(Stack Pointer Select Bit) selects the active stack pointer (0 for MSP, 1 for PSP)
(Fig. 2.6).

3. Three exception masking registers:

a. The PRIMASK register is a 1-bit wide interrupt mask register. When set,
it blocks all exceptions (including interrupts) apart from the Non-Maskable
Interrupt (NMI) and the HardFault exception.

b. The FAULTMASK register is very similar to PRIMASK, but it also blocks the
HardFault exception.

c. The BASEPRI register masks (blocks) exceptions or interrupts based on their
priority level.

Special registers are not memory mapped and can be accessed using special register
access instructions MSR and MRS:
MRS reg, special_reg
reads special register into general-purpose register, and
MSR special_reg, reg
writes to special register from general-purpose register.

EXCEPTION NUMBERN Z C V T

31 24 8 030 29 28

Carry
Zero
Negative

Indicates which exception the
processor is handling.

Fig. 2.5 xPSR register

1 0

SP
SE

L
nP

RI
V

not Priviledged:
0 - Priviledged
1 - not Priviledged

SP selection:
0- MSP
1- PSP

Fig. 2.6 CONTROL register

2.4 ARM Cortex-M7 Interrupts 49

2.4.2 System Control Block

In addition to the registers we have just covered, ARM Cortex-M7 processors main-
tain another important register bank called System Control Block (SCB). The System
Control Block is a crucial part of the processor’s control and configuration. The SCB
is a memory-mapped register bank that includes several registers and control bits
that influence the processor’s behaviour, manage exceptions, and provide system-
level control. For example, the SCB registers for controlling processor configurations
(e.g., low power modes), providing fault status information (fault status registers),
relocating the vector table and controlling/obtaining the status of some interrupts.
Here, we provide a brief description of only one CSB register related to interruptions
and exceptions. This is the Interrupt Control and State Register (ICSR). This register
provides bits for setting and clearing two software interrupts, PendSV and SysTick.
The ICSR register is memory-mapped at address 0xE000ED04. For example, writing
1 to bit 28 in ICSR will set the PendSV exception to pending.

2.4.3 Exceptions

ARM architecture distinguishes between the two types of exceptions: interrupts
originate from the external hardware, and exceptions originate from the CPU core or
software (e.g., access to an invalid memory location or an SVC assembly instruction,
which is commonly used as a convenient way to enter the operating system kernel).
The following information identifies each ARM Cortex-M7 exception:

1. Exception Number—A unique number referencing a particular exception (start-
ing at 1). This number is also used as the offset within the vector table, where the
address of the handling routine for the exception is stored. This routine is usually
referred to as the exception handler or interrupt service routine (ISR) and is
the procedure which runs when an exception is triggered. The ARM hardware
will automatically look up this function pointer (address of the exception handler)
in the vector table when an exception is triggered and start executing the code.
When the CPU is servicing an exception, its exception number is in the lower
nine bits of the xPSR register.

2. Priority Level/Priority Number—Each exception has a priority associated with
it. For most exceptions, this number is configurable. Counter-intuitively, the lower
the priority number, the higher the precedence the exception has. So, for example,
if two exceptions of priority level 2 and priority level 1 occur simultaneously, the
exception with priority level 1 exception will be serviced first. When we say
an exception has the “highest priority”, it will have the lowest priority number.
If two exceptions have the same priority number, the exception with the lowest
exception number will run first.

3. Synchronous or Asynchronous—As the name implies, some exceptions will
fire immediately after an instruction is executed (e.g., SVCall). These exceptions
are referred to as synchronous. Exceptions that do not fire immediately after a

50 2 Interrupts and Interrupt Handling

particular code path is executed are referred to as asynchronous (e.g., external
interrupts).

ARM Cortex-M7 exceptions can be broadly categorised into four main types:

1. Interrupts are asynchronous events that can occur anytime and interrupt the
normal program execution. They are typically generated by external peripherals
(e.g., timers, UARTs, GPIO), and the processor responds to them by temporarily
halting the current execution and transferring control to an interrupt service routine
(ISR). For instance, a UART may use an interrupt request to indicate that new data
have been received. A corresponding exception handler (ISR) is then executed
that reads the received data. Interrupts can be divided into two main categories:

a. External Interrupts: These are generated by external peripherals or devices
to request the processor’s attention. The Cortex-M7 processor supports a set of
external interrupts (IRQs) that can be individually configured and prioritized.

b. NMI (Non-Maskable Interrupt): This is a special type of interrupt that has
higher priority than regular interrupts and cannot be disabled or masked.
NMIs are typically used for critical system functions. Like ordinary inter-
rupt requests, Non-Maskable Interrupt (NMI) requests can be issued by either
hardware or software (e.g., if errors happen in other exception handlers, an
NMI will be triggered). The main difference is that their priority is extremely
high, namely, the highest in the system below the reset exception.

Two more exceptions also belong to this category and are generated within the
processor rather than from external peripheral devices. They are:

a. SysTick exception, generated periodically by the 24-bit count-down system
timer and often used by operating systems to drive time slicing. If needed, the
same exception can also be issued by software.

b. PendSV exception can only be triggered by software. Operating systems often
use it to indicate that a context switch is due and perform it in the future when
no other exceptions are waiting to be handled. The PendSV exception can be
triggered by writing 1 to bit 28 in the ICSR (a part of the System Control
block), which is memory-mapped at address 0xE000ED04.

2. Faults are synchronous events generated due to an abnormal event detected by
the processor, either internally or while communicating with memory and other
devices. These exceptions are of great interest and concern because they indicate
serious hardware or software issues that likely prevent the software itself from
continuing with normal activities. The following faults are present in Cortex-M7
processors:

a. UsageFault occurs when the processor detects an issue with the program’s
execution or when an instruction cannot be executed for various reasons. For
instance, the instruction may be undefined or may contain a misaligned address
that prevents it from accessing memory correctly. Another reason for raising a
UsageFault exception is an attempt to divide by zero. Some of the faults men-

2.4 ARM Cortex-M7 Interrupts 51

tioned above (like dividing by zero) can be masked in software, i.e., the pro-
cessor can be instructed to just ignore them without generating any exception,
whereas others (such as undefined instruction) cannot, for obvious reasons.

b. BusFault triggers when an error occurs on the data or instruction bus while
accessing memory. In other words, it can be generated as a consequence of an
explicit memory access performed by an instruction during its execution and
also by fetching an instruction from memory. BusFaults result from issues in
memory access, most often as attempting to access a location with no valid
memory. As Cortex-M7 is a memory-mapped input-output (I/O) architecture,
whenever we refer to a memory address, we actually mean an address within
the processor’s address space that may refer to either a memory location or an
I/O register.

c. MemManage (Memory Management Fault) faults occur when there is a
memory access violation, such as accessing restricted memory regions. In
other words, this fault occurs when the memory protection mechanism blocks
memory access. An optional Memory Protection Unit (MPU) provides a pro-
grammable way of protecting memory regions against data read and write
operations, as well as instruction fetches. For instance, the processor’s MPU
can be programmed to forbid instruction fetch from address areas containing
I/O registers.

d. HardFault is a severe fault that can be generated when an error occurs dur-
ing exception processing, thus disrupting the normal exception handling flow.
HardFaults have a higher priority than any exception with configurable pri-
ority. HardFaults are typically unrecoverable, meaning the processor cannot
continue the normal program execution from the point of the fault. Usually, the
application or CPU must be reset. To prevent HardFaults, developers should
follow best practices for writing robust and well-tested code. This includes
avoiding undefined instructions, ensuring valid memory accesses, and moni-
toring stack usage to prevent stack overflows. Additionally, proper fault han-
dling and diagnostics can help identify and address issues before they lead to
a HardFault. Hard faults in Cortex-M7 processors are a critical part of system
reliability and safety, as they help detect and report severe issues that could
otherwise result in unpredictable or incorrect system behaviour.

3. Supervisor call (SVC) is a software-initiated exception. It is used to transition
from the user or application mode to a more privileged mode, typically for making
requests to the operating system or kernel. The execution of an SVC assembly
instruction raises this exception. It is commonly used as a convenient way to enter
the operating system kernel and request it to perform a function on behalf of the
application.

4. Reset Exception (Reset) is invoked on power up or a warm reset. The exception
model treats reset as a special form of exception. When reset is asserted, the
operation of the processor stops, potentially at any point in an instruction. When
reset is de-asserted, execution restarts from the address provided by the reset entry

52 2 Interrupts and Interrupt Handling

in the vector table. It is handled as other exceptions for the most part, except that
instruction execution can stop at an arbitrary point.

2.4.4 Exception Numbers and Priorities

Table 2.1 lists different types of exceptions with their priorities, exception numbers
and vector addresses. All exceptions have an associated priority with a lower number
value indicating a higher priority. The programmer (software) configures the priori-
ties for most exceptions, except for Reset, NMI and HardFault. If the software does
not configure any priorities, then all exceptions with a configurable priority have a
priority of 0. Configurable priority values are in the range 0–15. Here is the rule of
order of execution of exceptions:

1. If two or more exceptions are pending, the exception with the highest priority
runs first.

2. If two or more exceptions with the same priority are pending, the exception with
the lowest exception number runs first.

3. When the processor executes an exception handler, the exception handler is pre-
empted if a higher-priority exception occurs. If an exception occurs with the same
priority as the exception being handled, the handler is not preempted, irrespec-
tive of the exception number. However, the status of the new interrupt remains
pending.

Table 2.1 Exception types in Cortex-M7

Exception number Exception type Priority Vector address Activation

1 Reset . −3 (Highest) 0x00000004 Asynchronous

2 NMI . −2 0x00000008 Asynchronous

3 HardFault . −1 0x0000000C Synchronous

4 MemManage Configurable 0x00000010 Synchronous

5 BusFault Configurable 0x00000014 Synchronous

6 UsageFault Configurable 0x00000018 Synchronous

7–10 unused – – –

11 SVCall Configurable 0x0000002C Synchronous

12–13 unused – – –

14 PendSV Configurable 0x00000038 Asynchronous

15 SysTick Configurable 0x0000003C Asynchronous

16 and above Interrupt (IRQ) Configurable 0x00000040 and
above

Asynchronous

2.4 ARM Cortex-M7 Interrupts 53

034731

BASEPRI

Fig. 2.7 BASEPRI register

The exceptions with exception numbers 1–15 are so-called built-in exceptions.
The built-in exceptions are a mandatory part of every ARM Cortex-M core. The
ARM Cortex-M specifications reserve exception numbers 1–15, inclusive, for built-
in exceptions.

ARM Cortex-M7 processors support a fixed-priority scheme where each interrupt
source (or exception) can have a unique priority level assigned to it. Each priority is
associated with its priority value, where a lower priority value indicates a higher
exception priority. Cortex-M7 processors support up to 16 priority levels, where
the value 0 represents the highest priority, and the value 15 represents the lowest
priority. If the software does not configure any priorities, then all the exceptions with
a configurable priority have a priority value of 0. A higher-priority (smaller priority
level) exception can preempt a lower-priority (larger priority level) exception. Some
exceptions (reset, NMI, and HardFault) have fixed priority levels. Their priority levels
are represented with negative values to indicate that they are of higher priority than
other exceptions. The BASEPRI (Base Priority) register (Fig. 2.7), which is a part of
special registers in the ARM Cortex-M7 core registers block, provides a mechanism
to set a threshold for exception priorities, allowing the processor to temporarily
restrict the servicing of specific exceptions to prevent lower-priority interrupts from
preempting critical tasks. The 4-bit BASEPRI field in the BASEPRI register defines
a priority mask. The processor does not process any exception with a priority value
greater than or equal to the value in the BASEPRI field.

2.4.5 Vector Table and Exception Handlers

The vector table contains the reset value of the stack pointer and the start addresses,
also called exception vectors, for all exception handlers. On system reset, the vector
table is at address 0x00000000. This is the default start address of the vector table,
where Cortex-M7 expects to find it. This is usually a linker job that places the vector
table at the beginning of the binary file we upload to the flash memory. Figure 2.8
shows how the vector table is organized in memory and the order of the exception
vectors in the vector table. The first entry of this array is the value of the stack
pointer. Note that the programmer is responsible for setting the first value into the
stack pointer (which is the address of the beginning of the stack). Usually, this address
corresponds to the end of the SRAM, as we often use the stack that expands in the
direction of descending addresses. Starting from the second entry of this table, we
can find the starting addresses for all exception handlers. This means that the vector
table has a length of up to 256 for Cortex-7 and depends on the number of interrupts
implemented. The silicon vendor that uses an ARM Cortex-M7 core can implement

54 2 Interrupts and Interrupt Handling

_estack

Reset_Handler

NMI_Handler

HardFault_Handler

MemManage_Handler

BusFault_Handler

UsageFault_Handler

0

0

0

0

SVC_Handler

0

0

PendSV_Handler

SysTick_Handler

WWDG_Handler

PVD_AVD_IRQHandler

EXTI0_IRQHandler

EXTI1_IRQHandler

EXTI2_IRQHandler

.

.

.

0x00000004

0x00000000

0x0000000C

0x00000008

0x00000014

0x00000010

0x00000018

0x0000002C

0x0000003C

0x00000038

0x0000001C

0x00000024

0x00000020

0x00000028

0x00000034

0x00000030

0x00000044

0x00000040

0x00000058

0x0000005C

0x00000060

.

.

.

NMI_Handler(){
 ...
}

EXTI0_Handler(){
 ...
}

Reset_Handler(){
 ...
 main();
}

Vector Table:

EXTI2_Handler(){
 ...
}

SRAM
0x20000000

FLASH

main(){

 ...

}

Fig. 2.8 The memory layout of the vector table and exception handlers in ARM Cortex-M7 cores

up to 240 interrupts. The silicon vendor must configure the top range value, which is
dependent on the number of interrupts implemented. ARM requires that we always
adjust the vector table’s size by rounding up to the next power of two. For example,
if there are 16 interrupts, the minimum size of the vector table is 32 words, enough
for 16 built-in exceptions and up to 16 interrupts. If the user (silicon vendor) requires
21 interrupts, the size of the vector table must be 64 words because the required table
size is 37 words, and the next power of two is 64. The name of the exception handlers
in Fig. 2.8 is just a convention, and we are totally free to rename them if we like a
different one. They are just symbols.

Defining a vector table for a Cortex-M7 processor involves setting up a table of
exception handler addresses that the processor will jump to when specific excep-
tions occur. As said before, the vector table must be placed at the beginning of the
flash memory, where the processor expects to find it. In ARM Cortex-M microcon-
troller development, the .isr_vector is a special section in the microcontroller’s
memory where the vector table for exceptions and interrupts is defined. The vec-
tor table contains addresses of exception and interrupt service routines (ISRs). The
.isr_vector section is a label used in the linker script to specify the location of
the vector table in memory. Commonly, the vector table is implemented in assembly
code in the startup file (e.g., for the Cortex-M7-based STM32H753 microcontroller,
the startup file would be startup_stm32h753xx.s) as:

2.4 ARM Cortex-M7 Interrupts 55

1 .section .isr_vector
2

3 g_pfnVectors:
4 .word _estack
5 /* Built -in Exceptions */
6 .word Reset_Handler
7 .word NMI_Handler
8 .word HardFault_Handler
9 .word MemManage_Handler

10 .word BusFault_Handler
11 .word UsageFault_Handler
12 .word 0
13 .word 0
14 .word 0
15 .word 0
16 .word SVC_Handler
17 .word DebugMon_Handler
18 .word 0
19 .word PendSV_Handler
20 .word SysTick_Handler
21 /* External Interrupts */
22 .word WWDG_IRQHandler
23 .word PVD_AVD_IRQHandler
24 ...
25 .word EXTI0_IRQHandler
26 .word EXTI1_IRQHandler
27 .word EXTI2_IRQHandler
28 ...
29 .word WAKEUP_PIN_IRQHandler

Listing 2.1 The vector table for Cortex-M7.

Then, the exception and interrupt handler functions should be implemented in the
code. These functions are called when their corresponding exceptions or interrupts
occur. The handler function names should match the names of the entries in the
vector table for a very obvious reason:

1 void Reset_Handler(void) {
// Reset handler code

3 }

5 void NMI_Handler(void) {
// NMI handler code

7 }

9 void HardFault_Handler(void) {
// HardFault handler code

11 }

13 void EXTI0_IRQHandler (void) {
// HardFault handler code

15 }

Listing 2.2 Exception handlers in C.

2.4.6 Exception Entry and Exit

Exception entry and exit in an ARM Cortex-M7 processor is a well-defined pro-
cess that enables the CPU to handle various exceptions, including interrupts and

56 2 Interrupts and Interrupt Handling

faults while preserving the state of the currently executing program. This mechanism
ensures that the system can respond to events without compromising the integrity of
the application code. Here, we provide a detailed description of the exception entry
and exit process in a Cortex-M7.

2.4.6.1 Exception Entry
The exception entry occurs when there is a pending exception with sufficient priority
and either:

1. The processor is executing a normal program and the new exception terminates
the currently executing program.

2. The processor executes the exception handler, and the new exception is of higher
priority than the exception being handled, in which case the new exception pre-
empts the original exception. When one exception preempts another, we say the
exceptions are nested.

When the processor takes an exception, the processor pushes the current execu-
tion context onto the current stack. The execution context consists of eight 32-bit
words: registers R0 through R3, R12, the link register LR (also accessible as R14),
the program counter PC (R15), and the program status register xPSR, for a total of 32
bytes. This operation is referred to as stacking, and the structure of eight 32-bit data
words is referred to as the stack frame. The reason behind automatically saving the
execution context is that accepting and handling an exception should not necessarily
prevent the processor from returning to its current activity later. This is particularly
true for interrupts and other exception requests that occur asynchronously to current
processor activities and are most often totally unrelated to them. Thus, the exceptions
and interrupts should be transparent with respect to any code executing when they
arrive. Figure 2.9 shows the exception stack frame after stacking. Immediately after
stacking, the stack pointer indicates the lowest address in the stack frame. The reader
will notice that Cortex-M processors use the full-descending stack (the stack grows
downward in memory, and the stack pointer points to the lowest memory address
in use). The stack frame includes the return address, as the PC is also saved dur-

Fig. 2.9 The layout of the
stack frame after stacking in
ARM Cortex-M7

xPSR
PC
LR

R12
R3
R2
R1
R0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

IRQ top of stack

Pre-IRQ top of stack

2.4 ARM Cortex-M7 Interrupts 57

ing stacking. This is the address of the next instruction in the interrupted program.
This value is restored to the PC at exception return so that the interrupted program
resumes.

Here, we have to describe stack pointers and processing modes in ARM Cortex-
M processors in more detail. In ARM Cortex-M processors, there are two registers
used to access and manipulate stack: the Main Stack Pointer (MSP) and the Process
Stack Pointer (PSP). These stack pointers are critical in managing the execution
context and handling exceptions in the processor. Additionally, the Cortex-M archi-
tecture defines two processing modes: Thread mode and Handler mode, each with
distinct purposes and behaviours. The Main Stack Pointer (MSP) and Process Stack
Pointer (PSP) can be accessed and manipulated through the stack pointer (SP), also
known as register R13. Commonly, operating mode defines which of the two (MSP
or PSP) is accessible through SP (i.e., visible as SP).

Thread mode is the typical execution mode for user/application code. The proces-
sor often uses the PSP (although it is possible to use MSP in this mode also) as the
current stack pointer in this mode. The processor enters Thread mode after a reset
or when returning from an exception or interrupt. User-level code runs in Thread
mode, and the PSP is often used for function calls and managing thread-specific
context. Handler mode is a privileged execution mode used for handling exceptions
and interrupts. The processor switches from Thread mode to Handler mode when an
exception or interrupt occurs. The processor automatically saves the current context
onto the PSP or MSP stack (depending on the operation mode of the interrupted
program) before executing the exception handler. The MSP is then used in Han-
dler mode as the stack pointer. Handler mode is reserved for system-level tasks and
ensures that critical operations can be carried out even when the application stack is
compromised.

In parallel to the stacking operation, the processor writes an exception return
value (called EXC_RETURN value in the ARM documentation) to the link register
(LR). This indicates which stack pointer corresponds to the stack frame and what
operation mode the processor was in before the entry occurred. The information
provided by the EXC_RETURN value allows the processor to locate the stack frame
to be restored upon returning from an exception, interpret it in the right way, and bring
back the processor to the execution mode of the interrupted program. Table 2.2 shows
the EXC_RETURN values and their meaning upon returning from an exception.

Table 2.2 Exception return values and their behaviour upon returning from an exception

EXC_RETURN[31:0] Description

0xFFFFFFF1 Return to Handler mode, exception return uses the exception stack
frame from the MSP and execution uses MSP after return

0xFFFFFFF9 Return to Thread mode, exception return uses the exception stack
frame from the MSP and execution uses MSP after return

0xFFFFFFFD Return to Thread mode, exception return uses the exception stack
frame from the PSP and execution uses PSP after return

58 2 Interrupts and Interrupt Handling

In parallel to the stacking operation, the processor also performs a vector fetch
that reads the exception handler start address from the vector table. The processors
determines the exception vector to be fetched into the PC by the exception number:

. PC ← M[0x0000 0000+ 4 × (exception number)].
When stacking is complete, the processor starts executing the exception han-

dler, switching to Handler Mode. Associated with the execution mode switch, the
processor may also use a new stack. As mentioned previously, handler mode execu-
tion always uses MSP, whereas thread mode execution may use either MSP or PSP,
depending on processor configuration. The Reset exception is a deviation from this
general rule. The Reset exception is handled in Thread mode instead. Upon reset,
execution starts in Thread mode, and the processor is automatically configured to
use MSP.

2.4.6.2 Exception Return
The exception return occurs when the processor is in Handler mode and executes an
instruction which loads the EXC_RETURN value into the PC (for example bx lr).
Recall that EXC_RETURN is the value loaded into the LR on exception entry. The
exception mechanism relies on this value to detect when the processor has completed
an exception handler. The lowest bits of this value provide information on the return
stack and processor mode. When this value is loaded into the PC, it indicates to
the processor that the exception is complete, and the processor should initiate the
appropriate exception return sequence instead of fetching an instruction.

When an exception return value is loaded into the program counter PC as part
of an exception handler epilogue, it directs the processor to initiate an exception
handler return sequence instead of simply returning to the caller. In fact, the ARM
Architecture Procedure Calling Standard (AAPCS) states that a function call must
save into the link register LR the return address before setting the program counter
PC to the function entry point. This is typically accomplished by executing a branch
and link instruction bl with a PC-relative target address. In the epilogue of the called
function, it is then possible to return to the caller by storing back into PC the value
stored into LR at the time of the call. This can be done, for instance, by means of a
branch and exchange instruction bx, using LR as argument.

This aspect of the exception return has been architected to permit any
AAPCS-compliant function to be used directly as an exception handler. In this
way, any AAPCS-compliant function can be used as an exception handler. This is
especially important when exception handlers are written in a high-level language
like C because compilers are able to generate AAPCS-compliant code by default, and
hence, they can also generate exception-handling code without treating it as a special
case. The exception handlers for ARM Cortex-M processors are thus implemented
as regular C functions and do not require a special function declaration keyword.
As a result, an exception handler return performed by hardware is indistinguishable
from a regular software-managed function return.

The following code presents the exception handler for an exception triggered by
GPIO Pin 13 through EXTI15_10 lines. The exception handler is implemented just
as a regular C function without any special function declaration:

2.4 ARM Cortex-M7 Interrupts 59

void EXTI15_10_IRQHandler(void)
2 {

// Check if GPIO_PIN_13 triggered the interrupt:
4 if (__HAL_GPIO_EXTI_GET_IT(GPIO_PIN_13) != 0x00U)

{
6 // Your code to handle the GPIO_PIN_13 interrupt goes here

8 // Clear the GPIO_PIN_13 interrupt flag
__HAL_GPIO_EXTI_CLEAR_IT (GPIO_PIN_13);

10 }
}

Listing 2.3 The exception handler for EXTI15_10 interrupt implemented as a regular C function.

2.4.7 Case Study: A Simple Task Scheduler on ARM Cortex-M7

In the realm of computer systems and real-time operating systems (RTOS), the con-
cept of context switching is the linchpin of multitasking and responsiveness. It’s a
finely tuned mechanism that orchestrates the efficient execution of multiple tasks,
allowing a processor to handle numerous concurrent operations with precision and
determinism. The ability to seamlessly transition between multiple tasks, known
as context switching, lies at the heart of efficient and responsive systems. Context
switching refers to the process where the state of one task is saved, allowing another
task to take precedence and execute. These tasks may be threads of a single appli-
cation or various concurrent applications. At its core, context switching is a process
by which the processor transitions from executing one task to another. This transi-
tion involves the preservation of the current task’s context, the loading of the new
task’s context, and the seamless continuation of the latter’s execution. The context of
each task includes the task’s state of the processor–registers, program counter, stack
pointer, and system variables.

Context switching begins with a trigger—typically a timer interrupt signalling the
need to switch contexts. The processor diligently saves the current context onto a
task’s stack and retrieves the context of the next task to be executed from its stack. A
successful context switch involves the preservation of the current execution context
and restoration of a new execution context, enabling the next task to resume from
precisely where it left off. This process demands meticulous stack management and
the precise handling of interrupts and exceptions.

An RTOS relies on a task scheduler, interrupt handling mechanisms, and precise
memory management to orchestrate this performance. The scheduler keeps a record
of tasks and manages their execution, while the interrupt system plays a pivotal role
in triggering context switches when a timer interrupt occurs.

Understanding the intricacies of context switching is paramount for engineers
working with computer systems to create efficient, deterministic, and robust appli-
cations. So, let’s raise the curtain and delve into the intricacies of context switching,
where the processor seamlessly switches tasks, and the computer system transforms
into a multitasking maestro.

60 2 Interrupts and Interrupt Handling

2.4.7.1 Background
A simple round-robin task scheduler (Fig. 2.10) on Cortex-M7 processors effectively
manages multiple tasks or threads in a cooperative multitasking environment. In this
scheduler, each task is given a fixed time slice (quantum) during which it can execute.
When its time slice expires, the scheduler switches to the next task in the queue. The
task scheduler relies on the interrupts and stacks to achieve context switching.
The SysTick and PendSV interrupts can both be used for context switching. The
SysTick peripheral is a 24-bit timer that interrupts the processor each time it counts
down to zero. This makes it well-suited to round-robin style context switching, and
we are going to use the SysTick to perform a context switch.

When switching contexts, the scheduler needs a way to keep track of which tasks
are doing what using a task table. Recall from the previous sections that the ARM
Cortex-M7 processor has two separate stack pointers which can be accessed through
a banked SP register: Main Stack Pointer (MSP), which is the default one after startup
and is used in exception handlers running in the Handler mode, and Process Stack
Pointer (PSP), which is often used in regular user procedures running in the Thread
mode. In our application, tasks run in the Thread Mode with PSP, and the context-
switcher (kernel) runs in the Handler Mode with MSP. This allows stack separation
between the kernel and tasks (which simplifies the context switch procedure) and
prevents tasks from accessing important registers and affecting the kernel.

Figure 2.11 shows the scheduler operations during a context switch in more detail.
The scheduler relies on exception entry and exit mechanisms, which automatically
save and restore the critical CPU context (registers R0-R3, R12, LR, PC and xPSR)
using the exception frame on the stack. When a SysTick exception occurs, the Task1
critical registers are automatically saved into the Task1 exception stack frame. Once
in the SysTick handler, the scheduler is responsible for pushing the interrupted task
Task1 registers R4-R11 onto the task’s stack and saving its PSP in the task’s Task
Control Block (TCB). Then, the scheduler selects the next task (Task2) in a round-
robin fashion. Before returning from the SysTick handler, the scheduler is responsible
for loading the Task2 SP into the PSP register and restoring the Task2 registers R4-
R11 from the Task2 stack. Then, upon exception exit, the Task2 critical registers are
restored from its exception stack frame, and the execution returns to the new task.

Task0 Task1 Task2 Task3

Context
switch

Context
switch

Context
switch

Context
switch

Task0

Mode

Time

Handler

Thread

Time slice Time slice Time slice Time slice

SysTick SysTick SysTick SysTick SysTick

Fig. 2.10 A simple task scheduler

2.4 ARM Cortex-M7 Interrupts 61

Task1 Task2

Mode

Time

Handler

Thread

Time slice

SysTick

Exception
frame

stacking

PUSH Task1
registers
R4-R11

Save PSP
into

Task1 TCB

Select
next
task

Load PSP
from

Task2 TCB

POP Task2
registers
R4-R11

Exception
frame

destacking

Systick Handler

SysTick

Fig. 2.11 Scheduler operations during a context switch

Usually, three routines are required to implement and run the scheduler: create new
tasks, initialize tasks, and perform the context switch. Besides, several data structures
are required to implement and manage the stack for each task and represent each
task’s state. In the following subsections, we provide a step-by-step description of
implementing a very simple round-robin scheduler on a Cortex-M7 processor.

2.4.7.2 Tasks
A task is a piece of code or a function that does a specific job when it is allowed to
run. Usually, a task is an infinite loop which can repeatedly do multiple steps. In our
simple scheduler application, the tasks cannot be finished (they never return) and do
not take any arguments. Here is a C implementation of a task:

1 void task() {
// init task:

3 ...
// main loop

5 while (1) {
// do things over and over

7 }
}

Listing 2.4 A task in C. In our application, a task never returns and does not take any arguments.

2.4.7.3 Stacks
In a multitasking environment, where multiple tasks are executed in a time-sharing
manner, each task needs to have its own stack. Each task executes within its own
context with no coincidental dependency on other tasks within the system or the
scheduler itself. Each task’s stack provides isolation between tasks. It ensures that
local variables and function call frames of one task do not interfere with those of
another task. This isolation is crucial for maintaining data integrity and preventing
unintended side effects between tasks. Only one task within the application can
execute at any point in time, and the scheduler is responsible for deciding which task
this should be. As a task does not know of the scheduler activity, it is the scheduler’s

62 2 Interrupts and Interrupt Handling

responsibility to ensure that the processor context (register values, stack contents,
etc.) when a task is swapped in is exactly the same as when the same task was swapped
out. In other words, each task’s stack allows tasks to be reentrant. Reentrancy means
that a task can be interrupted while executing and later resume from where it left off
without corrupting its state. The stack stores the task’s execution context, enabling
reentrant behaviour. Besides, each task should be able to make function calls and put
arguments on the stack without worrying about function call frames interfering with
those of other tasks. Furthermore, allocating a fixed amount of stack space for each
task makes it easier to predict memory usage and stack requirements for each task,
simplifying system design and analysis.

To achieve this, each task is provided with its own stack in our simple task
scheduler. The size of each task’s stack is 1 kB (256 32-bit words). So, for four tasks
we create a memory block that holds all four stacks as follows:

unsigned int stackRegion[NTASKS * TASK_STACK_SIZE];

Listing 2.5 Memory block for tasks’ stacks. NTASKS equals 4 and TASK_STACK_SIZE equals
256.

2.4.7.4 Task Control Block
A Task Control Block (TCB), also known as a Task Control Structure (TCS), is a data
structure used in real-time operating systems (RTOS) and multitasking environments
to manage and control individual tasks or threads. The TCB holds essential informa-
tion about a task’s state, allowing the operating system or scheduler to manage and
switch between tasks efficiently. The exact contents and structure of a TCB may vary
depending on the operating system or RTOS, but it typically includes the following
information: task identifier, task state (e.g., ready to run, blocked, suspended, etc.),
task priority, stack pointer, task name, and additional task’s parameters.

In our implementation, each task will always be ready to run, so we will omit the
task state from TCB. Besides, all tasks in our scheduler will have the same priority
and will be selected on a round-robin basis, so we will omit the task priority from
TCB. Because each task should have its own stack to save its local variable and
exception frame, our TCB must include the SP value, which points to the current
stack pointer of the task. The scheduler will select the next task in a round-robin
fashion and write its SP value into the PSP register. The scheduler will also copy the
PSP register of the interrupted task into its SP value. Also, in our implementation,
the Task Control Block will contain the start address of the task. Here is a minimal
TCB implementation using struct in C:

2.4 ARM Cortex-M7 Interrupts 63

1 typedef struct{
unsigned int *sp;

3 void (* pTaskFunction)();
} TCB_Type;

Listing 2.6 TCB structure.

In our simple implementation, our scheduler will contain only four tasks. It would
be easy to add additional tasks later, but for now, we will keep the code as simple as
possible. Each of the four tasks should have its TCB. Hence, we create a TCB table
as:

TCB_Type TCB[NTASKS];

Listing 2.7 TCB table. NTASKS is a constant equal to 4.

2.4.7.5 Task Creation
The TaskCreate() function saves the address of the task’s stack and the address
of the task’s function into the task’s TCB.

The following code presents the function used to create a new task:

1 void TaskCreate(TCB_Type* pTCB ,
unsigned int* pTaskStackBase ,

3 void (* TaskFunction)()){

5 pTCB ->sp = (unsigned int*) pTaskStackBase;
pTCB ->pTaskFunction = TaskFunction;

7 }

Listing 2.8 The function TaskCreate() that creates a new task.

The parameters of the above TaskCreate() function are:

• pTCB—a pointer to a task’s TCB,
• pStackBase—pointer to a task’s stack block,
• TaskFunction—address of a task’s function.

Figure 2.12 illustrates the memory layout and the contents of the task’s stack and
TCB after creating Task1 using the TaskCreate() function.

64 2 Interrupts and Interrupt Handling

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

0x24000460

Task 1 stack (SRAM)

SRAM

Task 1 TCB (SRAM)

sp = 0x20000460

pTaskFunction= 0x080006cc

0x20000038

Task1 (FLASH)

void Task1(){
 while(1){
 . . .
 }
}

Fig. 2.12 Memory layout and content after calling the TaskCreate() function

2.4.7.6 Task Initialisation
The following code presents the function used to initialize a new task:

1 void TaskInit(TCB_Type* pTCB){

HWSF_Type* pHWStackFrame;

3 SWSF_Type* pSWStackFrame;

5

// Set pointers to HWSF and SWSF:

7 pHWStackFrame = (HWSF_Type *)((void*)pTCB ->sp - sizeof(HWSF_Type));

pSWStackFrame = (SWSF_Type *)((void*) pHWStackFrame

9 - sizeof(SWSF_Type));

11

// populate HW Stack Frame

13 pHWStackFrame ->r0 = 0;

pHWStackFrame ->r1 = 0;

15 pHWStackFrame ->r2 = 0;

pHWStackFrame ->r3 = 0;

17 pHWStackFrame ->r12 = 0;

pHWStackFrame ->lr = 0xFFFFFFFF; // (reset val - task never exits)

19 pHWStackFrame ->pc = (unsigned int) (pTCB ->pTaskFunction);

pHWStackFrame ->psr = 0x01000000; // Set T bit (bit 24) in EPSR.

21 // The Cortex -M4 processor only

// supports execution of

23 // instructions in Thumb state.

// Attempting to execute

25 // instructions when the T bit

// is 0 (Debug state)

27 // results in a fault.

// populate SW Stack Frame

29 pSWStackFrame ->r4 = 0x04040404;

pSWStackFrame ->r5 = 0x05050505;

2.4 ARM Cortex-M7 Interrupts 65

31 pSWStackFrame ->r6 = 0x06060606;

pSWStackFrame ->r7 = 0x07070707;

33 pSWStackFrame ->r8 = 0x08080808;

pSWStackFrame ->r9 = 0x09090909;

35 pSWStackFrame ->r10 = 0x0a0a0a0a;

pSWStackFrame ->r11 = 0x0b0b0b0b;

37

// Set task’s stack pointer in the TCB to point at the top

39 // of the task’s SW stack frame

pTCB ->sp = (unsigned int*) pSWStackFrame;

41

}

Listing 2.9 The function TaskInit() that initializes a new task.

The only parameter of the above TaskInit() function is a pointer to a task’s
TCB. The TaskInit() function performs the following steps:

1. Initializes two pointers to two stack frames that hold the exception stack frames:
so-called hardware stack frame and the so-called software stack frame. The hard-
ware stack frame will hold eight registers saved by the CPU during exception
entry. Besides these eight registers, we need to save the remaining eight registers
from the task’s context (R4-R11) onto the software stack frame. We need to pre-
pare these stack frames for each new task so that when the task switch occurs,
both frames will be ready for de-stacking and, hence, entering a new task. To
make this task easier, we will abstract the frames with two structures:

typedef struct{
2 unsigned int r0;

unsigned int r1;
4 unsigned int r2;

unsigned int r3;
6 unsigned int r12;

unsigned int lr;
8 unsigned int pc;

unsigned int psr;
10 } HWSF_Type;

12 typedef struct{
unsigned int r4;

14 unsigned int r5;
unsigned int r6;

16 unsigned int r7;
unsigned int r8;

18 unsigned int r9;
unsigned int r10;

20 unsigned int r11;
} SWSF_Type;

Listing 2.10 Structures used to abstract the hardware and software stack frames.

The hardware stack frame resides at the bottom of the task’s stack, and the software
stack frame resides above the hardware stack frame.

2. Now, as two pointers to stack frames, pHWStackFrame and pHWStack
Frame, are set, we can populate both frames with initial values. The hardware
stack frame is populated as follows:

66 2 Interrupts and Interrupt Handling

xPSR=0x01000000
PC=0x08000540

R12 = 0
R3 = 0
R2 = 0
R1 = 0
R0 = 0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

0x24000840

0x24000860

R11 = 0
R10 = 0
R9 = 0
R8 = 0
R7 = 0
R6 = 0

R5 = 0
R4 = 0

0x24000820

Task 1 stack (SRAM)

SRAM

Task 1 TCB (SRAM)

sp = 0x20000820

pTaskFunction= 0x080006cc

0x20000038

Task1 (FLASH)

void Task1(){
 while(1){
 . . .
 }
}

0x080006cc

Fig. 2.13 Memory layout and content after calling the TaskInit() function

• PSR.= 0x01000000—this is the default reset value in the program status reg-
ister,

• PC.= the address of the task,
• LR .= 0xFFFFFFFF—in our case, tasks never finish, so LR .= 0xFFFFFFFF
(reset value),

• r12, r3 – r0 .= 0x00000000—we may also pass the arguments into the task via
r0-r3, but this is not the case in our simple scheduler.

3. Finally, it saves the address of the top of the software stack frame into the task’s
SP entry in the task’s TCB.

After these steps, a new task is ready to be executed for the first time when the
task switch occurs, and the task is selected for execution. Figure 2.13 illustrates the
memory layout and the contents of the task’s stack and TCB after creating Task1
using the TaskInit() function.

2.4 ARM Cortex-M7 Interrupts 67

2.4.7.7 Scheduler Initialisation
The following code presents the function used to initialize all four tasks:

1 void InitScheduler(unsigned int* pStackRegion ,
TCB_Type pTCB[],

3 void (* TaskFunctions [])()){
unsigned int* pTaskStackBase;

5

// 1. create all tasks:
7 for(int i=0; i<NTASKS; i++){

pTaskStackBase = pStackRegion + (i+1)*TASK_STACK_SIZE;
9 TaskCreate (&pTCB[i], pTaskStackBase , TaskFunctions[i]);

}
11 // 2. initialize all tasks except the Task0.

// Task0 will be called by main()
13 // and will be the first task interrupted.

// Its HWSF and SWSF will be created upon
15 // interrupt/contecxt switch

for(int i=1; i<NTASKS; i++){
17 TaskInit (&pTCB[i]);

}
19 // set PSP to Task0.SP:

__set_PSP ((unsigned int)pTCB [0].sp);
21 }

Listing 2.11 The function InitScheduler() creates all tasks and initializes all tasks except
the first one (Task0). At the end, it sets the top of the stack of the first task (Task0) into the PSP
register.

The function InitScheduler() performs the following steps:

1. Creates all tasks.
2. Initializes all tasks except the first one (Task0). Task0 will be called from the

main function and will be the first task interrupted by the SysTick timer. Hence,
its stack frames will be populated during the context switch.

3. Saves the top of the stack of the first task (Task0) into the PSP register.

To read or write the PSP register, which is not memory-mapped, requires the usage
of special CPU instructions MSR and MRS. Hence, in order to access the PSP reg-
ister, we are forced to use assembly. To make programming easier, the above code
relies on the _ _set_PSP function defined in the Cortex Microcontroller Soft-
ware Interface Standard (CMSIS) library to write into the PSP register. CMSIS is a
vendor-independent hardware abstraction layer (HAL) for ARM Cortex-M proces-
sors. It simplifies software development for a wide range of microcontroller devices,
promoting code portability and reusability across various microcontroller families
and manufacturers. CMSIS defines two inline assembly functions to read or write
the PSP register:

68 2 Interrupts and Interrupt Handling

1 /**

\brief Set Process Stack Pointer

3 \details Assigns the given value to the Process Stack Pointer (PSP)

\param [in] topOfProcStack Process Stack Pointer value to set

5 */

__attribute__ ((always_inline))

7 static inline void __set_PSP(uint32_t topOfProcStack)

{

9 __asm volatile ("MSR psp , %0" : : "r" (topOfProcStack) :);

}

11

/**

13 \brief Get Process Stack Pointer

\details Returns the current value of the Process Stack Pointer (PSP)

15 \return PSP Register value

*/

17 __attribute__ ((always_inline))

static inline void uint32_t __get_PSP(void)

19 {

uint32_t result;

21

__asm volatile ("MRS %0, psp" : "=r" (result));

23 return(result);

}

Listing 2.12 The CMSIS definition of inline assembly functions for accessing the PSP register.

After these steps, everything is set up for the first context switch. Figure 2.14
illustrates the memory layout and the task’s stack after initializing the scheduler
using the InitScheduler() function.

xPSR
PC
LR

R12
R3
R2
R1
R0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

 0x24000840

0x24000860

R11
R10
R9
R8
R7
R6

R5
R4

0x24000820

xPSR
PC
LR

R12
R3
R2
R1
R0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

0x24000c40

0x24000c60

R11
R10
R9
R8
R7
R6

R5
R4

0x24000c20

Task 1 stack

Task 2 stack

0x0800688

0x08006cc

void Task0(){
 while(1){
 ...
 }
}

void Task1(){
 while(1){
 ...
 }
}

FLASH

Task 0 stack

Task 1 stack

Task 3 stack

Task 2 stack

void Task2(){
 while(1){
 ...
 }
}

void Task3(){
 while(1){
 ...
 }
}

0x08006d0

0x0800701

Task 3 TCB

SP=0x24001020

Task 2 TCB

SP=0x24000c20

Task 1 TCB

SP=0x2400820

Task 0 TCB

SP=0x24000460 StackRegion=
0x24000060

SRAM
TCBs

Fig.2.14 Memory layout and content after initializing four tasks during the scheduler initialization

2.4 ARM Cortex-M7 Interrupts 69

2.4.7.8 Context Switch
Context switching in multitasking environments can be performed using stack pointer
(SP) swapping. The process involves saving the current task’s context onto its stack
and then loading the context of the next task to be executed by swapping the SP.
Figure 2.15 shows the process of context switching using stack pointer swapping.
Here’s a step-by-step description of how context switching is accomplished using
this method:

1. When a trigger for context switching occurs (the trigger is a timer interrupt), the
CPU saves the exception stack frame onto the Task1 stack using the PSP stack
pointer and enters the timer’s interrupt handler.

2. The remaining eight registers (R4-R11) are saved the onto the Task1 stack. The
context switcher saves the current PSP into the Task1 TCB.

3. The context switcher determines which task should run next. The scheduler con-
siders the round-robin scheduling policy to make this decision.

4. The context switcher retrieves the SP of Task2 from the Task2 TCB and saves it
into the PSP register. The PSP now points to the stack where the context of Task2
is saved.

5. The eight registers (R4-R11) of Task2 are popped from stack.
6. The timer handler exits; hence, the de-stacking operation performed by the CPU

retrieves the exception frame from the Task2 stack. As the PC of Task2 is part of
its exception frame, the CPU returns to Task2.

Running Task1 Running Task2

Save Task1
Exception Frame

Restore Task2
Exception Frame

Push additional
Task1 registers

Pop additional
Task2 registers

Save Task1 PSP
to Task1 TCB

Load Task2 PSP
of Task2 TCB

Select next
task

xPSR
PC
LR

R12
R3
R2
R1
R0

R11
R10
R9
R8
R7
R6

R5
R4

Task 1 stack

xPSR
PC
LR

R12
R3
R2
R1
R0

R11
R10
R9
R8
R7
R6

R5
R4

Task 2 stack

SysTick_Handler()

switch_context()

SysTick

Fig. 2.15 Context switching using stack pointer swapping

70 2 Interrupts and Interrupt Handling

xPSR
PC
LR

R12
R3
R2
R1
R0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

PSP after HW stacking = 0x24000840

Pre-IRQ top of stack = 0x24000860

R11
R10
R9
R8
R7
R6

R5
R4

PSP after SW stacking = 0x24000820

xPSR
PC
LR

R12
R3
R2
R1
R0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

PSP after SW destacking = 0x24000c40

Post-IRQ top of stack = 0x24000c60

R11
R10
R9
R8
R7
R6

R5
R4

PSP after context switch = 0x24000c20

Task 1 stack Task 2 stack

Pushed by CPU
during HW stacking
on exception entry

Pushed by context switcher
(SW stacking)

Popped by CPU
during HW destacking
on exception exit

Popped by context switcher
(SW destacking)

Context switcher
re-assigns PSP

0x08006cc

0x08006d0

void Task1(){
 while(1){
 . . .
 }
}

void Task2(){
 while(1){
 . . .
 }
}

FLASH

SRAM SRAM

Fig. 2.16 The modification progress of the PSP stack pointer during context switching

Figure 2.16 shows the chronology of the stack pointer when a context switch
happens between Task1 and Task2. The following code presents the function that
implements the context switcher:

int ContextSwitch(int current_task , TCB_Type pTCB []){
2 volatile int new_task;

4 pTCB[current_task].sp = (unsigned int*) __get_PSP ();

6 // select next task in round -robin fashion
new_task = current_task + 1;

8 if (new_task == NTASKS) new_task = 0;

10 __set_PSP ((unsigned int)pTCB[new_task].sp);

12 return new_task;
}

Listing 2.13 The functions ContextSwitch() that implements context switching.

2.4 ARM Cortex-M7 Interrupts 71

The parameters of the ContextSwitch functions are the index of the current
task (current_task) and the pointer to the TCB table (pTCB). The function
return the index of a new task.

2.4.7.9 SysTick Handler
Finally, we can implement the SysTick handler that will perform the task switch:

1 void SysTick_Handler(void)
{

3 unsigned int tmp;
// 1. Save context of the interrupted task:

5 if (current_task != -1){
__asm__ volatile ("MRS %0, psp\n\t"

7 "STMFD %0!, {r4 -r11}\n\t"
"MSR psp , %0\n\t" : "=r" (tmp));

9

11 // 2. Switch context:
current_task = ContextSwitch(current_task , TCB);

13

// 3. restore context of the new task:
15 __asm__ volatile ("MRS %0, psp\n\t"

"LDMFD %0!, {r4 -r11}\n\t"
17 "MSR psp , %0\n\t" : "=r" (tmp));

}
19 }

Listing 2.14 The SysTick handler used to perform task switch.

The SysTick handler performs the following steps:

1. Saves the context (R4-R11) of the interrupted task on the task’s stack using PSP.
2. Switch context (swap stack pointers) using the switch_context() function.
3. Restore the context (R4-R11) of the new task from its stack using PSP.
4. Return from interrupt and restore the exception frame of the new task from its

stack.

2.4.7.10 Starting the Scheduler
Finally, we are ready to start our scheduler within the main function. To do so, we
need to:

1. Initialize scheduler.
2. Switch to NOT PRIVILEGED mode with PSP as the stack pointer by setting the

last two bits in the CONTROL register.
3. Call Task0.
4. Within Task0, wait for the first SysTick interrupt.

The following code shows how to start the scheduler:

1

unsigned int stackRegion[NTASKS * TASK_STACK_SIZE];
3 TCB_Type TCB[NTASKS];

72 2 Interrupts and Interrupt Handling

void (* TaskFunctions[NTASKS])();
5 int current_task = -1;

7 void Task0 (){
while (1) {}

9 }
void Task1 (){

11 while (1) {}
}

13 void Task2 (){
while (1) {}

15 }
void Task3 (){

17 while (1) {}
}

19

21 int main(void)
{

23 TaskFunctions [0] = Task0;
TaskFunctions [1] = Task1;

25 TaskFunctions [2] = Task2;
TaskFunctions [3] = Task3;

27 // Init scheduler:
InitScheduler(stackRegion , TCB , TaskFunctions);

29 current_task = 0;
// Start SysTick timer with the highest priority:

31 HAL_InitTick (0);
// Switch to NOT PRIVILEDGED with PSP:

33 __set_CONTROL (0 x00000003);
// Call the first task:

35 Task0 (); // never return!
while (1){}

37 }

Listing 2.15 Starting the scheduler.

To write into the CONTROL register (which is not memory-mapped), the above
code uses the _ _set_CONTROL function defined in the CMSIS library as:

1 /**

\brief Set Control Register

3 \details Writes the given value to the Control Register.

\param [in] control Control Register value to set

5 */

__STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)

7 {

__ASM volatile ("MSR control , %0" : : "r" (control) : "memory");

9 }

Listing 2.16 The CMSIS definition of inline assembly function for writing into the CONTROL
register.

2.4.7.11 Using PendSV for Context Switching
The approach with the SysTick handler used to perform the context switching would,
however, not work with other interrupts (peripheral interrupts, for example). The
SysTick handler would interrupt IRQ handlers as well, and stack registers affected
by the peripheral IRQ handler and unstack task’s registers, resulting in undefined

2.4 ARM Cortex-M7 Interrupts 73

Task1 Task2

Priority

Time

Handler mode
with MSP

Thread mode
with PSP

IRQ

Stacking
with PSP

PendSVSysTick

IRQ Handler

Stacking
with MSP

SysTick
Handler

Destacking
with MSP

IRQ Handler

PendSV Handler
(context switch)

Destacking
with PSP

PendSV=1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Task1

Destacking
with PSP

Stacking
with PSP

(13)

Fig. 2.17 A simple task scheduler based on PendSV interrupts

behaviour of both tasks and peripheral interrupt handler. This would undoubtedly
result in the hard fault.

The PendSV (Pending Supervisor Call) interrupt is commonly used for context
switching in ARM Cortex-M microcontrollers due to several advantages and char-
acteristics that make it well-suited for this purpose. The PendSV interrupt has the
lowest possible priority among all exceptions and interrupts. This makes it an ideal
choice for context switching, as it doesn’t interfere with other higher-priority inter-
rupts or exceptions. The PendSV exception will interrupt only the non-priority tasks
and certainly not any exception handler. The low-priority nature of PendSV ensures
that it doesn’t preempt other exceptions or interrupts, providing predictable and
deterministic behaviour during context switches. This predictability is essential in
real-time systems. PendSV can be triggered explicitly through software by setting
the PendSV bit in the ICSR register within the System Control Block. This allows for
precise control over when context switches occur. Typically, the PendSV interrupt
is set pending from the SysTick handler.

Figure 2.17 shows the solution to this problem with the PendSV interrupt. Usually,
the SysTick interrupt has the highest priority among all exceptions and interrupts with
configurable priority. If an interrupt request (IRQ) takes place before the SysTick
exception, the SysTick exception might preempt the IRQ handler. In this case, we
should not carry out the context switching. The PendSV exception solves the prob-
lem by delaying the context-switching request until all other IRQ handlers have
completed their processing. To do this, the PendSV is programmed as the lowest-
priority exception. The Systick handler sets the pending status of the PendSV, and
the context switching is carried out within the PendSV exception. Let us describe
the solution in Fig. 2.17:

1. Task1 is preempted by an IRQ interrupt request.
2. Task1’s hardware stack frame is stacked on the process stack using the PSP.
3. The IRQ handler executes.

74 2 Interrupts and Interrupt Handling

4. The SysTick exception eventually preempts the IRQ handler.
5. The hardware stack frame of the IRQ handler is stacked on the main stack using

the MSP register.
6. The SysTick handler sets the PendSV bit. Hence, PendSV interrupt is pending.
7. The SysTick exits, and the hardware stack frame of the IRQ handler is popped

from the main stack.
8. The IRQ handler continues its execution.
9. The IRQ handler exits, and the hardware stack frame of the Task1 is popped

from the process stack.
10. The Task1 continues its execution.
11. PendSV is fired and the Task1’s hardware stack frame is stacked on the process

stack using the PSP.
12. PendSV handler performs the context switching.
13. PendSV handler exits and the Task2’s hardware stack frame is popped from the

process stack using the PSP.
14. Task2 executes.

Hence, the solution to implement a scheduler based on the SysTick and PendSV
exceptions is simple. Firstly, we move the code for context switching from the
SysTick handler into the PendSV handler:

1 void PendSV_Handler(void)
{

3 volatile unsigned int tmp1 =0;
volatile unsigned int tmp2 =0;

5 // 1. Save context of the interrupted task:
__asm__ volatile ("MRS %0, psp\n\t"

7 "STMFD %0!, {r4 -r11}\n\t"
"MSR psp , %0\n\t" : "=r" (tmp1));

9

11 // 2. Switch context:
current_task = ContextSwitch(current_task , TCB);

13

// 3. restore context of the new task:
15 __asm__ volatile ("MRS %0, psp\n\t"

"LDMFD %0!, {r4 -r11}\n\t"
17 "MSR psp , %0\n\t" : "=r" (tmp2));

}

Listing 2.17 PendSV handler performs context switching.

Secondly, the SysTick handler only sets PendSV pending in the ICSR register:

void SysTick_Handler(void)
2 {

// Set the PendSV Pending bit in ICSR:
4 SCB ->ICSR |= (unsigned long)0x01 << 28;
}

Listing 2.18 The SysTick handler only sets PendSV pending.

2.4 ARM Cortex-M7 Interrupts 75

main() Task0

Priority

Time

Handler

Thread

SVC

Stacking
with PSP

PendSVSysTick

SVC
Handler

PendSV Handler
(context switch)

Destacking
with PSP

PendSV=1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

SysTick
Handler

Stacking
with PSP

Task0

Stacking
with PSP

Destacking
with PSP

Task1

Destacking
with PSP

Fig. 2.18 Starting the scheduler with the SVC exception

2.4.7.12 Using the Supervisor Call (SVC) Exception to Start the
Scheduler

Instead of directly calling the first task (Task0) from the main function, the first task
should be initialized and started in the same way as the others. In other words, the
scheduler should rely on the exception return to start the first task. For this purpose,
we can use the Supervisor Call (SVC) exception. Recall that the SVC instruction
triggers the SVC exception. Due to the interrupt priority behaviour of the Cortex-
M processors, the SVC instruction can only be used in thread mode or exception
handlers that have a lower priority than the SVC itself. Otherwise, a HardFault
exception would be generated. The SVC instruction is a privileged operation that
allows a task in an unprivileged mode to request a service from the operating system
(or kernel) running in a privileged mode. This separation of privilege levels ensures
that only trusted code can initiate scheduling or other system-related operations.
Figure 2.18 shows the process of starting and running the scheduler using the SVC
exception. Let us describe the solution in Fig. 2.18:

1. The main() function initializes the scheduler (i.e., initializes all tasks) and
eventually executes the SVC instruction.

2. The main() function is preempted by the SVC exception, and its hardware
stack frame is stacked on the process stack using the PSP

3. The SVC handler sets the PSP to point to the top of the Task0 stack, restores the
context (R4-R11) of the Task0 and exits.

4. Upon exception exit, the hardware stack frame of Task0 is restored, therefore
returning control to Task0.

5. Task0 executes until the end of its time slot.
6. The SysTick exception preempts Task0, saving its hardware stack frame onto

its stack.
7. The SysTick handler sets the PendSV bit. Hence, the PendSV interrupt is pend-

ing.
8. The SysTick exits, and the hardware stack frame of Task0 is popped from the

main stack.
9. Task0 continues its execution.

76 2 Interrupts and Interrupt Handling

10. PendSV is fired, and the Task0 hardware stack frame is stacked on the process
stack using the PSP.

11. PendSV handler performs the context switching.
12. PendSV handler exits, and Task1’s hardware stack frame is popped from the

process stack using the PSP.
13. Task1 now executes.

To initialize the scheduler that uses the SVC exception to start the first task, we
use the following function:

1 void InitSchedulerSVC(unsigned int* pStackRegion ,
TCB_Type pTCB[],

3 void (* TaskFunctions [])()){
unsigned int* pTaskStackBase;

5

// 1. create all tasks:
7 for(int i=0; i<NTASKS; i++){

pTaskStackBase = pStackRegion + (i+1)*TASK_STACK_SIZE;
9 TaskCreate (&pTCB[i], pTaskStackBase , TaskFunctions[i]);

}
11

// 2. initialize all tasks
13 // The main() and will be first interrupted by SVC.

// Task0 will be entered from SVC Handler
15 for(int i=0; i<NTASKS; i++){

TaskInit (&pTCB[i]);
17 }

19 // set PSP to Task0.SP:
__set_PSP ((unsigned int)pTCB [0].sp);

21 }

Listing 2.19 The function InitSchedulerSVC() creates all tasks and initializes the stack
frames for all tasks.

Contrary to the function InitScheduler(), the function
InitSchedulerSVC() initializes the stack and both stack frames of all tasks.
The SVC handler simply sets the PSP to point to the top of Task0’s stack and restores
the context (R4-R11) of the first task:

1 void SVC_Handler(void)

{

3 /* We are here , because main() called SVC. As we interrupted main(),

* there is no need to save its context.

5 * We should never return to main()!!

* The SVC_Handler should start the first task - Task0

7 * The Task 0 is started by restoring its SW context and

* its HW context upon the exception return.

9 */

// set PSP to Task0.SP:

11 __set_PSP ((unsigned int)TCB [0].sp);

current_task = 0;

13 // Restore the context of the Task 0:

__RESTORE_CONTEXT ();

15 }

Listing 2.20 The SVC Handler.

2.5 RISC-V Interrupts and Exceptions 77

The following code shows how to start the scheduler:

1

unsigned int stackRegion[NTASKS * TASK_STACK_SIZE];
3 TCB_Type TCB[NTASKS];
void (* TaskFunctions[NTASKS])();

5 int current_task = -1;

7 void Task0 (){
while (1) {}

9 }
void Task1 (){

11 while (1) {}
}

13 void Task2 (){
while (1) {}

15 }
void Task3 (){

17 while (1) {}
}

19

21 int main(void)
{

23 TaskFunctions [0] = Task0;
TaskFunctions [1] = Task1;

25 TaskFunctions [2] = Task2;
TaskFunctions [3] = Task3;

27 // Init scheduler:
InitSchedulerSVC(stackRegion , TCB , TaskFunctions);

29 // Start SysTick timer:
HAL_InitTick (0);

31 // Switch to NOT PRIVILEDGED with PSP:
__set_CONTROL (0 x00000003);

33 // Start the scheduler:
__asm volatile("svc 0");

35 while (1){}
}

Listing 2.21 Starting the scheduler using the SVC exception.

The code for the scheduler can be found here:
https://github.com/bulicp/ContextSwitchM7-book.git.

2.5 RISC-V Interrupts and Exceptions

RISC-V architecture defines different privilege modes that determine the level of
access and control a program or process has over the system’s resources. A privi-
leged mode in a CPU refers to a specific operating mode in which the CPU has access
to various system resources. Privileged modes are often used in modern computer
architectures to ensure the proper operation, security, and control of the system.
Privileged modes are crucial in separating user-level programs from system-level
operations and for managing system security, isolation, and resource allocation. For
example, a modern CPU restricts a user program from accessing system critical
resources (e.g., special CPU registers, memory regions, special instructions, etc.),
while the system programs may access all system resources. Privileged modes are

https://github.com/bulicp/ContextSwitchM7-book.git
 -2047
39579 a -2047 39579 a

https://github.com/bulicp/ContextSwitchM7-book.git

78 2 Interrupts and Interrupt Handling

the mechanism to achieve this differentiation between user-level and system-level
programs. Modern CPUs usually have a separate set of control and status registers
(CSRs) for each privileged mode and a special control register that tells which priv-
ileged mode the CPU is currently running. Depending on the status of this special
control register (i.e., current privileged mode), the CPU can access the correspond-
ing set of CSRs and execute only the instructions allowed in the current privileged
level. For example, if the CPU is currently running in a user-privileged mode, it can
execute only the standard instruction set. At the same time, executing some special
instructions that can alter critical system resources is prohibited. Besides, programs
running in user-privileged mode can never alter the content of this special control
register and thus switch between privileged modes. But wait, how can we change a
privileged mode once the CPU runs in user-privileged mode? Well, it depends on the
current privileged mode:

1. If the CPU runs in user-level privileged mode, the only way to switch to a system-
level privileged mode is through exceptions (traps or interrupts). Exceptions can
trigger mode transitions. When an exception (a trap or an interrupt) occurs, the
CPU automatically switches to system-level privileged mode, and the exception
handling routine executes in the system-level privileged mode. Upon exiting the
exception handler, the CPU automatically switches to the previous (e.g., user-
level) privileged mode.

2. If the CPU runs in system-level privileged mode, the CPU can switch to a user-
level privileged mode simply by executing a special instruction that alters the
content of the special control register and, hence, changes the current system-level
privileged mode to user-level privileged mode. CPUs have specific instructions
that are used to initiate mode transitions. These instructions are often called priv-
ileged and can only be executed when the CPU is in a system-level privileged
mode.

2.5.1 RISC-V Privileged Modes

In order to be able to understand interrupts and interrupts handling in RISC-V, we’ll
briefly describe and explain the privileged modes in RISC-V. Privileged modes are a
fundamental part of RISC-V’s flexibility, as they enable various operating systems,
hypervisors, and security models to be implemented on the same instruction set
architecture. Here is a brief description and explanation of three basic privileged
modes in RISC-V:

1. User Mode (U): User mode is the lowest privilege mode in RISC-V. In this
mode, a user-level application or program runs with restricted access to system
resources. User mode provides the least privilege and is suitable for application-
level code. In user mode, applications can execute most instructions but have
limited access to privileged instructions and control registers. User mode can
execute basic instructions, access memory, and perform arithmetic operations.

2.5 RISC-V Interrupts and Exceptions 79

However, it cannot directly manipulate control and status registers (CSRs) related
to exception handling or interrupt control.

2. Supervisor Mode (S): Supervisor mode is a privilege level above user mode. It
is designed for operating system kernel code, which needs greater control over
system resources and privilege to perform tasks like context switching and man-
aging hardware devices. Supervisor mode has more access to control registers and
instructions compared to user mode. It can perform operations related to excep-
tion handling, interrupt control, and system management. S-mode can execute
privileged instructions that deal with system control and exception handling. It
can access and modify most control and status registers (CSRs), including those
related to interrupts and exceptions.

3. Machine Mode (M): Machine mode is the highest privilege mode in RISC-V.
It provides complete control over the system, including access to all resources
and system-wide configuration. M-mode has full access to all instructions, con-
trol registers, and hardware resources, making it suitable for tasks such as sys-
tem initialization, low-level device control, and platform management. M-mode
can execute all RISC-V instructions, including those reserved for privileged and
system-level operations. It can access and modify all control and status regis-
ters (CSRs), and it has control over exceptions and interrupts across all privilege
levels. Upon reset, RISC-V enters machine mode.

The E31 RISC-V core in FE-310 SoC supports only Machine and User privilege
modes. The transition between privilege modes in E31 RISC-V is typically controlled
by changing specific bits in control and status registers (CSRs). The machine mode
handles these transitions, ensuring that the processor switches between user and
machine modes appropriately. Additionally, exceptions and interrupts may trigger
mode transitions, allowing the processor to respond to exceptional conditions or
external events. As all exceptions (traps and interrupts) execute in Machine mode,
we will restrict the description of exceptions only to this privilege mode.

2.5.2 RISC-V Machine Modes Exceptions

According to the RISC-V Privileged Architecture, the E31 RISC-V CPU comprises
five control and status registers for Machine privilege mode:

1. mstatus: In RISC-V, the mstatus (Machine Status) register is a critical control
and status register (CSR) used to manage and store various information related
to the Machine privilege mode. The mstatus register plays a central role in con-
trolling exception handling, interrupt handling, and the overall operation of the
processor in machine mode. The mstatus register keeps track of and controls the
CPU’s current operating state, including whether or not interrupts are enabled.
A summary of the mstatus bits related to interrupts in the E31 RISC-V CPU is
provided in Fig. 2.19. Note that this is not a complete description of mstatus as it
contains fields unrelated to interrupts. For the full description of mstatus, please

80 2 Interrupts and Interrupt Handling

3712 11 031

M
IE

M
PI

E

M
PP

Fig. 2.19 The mstatus register

3712 11 031

M
SI

E

M
TI

E

M
EI

E

Fig. 2.20 The mie register

consult the RISC-V Instruction Set Manual, Volume II: Privileged Architecture.
The mstatus register contains the following exception-related bits:

a. MIE (Machine Interrupt Enable): This bit controls whether machine-level
interrupts are globally enabled or disabled. When MIE is set, the CPU can
process machine-level interrupts; when it is cleared, machine-level interrupts
are disabled.

b. MPIE (Machine Previous Interrupt Enable): This bit stores the previous state
of MIE before it was modified due to an interrupt. It helps manage interrupt
nesting by preserving the previous interrupt-enable state.

c. MPP (Machine Previous Privilege Mode): This two-bit field stores the previ-
ous privilege mode before the CPU entered machine mode due to an interrupt.
It is used during return from interrupt to return to the appropriate privilege
mode after processing an interrupt.

2. mie: The mie (Machine Interrupt Enable) register is responsible for enabling or
disabling various types of interrupts that can interrupt the execution of the CPU
in machine mode. Individual interrupts are enabled by setting the appropriate bit
in the mie register. The mie register is depicted in Fig. 2.20. The mie register
contains the following bits:

a. MSIE (Machine Software Interrupt Enable): This bit controls whether
machine-level software interrupts are enabled or disabled. When MSIE is set,
the CPU can process machine-level software interrupts; otherwise, machine-
level software interrupts are disabled.

b. MTIE (Machine Timer Interrupt Enable): This bit controls whether machine-
level timer interrupts are enabled or disabled. When MTIE is set, the CPU can
process machine-level timer interrupts.

c. MEIE (Machine External Interrupt Enable): This bit controls whether
machine-level external interrupts are enabled or disabled. When MEIE is set,
the CPU can process machine-level external interrupts.

3. mip: The mip (Machine Interrupt Pending) register indicates which interrupts are
currently pending. The mip register is depicted in Fig. 2.21. When an interrupt
occurs, the corresponding bit in mip is set to 1. When the CPU takes an interrupt,

2.5 RISC-V Interrupts and Exceptions 81

3712 11 031

M
SI

P

M
TI

P

M
EI

P

Fig. 2.21 The mip register

the corresponding bit in mip is cleared. The mip register contains the following
bits:

a. MSIP (Machine Software Interrupt Pending): When MSIP is set, the Machine
Software Interrupt is pending.

b. MTIP (Machine Timer Interrupt Pending): When MTIP is set, the Machine
Timer Interrupt is pending.

c. MEIP (Machine External Interrupt Pending): When MEIP is set, the Machi-
neExternal Interrupt is pending.

If more than one interrupt is pending, the RISC-V CPU prioritizes the interrupts
as follows, in decreasing order of priority: Machine External Interrupts (highest
priority), Machine Software Interrupts, and Machine Timer Interrupts (lowest
priority).

4. mcause: In RISC-V architecture, the mcause register is a control and status reg-
ister (CSR) that is used to provide information about the cause of an exception or
interrupt that occurred in machine mode. A summary of the mcause bits related
to interrupts in the E31 RISC-V CPU is provided in Fig. 2.22. When a trap is
taken in machine mode, the most significant bit in mcause (bit INT) is 0, and
the ten least-significant bits (EXCEPTION CODE field) are written with a code
indicating the event that caused the trap. When an interrupt is taken, the most
significant bit of mcause (bit INT) is set to 1, and the ten least-significant bits
(EXCEPTION CODE field) contain the interrupt number, using the same encod-
ing as the bit positions in the mip register. Table 2.3 lists exception codes and
their description. For example, a Machine Timer Interrupt causes mcause to be
set to 0x80000007.

5. mtvec: The mtvec register has two main functions. Firstly, it specifies the base
address for the vector table, which contains the addresses of exception handlers.
Secondly, it sets the mode by which the E31 CPU will process exceptions. The
RISC-V CPU can process exceptions in two modes: direct and vectored. In direct
mode, the mtvec register holds the address of a single global exception han-
dler. The processor directly jumps to this global handler’s address when a trap
or interrupt occurs. In direct mode, we might use a single handler for all excep-
tions, simplifying the exception-handling process. However, it may not be suitable
for systems requiring fine-grained control over exception handling. In vectored
mode, the mtvec register holds the base address of the vector table. In this mode,
the processor uses a 10-bit field in the mcause register to index the vector table
and find the appropriate handler for the specific trap or interrupt that occurred. The
vectored mode allows more flexibility in handling various exceptions and inter-
rupts with different routines. In vectored mode, we can have multiple handlers for

82 2 Interrupts and Interrupt Handling

01 9 031
IN

T
30

EXCEPTION CODE

Fig. 2.22 The mcause register

Table 2.3 mcause Exception codes and their description

INT Exception code Description

0 0 Instruction address misaligned

0 1 Instruction access fault

0 2 Illegal instruction

0 3 Breakpoint

0 4 Load address misaligned

0 5 Load access fault

0 6 Store address misaligned

0 7 Store access fault

0 8 Environment call from U-mode

0 11 Environment call from M-mode

1 3 Machine software interrupt

1 7 Machine timer interrupt

1 11 Machine external interrupt

different exceptions and interrupts, allowing us to handle each type of exception
or interrupt differently. This is often the preferred way of interrupt handling. The
mtvec register is depicted in Fig. 2.23. The mtvec register contains the following
bit fields:

a. MODE: This 2-bit field sets the interrupt processing mode (00-Direct, 01-
Vectored).

b. BASE: This 30-bit field contains the vector table base address. This field
requires 64-byte alignment.

Table 2.4 describes how an address of the exception handler is computed in two
different interrupt processing modes. Direct mode means all interrupts and excep-
tions trap to the same handler, and there is no vector table implemented. It is the
handler’s responsibility to execute code to figure out which interrupt occurred.
The handler in direct mode should first read the bit 31 in mcause to determine if
an interrupt or exception occurred. It should then execute appropriate code based
on the EXCEPTION CODE field in mcause, which contains the respective inter-
rupt or exception code. Traps always use the direct mode. Hence, all exceptions
trap to the same handler. For example, suppose the BASE is set to 0x20011500.
When an exception occurs, the PC is set to 0x20011500, and the first instruction
of the exception handler should be at this address. Vectored mode allows for

2.5 RISC-V Interrupts and Exceptions 83

02 131

BASE MODE

Fig. 2.23 The mtvec register

Table 2.4 mtvec Modes and address of exception handler encoding

MODE Interrupt
processing
mode

Address of exception handler

0 Direct PC = BASE
NOTE: Exceptions are not vectored. All exceptions trap to the
same handler. The handler executes code to figure out which
exception occurred.

1 Vectored PC = BASE + 4 x mcause[EXCEPTION CODE]
NOTE: BASE must be 64-byte aligned. This is to avoid an adder
in the above computation

creating a vector table that hardware uses for lower interrupt handling latency.
Only interrupts can use the vectored mode. When an interrupt occurs in vec-
tored mode, the PC will get assigned by the hardware to the address of the vector
table index corresponding to the interrupt ID. From the vector table index, a sub-
sequent jump will occur from there to service the interrupt. The interrupt handler
offset is calculated by PC = BASE + 4 x mcause[EXCEPTION CODE].
The vectored mode does not require the software overhead to determine which
interrupt occurred. In this mode, when an interrupt occurs, the execution jumps
directly to the vector table offset for the corresponding interrupt. For example,
suppose the global and machine timer interrupts are enabled, and the BASE is set
to 0x20011500. If the vectored mode is selected and a machine timer interrupt
occurs, the EXCEPTION CODE in the mcause register will be 0x07. Then, the
address of the interrupt handler that processes the machine timer interrupts will
be 0x20011500 + 4 x 0x07 = 0x20011500 + 0x1C = 0x2001151C. Hence, when
the interrupt is taken, the PC is set to 0x2001151C, and the first instruction of the
interrupt handler should be at this address.

Configuring these five Control and Status Registers registers correctly is crucial for
proper exception handling in RISC-V systems, as they dictate where the processor
should jump when an exception occurs and how exceptions are managed. These
CSRs are not memory-mapped and can only be accessed through special privileged
instructions: csrr and csrw for read and write, respectively. Hence, to work with
these CSRs, developers must use assembly language instructions to read and modify
these registers as needed.

84 2 Interrupts and Interrupt Handling

2.5.3 FE-310 Interrupts

The SiFive Freedom E310, also known as FE310, is a microcontroller based on the
RISC-V architecture. It’s designed for embedded and IoT applications and is notable
for being one of the early implementations of the RISC-V ISA. Let us have a deeper
view of interrupts supported in SiFive Freedom E310. The FE310 SoC supports two
types of RISC-V interrupts: local and global. Local interrupts are signalled directly
to the RISC-V E31 CPU with a dedicated interrupt line for each local interrupt. The
RISC-V E31 CPU has three interrupt lines for external, software and timer interrupts
(Fig. 2.24). Software and timer interrupts are local interrupts generated by the Core-
Local Interruptor (CLINT). Besides the software and timer interrupts, various I/O
devices (e.g., UART, GPIO, etc.) can use global interrupts to activate the external
interrupt line and to interrupt the CPU. Global interrupts from I/O devices are routed
through a Platform-Level Interrupt Controller (PLIC), which will be described later.

The CLINT is a mandatory component in RISC-V processor systems. It’s respon-
sible for managing timer-related and software-generated interrupts at the core level.
The CLINT generates two interrupts:

1. Machine Timer Interrupts: The CLINT contains a timer called the Machine Timer,
which can generate timer interrupts for various purposes, including timekeeping,
scheduling, and triggering tasks at specific intervals.

2. Machine Software Interrupts: In RISC-V, the software can generate software
interrupts to communicate with the operating system. In general, the program
running in user mode is not allowed to call operating system procedures. Hence,
the only way a user program makes a system call is by generating a software
interrupt. The software interrupt handler running in machine mode then calls an

1

Machine External Interrupt

Machine Software Interrupt

Machine Timer Interrupt

32

3

2

2

12

I2C

3x PWM

GPIO

3x QSPI

2x UART

AON

PLIC

CLINT

E31
RISC-V

Fig. 2.24 FE310 interrupt architecture block diagram

2.5 RISC-V Interrupts and Exceptions 85

Table 2.5 Memory map for CLINT registers on SiFive FE310 SoC

Address Width Register

0x02000000 4B msip

0x02004000 8B mtimecmp

0x0200BFF8 8B mtime

operating system procedure. The CLINT can be used to handle these software-
generated interrupts.

The CLINT comprises memory-mapped control and status registers related to soft-
ware and timer interrupts. Table 2.5 shows the memory map for CLINT on SiFive
FE310.

2.5.3.1 Machine Software Interrupts
A machine software interrupt is an interrupt generated by software running in
machine mode to request attention from the processor for specific tasks or events.
Machine software interrupts are generated by writing ‘1’ to the msip register within
CLINT. The msip register is a 32-bit memory-mapped register where the upper 31
bits are hardwired to zero. The least significant bit of the msip register is reflected
in the MSIP bit of the mip register. On reset, the msip register is cleared to zero.

2.5.3.2 Machine Timer Interrupts
CLINT, which is a mandatory part of RISC-V architecture, provides a 64-bit real-time
counter, which monotonically increases at a clock speed, and its content is visible
as a memory-mapped register mtime. In the FE310 SoC, CLINT is responsible for
providing the real-time counter. Machine timer interrupt is a local interrupt, which
can be generated by using two architecturally defined timer registers: mtime and
mtimecmp:

1. mtime register: The 64-bit mtime register stores the current value of the 64-bit
timer counter. The software can read this register to determine the current time.

2. mtimecmp register: The mtimecmp register holds a value that is compared with
the mtime register. When mtime reaches the value stored in mtimecmp, it triggers
a timer interrupt. This register is used to set up timer interrupts for specific time
intervals.

In summary, the machine timer generates timer interrupts when the mtime matches
or exceeds the value stored in the mtimecmp register. This feature is crucial for
implementing preemptive multitasking, where the processor can switch between
tasks at predefined time intervals.

86 2 Interrupts and Interrupt Handling

2.5.4 Interrupt Entry and Exit

Interrupt entry and exit refer to the processes by which a RISC-V processor handles
interrupts. These processes involve transitioning from regular program execution to
an interrupt handler and returning to regular program execution after the interrupt is
serviced. In the following subsections, we describe and explain interrupt entry and
exit in RISC-V.

2.5.4.1 Interrupt Entry
When a machine interrupt occurs:

1. The value of the MIE bit in mstatus is copied into the MPIE bit in mstatus, and
then MIE is cleared, effectively disabling interrupts.

2. The privilege mode prior to the interrupt is saved in the MPP field in mstatus.
3. The cause of the interrupt is encoded into EXCEPTION CODE in mcause.
4. The current PC is copied into the mepc register, and then the PC is set to the value

specified by mtvec as described in Table 2.4.

At this point, control is handed over to software in the interrupt handler with
interrupts disabled. Interrupts can be re-enabled by explicitly setting the MIE bit in
mstatus or by executing the mret instruction to exit the handler.

2.5.4.2 Interrupt Exit
To exit from a machine interrupt, the mret instruction must be executed at the end
of the interrupt handler. When a mret instruction is executed, the following occurs:

1. The privilege mode is set to the value encoded in the MPP field in mstatus.
2. In the mstatus register, the MIE bit is set to the value of MPIE.
3. The PC is set to the value of mepc, hence pointing to the instruction, which was

interrupted.

At this point, control is handed over to the previously interrupted program.

2.5.5 Implementing Vector Table and Handlers

Implementing a vector table and handlers in assembly language for RISC-V involves
setting up a program structure to store the addresses of exception handlers and con-
figuring the system to use this table when exceptions occur to jump to the interrupt-
specific handler. Below are the steps to implement an exception table and handlers
in RISC-V assembly:

1. Define the Vector Table: Create a program structure that serves as the vector table.
As we have learned, the address of the first instruction of an interrupt handler is
calculated using the BASE address of the vector table and the exception cause
(Table 2.4). Each entry in the vector table occupies exactly 4 bytes, and there is

2.5 RISC-V Interrupts and Exceptions 87

only room for one instruction per handler in the vector table. Therefore, the only
instructions in the exception table should be the jump instructions that transfer
control to an interrupt-specific handler. An example of the vector table is as
follows:

1 # ---------------------------------
2 #
3 # V E C T O R T A B L E
4 #
5 # must be 64-byte aligned.
6 # ---------------------------------
7

8 .balign 64
9 .global _vector_table

10 _vector_table: # BASE
11 j _default_handler
12 j _default_handler
13 j _default_handler
14 # -----------------------------
15 j _msw_interrupt_handler # 3
16 # -----------------------------
17 j _default_handler
18 j _default_handler
19 j _default_handler
20 # -----------------------------
21 j _mtim_interrupt_handler # 7
22 # -----------------------------
23 j _default_handler
24 j _default_handler
25 j _default_handler
26 # -----------------------------
27 j _mext_interrupt_handler # 11
28 # -----------------------------

Listing 2.22 A vector table for E31 RISC-V.

The vector table is populated with jump instructions to transfer control to interrupt-
specific handlers. For example, the jump instruction (j _mtim_interrupt_
handler) that causes the jump to the timer interrupt handler is placed at the
offset 7 x 4 = 0x1C from the beginning of the vector table. So when a machine
timer interrupt occurs, the PC is set to BASE + 0x1C and the CPU will execute
the j _mtim_interrupt_handler instruction.
We can see from Listing 2.22 that besides the jump instructions to exception
handlers for software, timer and external interrupts, there is also a jump instruc-
tion to _default_handler in all other entries in the vector table. We have
already learned that there are only three interrupt sources in FE310 SOC (soft-
ware, timer and external), so why do we need the fourth interrupt handler
_default_handler? This is to ensure that in case of a trap (INT=0 in
mcause), the CPU executes _default_handler.

2. Register the Base Vector Table Address: We should configure the mtvec reg-
ister to point to the exception table. Also, we should set the preferred interrupt
processing mode in mtvec. Listing 2.23 presents the RISC-V assembly code to
register the base address and to select the vectored mode:

88 2 Interrupts and Interrupt Handling

1 #---------------------------------------

2 # Register the base address for vector table

3 # in mtvec

4 #

5 #@arguments:

6 # # a0 - interrupt vector table base address

7 # # a1 - interrupt processing mode

8 # (0x0 - direct , 0x1 - vectored)

9 #---------------------------------------

10 .balign 4

11 .global register_handler

12 .type register_handler , @function

13 register_handler:

14 # prologue:

15 addi sp , sp, -16 # Allocate the routine

16 # stack frame

17 sw ra, 12(sp) # Save the return address

18 sw fp, 8(sp) # Save the frame pointer

19 sw s1, 4(sp)

20 sw s2, 0(sp)

21 addi fp , sp, 16 # Set the framepointer

22

23 or a0, a0, a1 # OR base address with mode

24 csrw mtvec , a0 # and save into mtvec

25

26 # epilogue:

27 lw s2, 0(sp)

28 lw s1, 4(sp)

29 lw fp, 8(sp) # restore the frame pointer

30 lw ra, 12(sp) # restore the return address

31 addi sp , sp, 16 # de-allocate the routine

32 # stack frame

33 ret

Listing 2.23 Assembly function for registering the vector table base addreess.

3. Define Exception/Interrupt Handler: Write the exception/interrupt handler rou-
tines in assembly language. Each handler should be a separate section of code
that corresponds to a specific exception type and ends with the mret instruction.
The prologue of an interrupt handler usually begins with saving the registers onto
the stack to avoid overwriting the contents of the saved registers (s0-s11). After
the body of the exception handler executes, the epilogue of an interrupt han-
dler restores the saved registers from the stack. Finally, the handler returns with
mret, an instruction unique to machine mode. The mret instruction restores the
PC from mepc, the previous interrupt-enable setting, and the privilege mode as
described in Sect. 2.5.4.2. For example, the following code (Listing 2.24) presents
the RISC-V assembly code for a machine timer interrupt handler:

1 #--

2 # Machine Timer Interrupt Handler

3 #--

4 .balign 4

5 .global _mtim_interrupt_handler

6 _mtim_interrupt_handler:

7

8 # Prologue :

9 # save 16 ABI caller registers

10 # (ra, t0-t6, a0-a7)

2.5 RISC-V Interrupts and Exceptions 89

11 addi sp , sp , -16*4 # Allocate the routine stack frame

12 sw t0 , 0*4(sp)

13 sw t1 , 1*4(sp)

14 sw t2 , 2*4(sp)

15 sw t3 , 3*4(sp)

16 sw t4 , 4*4(sp)

17 sw t5 , 5*4(sp)

18 sw t6 , 6*4(sp)

19 sw a0 , 7*4(sp)

20 sw a1 , 8*4(sp)

21 sw a2 , 9*4(sp)

22 sw a3 , 10*4(sp)

23 sw a4 , 11*4(sp)

24 sw a5 , 12*4(sp)

25 sw a6 , 13*4(sp)

26 sw a7 , 14*4(sp)

27 sw ra , 15*4(sp)

28

29 # Decode interrupt cause

30 csrr t0, mcause # read exception cause

31 bgez t0, 1f # exit if not an interrupt

32

33 # Increment timer compare by 1000 cycles

34 li t0 , 0x0200 BFF8 # load the mtime address

35 lw t1 , 0(t0) # load mtime (LO)

36 lw t2 , 4(t0) # load mtime (HI)

37 li t3 , 1000 # load 1000 cycles

38 add t3 , t1 , t3 # increment lower bits by 1000

39 sltu t1 , t3 , t1 # generate carry -out

40 add t2 , t2 , t1 # increment upper bits with carry

41

42 li t0 , 0x02004000 # load the mtimecmp address

43 sw t3 , 0(t0) # update mtimecmp (LO)

44 sw t2 , 4(t0) # update mtimecmp (HI)

45

46 1:

47 # Epilogue: restore ABI caller regs

48 lw t0 , 0*4(sp)

49 lw t1 , 1*4(sp)

50 lw t2 , 2*4(sp)

51 lw t3 , 3*4(sp)

52 lw t4 , 4*4(sp)

53 lw t5 , 5*4(sp)

54 lw t6 , 6*4(sp)

55 lw a0 , 7*4(sp)

56 lw a1 , 8*4(sp)

57 lw a2 , 9*4(sp)

58 lw a3 , 10*4(sp)

59 lw a4 , 11*4(sp)

60 lw a5 , 12*4(sp)

61 lw a6 , 13*4(sp)

62 lw a7 , 14*4(sp)

63 lw ra , 15*4(sp)

64 addi sp , sp , 16*4 # de -allocate the routine stack frame

65 mret

Listing 2.24 Assembly code for the machine timer interrupt.

The code in Listing 2.24 assumes that interrupts are globally enabled in msta-
tus (MIE .= 1), that timer interrupts have been enabled in mie, and that mtvec
has been set to the base address of the vector table with the interrupt processing
mode set to vectored. The prologue preserves 16 registers according to RISC-V
ABI (Application Binary Interface). You may find this a little odd—why waste

90 2 Interrupts and Interrupt Handling

16 instructions and 64 bytes in memory to save these registers? Well, it turns
out there is a very good reason we do this. When writing an interrupt handler in
RISC-V assembly language, it’s essential to save and restore the necessary reg-
isters to ensure the proper operation of the interrupted program. The specific
registers that should be saved onto the stack can vary depending on the RISC-V
privilege mode, the interrupt source, and the calling conventions of the platform.
However, here’s a general guideline for which registers we should consider sav-
ing:

a. ra register stores the return address for function calls. Saving and restoring this
register ensures that control can return correctly to the interrupted program.

b. Caller-Saved Registers t0-t6 can be freely modified by the caller (interrupted
program) without the caller being responsible for saving their original values.
If the interrupt handler modifies any of these registers, we should save and
restore them to maintain the integrity of the interrupted program.

c. Stack Pointer when the interrupt handler needs additional stack space. In
such a case, we need to save and restore the stack pointer to ensure that stack
operations do not interfere with the interrupted program’s stack.

d. Other Registers Used by the Interrupt Handler. Depending on the specific
needs of the interrupt handler, we may use additional registers for temporary
storage or calculations or for passing arguments. If these registers are modified,
we should save and restore them.

After the prologue, the handler decodes the exception cause by examining
mcause: interrupt if mcause .< 0, trap otherwise. Then, it simply increments
the time comparator so that the next timer interrupt occurs about 1000 timer
cycles in the future. The handler is not preemptible, as it keeps interrupts disabled
throughout the handler. Finally, the epilogue restores saved registers and returns
with mret.
We can also write interrupt handlers in C. To write an interrupt handler in C
for a RISC-V-based system, we typically need to use a combination of assembly
language and C code. For example, reading and writing CSRs (e.g., mcause) is
only possible with the special csrr, csrw instructions; hence, we are forced to
use assembly language for such operations. The exact details of how to implement
interrupt handlers in C can vary depending on your platform and compiler, but we
will give a general outline of how to write an interrupt handler in C for a RISC-V
system:

a. Mark the Function as an Interrupt Handler: Usually, we use compiler-
specific attributes or pragmas to mark the function as an interrupt handler.
This attribute is crucial for the compiler to generate prologue and epilogue
sequences for an interrupt handler and to put the mret instruction at the end
of the generated code. The following C code presents how to mark a function
as an interrupt handler:

2.5 RISC-V Interrupts and Exceptions 91

1 /*

* Use "interrupt" attribute to indicate that the specified

3 * function is an interrupt handler.

* The compiler generates function entry and exit

5 * sequences suitable for use in an interrupt handler

* when this attribute is present.

7 */

9 __attribute__ ((interrupt)) void interrupt_handler(void) {

// Interrupt handling code

11 }

Listing 2.25 Interrupt handler function in C.

b. Use inline assembly for accessing CSRs: To read/write the CSRs registers
in RISC-V, we should use inline assembly. The exact details of how to use
inline assembly depend on the compiler, so we should always consult the
compiler manual. Here is an example of how to write inline assembly to read
the mcause register in C:

1 unsigned int mcause_value;

3 // Inline assembly to read mcause
asm volatile(

5 "csrr %0, mcause" // Read mcause into %0
: "=r" (mcause_value) // Output : mcause_value

7);

Listing 2.26 Inline assembly to read mcause.

The volatile qualifier is necessary as GCC optimizers sometimes discard
asm statements if they determine there is no need for the output variables.
Using the volatile qualifier disables these optimizations.

Listing 2.27 presents the machine timer interrupt handler.

1 unsigned int *pMTime = (unsigned int *)0x0200bff8;
unsigned int *pMTimeCmp = (unsigned int *)0x02004000;

3

__attribute__ ((interrupt)) void mtime__handler (void) {
5

unsigneg int mcause_value;
7 // Decode interrupt cause:

// Non memory -mapped CSR registers can only be accessed
9 // using special CSR instructions. Hence , we should use

// inline assembly:
11 __asm__ volatile ("csrr %0, mcause"

: "=r" (mcause_value) /* output */
13 : /* input : none */

: /* clobbers: none */
15);

17 if (mcause_value & 0x8000007) { // mtime interrupt!
// Increment timer compare by 500 ms:

19 *pMTimeCmp = *pMTime + 16384;
}

21 }

Listing 2.27 Machine timer interrupt handler in C.

92 2 Interrupts and Interrupt Handling

4. Enable Global Interrupts: To enable machine-level interrupts, we should set
the MIE bit in the mstatus register. The following code (Listing 2.28) presents
the RISC-V assembly code to enable global machine-level interrupts :

1

2 .equ MSTATUS_MIE_BIT_MASK , 0x00000008 # bit 3

3

4 #---------------------------------------

5 # Enable global interrupts in mstatus

6 #---------------------------------------

7 .balign 4

8 .global enable_global_interrupts

9 .type enable_global_interrupts , @function

10 enable_global_interrupts:

11 # prologue:

12 addi sp , sp, -16 # Allocate the routine

13 # stack frame

14 sw ra, 12(sp) # Save the return address

15 sw fp, 8(sp) # Save the frame pointer

16 sw s1, 4(sp)

17 sw s2, 0(sp)

18 addi fp , sp, 16 # Set the framepointer

19

20 li t0, MSTATUS_MIE_BIT_MASK

21 csrs mstatus , t0 # set the MIE bit in mstatus

22

23 # epilogue:

24 lw s2, 0(sp)

25 lw s1, 4(sp)

26 lw fp, 8(sp) # restore the frame pointer

27 lw ra, 12(sp) # restore the return address

28 addi sp , sp, 16 # de-allocate the routine

29 # stack frame

30 ret

Listing 2.28 Assembly function for enabling global interrupts in the mstatus register.

5. Enable Particular Interrupt: Depending on what particular interrupt (software,
timer or external) we would like to enable, we should set an appropriate bit in
the mie register. Listing 2.29 presents the RISC-V assembly code to enable the
machine timer interrupt:

1

2 .equ MIE_MTIE_BIT_MASK , 0x00000080 # bit 7

3

4 #---------------------------------------

5 # Enable machine timer interrupt in mie

6 #---------------------------------------

7

8 .balign 4

9 .global enable_mtimer_interrupt

10 .type enable_mtimer_interrupt , @function

11 enable_mtimer_interrupt:

12 # prologue:

13 addi sp , sp, -16 # Allocate the routine

14 # stack frame

15 sw ra, 12(sp) # Save the return address

16 sw fp, 8(sp) # Save the frame pointer

17 sw s1, 4(sp)

18 sw s2, 0(sp)

2.5 RISC-V Interrupts and Exceptions 93

19 addi fp , sp, 16 # Set the framepointer

20

21 li t0, MIE_MTIE_BIT_MASK

22 csrs mie , t0 # set MTIE in mie

23

24 # epilogue :

25 lw s2, 0(sp)

26 lw s1, 4(sp)

27 lw fp, 8(sp) # restore the frame pointer

28 lw ra, 12(sp) # restore the return address

29 addi sp , sp, 16 # de-allocate the routine

30 # stack frame

31 ret

Listing 2.29 Assembly function for enabling the machine timer interrup in the mie register.

2.5.6 Case Study: A Simple Task Scheduler on RISC-V Based FE310

Having delved into the intricacies of context switching on the ARM Cortex-M7 archi-
tecture, we now embark on a compelling journey to explore the analogous process on
the RISC-V architecture. Our exploration of context switching on ARM Cortex-M7
processors has given us insights into the nuanced dance of saving and restoring task
states, managing interrupts, and orchestrating seamless transitions between tasks.
Now, with the backdrop of ARM’s methodologies, we set our sights on RISC-V—a
modular and versatile architecture that captivates developers and researchers alike
with its openness and adaptability. In our previous foray into ARM Cortex-M7, we
uncovered the distinctive features of the ARM Cortex-M7 architecture. We navi-
gated the intricacies of saving and restoring register states, mitigating interruptions,
and steering the efficient flow of tasks. Armed with this knowledge, we are ready
to apply these principles to the RISC-V. By understanding the parallels and dis-
tinctions between ARM Cortex-M7 and RISC-V, we are poised to master the art
of crafting efficient and tailored context-switching routines for diverse computing
environments.

Recall that context switching, a pivotal aspect of modern computing, is a pro-
cess that allows a system to seamlessly transition between multiple tasks, ensuring
responsiveness and the efficient use of computational resources. Exploring context
switching in the RISC-V architecture unveils a journey through the intricacies of
multitasking and efficient resource utilization on RISC-V, characterized by its sim-
plicity, modularity, and open design philosophy, which provides a flexible canvas for
implementing context-switching mechanisms.

Contrasting RISC-V’s approach to context switching with the ARM Cortex-M7,
notable differences emerge. We have learned that the ARM Cortex-M7 employs a
specific set of registers (e.g., banked stack pointer) and a dedicated interrupt-handling
mechanism to facilitate context switching. Its unique stack frame format and the
presence of two different stack pointers, one for tasks (PSP) and one for interrupt
handlers (MSP), contribute to efficient task switching. Another key distinction lies
in the register sets used during context switching. While both architectures involve

94 2 Interrupts and Interrupt Handling

saving and restoring register values, the specific registers and their organization
differ. Understanding the intricacies of register usage in each architecture is crucial
for crafting efficient context-switching routines.

This case study explores the intricacies of context switching in the RISC-V
architecture, delving into its underlying mechanisms and the challenges involved
in orchestrating efficient task transitions.

2.5.6.1 Background
A simple round-robin task scheduler (Fig. 2.25) on RISC-V-based FE310 processors
effectively manages multiple tasks or threads in a cooperative multitasking environ-
ment. In this scheduler, each task is given a fixed time slice (quantum) during which
it can execute. When its time slice expires, the scheduler switches to the next task
in the queue. The task scheduler relies on the interrupts and stacks to achieve
context switching. The machine timer (mtime) interrupts will be used for context
switching.

When switching contexts, the scheduler needs a way to keep track of which
tasks are doing what using a task table. Recall from the previous sections that the
ARM Cortex-M7 processor has two separate stack pointers, allowing stack separation
between the kernel and tasks, which in turn simplifies the context switch procedure.
RISC-V-based FE-310 has only one stack pointer, which slightly complicates the
context switching and forces us to carefully manage the stack within the interrupt
handler. Besides, both tasks and kernel will run in machine mode.

Figure 2.26 shows the scheduler operations during a context switch in more detail.
When a Machine Timer interrupt occurs, the execution switches to the machine timer
interrupt handler. Once in the machine timer interrupt handler, the scheduler pushes
the interrupted Task1 registers x1 (return address), x5-x31, epc, and mstatus onto
the task’s stack and saves its SP in the task’s TCB. Contrary to ARM-Cortex M7,
RISC-V does not automatically save critical registers (i.e., it does not implement
hardware stacking). Upon interrupt entry, RISC-V only saves the return address into
epc and the status of the interrupted procedure into mstatus. Hence, the interrupt
handler is responsible for saving the complete context of the interrupted task: registers

Task0 Task1 Task2 Task3

Context
switch

Context
switch

Context
switch

Context
switch

Task0

Mode

Time

mtime handler

Time slice Time slice Time slice Time slice

mtime mtime mtime mtime mtime

Fig. 2.25 A simple task scheduler on RISC-V based FE310

2.5 RISC-V Interrupts and Exceptions 95

Task1 Task2

Mode

Time
Time slice

mtime

PUSH Task1
registers

x1-x31, epc, mstatus

Save SP
into

Task1 TCB

Select
next
task

Load SP
from

Task2 TCB

POP Task2
registers

x1-x31, epc, mstatus

Machine Timer Handler

mtime

Interrupt handler

Tasks

Fig. 2.26 Operations during a context switch

x1, x5-x31, return address contained in epc and the processor status before the
interrupt occurred (contained in mstatus).

Then, the scheduler selects the next task (Task2) in a round-robin fashion. Before
returning from the machine timer interrupt handler, the scheduler is responsible for
loading the Task2 SP and restoring the Task2 context (x1, x5-x31, epc, and mstatus)
from the Task2 stack. Finally, upon interrupt exit, mepc is copied to pc and the
execution returns to the new task, Task2.

As we have already learned, three routines are required to implement and run the
scheduler: create new tasks, initialize tasks, and perform the context switch. Besides,
several data structures are required to implement and manage the stack for each task
and represent each task’s state. The stack region used to implement the tasks’ stacks,
and the task control block are the same as in the Sect. 2.4.7. The following subsections
provide a step-by-step description of implementing a simple round-robin scheduler
on a RISC-V-based FE310 processor.

2.5.6.2 Task Creation
The TaskCreate() function saves the address of the task’s stack and the address
of the task’s function into the task’s TCB.

The following code presents the function used to create a new task:

1 void TaskCreate(TCB_Type* pTCB ,

unsigned int* pTaskStackBase ,

3 void (* TaskFunction)()){

5 pTCB ->sp = (unsigned int*) pTaskStackBase;

pTCB ->pTaskFunction = TaskFunction;

7 }

Listing 2.30 The function TaskCreate() that creates a new task.

96 2 Interrupts and Interrupt Handling

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

0x80000d6c

Task 1 stack (SRAM)

SRAM

Task 1 TCB (SRAM)

sp = 0x80000d6c

pTaskFunction= 0x200110be

Task1 (FLASH)

void Task1(){
 while(1){
 . . .
 }
}

Fig. 2.27 Memory layout and content after calling the TaskCreate() function

The parameters of the above TaskCreate() function are:

• pTCB—a pointer to a task’s TCB,
• pStackBase—pointer task’s stack block,
• TaskFunction—address of a task’s function.

Figure 2.27 illustrates the memory layout and the contents of the task’s stack and
TCB after creating Task1 using the TaskCreate() function.

2.5.6.3 Task Initialisation
The following code presents the function used to initialize a new task:

1 void TaskInit(TCB_Type* pTCB){

Context_TypeDef* pStackFrame;

3

// Make the room for the stack frame and

5 // set pointer to the top of stack frame:

pStackFrame = (Context_TypeDef *)((void*)pTCB ->sp -

7 sizeof(Context_TypeDef));

9 // populate Stack Frame

pStackFrame ->mepc = (unsigned int) (pTCB ->pTaskFunction);

11 pStackFrame ->x1 = 0xFFFFFFFF; // (ra: task never exits)

pStackFrame ->mstatus = (0x03 << 11) | (0x01 << 7); // value 0x1880

13

// Set task’s stack pointer in the TCB to point at the top of the

15 // task’s SW stack frame

pTCB ->sp = (unsigned int*) pStackFrame;

17 }

Listing 2.31 The function TaskInit() that initializes a new task.

2.5 RISC-V Interrupts and Exceptions 97

The only parameter of the above TaskInit() function is a pointer to a task’s TCB.
The TaskInit() function performs the following steps:

1. Initialise the pointer to the stack frame. The stack frame will hold the task’s
context. We need to prepare the stack frame for each new task so that when the
task switch occurs, the frame will be ready for de-stacking and, hence, entering
a new task. To make this task easier, we will abstract the stack frame with the
following C structure:

1 /*
* The RISC -V context is saved in the following stack frame ,

3 * where the global(tp) and thread (tp) pointers
* are currently assumed to be constant so are not saved:

5 */
typedef struct{

7 unsigned int mepc; // (sp+0)
unsigned int x1; // (sp+1)

9 unsigned int t5; // (sp+2)
unsigned int x6; // (sp+3)

11 unsigned int x7; // (sp+4)
unsigned int x8; // (sp+5)

13 unsigned int x9; // (sp+6)
unsigned int x10; // (sp+7)

15 unsigned int x11; // (sp+8)
unsigned int x12; // (sp+9)

17 unsigned int x13; // (sp+10)
unsigned int x14; // (sp+11)

19 unsigned int x15; // (sp+12)
unsigned int x16; // (sp+13)

21 unsigned int x17; // (sp+14)
unsigned int x18; // (sp+15)

23 unsigned int x19; // (sp+16)
unsigned int x20; // (sp+17)

25 unsigned int x21; // (sp+18)
unsigned int x22; // (sp+19)

27 unsigned int x23; // (sp+20)
unsigned int x24; // (sp+21)

29 unsigned int x25; // (sp+22)
unsigned int x26; // (sp+23)

31 unsigned int x27; // (sp+24)
unsigned int x28; // (sp+25)

33 unsigned int x29; // (sp+26)
unsigned int x30; // (sp+27)

35 unsigned int x31; // (sp+28)
unsigned int mstatus; // (sp+29)

37 unsigned int unused1; // (sp+30)
unsigned int unused2; // (sp+31)

39 } Context_TypeDef;

Listing 2.32 A C structure used to abstract the task’s stack frame.

2. Now, as the pointer to the stack frame, pStackFrame, is set, we can populate
the frames with initial values. The stack frame is populated as follows:

• mstatus. = 0x00001880. We set the task’s previous privilege level (field MPP in
mstatus) to ‘11’ (machine mode), and the task’s previous interrupt flag MPIE
to ‘1’.

98 2 Interrupts and Interrupt Handling

mstatus = 0x00001880
x31
x30
x29
x28

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

0x80000d6c

x8
x7
x6
x5

epc = 0x200110be
0x80000cec

Task 1 stack (SRAM)

SRAM

Task 1 TCB (SRAM)

sp = 0x80000cec

pTaskFunction= 0x200110be

Task1 (FLASH)

void Task1(){
 while(1){
 . . .
 }
}

0x200110be

Fig. 2.28 Memory layout and content after calling the TaskInit() function

• mepc .= the address of the task,
• x1 (ra) .= 0xFFFFFFFF—in our case, tasks never finish, so the return address
is set to 0xFFFFFFFF.

3. Finally, it saves the address of the top of the stack frame into the task’s SP entry
in the task’s TCB.

After these steps, a new task is ready to be executed for the first time when the
task switch occurs, and the task is selected for execution. Figure 2.28 illustrates the
memory layout and the contents of the task’s stack and TCB after creating Task1
using the TaskInit() function.

2.5.6.4 Scheduler Initialisation
The following code presents the function used to initialize all tasks:

1 void InitScheduler(unsigned int* pStackRegion , TCB_Type pTCB[],
void (* TaskFunctions [])()){

3 unsigned int* pTaskStackBase;

5 // 1. create all tasks:
for(int i=0; i<NTASKS; i++){

7 pTaskStackBase = pStackRegion +
(i+1)*TASK_STACK_SIZE;

9 TaskCreate (&pTCB[i], pTaskStackBase ,
TaskFunctions[i]);

11 }

13 // 2. initialize all tasks:

2.5 RISC-V Interrupts and Exceptions 99

for(int i=0; i<NTASKS; i++){
15 TaskInit (&pTCB[i]);

}
17 }

Listing 2.33 The function InitScheduler() creates and initializes all tasks.

The function InitScheduler() performs the following steps:

1. Creates all tasks.
2. Initializes all tasks

After these steps, everything is set up for the first context switch. Figure 2.29 illus-
trates the memory layout and the task’s stack after initializing the scheduler using
the InitScheduler() function.

2.5.6.5 Machine Timer Interrupt Handler
Finally, we can implement the machine timer interrupt handler that will perform
the task switch. Contrary to ARM Cortex-M7, RISC-V does not have two separate
stack pointers for handlers and user programs. Hence, interrupt handlers on RISC-
V-based FE310 use the same stack pointer as interrupted tasks. If we implemented
the machine timer interrupt handler in C, the stack pointer would become corrupted
by the interrupt handler itself because the C compiler would generate the prologue
code according to the calling convention. On the other hand, assembly language
enables precise management of the stack pointer, allowing for the preservation of
the current task’s context and the restoration of the new task’s context. Therefore, an

mstatus=0x00001880
x31
x30
x29

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

0x80000d60

x6
x5

epc=0x20011052

0x80000ce0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

0x80001160

0x800010e0

Task 1 stack

Task 2 stack

0x20011012

0x20011052

void Task0(){
 while(1){
 ...
 }
}

void Task1(){
 while(1){
 ...
 }
}

FLASH

Task 0 stack

Task 1 stack

Task 3 stack

Task 2 stack

void Task2(){
 while(1){
 ...
 }
}

void Task3(){
 while(1){
 ...
 }
}

0x2001105e

0x200110a8

Task 3 TCB

SP=0x800014e0

Task 2 TCB

SP=0x800010e0

Task 1 TCB

SP=0x80000ce0

Task 0 TCB

SP=0x800008e0 StackRegion=
0x80000560

SRAM
TCBs

mstatus=0x00001880
x31
x30
x29

x6
x5

epc=0x20011052

Fig.2.29 Memory layout and content after initializing four tasks during the scheduler initialization

100 2 Interrupts and Interrupt Handling

interrupt handler used for context switching on a RISC-V-based processor should be
written in assembly language. Here is the machine interrupt handler used for context
switching:

1 /*---------------------------------------
2 Machine Timer Interrupt Handler
3 ---------------------------------------*/
4 .balign 4, 0
5 .global _mtim_interrupt_handler
6 _mtim_interrupt_handler:
7 # Save context:
8 __macro_SAVE_CONTEXT
9

10 # Increment time slice (tick)
11 __macro_INCREMENT_TICK
12

13 # switch context
14 __macro_SWITCH_CONTEXT
15

16 2:
17 # Restore context
18 __macro_RESTORE_CONTEXT
19

20 mret

Listing 2.34 The machine timer interrupt handler used to perform task switch.

The machine timer interrupt handler performs the following steps:

1. Saves the context of the interrupted task on the task’s stack using the
_ _macro_SAVE_CONTEXT macro, defined as:

1 .macro __macro_SAVE_CONTEXT

2 addi sp , sp , -CONTEXT_SIZE

3 sw x1, 1* WORD_SIZE(sp)

4 sw x5, 2* WORD_SIZE(sp)

5 sw x6, 3* WORD_SIZE(sp)

6 sw x7, 4* WORD_SIZE(sp)

7 sw x8, 5* WORD_SIZE(sp)

8 sw x9, 6* WORD_SIZE(sp)

9 sw x10, 7* WORD_SIZE(sp)

10 sw x11, 8* WORD_SIZE(sp)

11 sw x12, 9* WORD_SIZE(sp)

12 sw x13, 10* WORD_SIZE(sp)

13 sw x14, 11* WORD_SIZE(sp)

14 sw x15, 12* WORD_SIZE(sp)

15 sw x16, 13* WORD_SIZE(sp)

16 sw x17, 14* WORD_SIZE(sp)

17 sw x18, 15* WORD_SIZE(sp)

18 sw x19, 16* WORD_SIZE(sp)

19 sw x20, 17* WORD_SIZE(sp)

20 sw x21, 18* WORD_SIZE(sp)

21 sw x22, 19* WORD_SIZE(sp)

22 sw x23, 20* WORD_SIZE(sp)

23 sw x24, 21* WORD_SIZE(sp)

24 sw x25, 22* WORD_SIZE(sp)

25 sw x26, 23* WORD_SIZE(sp)

26 sw x27, 24* WORD_SIZE(sp)

27 sw x28, 25* WORD_SIZE(sp)

28 sw x29, 26* WORD_SIZE(sp)

2.5 RISC-V Interrupts and Exceptions 101

29 sw x30, 27* WORD_SIZE(sp)

30 sw x31, 28* WORD_SIZE(sp)

31

32 csrr t0, mepc

33 sw t0, 0* WORD_SIZE(sp)

34 csrr t0, mstatus

35 sw t0, 29* WORD_SIZE(sp)

36 .endm

Listing 2.35 _ _macro_SAVE_CONTEXT macro.

2. Increments the time slice using the _ _macro_INCREMENT_TICK macro:

1 .macro __macro_INCREMENT_TICK

2 # Increment timer compare by TIME_SLICE cycles

3 la t0, CLINT_MTIME # load the mtime address

4 lw t1, 0(t0) # load mtime (LO)

5 lw t2, 4(t0) # load mtime (HI)

6 li t3, TIME_SLICE

7 add t3 , t1 , t3 # increment lower bits

8 # by TIME_SLICE cycles

9 sltu t1 , t3 , t1 # generate carry -out

10 add t2 , t2 , t1 # add carry to upper bits

11 la t0, CLINT_MTIME_CMP

12 sw t3, 0(t0) # update mtimecmp (LO)

13 sw t2, 4(t0) # update mtimecmp (HI)

14 .endm

Listing 2.36 _ _macro_INCREMENT_TICK macro.

3. Switch context (swap stack pointers) using the _ _macro_SWITCH_CONTEXT:

1 .macro __macro_SWITCH_CONTEXT

2 la t0, current_task

3 lw t1, 0(t0) # t1 holds current_task

4 sll t4 , t1, 3 # t4 = t1 * 8

5 la t5, TCB # t5 <- &TCB[0]

6 add t5 , t5, t4 # t5 <- &TCB[current_task]

7 sw sp, 0(t5) # save sp of the current

8 # task

9

10 # select a new task in round -robin:

11 addi t1 , t1 , 1

12 li t2, NTASKS

13 bne t1 , t2, 1f

14 li t1, 0

15 1: sw t1, 0(t0)

16

17 sll t4 , t1, 3 # t4 = t1 * 8

18 la t5, TCB # t5 <- &TCB[0]

19 add t5 , t5, t4 # t5 <- &TCB[current_task]

20 lw sp, 0(t5) # load sp of the current task

21 .endm

Listing 2.37 _ _macro_SWITCH_CONTEXT macro.

102 2 Interrupts and Interrupt Handling

4. Restores the context of the new task from its stack using the_ _macro_RESTORE_
CONTEXT macro:

1 .macro __macro_RESTORE_CONTEXT
2 lw t0 , 0* WORD_SIZE(sp)
3 csrw mepc , t0
4 lw t0 , 29* WORD_SIZE(sp)
5 csrw mstatus , t0
6

7 lw x1, 1* WORD_SIZE(sp)
8 lw x5, 2* WORD_SIZE(sp)
9 lw x6, 3* WORD_SIZE(sp)
10 lw x7, 4* WORD_SIZE(sp)
11 lw x8, 5* WORD_SIZE(sp)
12 lw x9, 6* WORD_SIZE(sp)
13 lw x10, 7* WORD_SIZE(sp)
14 lw x11, 8* WORD_SIZE(sp)
15 lw x12, 9* WORD_SIZE(sp)
16 lw x13, 10* WORD_SIZE(sp)
17 lw x14, 11* WORD_SIZE(sp)
18 lw x15, 12* WORD_SIZE(sp)
19 lw x16, 13* WORD_SIZE(sp)
20 lw x17, 14* WORD_SIZE(sp)
21 lw x18, 15* WORD_SIZE(sp)
22 lw x19, 16* WORD_SIZE(sp)
23 lw x20, 17* WORD_SIZE(sp)
24 lw x21, 18* WORD_SIZE(sp)
25 lw x22, 19* WORD_SIZE(sp)
26 lw x23, 20* WORD_SIZE(sp)
27 lw x24, 21* WORD_SIZE(sp)
28 lw x25, 22* WORD_SIZE(sp)
29 lw x26, 23* WORD_SIZE(sp)
30 lw x27, 24* WORD_SIZE(sp)
31 lw x28, 25* WORD_SIZE(sp)
32 lw x29, 26* WORD_SIZE(sp)
33 lw x30, 27* WORD_SIZE(sp)
34 lw x31, 28* WORD_SIZE(sp)
35 addi sp , sp , CONTEXT_SIZE
36 .endm

Listing 2.38 _ _macro_RESTORE_CONTEXT macro.

2.5.6.6 Using the Environment Call (Ecall) Exception to Start the
Scheduler

We have already learned that instead of directly calling the first task (Task0) from
the main function, the scheduler should rely on the exception return to start the first
task. For this purpose, we can use the environment call exception. In the RISC-V
architecture, environment calls, often abbreviated as “ecalls,” are a mechanism by
which a user-level program can request services or system functions from the kernel.
The ecall instruction initiates an environment call. This instruction triggers an
exception, which is trapped at the exception handler on the address stored in the
BASE field of the mtvec register. Figure 2.30 shows the process of starting and
running the scheduler using the environment call exception.

2.5 RISC-V Interrupts and Exceptions 103

main() Task0

Priority

Time

SWI mtimemtime

ECALL Handler:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

mtime Handler:

Task1

current_task=0
sp <- TCB[0].sp
restore context

save context
TCB[current_task].sp <- sp
current_task ++
sp <- TCB[current_task].sp
restore context

(8)

mtime Handler:

Task2

save context
TCB[current_task].sp <- sp
current_task ++
sp <- TCB[current_task].sp
restore context

(9)

(10)

Fig. 2.30 Starting the scheduler with the SVC exception

The environment call handler simply sets the SP to point to the top of Task0’s
stack, initializes the first tick, enables the machine timer interrupt and restores the
context of the first task:

1 .balign 4, 0

2 .global _exception_handler

3 _exception_handler:

4 # Decode exception cause:

5 csrr t0 , mcause # read exception cause

6 bltz t0 , 2f # exit if not an exception

7

8 # Check if ECALL:

9 1: li t1, 0xB # ecall from M-mode

10 bne t1 , t0, 2f

11

12 /*

13 ECALL:

14 1. load the SP of the first task (SP <- TCB[0].sp)

15 2. increment tick to set the first timer interrupt

16 3. enable MTIME interrupt

17 4. restore context of the first task

18 5. Upon return , the first task is executed and

19 the scheduler is running

20 */

21 /* 1. Load SP of the first task: */

22 la t1, TCB // load the address of TCB[0]

23 lw sp, 0(t1) // load sp from TCB[0].sp

24

25 # 2. Increment time slice (tick)

26 __macro_INCREMENT_TICK

27

28 /* 3. Enable MTIME interrupt */

29 li t0, 0x00000080

30 csrs mie , t0

31

32 # 4. Restore the context of Task0

33 __macro_RESTORE_CONTEXT

34 2:

35 mret

Listing 2.39 The environemt call exception handler.

Finally, here is the main function which initializes and starts the scheduler:

104 2 Interrupts and Interrupt Handling

1 int main() {

3 // Set the task functions:
TaskFunctions [0] = Task0;

5 TaskFunctions [1] = Task1;
TaskFunctions [2] = Task2;

7 TaskFunctions [3] = Task3;

9 // Init scheduler:
InitScheduler(stackRegion , TCB , TaskFunctions);

11 current_task = 0;

13 // Set up vectored interrupts and enable CPU’s interrupts
_register_handler(_vector_table , INT_MODE_VECTORED);

15 _enable_global_interrupts ();

17 // Environment call - start the scheduler:
__asm__ volatile("ecall");

19

// We should never return here ...
21 while (1){}

return 0;
23 }

Listing 2.40 Initializing and starting the the scheduler.

2.6 ARM 9 Exceptions and Interrupts

The ARM9 supports the following six types of interrupts and exceptions:

• Fast interrupt Request,
• Interrupt Request,
• Data and Prefetched abort exceptions,
• Undefined instruction exception, and
• Software interrupt, and
• Reset.

The interrupt instruction SWI raises the software interrupts. The software interrupts
allow a program running in the user mode to request privileged operations such as OS
functions. The Prefetch abort exception occurs when the CPU fetches an instruction
from an illegal address. The Data abort exception occurs when a data transfer instruc-
tion attempts to load or store data at an illegal address. The Undefined instruction
exception occurs when the processor cannot recognize the currently fetched instruc-
tion. The Interrupt request occurs when the processor’s external interrupt request pin
(IRQ) is asserted (LOW), and the interrupt mask bit (I) in the current program status
register (CPSR) is cleared (interrupts enabled). The Fast interrupt request occurs
when the processor’s external fast interrupt request pin (FIQ) is asserted (LOW), and
the interrupt mask bit (F) in the current program status register (CPSR) is cleared
(fast interrupts enabled). The Reset interrupt occurs when the processor’s reset pin
is asserted.

2.6 ARM 9 Exceptions and Interrupts 105

2.6.1 Vector Table and Interrupt Priorities

ARM9 processors use the vectored interrupt handling method. Each interrupt/excep-
tion has its own entry in the vector table. Each entry in the vector table has only 32
bits, which is insufficient to contain the full code for a handler; hence, each entry
commonly contains a branch instruction or load PC instruction to the actual handler.
Table 2.6 shows the interrupt/exception, its address in the vector table, and its prior-
ity. As interrupts/exceptions can coincide, the CPU has to use a priority mechanism
to handle the most important interrupt/exception. For example, the Reset interrupt
has the highest priority and takes precedence over all other interrupts/exceptions. All
interrupts/exceptions disable further interrupts/exceptions by setting the I bit in the
CPSR register. The Reset and Fast Interrupt Request also set the F bit in the CPSR
register, thus masking the Fast interrupt request. Listing 2.41 shows a typical method
of implementing a vector table for ARM9 processors.

1 .org 0x00000000
2 Vector_Table:
3 b Reset_Handler
4 b Undefined_Handler
5 b SWI_Handler
6 b Prefetch_Handler
7 b Abort_Handler
8 nop // never used
9 b IRQ_Handler

10 b FIQ_HAndler
11

12

13 Reset_Handler:
14 <handler instructions >
15 Undefined_Handler:
16 <handler instructions >
17 SWI_Handler:
18 <handler instructions >
19 Prefetch_Handler:
20 <handler instructions >
21 Abort_Handler:
22 <handler instructions >
23 IRQ_Handler:
24 <handler instructions >
25 FIQ_Handler:
26 <handler instructions >

Listing 2.41 ARM vector table and interrupt handlers.

Listing 2.41 shows a typical method of implementing a vector table for ARM9
processors. The vector table starts at the address 0x00000000. Each entry in the
vector table is 32 bits long and contains a branch instruction (B) to the interrupt
handler. When, for example, a Data Abort exception occurs, the CPU stops the
execution of the current running program, saves the program context, and moves the
vector 0x00000010 into the program counter. This way, the b Abort_Handler
instruction is fetched, and the CPU jumps to Abort_Handler.

As we already said, the Reset interrupt is the highest priority interrupt and is
always taken whenever the Reset pin is asserted. The reset handler is responsible
for initializing the system and other interrupt sources and setting the stack pointer.

106 2 Interrupts and Interrupt Handling

Table 2.6 ARM9 vector table

Interrupt/exception Vector table
address

Priority
(1-High, 6-Low)

Reset 0x00000000 1

Undefined instruction 0x00000004 6

Software interrupt 0x00000008 6

Prefetch abort 0x0000000C 5

Data abort 0x00000010 2

Interrupt request 0x00000018 4

Fast interrupt request 0x0000001C 3

So, the Reset interrupt masks automatically all other interrupts before their sources
are initialized. Only then can the reset handler enable other interrupts. Hence, dur-
ing the first few instructions of the reset handler, we should avoid SWI, undefined
instructions, and memory accesses that can cause the Data and Prefetch aborts.

The Fast Interrupt Request (FIQ) occurs when a peripheral asserts the processor’s
FIQ pin. The peripheral device must hold the FIQ input low until the processor
acknowledges the interrupt request. As a response to FIQ, the CPU disables both
Interrupt and Fast Interrupt requests. Hence, no external device can interrupt the CPU
unless the IRQ and FIQ interrupts are re-enabled by software. The Fast Interrupt
Request reduces the execution time of the exception handler relative to a normal
interrupt by removing the requirement for register saving (minimizing the overhead
of context switching).

The Interrupt Request (IRQ) is a normal interrupt that occurs when a peripheral
device asserts the IRQ pin. The peripheral device must hold the IRQ input pin low
until the processor acknowledges the interrupt request. An IRQ has a lower priority
than the FIQ and Data Abort and is masked on entry to an FIQ or Data Abort
sequence. On entry to the IRQ handler, the further IRQ interrupts are disabled and
should remain disabled until the current interrupt source has been acknowledged and
the IRQ pin has been de-asserted.

We can notice from Table 2.6 that both Software Interrupt and Undefined Instruc-
tion have the same level of priority since they cannot occur simultaneously.

2.6.2 ARM9 Interrupt Handling

ARM9 processors are 5-stage pipelined machines with Instruction Fetch (IF), Instruc-
tion Decode (ID), Execution (EX), Memory (MEM), and Write-Back (WB) stages.
In a pipelined machine, an instruction is executed step by step and is not completed
for several clock cycles. An external interrupt can occur at any time during the exe-
cution of an instruction. Also, other instructions in the pipeline can raise exceptions
that may force the machine to abort the instructions in the pipeline before they have

2.6 ARM 9 Exceptions and Interrupts 107

been completed. One of the problems with interrupts in the pipelined CPUs is when
to halt instruction in the pipeline. In the case of external interrupts, one possible
solution would be to execute all fetched instructions before handling the interrupt
request. However, the problem with this approach would be a long interrupt latency.
The other solution would be to halt the execution of all fetched instructions and
fetch them again upon returning from the interrupt handler. This way, we would
have minimal interrupt latency. Obviously, this is not a good idea because some
instructions, such as STORE instructions, can modify the content in memory and
should not be stopped and executed again. Also, arithmetic instructions might have
already changed the content of the status register (usually in the Execution stage) and
should not be dismissed. The most common solution to the problem is to execute all
instructions that have been issued into the execution stage. In the case of an external
interrupt in ARM9, the CPU executes all instructions in the stages EX, MEM, and
WB while dismissing two instructions in the stages IF and ID.

To resume, in the case of an external interrupt, the CPU has to let all instructions
that were issued for execution complete and flush all succeeding instructions from
the pipeline. In the case of an exception caused by an instruction, the CPU should
stop executing the offending instruction, let all preceding instructions complete, and
flush all succeeding instructions from the pipeline. Only then can the CPU start
saving the context and fetching the instruction pointed by the interrupt vector (the
first instruction in the interrupt handler).

Let us now look at how ARM9 handles the IRQ interrupts. When an IRQ interrupt
occurs, the ARM 9 processor executes the three instructions issued for execution and
will flush the last two fetched instructions. The last two fetched instructions are from
the addresses PC (the instruction that is currently in the IF stage) and PC-4 (the
instruction that is currently in the ID stage). The instruction in the EX stage is from
the address PC-8. This is important to notice because the last executed instruction
before entering the interrupt handler was from the address PC-8, but the program
counter contains the address PC. The first instruction to execute upon returning
from the interrupt handler is one that was in the ID stage when the interrupt request
occurred. Hence, the instruction address that should be fetched upon returning from
the interrupt handler is PC-4.

When an IRQ interrupt occurs, the ARM9 processor executes the instructions that
are issued for execution. Then, the following hardware procedure is executed:

• the CPU saves the Current Program Status (CPSR) register into the Saved Program
Status (SPSR) register; hence, the processor automatically saves the status of the
interrupted program. The CPSR register is a special-purpose register in ARM9
processors that contains arithmetic flags and interrupt masks,

• the CPU automatically disables interrupts by setting the I bit in the CPSR register,
• the CPU saves the current program counter (PC) into the link register (LR). This
way, the LR register holds the return address. It is important to note that the CPU
saves the address of the last fetched instruction and does not automatically correct
this value to point to the instruction that was in the ID stage when the interrupt

108 2 Interrupts and Interrupt Handling

occurred. Hence, it is the programmer’s responsibility to adjust the value in PC
upon returning from the interrupt handler and

• the CPU fetches the instruction from the interrupt vector 0x00000018.

Now, the interrupt handler starts. The above procedure is hard-wired in the CPU and
involves no instruction fetch and execution. When an interrupt handler has completed,
it must move both the return value in the LR register minus 4 to the PC and the
SPSR to the CPSR. This action restores both the PC and the CPSR and returns to
the interrupted program. Listing 2.42 shows a typical return method from an IRQ
interrupt handler.

1 IRQ_Handler:
2 <handler instructions >
3 ...
4 ...
5 subs pc , lr , #4 // pc <- lr -4

Listing 2.42 A typical IRQ interrupt handler

Many instructions in ARM9 can have an “s” suffix. The “s” suffix ensures that
when the program counter is the destination register, the CPSR register is automat-
ically restored from the SPSR register. The same holds for the subs instruction in
Listing 2.42. Hence, the instruction subs pc,lr,#4firstly saves the LR-4 into the
program counter (remember that the programmer is responsible for correctly restor-
ing the return address into the program counter upon returning from the handler) and
then restores CPSR from SPSR.

It is important to stress that not all interrupt/exception handlers use the same
instruction to return. For example, the Data abort exception occurs in the MEM
stage. Hence, only the instruction in the WB stage is executed, while the instructions
from the IF, ID, and EX stages are flushed. When the Data abort exception occurs,
the instruction in the EX stage is from the address PC-8. Thus, the Data abort handler
uses subs pc,lr,#8 to return:

1 IRQ_Handler:
2 <handler instructions >
3 ...
4 ...
5 subs pc , lr , #8 // pc <- lr -8 !!!!

Listing 2.43 A typical Data abort exception handler

2.6.3 Interrupt Handlers in C

Interrupt handlers can be written in an assembly language or a high-level language
like C. Usually, we want to avoid the assembly language as much as possible and
program in our favorite high-level language. Remember that the CPU executes an
interrupt handler directly, and the protocol for executing an interrupt handler differs

2.6 ARM 9 Exceptions and Interrupts 109

from calling and executing a standard C function. Most importantly, an ISR has to end
with some “interrupt return” opcode, whereas usual C functions end with ordinary
“return” opcode. We have seen previously that the ARM interrupt handlers should
return with SUBS opcode, which is used to restore the PC from LR-4 and CPSR
from SPSR. In the case of an ordinary subroutine, the return opcode for ARM would
be MOV PC, LR (restores PC from LR). A programmer could be tempted to write
an interrupt handler like this:

1 /* How NOT to write an interrupt handler */
void my_interrupt_handler(void)

3 {
/* do something */

5 }

Listing 2.44 How not to write an interrupt handler.

This simply cannot work. The compiler needs to understand that this is to be
an interrupt handler and that the SUBS PC,LR,#4 instruction should be the last
instruction used to return. The compiler will simply use the MOV PC, LR instruc-
tion to return.

Some compilers, such as GCC, Clang, and ARMCC, to name a few, have directives
like #pragma or special function attributes, allowing you to declare a routine inter-
rupt. For example, the interrupt function attribute in GCC indicates that the specified
function is an interrupt handler. The compiler then generates function entry and exit
sequences suitable for use in an interrupt handler when this attribute is present.

The correct (GCC) way of implementing an interrupt handler in C is:

1 /* GCC style interrupt handler */
__attribute__ ((interrupt)) void my_interrupt_handler ()

3 {
/* do something */

5 }

Listing 2.45 GCC style interrupt handler.

The ARMCC compiler offers the _ _irq function declaration keyword to write C
interrupt handlers. The _ _irq keyword preserves all registers used by the interrupt
handler and exits the handler by setting the PC to (LR–4) and restoring the CPSR to
its original value from SPSR. Also, if the kernel calls a subroutine, _ _irq preserves
the link register (LR), which is corrupted by the subroutine call.

1 /* ARMCC style interrupt handler */
__irq void my_interrupt_handler ()

3 {
/* do something */

5 }

Listing 2.46 ARMCC style interrupt handler.

However, not only the directive or function qualifier designates the interrupt han-
dlers. Compilers often require that the handler declaration contains a special function

110 2 Interrupts and Interrupt Handling

argument specifying the kind of interrupt (for example, IRQ or Abort). The compiler
uses this special argument to restore the PC from LR correctly (for example, LR-4
for IRQ or LR-8 for Data abort). All these attributes and arguments defined and used
by a particular compiler prevent the handler code from being portable.

2.7 Intel Interrupts

Intel processors have two external pins for external interrupts:

• INTR pin—it is used to signal for normal (maskable) interrupts.
• NMI pin—it is used to signal nonmaskable interrupts.

Besides interrupts, Intel processors can detect exceptions from two sources:

• Processor exception—triggered from the processor as a result of some exceptional
conditions within the processor (e.g., divide by zero). These exceptions are further
classified as faults, traps, and aborts.

• Software interrupts—triggered with the processor instruction INT.

Exceptions are classified as:

• Faults are either detected before the instruction begins to execute or during the
execution of the instruction. A fault is an exception that can generally be corrected
and that, once corrected, allows the program to be restarted with no loss of con-
tinuity. The return address for the fault handler points to the faulting instruction
rather than to the instruction following the faulting instruction.

• A trap is an exception reported immediately following the execution of the instruc-
tion INT. Traps allow the execution of a program or task to be continued without
losing program continuity. The return address for the trap handler points to the
instruction to be executed after the trapping instruction.

• An abort is an exception that does not allow a restart of the program or task that
caused the exception. Aborts are used to report severe errors.

The Intel processor services interrupts and exceptions only between the end of
one instruction and the beginning of the next. This is referred to as the instruction
boundary. Certain conditions and flag settings cause the processor to inhibit certain
interrupts and exceptions at instruction boundaries. The IF (interrupt-enable flag)
bit in the FLAGS register (this is the status register in Intel x86 microprocessors
that contains the current state of the processor) controls the acceptance of external
interrupts signaled via the INTR pin. When IF .= 0, INTR interrupts are masked;
when IF. =1, INTR interrupts are enabled. The Intel processor instructions CLI (Clear
Interrupt-Enable Flag) and STI (Set Interrupt-Enable Flag) are used to clear/set the
IF flag.

2.7 Intel Interrupts 111

Table 2.7 Intel Exceptions and Interrupts. Only a few exceptions and interrupts are shown

Vector number Description Type

0 Division by zero Fault

1 Debug Fault

2 NMI Interrupt

3 Breakpoint Trap

...

... ...

14 Page Fault Fault

...

32–255 External interrupts on INTR Interrupt

If more than one interrupt or exception is pending at an instruction boundary, the
processor services one of them at a time according to their priority. In general, aborts
have the highest priority, followed by traps, NMI, and INTR. The faults have the
lowest priority.

Each architecturally defined exception and interrupt in Intel processors is assigned
a unique identification number, called a vector number. The processor uses the vec-
tor number assigned to an interrupt as an index in the interrupt vector table. The
allowable range for vector numbers is 0–255. The Intel architecture reserves vector
numbers in the range 0 through 31 for architecture-defined exceptions and inter-
rupts. Vector numbers in the range 32–255 are designated as user-defined interrupts
and are assigned to external I/O devices to enable those devices to send interrupts.
One characteristic of Intel processors, distinguishing them from ARM processors is
that the peripheral device that caused an interrupt must provide the vector number
to the CPU. Table 2.7 shows vector number assignments and exception types for
architecturally defined exceptions and interrupts.

In the older Intel processors (before 80386), the interrupt table is called IVT
(interrupt vector table). The IVT is an array of 32-bit interrupt vectors stored consec-
utively in memory and indexed by an interrupt vector. The IVT permanently resides
at the same location in memory, ranging from 0x0000 to 0x03ff, and consists of 256
four-byte interrupt vectors (i.e., pointers to the interrupt/exception handlers). When
responding to an exception or interrupt, the processor multiplies the vector number
by four to form the address of the entry in the IVT.

In modern Intel processors, the interrupt table is called IDT (interrupt descriptor
table). The IDT is an array of 8-byte descriptors stored consecutively in memory and
indexed by an interrupt vector. Each descriptor contains information describing how
to access the interrupt/exception handler. The IDT may reside anywhere in physical
memory. The processor has a special register (IDTR) to store both the physical base
address and the length in bytes of the IDT. When an interrupt occurs, the processor
multiplies the interrupt vector by eight and adds the result to the IDT base address.
With the help of the IDT length, the resulting memory address is then verified to be

112 2 Interrupts and Interrupt Handling

within the table; if it is too large, an exception is generated. If everything is okay, the
8-byte descriptor stored at the calculated memory location is loaded, and actions are
taken according to the descriptor’s contents. As said, the interrupt descriptor table
(IDT) associates each vector number with a descriptor for the instructions that service
the associated event. Because there are only 256 vector numbers, the IDT contains
up to 256 descriptors. It can contain fewer than 256 entries; entries are required only
for vector numbers that are actually used.

The interrupt handling procedure in the Intel processor is rather complicated.
Here, we omit all the details and give only the basic concepts. When responding to
an exception or interrupt, the processor first saves the current state of the interrupted
program or task (the status FLAGS register and the program counter) on the stack.
Each entry in the IDT (or IVT) holds the start address of the interrupt handler. The
processor thus reads the start address of the handler from the IDT (or IVT) into the
program counter and starts the handler’s execution. To return from an exception- or
interrupt-handler handler, the handler uses the IRET instruction. The IRET instruc-
tion is similar to the RET instruction used to return from normal procedures, except
it restores the saved status register FLAGS.

2.8 Interrupt Controllers

We have seen that the interrupt line from a peripheral device should be connected
to the CPU’s interrupt input signal. In such a way, a peripheral device can interrupt
the CPU and require its attention. The CPU will sense this interrupt input signal at
every instruction fetch and know that the peripheral device needs attention. But what
should we do if there is more than one peripheral device that would like to interrupt
the CPU? What if there are tens of external peripheral devices, which is often the
case in real computer systems? Should we add an interrupt input pin to the CPU
for every external peripheral device? A large number of interrupt input pins on the
CPU for every external device would complicate the CPU interfacing and increase
the error probability.

One possible solution to solve this problem would be to have one level-sensitive
interrupt input pin (IRQ) on the CPU shared by all external peripheral devices.
This solution is illustrated in Fig. 2.31. Whenever an interrupt is asserted, the CPU
branches to the interrupt handler associated with the IRQ pin. This interrupt handler
would poll each and every I/O peripheral device to determine which device asserted
the interrupt line. So, the CPU will handle the interrupt request on the IRQ pin as
vectored interrupts but will also, within the interrupt handler, use the polled inter-
rupts method to check the interrupt’s cause. Every modern I/O peripheral device
has an addressable (memory-mapped) status register. There is usually one bit in this
status register, referred to as an interrupt-pending bit, which is set internally by the
interrupting device when the device asserts the interrupt line. The CPU can read this
interrupt-pending bit in the status register to determine the interrupting device. The
processor branches to a specific device-service routine if the interrupt-pending bit is
set. The interrupt handling bit is cleared within this device-specific routine, and the

2.8 Interrupt Controllers 113

Fig. 2.31 Example system
with several I/O devices
sharing one interrupt input
signal

CPU

IRQ#

I/O
Device 1

INT

Vdd

R

I/O
Device 2

INT

I/O
Device N

INT

interrupt request is serviced. Listing 2.47 shows pseudocode for the IRQ interrupt
handler that uses polling to determine which device has requested the interrupt. The
downside to this technique is that it is time-consuming.

1 /*

* Polling Handler

3 */

__attribute__ ((interrupt)) void polling_IRQ_handler () {

5

/* Check the interrupt pending bit in the I/O device 1 */

7 if (IO1_status_reg & (1<<INT_PEND_BIT)) {

/* I/O Device 1 Code */

9 IO1_status_reg &= ~(1<< INT_PEND_BIT); // clear int pending bit

11 /* Do something */

13 }

15 /* Check the interrupt pending bit in the I/O device 2 */

if (IO2_status_reg & (1<<INT_PEND_BIT)) {

17 /* I/O Device 2 Code */

IO2_status_reg &= ~(1<< INT_PEND_BIT); // clear int pending bit

19

/* Do something */

21

}

23

...

114 2 Interrupts and Interrupt Handling

25

/* Check the interrupt pending bit in the I/O device N */

27 if (ION_status_reg & (1<<INT_PEND_BIT)) {

/* I/O Device N Code */

29 ION_status_reg &= ~(1<< INT_PEND_BIT); // clear int pending bit

31 /* Do something */

33 }

}

Listing 2.47 IRQ interrupt handler with polling.

A better solution to this problem would be to use a special device—an interrupt
controller. The interrupt controller is a special device which:

• combines all external interrupt requests onto one CPU IRQ line,
• prioritizes them (decides which interrupt request will be routed to the CPU when
more than one I/O device has requested the interrupt),

• routes the selected interrupt request to the CPU’s IRQ input signal and
• most importantly, it provides the CPU with the information on which device has
requested the interrupt. Commonly, it provides the CPU with the interrupt vector;
thus, the CPU does not have to poll I/O peripheral devices.

Figure 2.32 illustrates the structure of a system that uses an interrupt controller.
All potential external interrupt sources are routed through the interrupt controller.
In the case of one or more interrupt requests, the interrupt controller prioritizes the
interrupt inputs. It then transfers the interrupt request with the highest priority to the
CPU, along with the interrupt vector. This sequence is performed by hardware in the
interrupt controller and not by software in the CPU. Hence, the interrupt controller
provides a much faster response to an interrupt request.

In summary, interrupt controllers are essential in modern computer systems as they
facilitate the handling of diverse interrupt requests generated by various hardware
components. Interrupt controllers optimize CPU resources by allowing the CPU to
respond to events as they occur (in contrast to continuous polling of hardware),
ensuring that the processor only performs work when necessary. In systems where
multiple interrupts can occur simultaneously, interrupt controllers manage the nesting
of interrupts. They ensure that an interrupt can be interrupted by a higher-priority one
while maintaining the correct execution order. They also manage interrupt priorities,
ensure timely response to critical events, and optimize system resources by allowing
the CPU to handle events as they occur, all of which are fundamental for efficient
and responsive system operation.

Although the operations in an interrupt controller are performed by hardware,
interrupt controllers are programmable. It means that they typically have a common
set of addressable (memory-mapped) registers, which enable the system programmer
to set the priorities and interrupt vectors for each interrupt source before the inter-
rupt controller is used. The following sections will cover a few real-world interrupt
controllers used with ARM and Intel processors.

2.8 Interrupt Controllers 115

CPU

IRQ#

INTERRUPT
CONTROLER

IRQ 0

Vdd

R

I/O
Device 1

INT

I/O
Device 2

INT

I/O
Device N

INT

IRQ 1

IRQ N
4.

Interrupt controller
provides the interrupt vector

associated with IRQ1

SYSTEM BUS

1.
I/O devices 1 and 2 request

interrupt by asserting
IRQ0 and IRQ1 simultaneously

3.
Interrupt controller

asserts the IRQ#
processor’s pin

2.
I/O prioritezes the interrupt requests

and selects the request from I/O device

Fig. 2.32 A system with an interrupt controller

2.8.1 ARM Advanced Interrupt Controller

The Advanced Interrupt Controller (AIC) is an 8-level priority vectored interrupt con-
troller, providing handling of up to thirty-two interrupt sources. It is used with ARM9
processors. Figure 2.33 illustrates the block diagram of an ARM9-based system with
AIC. The AIC drives the FIQ# (fast interrupt request) and the IRQ# (standard inter-
rupt request) inputs of an ARM9 processor. Inputs of the AIC are external interrupts
coming from the peripheral I/O devices.

The Interrupt Source 0 (IS 0) is always connected to the FIQ processor’s input. The
interrupt sources 1 to 31 (IS 1 to IS 31) can be connected to the interrupt outputs of
peripheral devices. An 8-level priority controller drives the IRQ line of the processor.
Each interrupt source has a programmable priority level of 7 (the highest priority) to
0 (the lowest priority).

As soon as an interrupt request occurs on an interrupt source, the IRQ# line is
asserted. If several interrupt sources have asserted the interrupt request, the priority
controller determines the interrupt source with the highest priority, which will be
serviced. If several interrupt sources of equal priority are pending, the interrupt with
the lowest interrupt source number is serviced first. If an interrupt request happens
during the interrupt service in progress, it is delayed until the software indicates to
the AIC the end of the current service. Figure 2.33 illustrates the simplified internal
structure of AIC. AIC employs an interrupt vectoring scheme. The interrupt handler
addresses (interrupt vectors) corresponding to each interrupt source can be stored in
the AIC’s registers SVR1 to SVR31 (Source Vector Register 1–31). When one or
more interrupt requests occur, the content of the SVR corresponding to the interrupt
source with the highest priority is automatically transferred to the Interrupt Vector

116 2 Interrupts and Interrupt Handling

Fig. 2.33 Simplified internal
structure of AIC

IV
R

SVR 0

SVR 1

SVR 2

SVR 3

SVR 31

PRIORITY
CONTROLLER

EO
IC

R

IS 0
IS 1

IS 31

AIC
IRQ#

FIQ#

Register (IVR). To obtain the start address of the interrupt handler, the CPU must read
the IVR register. In the ARM9-based systems, the IVR register is always mapped
at the absolute address 0xFFFFF100. Remember that the interrupt vector for IRQ
interrupt is 0x00000018. Hence, the IVR is accessible from the ARM interrupt vector
at address 0x00000018 through the following instruction:

ldr pc,[pc,#-0XF20]

When the processor executes this instruction, it loads the value in IVR into its pro-
gram counter, thus branching the execution on the correct interrupt handler. Besides,
reading the IVR also de-asserts the IRQ# line on the processor. But from where does
the value -0xF20 come in the above instruction? Recall that the instructions are exe-
cuted in the EX stage. By the time the above instruction is issued into the EX stage,
the PC has already been increased by 8 and is equal to 0x00000020. This is because
the CPU has fetched two more instructions. Hence, we have to subtract 0x2F0 from
0x00000020 to obtain 0xFFFF F100.

Before returning, the interrupt handler must indicate to the AIC the end of the
current service by dummy writing to the EOICR register (End Of Interrupt Command
Register). This will re-enable the further interrupts in AIC. The return from the
interrupt handler is, as we have already learned, performed by the subs pc,lr,#4
instruction. This has the effect of returning from the interrupt to whatever was being
executed before and of restoring the CPSR from the SPSR.

An example of the procedure for obtaining the interrupt vector is in Fig. 2.34.
Let us assume a peripheral device asserts the interrupt request at the IS 1 line of
AIC (step 1). Assuming that no other IS line has been asserted and that the CPU
services no interrupt, the priority controller in AIC immediately asserts the CPU’s
IRQ# signal (step 1). Then, the priority controller selects the SVR1 register, and its

2.8 Interrupt Controllers 117

Fig. 2.34 Simplified internal
operation of AIC

IV
R

SVR 0

SVR 1

SVR 2

SVR 3

SVR 31

PRIORITY
CONTROLLER

EO
IC

R

IS 0
IS 1

IS 31

AIC
IRQ#

FIQ#
1 1

2 3

4

content is transferred into the IVR register (step 2). The CPU detects that IRQ# has
been asserted, stops the instruction execution, and saves the context of the interrupted
program. It then fetches the instruction ldr pc,[pc,#-0XF20] from the IRQ
interrupt vector (0x00000018). This instruction moves the content of the IVR register
into the program counter (step 3) and CPU branches on the IRQ handler. Before
returning from the IRQ handler, the CPU dummy writes into the EOICR (step 4).

As we have seen, when AIC is used to route external interrupt requests from
peripheral devices to the CPU, the instruction at the interrupt vector 0x00000018 is
not a branch instruction (B) to the interrupt handler, but the instruction that loads
the IVR into PC (which also acts as a branch). The same holds for the FIQ vector.
Hence, accordingly, we should change the interrupt vector table from Listing 2.41.
Also, the interrupt handlers for interrupt sources IS1 to IS31 should dummy write to
EOICR before returning. Listing 2.48 shows the updated interrupt vector table and
pseudocode for an ISx interrupt handler.

1 .org 0x00000000
2 Vector_Table:
3 b Reset_Handler
4 b Undefined_Handler
5 b SWI_Handler
6 b Prefetch_Handler
7 b Abort_Handler
8 nop
9 lr pc, [pc , #-0xF20] // load IVR into PC

10 lr pc, [pc , #-0xF20] // load IVR into PC
11

12

13 ISx_Handler:
14 <handler instructions >
15 ...
16 <write to EOICR >
17 subs pc ,lr ,#4

Listing 2.48 ARM vector table and ISx handler when AIC is present in the system.

118 2 Interrupts and Interrupt Handling

2.8.2 RISC-V Platform-Level Interrupt Controller in FE310

In Sect. 2.5.3, we learned that SiFive FE310 SoC contains two interrupt controllers:
The Core Local Interruptor (CLINT) and the Platform Level Interrupt Controller.
The Core Local Interruptor (CLINT) is a mandatory component in RISC-V-based
systems, which provides two local interrupts (software and timer) to the RISC-V
core. The PLIC is another interrupt controller in the SiFive FE310s. It is responsible
for managing global interrupts from various IO devices in the system and distributing
them to the RISC-V through the Machine External Interrupt line.

The FE310 SoC has multiple peripherals (timers, GPIO pins, UARTs, etc.) that can
generate interrupts. These peripheral devices generate (drive) 52 interrupt sources.
The PLIC aggregates these interrupt sources and generates the interrupt request over
the Machine External Interrupt line. Table 2.8 lists peripheral devices and associated
interrupt sources. For example, each GPIO pin can generate one interrupt source;
hence, the GPIO interface generates 32 interrupt sources.

The PLIC supports multiple priority levels for interrupts, allowing us to prioritize
critical events over less critical ones. Priority levels are configurable. If two or more
interrupt sources generate interrupt requests, the PLIC will select the source with the
highest priority level. Each PLIC interrupt source can be assigned a priority by writ-
ing to its 32-bit memory-mapped priority register priority. The memory addresses
of 52 priority registers are 0x0C000000 + 4 x SourceID. For example, the
address of the UART0’s priority register is 0x0C00000C. The FE310-G003 sup-
ports seven (7) levels of priority. A priority value of 0 means “never interrupt” and
disables the interrupt for the source. Priority 1 is the lowest active priority, and pri-
ority 7 is the highest. Besides, global interrupts with the lowest source ID have the
highest priority. In such a way, if two or more global interrupts with the same prior-
ity level are triggered, the PLIC will service first the one with the lowest source ID.

Table 2.8 Peripheral devices and their associated interrupt sources in FE310 PLIC

Device Interrupt source IDs

WDT 1

RTC 2

UART0 3

UART1 4

QSPI0 5

SPI1 6

SPI2 7

GPIO 8–39

PWM0 40–43

PWM1 44–47

PWM2 48–51

I2C 52

2.8 Interrupt Controllers 119

2 031

Reserved Priority

Fig. 2.35 The priority register

The priority register is depicted in Fig. 2.35. The three least significant bits in the
priority encode the priority level.

Besides priority levels, PLIC enables Per-Source Interrupt Control. Each global
interrupt source connected to the PLIC can be individually enabled or disabled by
setting the corresponding bit in two registers: enable1 and enable2. This feature
allows fine-grained control over which sources can generate interrupts. The enable1
and enable2 are memory-mapped and can be accessed as a contiguous array of two
memory words at addresses0x0C002000 (enable1) and 0x0C002004 (enable2).
The enable bit for interrupt source ID is stored in the bit (ID mod 32) of the word
(ID/32). For example, the enable bit of the interrupt source 3 (UART0) is stored in the
bit (3 mod 32)=3 of the word (3/32)=0, which is accessible as the register enable1.
Similarly, the enable bit of the interrupt source 39 (GPIO pin 31) is stored in the bit
(39 mod 32)=7 of the word (39/32)=1, which is accessible as the register enable2.
Bit 0 of enable1 represents the non-existent interrupt source ID 0 and is hardwired
to 0.

When one or more interrupt sources trigger the interrupt request to PLIC, PLIC
will select the interrupt source with the highest priority and trigger the interrupt on
the Machine External Interrupt line of the RISC-V CPU. At the same time, PLIC
will write the ID of the highest priority interrupt source into its 32-bit claim register,
memory-mapped at 0x0C200004. The RISC-V will execute the Machine Internal
Interrupt handler. This handler should then read the claim register. This read will
return the ID of the highest-priority pending interrupt or zero if there is no pending
interrupt. In such a way, the CPU will recognize which interrupt source has triggered
the interrupt request. This step informs the PLIC that we’re handling the interrupt
and prevents it from reasserting the same interrupt while we’re servicing it. After
appropriately servicing the interrupt source, the Machine Internal Interrupt handler
should write the interrupt ID it received from the claim register back to the claim
register.

2.8.2.1 Implementing PLIC Vector Table and Handlers
Here, we will try to provide a complete code example for using the Platform-Level
Interrupt Controller (PLIC) in the SiFive FE310 microcontroller. The code snippets
in this subsection will hopefully demonstrate to you how to set up the vector table
for PLIC interrupt sources, initialize the PLIC, handle a specific interrupt source,
and acknowledge (complete) the interrupt.

Implementing a vector table, interrupt handlers and basic routines for the Platform-
Level Interrupt Controller (PLIC) in the SiFive FE310 microcontroller in assembly
and C language involves defining the vector table, writing assembly code for each
interrupt handler, and writing other routines for PLIC in C. Below, we provide a
step-by-step guide to implement this:

120 2 Interrupts and Interrupt Handling

1. Define the Vector Table. In assembly, we define the interrupt vector table for
PLIC as a table (an array) of jump instructions to interrupt handlers. Each jump
instruction in the vector table corresponds to a specific interrupt source. We can
place the vector table at an arbitrary memory location, providing it is correctly
aligned:

1 # --

2 #

3 # P L I C V E C T O R T A B L E

4 #

5 # --

6 .balign 4

7 .global _plic_ext_vector_table

8 _plic_ext_vector_table:

9 j _panic_handler # PLIC src 0

10 j _aon_wdt_handler # PLIC src 1

11 j _aon_rtc_handler # PLIC src 2

12 j _uart0_handler # PLIC src 3

13 j _uart1_handler # PLIC src 4

14 j _qspi0_handler # PLIC src 5

15 j _spi1_handler # PLIC src 6

16 j _spi2_handler # PLIC src 7

17 j _gpio0_handler # PLIC src 8

18 j _gpio1_handler # PLIC src 9

19 j _gpio2_handler # PLIC src 10

20 j _gpio3_handler # PLIC src 11

21 j _gpio4_handler # PLIC src 12

22 j _gpio5_handler # PLIC src 13

23 j _gpio6_handler # PLIC src 14

24 j _gpio7_handler # PLIC src 15

25 j _gpio8_handler # PLIC src 16

26 j _gpio9_handler # PLIC src 17

27 j _gpio10_handler # PLIC src 18

28 j _gpio11_handler # PLIC src 19

29 j _gpio12_handler # PLIC src 20

30 j _gpio13_handler # PLIC src 21

31 j _gpio14_handler # PLIC src 22

32 j _gpio15_handler # PLIC src 23

33 j _gpio16_handler # PLIC src 24

34 j _gpio17_handler # PLIC src 25

35 j _gpio18_handler # PLIC src 26

36 j _gpio19_handler # PLIC src 27

37 j _gpio20_handler # PLIC src 28

38 j _gpio21_handler # PLIC src 29

39 j _gpio22_handler # PLIC src 30

40 j _gpio23_handler # PLIC src 31

41 j _gpio24_handler # PLIC src 32

42 j _gpio25_handler # PLIC src 33

43 j _gpio26_handler # PLIC src 34

44 j _gpio27_handler # PLIC src 35

45 j _gpio28_handler # PLIC src 36

46 j _gpio29_handler # PLIC src 37

47 j _gpio30_handler # PLIC src 38

48 j _gpio31_handler # PLIC src 39

49 j _pwm0_handler # PLIC src 40

50 j _pwm0_handler # PLIC src 41

51 j _pwm0_handler # PLIC src 42

52 j _pwm0_handler # PLIC src 43

53 j _pwm1_handler # PLIC src 44

54 j _pwm1_handler # PLIC src 45

55 j _pwm1_handler # PLIC src 46

56 j _pwm1_handler # PLIC src 47

2.8 Interrupt Controllers 121

57 j _pwm2_handler # PLIC src 48

58 j _pwm2_handler # PLIC src 49

59 j _pwm2_handler # PLIC src 50

60 j _pwm2_handler # PLIC src 51

61 j _i2c_handler # PLIC src 52

Listing 2.49 The PLIC interrupt vector table.

2. Define Interrupt Handler Routines. Write the assembly code for each interrupt
handler. These routines should handle the specific interrupt and include any nec-
essary operations. Here, we provide only the the basic code for GPIO13 interrupt
handler:

1 .balign 4
2 .weak _gpio13_handler
3 _gpio13_handler:
4 # Your code goes here:
5 ...
6 ret

Listing 2.50 Assembly code for the GPIO13 (PLIC source 21) interrupt handler.

3. Write the Machine External Interrupt handler. This handler is invoked when
the external interrupt is asserted:

1 /*---------------------------------------

2 Machine External Interrupt Handler

3 ---------------------------------------*/

4 .balign 4

5 .global _mext_interrupt_handler

6 .type _mext_interrupt_handler , @function

7 _mext_interrupt_handler:

8 # Prologue : save 16 ABI caller registers

9 ...

10

11 # Decode interrupt cause:

12 csrr t0 , mcause # read exception cause

13 bgez t0 , 1f # exit if not an interrupt

14

15 # Claim the interrupt - read CLAIM

16 # A non -zero read contains the ID of

17 # the highest pending interrupt.

18 la t0, PLIC_CLAIM # load the address of CLAIM reg

19 lw t1, 0(t0) # read CLAIM

20 slli t2 , t1, 2 # id*4 to obtain the offset

21

22 # load the address of the PLIC

23 # external interrupt vector table

24 la t3, _plic_ext_vector_table

25 add t3 , t3, t2 # ext_vector_table + 4*id

26 jalr t3 # call interrupt handler

27

28 1:

29 # epilogue: restore ABI caller regs

30 ...

31

32 mret

Listing 2.51 Assembly code for the machine external interrupt handler.

122 2 Interrupts and Interrupt Handling

The machine external interrupt handler:

1. decodes the interrupt cause (same as in the machine time handler),
2. reads the interrupt source ID from the claim register in PLIC,
3. calculates the address of the interrupt handler by adding 4xID to the base

address of the PLIC vector table, and
4. calls the interrupt handler.

4. Set PLIC priorities. Write the C function to set the interrupt priorities if needed:

#define PLIC_INT_PRIORITY_BASE 0x0C000000

2

/* Set interrupt priority

4 *

* Interrupt source id: 1-52

6 * Interrupt priority levels 7

* Bits 2:0

8 * 0 - never interrupt/disables interrupt

* 1 - lowest active priority

10 * 7 - highest priority */

12 void plic_set_priority(unsigned int source , unsigned int priority){

14 *((unsigned int *) PLIC_INT_PRIORITY_BASE + source) = priority;

}

Listing 2.52 C function for setting PLIC interrupt priority for a given source.

5. Enable PLIC source. Write the C function to enable the specific interrupt source:

1 #define PLIC_INT_ENABLE1 0x0C002000

3 /*

* Enable interrupt source in enable registers

5 */

void plic_enable_source(unsigned int source){

7 unsigned int bit_position = source | 32;

unsigned int enable_reg = source / 32;

9

*((unsigned int *) PLIC_INT_ENABLE1 + enable_reg) |= (1 << ←⊃

bit_position);

11 }

Listing 2.53 C function for enabling a PLIC interrupt source.

2.8.3 ARM Cortex-M Nested Vectored Interrupt Controller

The Nested Vectored Interrupt Controller (NVIC) is a crucial component of ARM
Cortex-M microcontrollers, including the Cortex-M7. It serves as the central hub for
managing and controlling interrupts and exceptions in these processors. Figure 2.36
shows the relation between the NVIC unit, the Processor Core, and the peripherals.
The NVIC supports up to 240 interrupts (IRQ1 to IRQ240), each with up to 256

2.8 Interrupt Controllers 123

Fig. 2.36 The NVIC
controller in the Cortex-M7
core

NMI

IRQ1

SysTick Timer

CPU CORE

HardFault NVIC

IRQ2

IRQ240
...

MemManage
BusFault
UsageFault
SVCall
PendSV

ADDRESS

DATA

EXCEPTION
NUMBER

MEMORY-MAPPED
REGISTERS

ARM Cortex-M7 Core

priority levels (0–255), with a higher level corresponding to a lower priority. The
interrupts/exceptions can originate from various sources, such as external peripher-
als, internal hardware, or system events. The NVIC manages the prioritization of
interrupts, allowing the system to handle multiple interrupt requests simultaneously
and determine the order in which these interrupts are serviced based on their assigned
priority levels.

One of the unique features of the NVIC is its ability to handle nested interrupts.
It allows higher-priority interrupts to preempt the processing of lower-priority inter-
rupts, maintaining the integrity of the system’s operation. Moreover, it provides con-
trol over enabling and disabling interrupts, allowing the software to manage which
interrupt sources are active or inactive. This capability is crucial for managing critical
sections of code and ensuring the system’s responsiveness.

The NVIC manages the routing of interrupts, determining which interrupt handler
(function) should be executed when a specific interrupt occurs. The processor knows
where exception handlers are located in memory thanks to exception vectors (i.e.,
addresses in memory of exception handlers) inside the vector table. The NVIC is
responsible for sending exception numbers, which are used as indices of the excep-
tion vectors in the vector table. It enables the CPU to find the interrupt vector and
immediately jump to the associated interrupt handler rather than polling interrupt
sources to determine which one requested the interrupt. By allowing the CPU to
respond to events as they occur (rather than continuously polling the hardware), the
NVIC optimizes CPU resources and reduces power consumption.

The processor core interacts with the NVIC through a set of memory-mapped
registers, which provide control over enabling and disabling interrupts, allowing the
software to manage which interrupt sources are active or inactive.

Developers interact with the NVIC through the CMSIS (Cortex Microcontroller
Software Interface Standard). CMSIS is a software interface that allows programmers
to configure interrupts and manage interrupt handling in an efficient and standardized

124 2 Interrupts and Interrupt Handling

manner. For instance, using the CMSIS software interface, developers can easily
assign different priorities to interrupts, enable or disable interrupts, and configure
interrupt vectors.

As mentioned, NVIC comprises several registers that facilitate interrupt configu-
ration, prioritization, and handling. Below are some key registers commonly found
in the NVIC of ARM Cortex-M microcontrollers:

1. Eight Interrupt Set Enable Registers (NVIC_ISER0 - NVIC_ISER7), which
enable interrupts and show which interrupts are enabled. Each bit in these registers
corresponds to a specific interrupt source, allowing individual interrupt control.
If a pending interrupt is enabled, the NVIC activates the interrupt based on its
priority. If an interrupt is not enabled, asserting its interrupt signal changes the
interrupt state to pending, but the NVIC never activates the interrupt, regardless
of its priority.

2. Eight Interrupt Clear Enable Registers (NVIC_ICER0 - NVIC_ICER7) reg-
isters disable interrupts and show which interrupts are disabled. Each bit in these
registers corresponds to a specific interrupt source, allowing individual interrupt
control.

3. Eight Interrupt Set Pending Registers (NVIC_ISPR0 - NVIC_ISPR7) regis-
ters force interrupts into the pending state and show which interrupts are pending.
They control whether an interrupt is marked as pending or not. Each bit in these
registers corresponds to a specific interrupt source, allowing individual interrupt
control.

4. Eight Interrupt Clear Pending Registers (NVIC_ICPR0 - NCVIC_ICPR7)
registers remove the pending status of an interrupt. Each bit in these registers
corresponds to a specific interrupt source, allowing individual interrupt control.

5. Eight Interrupt Active Bit Registers (NVIC_IABR0 -NVIC_IABR7) registers
indicate which interrupts are active. A bit is read as one if the status of the
corresponding interrupt is active or active and pending.

6. 60 Interrupt Priority Registers (NVIC_IPR0 -NVIC_IPR59) registers provide
an 8-bit priority field for each interrupt. These registers are byte-accessible, and
there is a total of 240 8-bit priority fields in 60 IPRs.

Table 2.9 lists the memory-mapped NVIC registers and their addresses. The avail-
ability and configuration of these registers may vary slightly across different Cortex-
M microcontroller variants, so the specific functionalities and register names may
differ in certain models.

2.8.3.1 Interrupt Priority Levels
In Cortex-M7 cores, the priority of each interrupt is defined through the correspond-
ing 8-bit Priority field in the IPR register. This 8-bit field allows up to 255 different
priority levels. However, in practice, only the four upper bits of this field are used
to decrease the complexity of NVIC and lower the power consumption. Figure 2.37
shows how the content of IPR is interpreted. This means that we have only sixteen
maximum priority levels. The lower this number is, the higher the priority is. The

2.8 Interrupt Controllers 125

Table 2.9 NVIC registers

Address Name Description

0xE000E100-0xE000E11C NVIC_ISER0 - NVIC_ISER7 Interrupt Set-Enable Registers

0xE000E180-0xE000E19C NVIC_ICER0 - NVIC_ICER7 Interrupt Clear-Enable Registers

0xE000E200-0xE000E21C NVIC_ISPR0 - NVIC_ISPR7 Interrupt Set-Pending Registers

0xE000E280-0xE000E29C NVIC_ICPR0 - NVIC_ICPR7 Interrupt Clear-Pending Registers

0xE000E300-0xE000E31C NVIC_IABR0 - NVIC_IABR7 Interrupt Active Bit Register

0xE000E400-0xE000E4EC NVIC_IPR0 - NVIC_IPR59 Interrupt Priority Register

3 0

Priority bits

47

Unused

Fig. 2.37 The 8-bit priority field in an interrupt priority register

four priority bits can be further logically subdivided into two parts: a series of bits
defining the preemption priority and a series of bits defining the sub-priority. The
preemption priority level rules the preemption priorities between exceptions. If an
exception with a priority higher than another one fires, it will preempt the execu-
tion of the lower-priority exception. The sub-priority determines which exception
handler will be executed first in case of multiple pending exceptions with the same
preempt priority, and it will not act on preemption. The way the 4-bit priority field
is logically subdivided is called a priority grouping and is defined in the ARM
Cortex-M7 System Control Block. Once defined, a priority grouping is common to
all interrupts used in the system.

Figure 2.38 shows five possible priority groupings in ARM Cortex-M7 processors.
In each priority grouping scheme, the most significant bits within the overall priority
level represent the preemption priority, which determines the priority between dif-
ferent exceptions and their ability to preempt each other. The least significant bits
within the priority level represent the sub-priority. They manage the order of han-
dling interrupts with the same preemption priority, allowing fine-grained control over
which interrupt is serviced first among those with the same preempt bits. The choice
of grouping determines the balance between high-priority preemption and the finer-
grained management of interrupts with the same high-priority level. For instance, a
system configured with three preemption priority bits and one sub-priority bit (Pri-
ority Grouping 3) allows for eight levels of preemption and two sub-priority levels
within each preemption level. The priority grouping concept provides a means to
tailor the interrupt handling scheme to the specific requirements of an application,
allowing for more precise control over the order in which interrupts are processed
and handled within the Cortex-M7 architecture.

126 2 Interrupts and Interrupt Handling

3 0

Subpriority

47

Unused

3 0

Subpriority

47

Unused

3 0

Subpriority

47

Unused

3

Sub-
priority

47

Unused

0

347

Unused

0

Preempt Priority

Preempt Priority

Preempt
Priority

Preempt
priority

Priority Grouping 0:

Priority Grouping 1:

Priority Grouping 2:

Priority Grouping 3:

Priority Grouping 4:

6

56

5

Fig. 2.38 Priority grouping in ARM Cortex-M7

2.8.4 Case Study: External Interrupts in STM32H7xx
Microcontrollers

Figure 2.39 shows the block diagram of the interrupt circuitry block connected to the
processor core in an STM32H7xx microcontroller. The interrupt circuitry consists
of

1. The NVIC unit tightly coupled to the processor core within the ARM-Cortex
M7. The internal peripherals within STM32H7xx (e.g., UARTs, timers, etc.) are
connected to IRQ lines of the NVIC.

NMI

IRQ1-IRQ6

SysTick Timer

CPU CORE

HardFault NVIC
IRQ25-IRQ40

MemManage
BusFault
UsageFault
SVCall
PendSV

ADDRESS

DATA

EXCEPTION
NUMBER

MEMORY-MAPPED
REGISTERS

ARM Cortex-M7 Core

Peripherals

Clock Security
System

IRQ7-IRQ11

STM32H7xx Microcontroller

IRQ12-IRQ23

IRQ42-IRQ150

IRQ24 IRQ41

EXTI0
EXTI1
EXTI2
EXTI3
EXTI4
EXTI9-5
EXTI15-10

EXTI

GPIOA

GPIOK

GPIOA_PIN0

GPIOA_PIN15

GPIOK_PIN0

GPIOK_PIN15

...

...

...

...

...

SY
SC

FG

Fig. 2.39 The NVIC and EXTI controllers in the STM32H7xx microcontrollers

2.8 Interrupt Controllers 127

2. An additional dedicated interrupt controller, named Extended Interrupt and Event
Controller (EXTI), responsible for the interconnection between the external I/O
interrupt signals and the NVIC controller, as we will see next.

The Clock Security System (CSS) in STM32H7xx microcontrollers is a feature
designed to enhance the reliability and robustness of clock sources used within
the microcontroller. It provides a safeguard against potential failures in the clock
system to ensure the proper functioning of the microcontroller in various operat-
ing conditions. The CSS is connected to the NMI input of the NVIC controller.
The STM32H7xx microcontroller contains 11 16-bit GPIOs named GPIOA through
GPIOK. In total, 176 GPIO pins can be used to generate external interrupt requests.
In STM32X7xx microcontrollers, the EXTI is used to generate interrupts from GPIO
pins. The EXTI is a peripheral that enables interrupt requests based on specific GPIO
pin events, such as a rising or falling edge, allowing external events to trigger interrupt
requests.

2.8.4.1 Extended Interrupt and Event Controller (EXTI)
Figure 2.40 shows the block diagram of the EXTI controller. The main features of the
EXTI controller are an independent trigger and mask on each interrupt/event line and
a dedicated pending (status) bit for each interrupt line. The EXTI controller manages
25 input interrupt lines in total. The EXTI includes memory-mapped registers that
allow the programmer to set interrupt trigger conditions (rising edge, falling edge,
or both) and enable interrupts on specific EXTI lines. Some of the EXTI registers,
which we are interested in in this subsection, are:

1. Interrupt mask register (EXTI_IMR) manages the interrupt mask status for
each EXTI line. Setting a bit in this register enables the interrupt from that line.

2. Rising trigger selection register (EXTI_RTSR) enables/disables the rising trig-
ger for each EXTI input line. When enabled, the EXTI generates an interrupt
request when a rising edge is detected on an input line.

3. Falling trigger selection register (EXTI_FTSR) enables/disables falling trigger
for each EXTI input line. When enabled, the EXTI generates an interrupt request
when a falling edge is detected on an input line.

4. Pending register (EXTI_PR) indicates the pending status of the interrupt for
each EXTI line. Reading a bit in this register shows if an interrupt request is

Edge
detection

circuit

EXTI_RTSREXTI_FTSR EXTI_IMR

EXTI_PRInput Line
To NVIC

Fig. 2.40 EXTI block diagram

128 2 Interrupts and Interrupt Handling

pending on that line. We should write ‘1’ to the bit in the interrupt handler to clear
the pending state of the corresponding interrupt.

The EXTI controller has internal interrupt control logic that monitors the GPIO pins’
status and triggers interrupt requests when the configured events occur. To generate
the interrupt, the interrupt line should be configured and enabled. This is done by
programming the two trigger registers (EXTI_RTSR and EXTI_FTSR) with the
desired edge detection and by enabling the interrupt request by writing a ‘1’ to the
corresponding bit in the interrupt mask register (EXTI_IMR). When the selected
edge occurs on the external interrupt line, and the interrupt on that line is enabled
in the interrupt mask register (EXTI_IMR), the pending bit corresponding to the
interrupt line is set in the pending register (EXTI_PR). Also, EXTI generates an
interrupt request to the NVIC. Once the interrupt handler is executed, this request
must be reset by writing a ‘1’ in the pending register (EXTI_PR) from the interrupt
handler. EXTI interrupts can be individually prioritized using the NVIC, allowing
different external events to have different levels of priority. To configure a line as an
interrupt source, we use the following procedure:

1. Set the corresponding mask bit (EXTI_IMR)
2. Configure the trigger selection bits of the interrupt lines (in the EXTI_RTSR and

EXTI_FTSR registers)
3. Configure the enable and mask bits that control the NVIC IRQ channel mapped

to the external interrupt controller (EXTI) so that an interrupt coming from one
of the 25 lines can be correctly acknowledged.

2.8.4.2 System Configuration Controller (SYSCFG)
As we already said, there are 176 GPIO pins in STM32H7xx microcontrollers, which
can generate external interrupt requests. All these pins are routed to 16 input lines
in the EXTI controller using the System Configuration controller. In STM32 micro-
controllers, including the STM32F7 series, the System Configuration (SYSCFG)
controller is crucial in routing GPIO pins to the External Interrupt (EXTI) lines. This
routing process involves four memory-mapped specific registers within the SYSCFG
(SYSCFG_EXTICR1 to SYSCFG_EXTICR4) and 16 multiplexors in the SYSCFG.
Figure 2.41 shows the EXTI configuration registers available in the SYSCFG mod-
ule. Four SYSCFG registers, SYSCFG_EXTICR1 to SYSCFG_EXTICR4, contain
16 groups of four select bits for 16 multiplexers, allowing the configuration of which
of 16 GPIO pins is connected to a specific EXTI line. The EXTI line multiplexing
functionality provided by SYSCFG enables the routing of GPIO pins to EXTI lines,
as presented in Fig. 2.42.

The 16 EXTI controller lines, EXTI0 to EXTI15, are connected to the NVIC con-
troller using only 7 IRQ inputs. The EXTI0, EXTI1, EXTI2, EXTI3 and EXTI4 lines
are connected to their dedicated NVIC IRQ inputs IRQ7 to IRQ11 (see Fig. 2.39).
The EXTI lines, EXTI5 to EXTI9, share the NVIC IRQ24 input, and the EXTI
lines EXTI10 to EXTI5 share the NVIC IRQ41 input (see Fig. 2.39). Figure 2.43

2.8 Interrupt Controllers 129

31 016 15

EXTI3[3:0] EXTI2[3:0] EXTI1[3:0] EXTI0[3:0]SYSCFG_EXTICR1
0x58000408

31 016 15

EXTI7[3:0] EXTI6[3:0] EXTI5[3:0] EXTI5[3:0]SYSCFG_EXTICR2
0x5800040C

31 016 15

EXTI11[3:0] EXTI10[3:0] EXTI9[3:0] EXTI8[3:0]SYSCFG_EXTICR4
0x58000410

31 016 15

EXTI15[3:0] EXTI14[3:0] EXTI13[3:0] EXTI12[3:0]SYSCFG_EXTICR4
0x58000414

Fig. 2.41 The SYSCFG external interrupt configuration registers and their addresses

PA0
PB0
PC0
PD0
PE0
PF0
PG0
PH0
PI0
PJ0
PK0

PA1
PB1
PC1
PD1
PE1
PF1
PG1
PH1
PI1
PJ1
PK1

PA2
PB2
PC2
PD2
PE2
PF2
PG2
PH2
PI2
PJ2
PK2

PA3
PB3
PC3
PD3
PE3
PF3
PG3
PH3
PI3
PJ3
PK3

PA4
PB4
PC4
PD4
PE4
PF4
PG4
PH4
PI4
PJ4
PK4

SYSCFG_EXTICR2
EXTI4[3:0]

SYSCFG_EXTICR1
EXTI3[3:0]

SYSCFG_EXTICR1
EXTI2[3:0]

SYSCFG_EXTICR1
EXTI1[3:0]

SYSCFG_EXTICR1
EXTI0[3:0]

SYSCFG_EXTICR4
EXTI15[3:0]

PA15
PB15
PC15
PD15
PE15
PF15
PG15
PH15
PI15
PJ15
PK15

EXTI15

EXTI4
EXT3
EXTI2
EXTI1
EXTI0

Fig.2.42 The mapping of GPIO pins to EXTI lines in the System Configuration (SYSCFG) module
in an STM32H7 MCU

illustrates how EXTI lines, EXTI0 to EXTI15, are mapped to exception handlers in
ARM Cortex-M7 cores.

2.8.4.3 Triggering Interrupts on the GPIO Pins
Suppose we want to trigger interrupts when the rising edge is detected on GPIOC
Pin 13. The process of setting up the STM32H7xx system involves the following
steps:

1. GPIO Pin Configuration: Configure GPIOC Pin13 as input.
2. SYSCFG Configuration: After configuring the GPIOC Pin13, we need to map

the pin 13 to the EXTI13 line. This involves configuring the associated multiplexor
in the SYSCFG controller. To configure the multiplexor which maps GPIOC
Pin13 to EXTI13, we need to write ‘0010’ to the 4-bit field EXTI13[3:0] in the
SYSCFG_EXTICR4 register.

3. EXTI Configuration: Set the triggering conditions for the EXTI line 13 associ-
ated with GPIOC Pin13. As we want the interrupt to be triggered by a rising edge,
we should set the bit associated with EXTI13 in the Rising trigger selection reg-

130 2 Interrupts and Interrupt Handling

PA0
PB0
PC0
PD0
PE0
PF0
PG0
PH0
PI0
PJ0
PK0

PA1
PB1
PC1
PD1
PE1
PF1
PG1
PH1
PI1
PJ1
PK1

PA2
PB2
PC2
PD2
PE2
PF2
PG2
PH2
PI2
PJ2
PK2

PA3
PB3
PC3
PD3
PE3
PF3
PG3
PH3
PI3
PJ3
PK3

PA4
PB4
PC4
PD4
PE4
PF4
PG4
PH4
PI4
PJ4
PK4

PA5
PB5
PC5
PD5
PE5
PF5
PG5
PH5
PI5
PJ5
PK5

PA9
PB9
PC9
PD9
PE9
PF9
PG9
PH9
PI9
PJ9
PK9

PA10
PB10
PC10
PD10
PE10
PF10
PG10
PH10
PI10
PJ10
PK10

PA15
PB15
PC15
PD15
PE15
PF15
PG15
PH15
PI15
PJ15
PK15

EXTI0_IRQ
EXTI1_IRQ
EXTI2_IRQ
EXTI3_IRQ
EXTI4_IRQ

EXTI9_5_IRQ
EXTI15_10_IRQ

.

SYSCFG_EXTICR2
EXTI4[3:0]

SYSCFG_EXTICR1
EXTI3[3:0]

SYSCFG_EXTICR1
EXTI2[3:0]

SYSCFG_EXTICR1
EXTI1[3:0]

SYSCFG_EXTICR1
EXTI0[3:0]

SYSCFG_EXTICR2
EXTI5[3:0]

SYSCFG_EXTICR3
EXTI9[3:0]

SYSCFG_EXTICR4
EXTI10[3:0]

SYSCFG_EXTICR4
EXTI15[3:0]

Fig. 2.43 The mapping of the EXTI lines to exception numbers (handlers)

ister (EXTI_RTSR). We should also enable the interrupt associated with EXTI13
by setting the appropriate bit in the interrupt mask register (EXTI_IMR).

4. NVIC Configuration: Configure the NVIC controller. This involves enabling the
IRQ41 in the Interrupt Set Enable Register NVIC_ISER1 and setting the priority
level for IRQ41 in the priority register NVIC_IPR11.

5. Exception Handler Implementation: Implement the exception handler
EXTI15_10_IRQHandler() for the NVIC IRQ line associated with
EXTI13. When the configured event occurs on the GPIOC Pin13, the EXTI gen-
erates an interrupt request on NVIC IRQ41, and the corresponding handler is
called. Within the ISR, perform the necessary actions in response to the external
event. The mandatory part of the handler is to clear the peripheral pending bit
(in the EXTI_PR register). The peripheral pending bit will be held high until it is
cleared by the application code. If the peripheral pending bit is not cleared, the
interrupt will be fired again, and the handler will run again.

Figure 2.44 illustrates how the interrupt request on the GPIOC Pin13 is routed through
SYSFIG, EXTI and NVIC to the CPU core after performing the above-listed con-
figuration steps.

To enable an external interrupt on GPIOC Pin13 in the STM32H7xx microcon-
troller, we typically use the STM32Cube HAL (Hardware Abstraction Layer) library
provided by STMicroelectronics, which simplifies configuring and using the micro-

2.8 Interrupt Controllers 131

Edge
detection

circuit

EXTI_RTSREXTI_FTSR EXTI_IMR

EXTI_PREXTI13
EXTI15_10

PA13
PB13
PC13
PD13
PE13
PF13
PG13
PH13
PI13
PJ13
PK13

SYSCFG_EXTICR3
EXTI13[3:0]

PC13 NVIC_ISPR1

NVIC_ISER1

Exception
number
encoder

IRQ

Exception
Number

CPU CORE

SYSCFG EXTI NVIC

=0010

EXTI_FTSR[13] = 0 EXTI_FTSR[13] = 1 EXTI_IMR[13] = 1

EXTI_PR[13] = 1 NVIC_ISPR1[9] = 1

= 41

NVIC_ISER1[9] = 1

GPIOC
PIN 13

Fig. 2.44 Routing the interrupt request on the GPIOC Pin13 through SYSFIG, EXTI and NVIC to
the CPU core

controller’s peripherals. Below are the general steps to enable an external interrupt
on GPIOC Pin13:

1. Configure GPIOC Pin13, SYSCFG and EXTI using HAL_GPIO_Init() func-
tion:

1 GPIO_InitTypeDef GPIO_InitStruct = {0};

3 __HAL_RCC_GPIOC_CLK_ENABLE();

5 GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;

7 GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC , &GPIO_InitStruct);

Listing 2.54 GPIO, SYSCFG and EXTI configuration.

The HAL_GPIO_Init() function sets the GPIO Pin13 as input, configures the
SYSCFG controller to route GPIOC Pin13 to the EXTI13 line, and configures the
EXTI controller to fire an interrupt when the rising edge occurs on the EXTI13
line.

2. Configure NVIC controller:

HAL_NVIC_SetPriority(EXTI15_10_IRQn , 0, 0);
2 HAL_NVIC_EnableIRQ(EXTI15_10_IRQn);

Listing 2.55 HAL functions used to configure NVIC.

132 2 Interrupts and Interrupt Handling

3. Implement the EXTI15_10_IRQHandler() handler:

void EXTI15_10_IRQHandler (void)

2 {

// Check if GPIO_PIN_13 triggered the interrupt:

4 if (__HAL_GPIO_EXTI_GET_IT(GPIO_PIN_13) != 0x00U)

{

6 // Your code to handle the GPIO_PIN_13 interrupt goes here

8 // Clear the EXTI13 pending bit in EXTI pending register

__HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_13);

10 }

}

Listing 2.56 EXTI15_10_IRQ Handler.

2.8.5 Intel 8259A Programmable Interrupt Controler

Intel processors also have only a single interrupt input. As a personal computer has
several peripheral devices that can raise interrupts, the Intel Programmable Interrupt
Controller (PIC) 8259A is used to manage them. The 8259A PIC is a special interrupt
controller designed particularly for Intel processors. It is connected between the
interrupt-requesting peripheral device and the Intel processor. This means that the
interrupt requests from peripheral devices are first transferred to the PIC, which in
turn asserts the processor’s interrupt input. Figure 2.45 illustrates the system with the
8259A PIC.

Fig. 2.45 A system with the
8259A PIC

INTEL
CPU

INTA#

8259A
PIC

IR 0

SYSTEM BUS

INTR

Vdd

R

IR 1

IR 2

IR 3

IR 4

IR 5

IR 7

IR 6

D[7:0]

2.8 Interrupt Controllers 133

Fig. 2.46 Simplified internal
structure of the 8259A PIC

CONTROL LOGIC

IS
R

IR
R

PR
IO

RI
TY

CO

N
TR

O
LL

ER

IMR

IR 0
IR 1
IR 2
IR 3
IR 4
IR 5
IR 6
IR 7

INTINTA#

8
X

3
PR

IO
RI

TY

EN
CO

D
ER

IO BUFFERS

D[7:0]

OFFSET

The 8259A was introduced in the early 1980s and was used in personal computers
until the 1990s. It is still used in some Intel-based embedded systems. While not a
separate chip anymore, the 8259A interface is still provided by the chipset on modern
x86 motherboards. Although someone could say it is obsolete, its functioning will
help us to understand the evolution of interrupt controllers in Intel-based computer
systems.

The Intel 8259A Programmable Interrupt Controller handles up to eight vectored
priority interrupts for the CPU. It is cascadable for up to 64 vectored priority interrupts
without additional circuitry. The interrupt inputs have fixed priority based on their
number, and the interrupts on their inputs may be either edge-triggered or level-
triggered.

The 8592A PIC has the following set of registers: Interrupt Request Register
(IRR), In-Service Register (ISR), and Interrupt Mask Register (IMR). The IRR regis-
ter specifies which interrupts are pending. The ISR register specifies which interrupts
have been acknowledged, and the IMR specifies which interrupts are to be ignored
and not acknowledged. Figure 2.46 illustrates the simplified internal structure of the
8259A PIC.

The peripheral device that wishes to request an interrupt asserts one of the pins
IR0 to IR7. If the interrupt is not masked in the IMR register, the 8259A PIC will
set the corresponding bit in the interrupt request register (IRR). The IRR register
remembers all the pending interrupt requests. As more peripheral devices can issue
the interrupt request simultaneously, several bits may be set in the IRR register at
the same time. At the same time, the 8259A sends an INT to the CPU. When the
8259A PIC asserts the interrupt request on the processor’s INTR input, the processor
recognizes this request on the next instruction fetch. It then stops the instruction fetch
and automatically saves the program context onto the stack. The CPU then starts the
so-called interrupt-acknowledge cycle.

Interrupt-acknowledge cycles are special bus cycles that enable the PIC to output
an interrupt vector onto the data bus. This vector is fetched by the CPU and transferred
into the program counter during the interrupt-acknowledge cycle. The value read
during the interrupt-acknowledge cycle is then multiplied by 4 and used to load

134 2 Interrupts and Interrupt Handling

2 0
IR num

 3 7

Fig. 2.47 The 8-bit vector number returned by the 8259A PIC. The lower three bits are the binary-
coded number of the bit that was set in the ISR. The higher five bits are the offset that can be
programmed during the 8259A PIC initialization

an interrupt vector from this address in memory. The Intel processors perform two
back-to-back interrupt-acknowledge cycles in response to an active INTR input:

1. Firstly, the CPU responds by asserting the first INTA pulse. Upon receiving an
INTA from the CPU, the priority controller in the 8259 passes the highest priority
bit from IRR to the In-Service Register (ISR), and the corresponding IRR bit is
reset. The set bit in the ISR indicates which interrupt request is being serviced.

2. Secondly, the processor asserts the second INTA pulse to instruct the 8259A
to release an 8-bit interrupt number onto the Data Bus (D0-D7). This ends the
interrupt-acknowledge sequence.

The CPU now reads the 8-bit interrupt number (n) and multiplies it by 4. This
value represents the memory location address that holds the interrupt handler’s start
address. Hence, the CPU executes in hardware the following operation:

PC <- Mem[n x 4]

The structure of the 8-bit vector number returned from the 8259A PIC is shown in
Fig. 2.47. The lower three bits are the binary-coded number of the bit that was set in
the ISR. The higher five bits are the offset that can be programmed during the 8259A
PIC initialization. Recall that Intel stores its IVT table at the address 0x0000 and that
the interrupt numbers 32 through 255 are reserved for external interrupts signaled on
the INTR pin. If we want to map the IRQ interrupts from 8259A PIC at the address
0x0080 (=32x4) in the IVT, the offset returned in the 8-bit vector number should be
00100. In the case of the IR0 interrupt, the returned vector number is 0x20, which
maps to 0x0080; in the case of the IR1 interrupt, the returned vector number is 0x21,
which maps to 0x0084, etc.

To reset the bit in the ISR register, the interrupt handler should issue an End-
Of-Interrupt (EOI) command to the 8259A PIC. The set bit is, therefore, deleted
manually. The 8259A is now ready to process the next pending hardware interrupt
request in IRR. The priority controller passes the highest priority bit from IRR to ISR,
and the above sequence is repeated. Figure 2.48 illustrates the operation of the 8259A
PIC when IR2 and IR4 are issued simultaneously, and IR2 has a higher priority than
IR4.

2.8 Interrupt Controllers 135

CONTROL LOGIC

IS
R

IR
R

PR
IO

RI
TY

CO

N
TR

O
LL

ER

IMR

IR 0
IR 1
IR 2
IR 3
IR 4
IR 5
IR 6
IR 7

INTINTA#

IO BUFFERS

D[7:0]

00
01

01
00

00
00

01
00

00100010

1
2

23

4

5

6

00
01

00
00

4
8

X
3

PR
IO

RI
TY

EN

CO
D

ER
 00100

010OFFSET

Fig. 2.48 The operation of the 8259A PIC when IR2 and IR4 are issued simultaneously, and IR2
has a higher priority than IR4. (1) Two peripheral devices assert the pins IR2 and IR4. (2) Assuming
the interrupts are not masked in the IMR register, the 8259A PIC will set the corresponding bits in
the interrupt request register (IRR). At the same time, the 8259A sends an INT to the CPU. (3) The
CPU responds by asserting the first INTA pulse. (4) Upon receiving an INTA from the CPU, the
priority controller in the 8259 passes the highest priority bit from IRR to ISR, and the corresponding
IRR bit is reset. (5) The processor asserts the second INTA pulse. (6) The 8259A controller releases
an 8-bit interrupt number onto the data bus (D0-D7)

Summary: AIC versus 8259A

Besides being designed for different processors, the main difference between
the ARM AIC and Intel 8259A PIC is how the interrupt vector is obtained.
In ARM AIC, the CPU reads the interrupt vector from an AIC’s memory-
mapped register using a LOAD instruction, while in 8259A PIC, the CPU
reads the vector from the data bus without executing any instruction.

The former is considered faster (recall that instructions in ARM9 are executed
in 5 clock cycles) but requires additional signaling between the interrupt
controller and CPU (INTA) and a special interrupt-acknowledge cycle.

2.8.6 8259A PIC Cascading

With one 8259A PIC, eight interrupt sources could be managed. But soon, eight
interrupt lines weren’t enough. The 8259A PIC has the capability for two-level
cascading. The first level is made up of one master PIC, and the second level
is formed from up to eight slave PICs. Such a configuration can manage up to 64
peripheral interrupt requests. But in practice, only two PCs are used: one is the master,
and the other is the slave. The PCs included two 8259A PICs chained together, and

136 2 Interrupts and Interrupt Handling

INTEL
CPU

INTA#

8259A
MASTER

IR 0

SYSTEM BUS

INTR

Vdd

R

IR 1

IR 2

IR 3

IR 4

IR 5

IR 7

IR 6

D[7:0]

8259A
SLAVE

IR 0

IR 1

IR 2

IR 3

IR 4

IR 5

IR 7

IR 6

D[7:0]

INTA#

INTA#

INT

INT

IRQ 0

IRQ 1

IRQ 2

IRQ 3

IRQ 4

IRQ 5

IRQ 7

IRQ 6

IRQ 8

IRQ 9

IRQ 10

IRQ 11

IRQ 12

IRQ 13

IRQ 15

IRQ 14

Fig. 2.49 A dual-PIC system

this setup became the de facto standard for the x86 platform. This scheme is referred
to as the dual-PIC system. Figure 2.49 illustrates the dual-PIC system.

In the dual-PIC system, the slave’s INT output is connected to the master’s
IR2 input. PC documentation established the following naming convention: IRQs
0 through IRQ7 are processed with the first Intel 8259 PIC (master), and IRQs from
8 to 15 are processed with the second Intel 8259 PIC (slave). Therefore, the slave’s
INT output is connected to the master’s IRQ2 input. Only the master’s INT output
is connected to the CPU’s INTR input and can signal about the incoming interrupts.
INTA and D0 through D7 signals of both PICs are connected to the CPU and data
bus as in the single-PIC configuration. Note that IRQ 2 is not available for device
interrupts, and there are only fifteen interrupt inputs available for peripheral device
interrupts.

The way in which an interrupt request is processed depends on whether the request
is asserted on slave’s or master’s IRQ inputs. If the request is asserted on IRQs from
0 to 7 (master), it is processed in the same way as in the single-PIC configuration.
Otherwise, the following steps are required:

1. when an interrupt request is placed on lines IRQ 8 through 15, the corresponding
bit is set in the slave’s IRR register. The slave asserts its INT output and signals
the IRQ interrupt to the master PIC,

2. when master PIC receives the interrupt request on IRQ2, it sets the bit 2 in its
IRR and asserts its INT output to signal the INTR request to the processor,

3. the CPE starts the interrupt-acknowledge sequence and sends the first INTA pulse.

2.8 Interrupt Controllers 137

4. upon receipt of the first INTA pulse, the highest priority bits in the master’s and
slave’s IRRs are cleared, and the corresponding bits in both ISRs are set,

5. the CPE outputs the second INTA pulse and causes the slave PIC to output its
8-bit vector number.

The interrupt handler must send two EOI commands to clear both ISR bits.
But wait! How can we set two different vector numbers for interrupts signaled at

the master’s IR3 (IRQ3) input and at the slave’s IR3 input (IRQ11)? Recall that the
8-bit vector number returned from the 8259A PIC contains a programmable offset
in its higher five bits. Hence, the master and slave PICs should be initialized with
different offsets. For example, we can set the master’s offset to 00100 and the slave’s
offset to 00110. In this case, the interrupts from the master PIC will be mapped to
the IVT addresses 0x0080-x009F, and the slave’s interrupts will be mapped to the
IVT addresses 0x00C0-0x00DF.

The original PCs used the ISA bus for their I/O devices. The interrupts on the
ISA bus are edge-triggered. An I/O device asserts an interrupt by raising the signal
from low to high. Edge-triggered interrupts inhibit the sharing of ISA interrupts
by multiple devices, so each ISA device requires a dedicated interrupt input on the
8259As. A typical interrupt configuration at that time is presented in Table 2.10.

The Intel 8259 PIC has several limitations to interrupt servicing in modern com-
puter systems:

Table 2.10 ISA interrupt assignments

IRQ Assignment

0 System timer

1 Keyboard controller

2 Interrupt from slave controller

3 Serial ports COM 2/COM 4

4 Serial ports COM 1/COM 3

5 Sound card

6 Floppy disk controller

7 Parallel port 1 (Printer)

8 Real-time clock

9 ACPI

12 PS/2 mouse controller

13 Math (floating point) co-processor

14 ATA channel 1 (Primary IDE)

15 ATA channel 1 (Secondary IDE)

138 2 Interrupts and Interrupt Handling

1. a limited number of interrupt lines necessitates the sharing of interrupts. Shared
interrupts require the OS to poll multiple IO devices to determine who actually
generated the interrupt,

2. interrupt priority is fixed based on IR number,
3. PIC does not support multiple CPUs.

At the time when the main bus for external devices was the ISA bus, this 8929A-
based architecture was sufficient. It was only necessary that different peripheral
devices did not connect to the same IRQ inputs since ISA uses edge-triggered inter-
rupts, which are not shareable. However, the PCI bus later replaced the ISA bus, and
interruptions in the PCI bus can be shared. Also, the PCI bus has been replaced by
the serial message-based PCI Express (PCIe) bus, and more CPU cores are added to
the computer system. The following sections will cover the evolution of the interrupt
controller used in Intel-based computer systems, and we will learn how to handle
the interrupts on the PCI bus where the number of peripheral devices exceeds the
number 15, how to share the interrupt lines on the PCI bus, and finally, how to handle
interrupts in modern multi-core PCIe-based systems.

2.8.7 Intel Advanced Programmable Interrupt Controler

By nature, the 8259A PIC can only send interrupts to one CPU, and in a multiproces-
sor system, it is desired to load CPUs in a balanced way. The solution to this problem
was the new APIC (Advanced PIC) architecture. This architecture addressed many of
the limitations of the older PIC-based architecture. The most apparent is the support
for multiple CPUs.

At the system level, APIC consists of two parts (Fig. 2.50). One part resides in
the I/O subsystem and is called the I/O APIC. It is responsible for routing interrupts
from external devices to the other part, the Local APIC (LAPIC), which resides
in each CPU. The local APIC and the I/O APIC communicate over a dedicated 3-
wire serial APIC bus. The IOAPIC bus interface consists of two bi-directional data
signals (APICD[1:0]) and a clock input (APICCLK). The modern systems may use a
standard system bus instead of a separate APIC bus for this task. It is worth noting that
it is possible to have several I/O APIC controllers in the system. For example, one for
24 interrupts in a southbridge, and the other one for 32 interrupts in a northbridge.
The CPU’s Local APIC contains the necessary intelligence to determine whether
or not its processor should accept interrupts broadcast on the APIC bus. The Local
APIC also provides local pending interrupts and handles all interactions with its local
processor (e.g., the interrupt acknowledge sequence). Additionally, each I/O APIC
has 24 interrupt lines and allows the priority of each interrupt to be set independently.
The I/O APIC sends an interrupt vector to the local APIC, and, as a result, the OS does
not have to interact with the I/O APIC until it sends the end-of-interrupt notification.

2.8 Interrupt Controllers 139

CPU 1

Local APIC

CPU 1

Local APIC

CPU 1

Local APIC

CPU 1

Local APIC

I/O APIC
IN

T 24

IN
T 23

IN
T 4

IN
T 3

IN
T 2

IN
T 0

IN
T 1

External Interrupts

APIC BUS

Fig. 2.50 An APIC based computer system

Summary: APIC

In the APIC-based systems, each CPU includes a local APIC that receives
interrupt messages and uses them to assert interrupts on the CPU. The chipset
includes one or more I/O APICs, which are responsible for converting device
interrupt signals into messages that are delivered to one or more local APICs.

2.8.7.1 Local APIC
The Local Advanced Programmable Interrupt Controller (LAPIC) was introduced
into the Pentium processor and is included in more recent Intel processor families.
The local APIC performs two primary functions for the processor. It receives inter-
rupts from the processor’s interrupt pins and an external I/O APIC. It sends these to
the processor core for handling. In multiple-processor systems, it sends and receives
interprocessor interrupt (IPI) messages to and from other processors on the system
bus. IPI messages are used to distribute interrupts among the processors in the sys-
tem. When a local APIC sends an interrupt to its processor core (by asserting the
processor’s INTR line) for handling, the processor uses the interrupt and exception
handling mechanism described in Sect. 2.7.

The LAPIC receives interrupts from several sources:

• Locally connected I/O devices: these interrupts are asserted by an I/O device
connected directly to the processor’s local interrupt pins (LINT0 and LINT1).

140 2 Interrupts and Interrupt Handling

CO
N

TRO
L LO

G
IC

256-bit ISR

256-bit IRR

PRIORITY
CONTROLLER

INTR

INTA#

ACCEPTANCE LOGIC

PROTOCOL TRANSLATION LOGIC

ICR

LIN0
LIN1

Dest. MODE & Vector No.

LINT0 Register

LINT1 Register

LVT

DATA/ADDR
BUS

DATA/ADDR
BUS

APIC BUS

Decoded Vector No.

256

256

256

Fig. 2.51 Simplified internal structure of a Local APIC

• Inter-processor interrupts (IPIs): an Intel processor can use the IPI messages to
interrupt another processor or group of processors on the system bus.

• Externally connected I/O devices: these interrupts are asserted by an I/O device
connected to the interrupt input pins of an I/O APIC. Interrupts are sent as IPI
messages from the I/O APIC to one or more LAPICs in the system.

Figure 2.51 illustrates a simplified internal structure of a Local APIC. The heart
of the LAPIC is very similar to the 8259A: it contains the IRR and ISR registers
and a priority controller. Besides, it contains two registers that form the local vector
table LVT and the interrupt command register (ICR). In fact, the LAPIC is a rather
complicated device containing a large set of addressable registers, timers, and other
control logic. Figure 2.51 shows only the vital parts that are necessary to understand
its interrupt handling. The Protocol Transition Logic block receives the IRI messages
from the APIC bus. If the LAPIC is the destination, the Protocol Transition Logic
block forwards the destination mode and the vector number from the IRI message to
the Acceptance Logic block, which decodes the 8-bit vector number and forwards
the bit from the decoded 256-bit word into the IRR register. The rest of the internal
logic is described for each interrupt source in the text below.

2.8 Interrupt Controllers 141

Interrupts from locally connected I/O devices. Upon receiving a signal from the
processor’s LINT0 and LINT1 pins, the local APIC delivers the interrupt to the
processor core using a group of APIC registers called the local vector table. A
separate entry (i.e., a separate register) is provided in the local vector table for each
local interrupt pin (LINT0 and LINT1). For example, if the LINT1 pin is going
to be used as an NMI pin, the LINT1 entry in the local vector table can be set
up to deliver an interrupt with vector number 2 (NMI interrupt in Table 2.7) to the
processor core. The LVT consists of two 32-bit registers: LINT0 Register (specifies
the interrupt number when an interrupt is signaled at the LINT0 pin) and LINT1
Register (specifies the interrupt number when an interrupt is signaled at the LINT1
pin). An interrupt number is an 8-bit number stored in the bits 0 through 7 in each
LINT register.

Inter-processor interrupts (IPIs). A processor generates IPIs by writing to a special
LAPIC register called the interrupt command register (ICR) in its local APIC. Writing
to the ICR causes an IPI message to be generated and issued on the system bus or
the APIC bus. An IPI message includes the processor destination number, the vector
number, and the trigger mode (edge or level). When the target processor receives
an IPI message, its local APIC handles the interrupt request automatically using
information included in the message, such as vector number and trigger mode. The
IPI mechanism is used in multi-processor systems to send or forward interrupts for
a specific vector number. For example, a local APIC can use an IPI to forward an
interrupt to another processor for servicing. Also, the IPI mechanism is used by
I/O APIC to send an interrupt for a specific vector number that originates from an
I/O device connected to I/O APIC. The interrupt command register (ICR) is a 64-bit
local APIC register that allows software running on the processor to specify and send
interprocessor interrupts (IPIs) to other processors in the system. The act of writing to
the low 32 bits of the ICR causes the IPI message to be sent. Figure 2.52 illustrates the
ICR register (only the bits that are important for understanding are specified/shown).
The 8-bit Destination field specifies the target processor. The Destination Mode bit

Fig. 2.52 The LAPIC ICR
register

63 56
Destination

55 32

31
Vector num.

0715 11

Destination mode
0: Physical
1: Logical

Trigger mode
0: Edge
1: Level

142 2 Interrupts and Interrupt Handling

further specifies whether the destination is a physical (0) or logical (1) processor.
The Trigger Mode bit selects the trigger mode: edge (0) or level (1).

Externally connected I/O devices. The local APIC can also receive interrupts from
externally connected devices through the I/O APIC (see Fig. 2.50). The I/O APIC is
responsible for receiving interrupts generated by system hardware and I/O devices
and forwarding them to the local APIC as IPI messages. Each individual pin on the
I/O APIC can be programmed to generate a specific interrupt vector when asserted.
This vector is then sent to LAPIC as a part of an IPI message.

The local APIC handles the interrupts as follows:

1. if it receives a message on the APIC bus, it determines if it is the specified
destination. If it is the specified destination, it accepts the message; otherwise, it
discards the message,

2. if the local APIC determines that it is the designated destination for the interrupt,
the local APIC sets the appropriate bit in the IRR,

3. when interrupts are pending in the IRR register, the local APIC sends them to the
processor one at a time, based on their priority, similarly as in the 8259A. The
processor responds with the interrupt acknowledge sequence. During the first
INTA pulse, the LAPIC moves the highest priority bit from the IRR to the ISR.
During the second INTA pulse, the LAPIC puts the interrupt vector on the data
bus. If the interrupt request comes from a locally connected I/O device (at the
LINT0 or LINT1 pins), the interrupt number is stored in the corresponding LVT
entry in the LAPIC. If the interrupt request comes from a message, the interrupt
number is contained in the message.

Completing the handler routine is indicated by instruction in the interrupt handler
code that writes to the end-of-interrupt (EOI) register in the local APIC. Writing to
the EOI register causes the local APIC to delete the interrupt from its ISR.

2.8.7.2 I/O APIC
The I/O Advanced Programmable Interrupt Controller (IOAPIC) manages multipro-
cessor interrupt and incorporates interrupt distribution across all processors. In sys-
tems with multiple I/O subsystems, each subsystem can have its own set of interrupts.
Each interrupt pin is individually programmable as either edge or level triggered.
The interrupt vector can be specified per interrupt input.

The I/O APIC (Fig. 2.53) consists of 24 interrupt input lines, a 24-entry Interrupt
Redirection Table (IRT) with 64-bit entries, programmable registers, and a message
unit for sending and receiving messages over the APIC bus. I/O devices signal inter-
rupt requests by asserting one of the interrupt lines to the I/O APIC. The I/O APIC
selects the corresponding entry in the IRT and uses the information in that entry to
format an interrupt request message. Each entry in the IRT contains:

• a bit that indicates edge/level sensitive interrupt,
• the interrupt vector and priority, and
• the destination processor.

2.8 Interrupt Controllers 143

Fig. 2.53 The I/O APIC

CPU 1

Local APIC

CPU 1

Local APIC

I/O APIC

INT 23

INT 22

INT 4

INT 3

INT 2

INT 0

INT 1

ISA External
Interrupts

3-bit APIC BUS

LINT0

LINT1

LINT0

LINT1

INT 17

INT 16

INT 15

Message unit

24 x 64 bit
Interrupt

Redirection
Table

PCI External
Interrupts

Fig. 2.54 The format of the
EOI message

31 41 10 7 1 2 5 6 8 9
 APICD0

 APICD1

 0

 0

 1

 1

 V6

 V7

 V4

 V5

 V2

 V3

 V0

 V1

 cycle 1 designates
the EOI message

cycles 6-9 contain
 the vector number

 idle cycle: end of
message

 cycles used for
arbitration

 checksum and
status cycles

The information in the IRT entry is used to form and transmit an IRI message to
other LAPICs via the APIC bus.

When an external interrupt request is signaled on the I/O APIC interrupt input,
the I/O APIC controller will send an interrupt message to the LAPIC of one of
the system CPUs. In this way, the I/O APIC controller helps balance interrupt load
between processors.

APIC messages come in several formats and different lengths. Here, we present
only two types of APIC messages: the EOI Message and the so-called Short Message.
Local APICs use EOI messages to send an end-of-interrupt (EOI) occurring for a
level-triggered interrupt to an I/O APIC. This message is needed so the I/O APIC
knows when an interrupt has been serviced. In this way, the I/O APIC can differentiate
between a new interrupt on the interrupt line versus the same interrupt on the interrupt
line. I/O APICs use Short Messages for the delivery of external interrupts to local
APICS.

The format of the EOI message is presented in Fig. 2.54. All EOI messages are
14 bits long and take 14 cycles on the APIC bus to transmit. Local APICs send
14-cycle EOI messages to the I/O APIC to indicate that the processor has accepted

144 2 Interrupts and Interrupt Handling

31 41 10 7 1 2 5 6 8 9
 APICD0

 APICD1

 0

 1

 1

 1

 V6

 V7

 V4

 V5

 V2

 V3

 V0

 V1

 cycle 1 designates
the SHORT message

cycles 9-12 contain
 the vector number

 idle cycle: end of
message

 cycles used for
arbitration

 checksum and
status cycles

 DM

 11 12 51 61
 D6

 D7

 D4

 D5

 D2

 D3

 D0

 D1

cycles 13-16 contain
 destination

cycle 6 of APICD1:
 destination mode

21

Fig. 2.55 The format of the SHORT message

a level-triggered interrupt. This message is a result of software writing into the EOI
register of the local APIC. The first cycle is used to designate an EOI message. The
vector number is sent in cycles 9 through 12. The local APIC gives the target of the
EOI message by transmitting the interrupt vector number (V7 through V0). When
this message is received, the I/O APIC resets the IRR bit for that interrupt. If the
interrupt signal is still active after the IRR bit is reset, the I/O APIC treats it as a new
interrupt. The last cycle, in which both data lines are set high, is used to signal the
end of the message.

The format of a SHORT message is presented in Fig. 2.55. All SHORT messages
are 21 bits long and take 21 cycles on the APIC bus to transmit. I/O APICS uses
short messages to send external interrupts to local APICs. The first cycle is used to
designate a SHORT message. The vector number is sent in cycles 9 through 12. If
Destination Mode (DM) is 0, cycles 15 and 16 are the local APIC ID, and cycles
13 and 14 are sent as 1. In this case, the message is sent to a physical processor. If
DM is 1, cycles 13 through 16 are the 8-bit Destination field that selects the logical
processor. The last cycle, in which both data lines are set high, is used to signal the
end of the message.

The I/O APIC with 24 input interrupt lines was used in the systems with the PCI
bus. The APIC architecture could support up to 16 CPUs. The I/O APIC provided
backward compatibility with the older 8259A PIC-based systems. Interrupts 0-15
were used for old ISA interrupts for compatibility with older systems, and interrupts
16-23 were meant for all the PCI devices. With this delimitation, all conflicts between
ISA edge-triggered and PCI level-triggered interrupts could be easily avoided. This
assignment of interrupts 0–15 provided only eight additional interrupts, which forced
the sharing of PCI interrupts—two or more devices on the PCI bus were forced to
share the same I/O APIC’s input interrupt line. We will cover the PCI interrupt
sharing and routine in the following sections.

One of the biggest differences between the 8259A PICs and I/O APICs is that
the pins on I/O APICs are completely independent. With the 8259A PICs, the eight
input pins are mapped to eight consecutive vectors in IDT (or IVT), and all of the

2.9 PCI Interrupts 145

interrupts are sent to the same CPU. In I/O APICs, on the other hand, each pin is
programmed independently. The operating system assigns each pin its own vector
and can be mapped to one or more CPUs.

2.9 PCI Interrupts

The Peripheral Component Interconnect (PCI) bus was added to the PCs in the
mid-1990s. In the first years, PCI and ISA buses coexisted in the systems. In PCI,
the term device refers to a piece of hardware plugged into the PCI slot and contains
from one to eight functions. A multi-function PCI device is a physical PCI expansion
board that embodies between two and eight PCI functions. For example, a single PCI
device may include several USB controllers as functions. Another example would be
a PCI card with one high-speed communications port and one parallel port. Hence,
a PCI expansion card inserted in the PCI expansion slot is a PCI device, and a single
expansion card may contain up to eight functions. However, from the operating
system’s perspective, each function on a PCI device is a logical operating device.

PCI allows devices to assert interrupts in two different ways:

1. The first way uses dedicated interrupt signals (lines) and is known as Legacy
INTx interrupts.

2. The second way uses special memory writes sent over the data bus, just like APIC
messages and is known as Message Signaled Interrupts (MSI). First, we will
cover Legacy INTx interrupts. Later, we are going to cover the MSI interrupts.

2.9.1 PCI Legacy Interrupts

A PCI card in a slot may have up to eight functions on it, but there are only 4 PCI
interrupt pins: INTA#, INTB#, INTC#, and INTD#. PCI legacy interrupts are level-
triggered; hence, they may be shared by multiple functions. Each function within
the device is only permitted to use one of these interrupt pins to generate requests. A
device containing only one function that uses only one interrupt pin must be bonded
to INTA#. If a device includes more than one function, all functions within a device
may be bonded to the same pin, INTA#, or each may be bonded to a dedicated pin
(this would be true for a device with up to four functions). Also, a group of functions
within the package may share the same interrupt pin. In the most simple (and most
common) case, a PCI device has only one function with its interrupt going to the
lane INTA#.

Figure 2.56 illustrates a simple interrupt model with two peripheral devices on
the PCI bus; hence, both are bonded to INTA#. Each peripheral device embodies
only one function that generates PCI interrupts. The first device is an ethernet card
in the PCI slot 0 that generates interrupts on INTA# line, while the second device is
a sound card in the PCI slot 3 that also generates interrupts on the INT#A line. Both
devices share the same interrupt request signal trace on the system board, routed to
the IRQ5 input on the Intel 8259A programmable interrupt controller (PIC). Indeed,

146 2 Interrupts and Interrupt Handling

Status register
1

INTA#

PCI 10/100 Mbps Ethernet Card

Status register
1

INTA#

PCI Sound Card
IRQ5 INT INTR

i8259
PIC

Intel
CPU

Interrupt pending bit

Interrupt pending bit

INTA INTA

D[7:0]

Fig. 2.56 Example system for shared interrupts on the PCI bus

the PCI standard does not limit the interrupt controller used to route PCI interrupts
to the CPU as long it supports level-triggered interrupts; hence, in this example, we
assume that the 8259A PIC is used for this purpose.

Let us assume that both devices assert the interrupt request and that the sound
card asserted the interrupt first. The interrupts are asserted by driving the interrupt
line LOW. In addition to asserting the interrupt request, both devices set an interrupt
pending bit in their memory-mapped status registers so that interrupt handlers can
access both status registers. Let us also assume that no other device in the system
had asserted an interrupt request before the sound card and ethernet card.

When the Intel 8259A PIC detects the interrupt request on its IRQ5 input, it asserts
the interrupt request on the processor’s INTR input. The processor will recognize
this request on the next instruction fetch. It then stops the instruction fetch and
automatically saves the program context onto the stack. The CPU then starts the
interrupt acknowledge sequence:

1. the CPU responds by asserting the first INTA pulse,
2. the 8259 PIC prioritizes the pending interrupt requests by setting the bit 5 in its

ISR register and clearing the bit 5 in its IRR register,
3. the CPU outputs the second INTA pulse to instruct the 8259A PIC to release the

8-bit pointer onto the data bus (D0 to D7) where the CPU reads it.

Now, the processor has received the interrupt vector number associated with IRQ5.
Let’s assume that the interrupt vector number is 0x07. The processor multiplies this
value by 4, which yields the address of the interrupt vector entry, 0x00000001C.
The processor now reads the content of the memory location 0x00000001C to
obtain the start address of the interrupt handler.

As both devices, the ethernet card and the sound card, share the same interrupt line
IRQ5, the interrupt handler should contain the code to handle the interrupt requests
from both devices. Let us assume that the interrupt handler contains both codes,
the “ethernet” handler and the “sound card” handler. The simplified structure of the
IRQ5 interrupt handler is presented in Listing 2.57. The interrupt handler first checks

2.9 PCI Interrupts 147

which device has asserted the interrupt request by checking the interrupt pending bit
in the corresponding status register.

1 /*

* IRQ5 Handler

3 */

__attribute__ ((interrupt)) void irq5handler () {

5

/* Check the interrupt pending bit in the Ethernet status reg */

7 if (eth_status_reg & (1<<INT_PEND_BIT)) {

/* Ethernet Handler Code */

9 eth_status_reg &= ~(1<< INT_PEND_BIT); // clear int pending bit

...

11 ...

...

13 }

15 /* Check the interrupt pending bit in the Sound card status reg */

if (snd_status_reg & (1<<INT_PEND_BIT)) {

17 /* Sound Card Handler Code */

snd_status_reg &= ~(1<< INT_PEND_BIT); // clear int pending bit

19 ...

...

21 ...

}

23

/* return from interrupt */

25 }

Listing 2.57 IRQ5 interrupt handler

Listing 2.57 shows that the interrupt handler first checks the pending bit in the
ethernet card’s status register. As this bit is asserted, the ethernet handler is executed
first. The ethernet handler clears the pending bit in the status register and processes
the interrupt request. Then, the IRQ5 handler proceeds with the sound card handler.
This handler checks the sound card’s interrupt pending bit to determine if it requires
servicing. Since the pending bit is set, the main body of the sound card handler is
executed. It clears the interrupt pending bit and services the interrupt request. As
both devices have their pending bit clear, the interrupt line is de-asserted.

Hence, the system in Fig. 2.56 relies on the vectored interrupt handling to deter-
mine which interrupt request input in the PIC 8259A has been asserted but uses the
interrupt polling to determine which PCI device has asserted the interrupt request.
The sequence of polling determines the interrupt priority. This is why the ethernet
card is serviced first, although the sound card had asserted the interrupt request a
few moments before the ethernet card.

2.9.2 PCI Interrupts Routing

Each PCI device (function) that needs an interrupt comes with a fixed PCI interrupt
that can’t be changed. But this PCI legacy interrupt signal (lane) can be mapped
(routed or redirected) to any APIC interrupt input. Thus, at one end, PCI legacy
interrupt lines (INTA# through INTD#) are signaled by a PCI function that needs
attention. At the other end, we have a CPU receiving an IDT vector. In the middle is

148 2 Interrupts and Interrupt Handling

INTA#

APIC

APIC BUS

INTB#

INTA#

INTA#

INTB#

INTC#

INTD#

INTA#

INTB#

INTC#

Fig. 2.57 Ideal routing of PCI interrupt lanes

an interrupt controller (most commonly, this would be an APIC pair: I/O APIC and
LAPIC). Whenever any of the PCI legacy interrupt pins is asserted, the I/O APIC
module supplies the vector associated with that input to the processor’s embedded
local APIC module. We have already learned that IR16-IR23 input I/O APIC pins
are devoted to PCI. The upper four (IR20-IR23) are dedicated to PCI functions
embedded in the chipset, while the lower four are dedicated to PCI legacy interrupt
pins. The I/O APIC inputs IR20 through IR23 are called PIRQA through PIRQH
when used for PCI interrupts. The acronym PIRQ stands for PCI interrupt request.
We have also learned that several PCI devices or functions can use the same PCI
legacy interrupt signal to assert interrupts. So, the question is, how the PCI legacy
interrupt signals INTA# through INTD# are routed to the I/O APIC inputs PIRQA
through PIRQD? The ideal scenario is pictured in Fig. 2.57, where each individual
PCI interrupt line is routed to an interrupt controller as a separate input. But such a
solution is possible only if only up to four PCI devices exist because the I/O APIC
has only four available interrupt inputs.

PCI interrupt signals can be routed to I/O APIC interrupt pins (PIRQs) in several
ways. A straightforward method of connecting (hardwiring) these lines from PCI
devices to the PIRQs would be to connect all INTA# interrupts to PIRQA, all INTB#
interrupts to PIRQB, all INTC# interrupts to PIRQC, and all INTD# interrupts to
PIRQD. Figure 2.58 illustrates this method of PCI interrupt routing. As mentioned

2.9 PCI Interrupts 149

INTA#

APIC

APIC BUS

INTB#

INTA#

INTA#

INTB#

INTC#

INTD#

INTA#

INTB#

INTC#

PIRQA

PIRQB

PIRQC

PIRQD

I16

I17

I18

I19

Fig. 2.58 Unbalanced routing of PCI interrupt lanes

above, the most common case is when a PCI device has only one function, and its
interrupt must be connected to the INTA# pin. Therefore, if we decided to route all
PCI interrupt lanes as we’ve written, almost all system devices would share interrupt
input PIRQA. As shown in Fig. 2.58, the PIRQA request line is heavily weighted
(four PCI devices). Suppose this lane is connected to the IRQ16 of the APIC. This
way, every time a processor has a signal that there is an interrupt on the IRQ16 input,
it has to poll all of the device drivers of the PCI devices connected to that IRQ16 line
(PIRQA) if they have asserted an interrupt. If there are many of those devices, it will
surely decrease system response to the interrupt. In this case, lanes PIRQB-PIRQD
would stand idle most of the time.

The optimal way of PCI interrupt routing is that each PIRQ should have the same
number of connected PCI functions. We should also consider that some functions
trigger interrupts very rarely and some almost constantly (e.g., Ethernet controller).
Hence, we may connect the PIRQs more randomly so that each will share about the
same number of actual PCI legacy interrupts.

Figure 2.59 illustrates one method of doing this. This illustration shows how legacy
interrupt traces are physically routed across the PCI slots. Although the physical
interrupt lines wire each PIRQ to every slot, each PIRQ connects differently to the
pins in each slot. Here, wire PIRQA connects interrupts INTA# in the PCI slot 1,
INTB# in the PCI slot 2, INTC# in the PCI slot 3, and INTD# in the PCI slot 4.

150 2 Interrupts and Interrupt Handling

SL
O

T
1

INTA#

INTB#

INTC#

INTD#

SL
O

T
2

INTA#

INTB#

INTC#

INTD#

SL
O

T
3

INTA#

INTB#

INTC#

INTD#

SL
O

T
4

INTA#

INTB#

INTC#

INTD#

PIRQD

PIRQC

PIRQB

PIRQA

to I/O APIC

Fig. 2.59 Round-robin routing of PCI legacy interrupt traces (lanes)

INTA#

APIC

APIC BUS
INTA#

INTA#

INTB#

INTA#

INTB#

INTC#

PIRQA

PIRQB

PIRQC

PIRQD

I16

I17

I18

I19

INTD#

INTB#

INTC#

INTD#

INTD#

INTC#

PCI SLOT 1

PCI SLOT 2

PCI SLOT 3

PCI SLOT 4

Fig. 2.60 Common round-robin routing of PCI interrupt lanes

Likewise, wire PIRQB connects interrupts INTB# in the PCI slot 1, INTC# in the
PCI slot 2, INTD# in the PCI slot 3, and INTA# in the PCI slot 4, etc.

Figure 2.60 shows a 4-slot PCI system with the following cards installed:

1. Card 1 installed in Slot 1. This card includes two PCI functions, of which one
generates interrupts on IRQA#, and the other generates interrupts on IRQD#. The
IRQA# pin of this card connects to PIRQA.

2. Card 2 installed in Slot 2. This card includes four PCI functions, thus generating
interrupts on IRQA# through IRQD#. The IRQA# pin of this card connects to
PIRQB.

2.9 PCI Interrupts 151

3. Card 3 installed in Slot 3. This card includes three PCI functions, which generate
interrupts on IRQA# through IRQC#. The IRQA# pin of this card connects to
PIRQC.

4. Card 4 installed in Slot 4. This card includes four PCI functions, thus generating
interrupts on IRQA# through IRQD#. The IRQA# pin of this card connects to
PIRQD.

A practical use for this is that one may change the interrupt routing of a PCI card
by inserting it in a different slot. In the above example, INTA# of a PCI card will
be connected to wire PIRQA if the card is inserted into slot 1, but INTA# will be
connected to wire PIRQB when inserted into slot 4.

2.9.3 Message Signaled Interrupts

As we described in the previous section, a PCI device can use up to four dedicated
interrupt pins to signal an interrupt request to the I/O APIC. This method is referred to
as Legacy INTx interrupts. Each PCI device can have up to four PCI legacy interrupts.
After the I/O APIC has received an interrupt request, it forwards it to LAPICs by
means of the APIC messages. But why not implement this “interrupt message”
functionality into a PCI device itself? This way, we could eliminate the need for
interrupt traces and interrupt sharing. This method is referred to as Message Signaled
Interrupts (MSI) and is described in this section. Message Signaled Interrupts are
special memory writes sent over the system bus. In essence, the MSI interrupts do
not differ from ordinary PCI memory write transactions. But they are recognized by
LAPICs from the address they write to. The data sent in these transactions contain
an interrupt vector.

Using a separate signal for PCI INTx interrupts raises several issues. First, many
x86 systems require separate physical traces on the motherboard to connect the
signals to interrupt controller input pins. Second, the interrupt signals should be
routed cleverly to distribute interrupt requests evenly across the PIRQ lines. However,
the largest issue can arise when a device writes data to memory and raises a pin-
based interrupt to signal the CPU that the data has been written. The interrupt may
arrive before all the data has arrived in memory. In order to ensure that all the data
has arrived in memory, the interrupt handler must read a special register on the PCI
device, which raises the interrupt. This read will not be completed until pending
transactions between the CPU and the PCI device are completed. PCI transaction
ordering rules require that all the data arrive in memory before the value may be
returned from this special register. Thus, this dummy read guarantees that all the
effects of the event that triggered the interrupt will be visible to the CPU. But this
dummy read adds extra latency and work to the interrupt handler. Using message
signaled interrupts avoids this problem as the interrupt message is a memory write
transaction. Hence, it cannot pass the data writes, so when the interrupt is raised, the
interrupt handler knows that all the data has been successfully written into memory.

To summarize, the advantages of MSI interrupts versus the legacy interrupts are:

152 2 Interrupts and Interrupt Handling

• the MSI interrupts eliminate the need for interrupt traces between PCI devices and
the I/O APIC,

• the MSI interrupts eliminate multiple PCI functions sharing the same PIRQ,
• the MSI interrupts eliminate the need for device polling in the interrupt handlers,
• the MSI interrupts eliminate the need to perform a read from a device’s register to
force all posted memory writes to be flushed to memory.

When a PCI function supports MSI, it generates an interrupt request to the pro-
cessor’s LAPIC by writing a predefined data item to a predefined memory address in
the LAPIC. This PCI write transaction containing predefined data and a predefined
address is referred to as an interrupt message. MSI was introduced as an optional
component in revision 2.2 of the PCI spec in 1999. However, with the introduction
of the PCIe specification in 2004, implementation of MSI became mandatory from
a hardware standpoint. It is worth noting that MSI interrupts can’t work without
LAPIC, but MSI eliminates the devices’ need to use the IO-APIC, allowing every
device to write directly to the CPU’s LAPIC.

Each PCI function that generates MSI must contain two addressable registers
(Message Data register and Message Address register) where BIOS or OS stores this
predefined data and addresses during the initialization. When a PCI function asserts
an interrupt using MSI, it performs a PCI write operation that writes the content of
the Message Data register to the address specified in the Message Address register.

The following is the sequence for MSI delivery and servicing:

1. A device needing servicing from the CPU generates an MSI, writing the interrupt
vector number directly into the Local-APIC of the CPU servicing it.

2. The interrupted CPU begins running the handler associated with the interrupt
vector number it received. The device is serviced without any need to check and
clear an IRQ pending bit

The format of the Message Address register is presented in Fig. 2.61. Fields in the
Message Address Register are as follows:

• Bits 31-20 contain a fixed value for interrupt messages (0xFEE). This value locates
interrupts at the 1-MByte area with a base address of 0xFEE00000. All accesses
to this region are directed as interrupt messages.

• Destination ID—This field contains an 8-bit destination ID. It identifies the target
LAPIC.

• Redirection hint (RH)—When this bit is set, the message is directed to the pro-
cessor with the lowest interrupt priority among processors that can receive the
interrupt. When this bit is reset, the interrupt is directed to the processor listed in
the Destination ID field.

• Destination mode (DM)—This bit indicates whether the Destination ID field
should be interpreted as logical or physical LAPIC for delivery of the lowest
priority interrupt. If RH is 0, then the DM bit is ignored. If RH is 1 and DM is 0,
only the processor listed in the Destination ID field is considered for delivery of

2.9 PCI Interrupts 153

 x

Redirection
Hint

 Destination ID
1 0

 x
 24 3 11 19 12 20 31

 0xFEE

Destination
Mode

Fig. 2.61 Layout of the MSI memory address register

Trigger
Mode
0 - Level
1 - Edge

 Vector No.

 0 7 31

Trigger
Level
0 - Deassert
1 - Assert

51 41

Fig. 2.62 Layout of the MSI memory data register

that interrupt (this means no redirection). If RH is 1 and DM is 1, the redirection
is limited to only those processors that are part of the logical group of processors
based on the Destination ID field in the message.

Figure 2.62 illustrates the format of the Message Data register. The fields in the
Message Data Register are:

• Vector number. This 8-bit field contains the interrupt vector number associated
with the message. Values range from 0x10 to 0xFE. The software must guarantee
that the field is not programmed with vectors 0x00 to 0x0F, as these are reserved
for non-external interrupts and exceptions.

• Trigger Mode. If this bit is 0, the interrupt is edge-triggered. If this bit is 1, the
interrupt is level-triggered.

• Level. For edge-triggered interrupts, this field is ignored. For level-triggered inter-
rupts, this bit reflects the active state of the interrupt input.

3Direct Memory Access

CHAPTER GOALS

Have you ever wondered how information travels between input-output
devices and main memory in a computer system? This chapter explains the
Direct Memory access (DMA) I/O technique used in modern computer sys-
tems, including those using the Intel and ARM microprocessors. This chapter
also aims to demystify the DMA controller internals and its programming
with various peripherals. From this chapter, you should gain a basic under-
standing of DMAs, including:

• Understand the basic concept of Direct Memory Access (DMA) and its
role in computer systems.

• Explore the need for DMA and its advantages over traditional Programmed
I/O (PIO) methods.

• Distinguish between programmed IO, interrupt-driven IO, and DMA trans-
fers.

• Learn about the integration of DMA into modern computer system archi-
tectures.

• Understand how DMA controllers interact with the CPU, memory, and
peripheral devices.

• Explain the operation of the signals used in direct memory access con-
trollers.

• Examine the operation of DMA controllers and their role in managing data
transfers between peripherals and memory.

• Understand the different DMA transfer modes, including single transfer,
block transfer, and scatter-gather DMA.

• Explore the mechanisms for initiating, controlling, and completing DMA
transfers in various computing environments.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
P. Bulić, Understanding Computer Organization, Undergraduate Topics in Computer
Science, https://doi.org/10.1007/978-3-031-58075-8_3

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58075-8_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58075-8_3&domain=pdf
https://doi.org/10.1007/978-3-031-58075-8_3
https://doi.org/10.1007/978-3-031-58075-8_3
https://doi.org/10.1007/978-3-031-58075-8_3
https://doi.org/10.1007/978-3-031-58075-8_3
https://doi.org/10.1007/978-3-031-58075-8_3
https://doi.org/10.1007/978-3-031-58075-8_3
https://doi.org/10.1007/978-3-031-58075-8_3
https://doi.org/10.1007/978-3-031-58075-8_3
https://doi.org/10.1007/978-3-031-58075-8_3
https://doi.org/10.1007/978-3-031-58075-8_3
https://doi.org/10.1007/978-3-031-58075-8_3

156 3 Direct Memory Access

• Explain the function of the Intel 8237 DMA controller when used for DMA
transfers.

• Explain the function of the DMA controller used in STM Cortex-M-based
systems.

• Explain the function of bus-mastering (also referred to as first-party DMA).
• Explore real-world examples and case studies illustrating the use of DMA
in diverse computing scenarios.

• Learn from practical examples of DMA-enabled applications.

3.1 Introduction

Direct Memory Access (DMA) emerges as a pivotal mechanism in computer sys-
tems and data transfer, revolutionizing the efficiency and speed of data movement
within a computing environment. DMA catalyzes system performance by alleviating
the burden on the CPU and enabling seamless, high-speed data transfers between
peripherals and memory without CPU intervention.

Traditionally, data transfer between peripherals (such as network interfaces, stor-
age devices, and I/O controllers) and system memory necessitated CPU involve-
ment at every process step. This process, called programmed input/output, resulted
in significant CPU overhead, latency, and inefficiency, limiting the overall system
throughput and responsiveness.

DMA addresses these limitations by introducing a dedicated data transfer engine,
separate from the CPU, capable of autonomously managing data transfers between
peripherals and memory. By offloading data transfer tasks from the CPU to spe-
cialized DMA controllers, DMA significantly reduces CPU overhead and improves
system performance, efficiency, and responsiveness.

At its core, DMA operates on the principle of direct access to system memory,
enabling peripherals to read from or write to specific memory locations without CPU
intervention. This direct access eliminates the need for the CPU to orchestrate each
data transfer, allowing it to focus on executing critical tasks and enhancing overall
system throughput. Throughout this exploration of Direct Memory Access (DMA),
we will delve into its underlying principles, mechanisms, and applications across
various computing domains. From its fundamental operation to advanced features
and optimizations, we will uncover the transformative impact of DMA on system
performance, efficiency, and scalability.

3.2 Programmed Input/Output

The programmed I/O was the most straightforward type of I/O technique for exchang-
ing data between I/O devices and memory. This data transfer method requires the
least amount of hardware. With programmed I/O, data transfers between I/O devices

3.2 Programmed Input/Output 157

and memory are accomplished by the central processing unit (CPU). In the case of
programmed I/O, the I/O device does not have direct access to the main memory.
The I/O devices have memory-mapped registers. This means that the CPU accesses
the I/O device’s registers using LOAD/STORE instructions.

A transfer from an I/O device to the main memory (or vice versa) requires the
execution of several instructions by the CPU. This includes a LOAD instruction to
transfer the data from the I/O device’s data register(s) to the CPU and a STORE
instruction to transfer the data from the CPU to the main memory. Besides, the CPU
must continuously sense the I/O device’s status. When the CPU issues a command
to the I/O device, it must wait until the I/O operation is complete or new data is
available. For example, before reading the data from the I/O device with the LOAD
instruction, the CPU must first read the status register (also with a LOAD instruction)
of the I/O device to check if the I/O device has new data. Similarly, before writing
the data to the I/O device, the CPU must first read the status register (also with a
LOAD instruction) of the I/O device to check if the I/O device is prepared to accept
new data. As the CPU is faster than the I/O module, the problem with programmed
I/O is that the CPU has to wait a long time for the I/O device to be ready for either
reception or transmission of data. The CPU stays in the program loop until the I/O
unit indicates that it is ready for data transfer. This process of waiting and checking
the status of the I/O device is known as polling or busy waiting. As a result, polling
severely degrades the performance of the entire system. This situation can be avoided
by using an interrupt-driven I/O, which we discuss in the next section.

Let’s look at how programmed I/O would work if you were copying information
from an I/O device to the main memory. Figure 3.1 illustrates a simplified block
diagram of a computer system using programmed I/O. The I/O device shares the data,
address, and control bus with the main memory. Although modern computer systems

CPU

MAIN
MEMORY

I/O INTERFACE

I/O
 D

EV
IC

E

D
AT

A
 B

U
S

A
D

D
RE

SS
 B

U
S

CPU
REGISTERS

W
E#

DATA REGISTER

STATUS REGISTER

CONTROL REG.

Fig. 3.1 A simplified block diagram of a computer system with programmed I/O

158 3 Direct Memory Access

have more buses organized hierarchically, we can still simplify this discussion by
assuming that there is only one bus in the system. The I/O devices in modern computer
systems are memory-mapped, meaning that the CPU accesses these devices through
a well-defined I/O interface. The I/O interface of an I/O device contains a set of
registers, each with its unique address from the global address space. The CPU reads
and writes to these I/O registers in the same way as it reads or writes to the main
memory: using the LOAD and STORE instructions.

The I/O device in Fig. 3.1 has three memory-mapped registers: a control register,
a status register, and a data register. The control register is used to program the I/O
device, e.g., set the data rate, parity check, etc. The status register reflects the status
of the I/O device, e.g., the I/O device is ready to accept new data, or the I/O device
has new data, etc. The data register is used to transfer data to/from the I/O device.
In programmed I/O mode, the CPU constantly checks the status register to see if
new data is available. Thus, the CPU would read the status register with the LOAD
instruction and check a particular bit, which flags that the I/O device has new data.
The CPU would perform the polling operation inside a program loop. In the case new
data is available, the CPU first transfers data from the data register into an internal
register with the LOAD instruction. Then, the CPU would transfer data from the
internal register into the memory with a STORE instruction. Listing 3.1 illustrates
the programmed I/O transfer from the I/O device to the main memory:

1

2 ; wait for new data
3 busy_wait: lw r1 , status_reg;
4 beq r1 , r0 , busy_wait;
5

6 ; CPU transfers data
7 transfer: lw r2 , data_reg
8 sw rw , mem_addr

Listing 3.1 Programmed I/O data transfer

While not in use anymore, programmed I/O mode transfers were used in older hard
drives a few decades ago when so-called DMA transfers didn’t exist. For example,
programmed I/O was used by the Western Digital WD1003, the hard disk controller
used by the first PCs. Programmed I/O is still used now in some low-end and embed-
ded computer systems. Also, the Intel 80286, 80386, and 80486 microprocessors used
in personal computers were well suited to programmed I/O since they can move data
blocks with a single String Move instruction. This data move instruction allowed
programmed I/O transfers to reach speeds of about 2.5 Mbytes/s. In an embedded
system where the CPU has nothing else to do, busy waiting is reasonable. However,
polling is inefficient in a more sophisticated computer system where the CPU has to
do other things. Hence, a better I/O transfer method is needed.

3.4 Direct Memory Access 159

3.3 Interrupt-Driven I/O

A disadvantage of polling is that the CPU must continuously sense the I/O device’s
status in a loop. The waiting may significantly slow down the system’s capability
of executing other instructions and processing other data. The so-called interrupt-
driven I/O could be more efficient. In interrupt-driven I/O, the I/O device, when
ready for a new transfer, initiates the data transfer by interrupting the CPU. The
CPU then executes the interrupt service program that transfers the data. Similarly,
as in programmed I/O, the transfer from an I/O device to the main memory (or vice
versa) requires the execution of a LOAD instruction to transfer the data from the I/O
device’s data register(s) to the CPU and a STORE instruction to transfer the data
from CPU to the main memory. But now, there is no need to wait in a loop and read
the I/O device’s status. The interrupt-driven I/O technique requires more complex
hardware but makes far more efficient use of CPU time and capacities.

For the transfer from an I/O device to memory, the device interrupts the CPU
when new data has arrived and is ready to be retrieved by the system processor. As
most I/O devices have memory-mapped registers, the interrupt service program will
then read the device’s data register into a CPU register and store the data from the
CPU register to the memory location.

For the transfer from a memory location to an I/O device, the device delivers an
interrupt either when it is ready to accept new data or to acknowledge a successful
previous data transfer. The interrupt service program will then read the memory
location into a CPU register and store the data from the CPU register to the device’s
data register.

Hence, in the interrupt-driven I/O, the CPU continuously works on given tasks.
When the I/O device is ready for the data transfer, such as when someone types a
key on the keyboard or a serial communication interface is prepared to transmit a
new byte, it interrupts the CPU from its work to take care of the data transfer. The
CPU can work continuously on a task without checking the input devices, allowing
the devices themselves to interrupt it as necessary.

The interrupt-driven I/O is adequate for simple computer systems, but some sit-
uations in modern computing complicate the picture. For example, what if the CPU
executes some critical task that should not be interrupted? What if the CPU executes
an interrupt service program corresponding to an interrupt with a priority higher than
the current interrupt request? In such a case, the handling of the current interrupt
request from an I/O device should be deferred.

3.4 Direct Memory Access

We have seen two different methods used to transfer data between I/O devices and
the main memory: polling and interrupt-driven I/O. Both techniques work well with
low-bandwidth devices and some low-end computer systems, and both methods use
the CPU to move data. While transferring data, the CPU can not perform other
operations, making both methods inappropriate for modern, high-speed computer
systems.

160 3 Direct Memory Access

An alternative mechanism is to offload the CPU and have another device transfer
data directly to or from the main memory—without involving the CPU. This
mechanism is called direct memory access (DMA). DMA is a feature that allows
systems to access the main memory without any help from the processor. The special
device that performs the DMA transfer is a DMA controller. A DMA controller
offloads the CPU tremendously as it fulfills a memory transfer without intervention
from the processor. When the transfer is finished, it signals the CPU with an interrupt.

The DMA controller transfers data between the main memory and an I/O device
independent of the CPU. The CPU only initializes the DMA controller. A DMA
transfer is fulfilled in the following steps:

1. The CPU initializes the DMA controller: it provides the source and destination
addresses of the data to be transferred, the number of bytes to be transferred, and
the type of transfer to perform (we will discuss these types later).

2. When data is available, the I/O device requests the DMA transfer from the
DMA controller. The DMA controller then requests the bus from the CPU. When
the CPU grants access to the bus, the DMA controller becomes the bus master and
starts the transfer. During the transfer, the DMA controller supplies the memory
addresses and the control signals needed to complete the transfer. If the request
from the I/O device requires more than one transfer, the DMA controller will
automatically generate the next memory address(es) and complete the entire DMA
transfer of hundreds of thousands of bytes without involving the CPU. The modern
DMA controllers usually contain FIFO buffers that help them deal with different
timings and delays during a transfer.

3. When the DMA transfer is complete, the DMA controller interrupts the CPU.
The CPU can then decide if more transfers are required and reinitialize the DMA
controller for new DMA transfers.

I’m sure you are now wondering how the CPU accesses the main memory during
a DMA transfer. Well, (usually) it does not. But wait, how does the CPU fetch
instructions and data from the main memory if the DMA controller occupies the
memory bus? The CPU in modern computer systems never directly accesses the
main memory—it always accesses the L1, L2, and L3 caches first, and only if there
is a miss in the L3 cache the memory controller transfers the cache line to/from the
main memory. Thus, we rely on the temporal and spatial data locality and assume
that there is a very high probability that instructions and operands needed by the
CPU are already in the cache(s). So, the DMA transfer usually does not prevent the
CPU from fetching instructions and data. By using caches, the CPU leaves most of
the memory bandwidth free for use by a DMA controller. In the case of the cache
miss, modern systems rely on multitasking: in that case, the OS would perform a
switch to another (ready) task.

3.4 Direct Memory Access 161

Summary: Direct Memory Access

Direct memory access (DMA) is a mechanism that allows us to offload the
CPU and to have a DMA controller transfer data directly between a peripheral
device and the main memory.

A DMA transfer starts with a peripheral device placing a DMA request to
the DMA controller. The DMA controller then requests the bus from the
CPU and starts the transfer. When the DMA transfer is complete, the DMA
controller interrupts the CPU.

Because of the use of cache and memory hierarchy in modern computer
systems, a DMA transfer does not prevent the CPU from fetching instructions
and data.

Let’s look at how a DMA controller transfers data between the main memory and
an I/O device. Figure 3.2 illustrates a simplified block diagram of a system with a
DMA controller. The DMA controller is connected to the data, address, and control
buses. It also has six control signals: DREQ, DACK, HOLD, HLDA, END, and WE#.

CPU

MAIN
MEMORY

DATA REGISTER

STATUS REGISTER

I/O INTERFACE

I/O
 D

EV
IC

E

D
AT

A
 B

U
S

A
D

D
RE

SS
 B

U
S

CPU
REGISTERS

W
E#

HOLD

HLDA

D
RE

Q

D
AC

K

CONTROL REG.

DMA
CONTROLLER

COUNT REGISTER

ADDR. REGISTER

END

Fig. 3.2 A simplified block diagram of a computer system with a DMA controller

162 3 Direct Memory Access

Two control signals, DREQ (DMA request) and DACK (DMA acknowledge), are
used between the DMA controller and an I/O device to request and acknowledge a
DMA transfer. Two other control signals, HOLD (Hold Request) and HLDA (Hold
Acknowledge), are used between the DMA controller and the CPU to request and
acknowledge a DMA transfer. The WE# signal selects between the memory read
or memory write operations, and the END signals the CPE that the DMA transfer
is finished and the data is ready for further processing. The DMA controller has
two registers: the address register and the count register. The address register
holds the memory location address from/to which the data is to be transferred. The
count register holds the number of data words to be transferred. Both registers are
memory-mapped, and the CPU is responsible for their initialization.

Before any data transfer occurs, the CPU should initialize the DMA controller’s
address and count registers. The CPU writes the memory location address to/from
which the data is to be transferred into the address register and the number of data
words to be transferred into the count register. During the transfer, the DMA controller
will decrement the count register after each data word is transferred. It will also
increment or decrement the address register, depending on the mode of operation,
and automatically store/read the data to/from consecutive memory locations. When
the count register signals that there is no more data to be transferred, the DMA
controller will activate the END signal. This signal is usually connected to a CPU
interrupt input and raises an interrupt when a transfer is completed.

Let’s suppose the data transfer of one data word from the main memory to the I/O
device. Firstly, the CPU writes the memory location address that holds the data into
the address register and the value of 1 into the count register, indicating that only one
data word is to be transferred. The following steps are then required to accomplish
the DMA transfer (Fig. 3.3):

1. The I/O device is ready to receive data, so it asserts the DREQ signal.
2. The DMA controller requests the bus (requests the DMA transfer) from the CPU

by asserting the HOLD signal.
3. The CPU relinquishes the control of the main memory. It voluntarily places all

its bus signals at a high-impedance state and asserts the HLDA signal to indicate
the bus is granted.

4. The DMA controller places the memory address from the address register on the
address bus and puts the WE# signal into the high state to indicate the read access.

5. The main memory places the requested data onto the data bus.
6. The DMA controller asserts the DACK signal. This indicates that the I/O device

can fetch data from the data bus. The DMA controller also decrements the count
register.

7. The I/O device latches data from the data bus into its data register.
8. As the count register now indicates that there is no data left to transfer, the DMA

controller de-asserts the HOLD signal to return the control over the bus to the
CPU and activates the END signal to raise a CPU interrupt.

9. The CPU de-asserts the HLDA signal and eventually starts to service the interrupt
request.

3.4 Direct Memory Access 163

CPU

MAIN
MEMORY

DATA REGISTER

STATUS REGISTER

I/O INTERFACE

I/O
 D

EV
IC

E

D
AT

A
 B

U
S

A
D

D
RE

SS
 B

U
S

CPU
REGISTERS

W
E#

HOLD

HLDA

D
RE

Q

D
AC

K

DMA
CONTROLLER

CONTROL REG.

1

2

3

4

5

6

7

8

9

ADDR. REGISTER

COUNT REGISTER
END

8

Fig. 3.3 A DMA transfer

Usually, only one DMA controller in the computer system is used for DMA trans-
fers to/from several I/O devices. In that case, the DMA controller has a separate
pair of DREQ and DACK signals for each I/O device. This separate pair (DREQ,
DACK) is called DMA channel.

The DMA transfer described above is referred to as “Fly-by” DMA. This means
that the data, which is transferred between an I/O device and memory, does not pass
through the DMA controller. “Fly-by” DMA refers to the DMA transfer between
an I/O device and memory in which the data flows into/out of the memory using
address lines for only one side of the transfer (the memory side). The other side (the
I/O device) is “addressed” by the DACK signal, i.e., the DACK signal selects the I/O
device involved in the DMA transfer, which should then latch data from the bus or
place data onto the bus.

The way that the DMA function is implemented varies between computer archi-
tectures, and there is also another type of DMA transfer referred to as “Fly-through”
DMA. In “Fly-through” DMA, both source and destination addresses must be spec-
ified. The data flows through the DMA controller, which now has a FIFO buffer to
store the data temporarily. The “Fly-through” DMA controller first places the source
address onto the address bus, reads the data from the source into its internal FIFO,

164 3 Direct Memory Access

then places the destination address onto the address bus and writes the data from its
FIFO into the destination.

“Fly-by” DMA is much faster because “Fly-through” DMA results in two bus
transfers: one from the source to the internal FIFO and the other from the internal
FIFO to the destination. On the other hand, “Fly-through” DMA enables memory-
to-memory DMA transfers, which are impossible with “Fly-by” DMA controllers.

Summary: DMA controllers

Each DMA transfer is driven by at least the DMA controller’s two internal
registers: the address register and the count register.

A DMA channel is a pair of two control signals between a peripheral device
and the DMA controller: DMA request (DREQ) and DMA acknowledge
(DACK).

In “Fly-by” DMA transfers, the data, which is transferred between an I/O
device and memory, does not pass through the DMA controller. Only the
memory address must be specified, while the DACK signal selects the periph-
eral device. Only one memory transaction is needed to accomplish a DMA
transfer.

In “Fly-through” DMA, both source and destination addresses must be spec-
ified. The data flows through the DMA controller, which has a FIFO buffer
to store the data temporarily. The “Fly-through” DMA controller first places
the source address onto the address bus, reads the data from the source into
its internal FIFO, then places the destination address onto the address bus and
writes the data from its FIFO into the destination. Two memory transactions
are required to accomplish one DMA transfer.

3.5 Real-World DMA Controllers

So far, we have learned that a DMA controller is a special device that transfers data
between an I/O device and the main memory without involving the CPU. Modern
DMA controllers also support memory-to-memory DMA transfers, thus allowing
efficient data transfers between two memory regions. For example, on most modern
computer systems, the C library function memcpy() is implemented using the
DMA transfer. This section will describe two real-world DMA controllers and their
functionality: the Intel 8237A DMA “fly-by” controller used in older Intel PCs and
the “fly-through” DMA controller used in modern ARM Cortex-M-based systems.

3.5 Real-World DMA Controllers 165

3.5.1 Intel 8237A DMA Controller

The Intel PC DMA subsystem is based on the Intel 8237A DMA controller. The
Intel 8237A contains four DMA channels that can be programmed independently,
and any of the channels may be active at any moment. These channels are numbered
as 0, 1, 2, and 3. The Intel 8237A DMA controller moves one byte in each transfer
and is very similar to the DMA controller described in Fig. 3.2.

The Intel 8237A is depicted in Fig. 3.4. It has two signals for each channel, named
DRQ (DMA request) and DACK (DMA acknowledge). There are additional signals
with the names HRQ (Hold Request), HLDA (Hold Acknowledge), EOP# (End
of Process), and the bus control signals MEMR# (Memory Read) and MEMW#
(Memory Write). Table 3.1 provides a full 8237A signals description.

The Intel 8237A DMA controller is a “fly-by” DMA controller. Subsequently, the
DMA can only transfer data between an I/O device and a memory, but not between
two I/O devices or two memory locations. Actually, the Intel 8237A controller does
allow two channels to be connected to allow memory-to-memory DMA operations,
but nobody in the PC industry used this DMA controller this way since it is faster
to move data between memory locations using the CPU. Each DMA channel is
activated only when an I/O device connected to that DMA channel requests a transfer
by asserting the DRQ line.

Each channel in the 8237A DMA controller has two internal registers that con-
trol the transfer: the count register and the address register. Both registers are
programmable by the CPU. The count register holds the number of bytes to be trans-
ferred, while the address register holds the (initial) memory address. When a data
byte is transferred, the address register is decremented or incremented, depending on
how it is programmed. The count register is decremented after each transfer. When
the value in the count register goes from zero to 0xFFFF, the EOP# output signal is
activated.

The 8237A is designed to operate in two major cycles. These are called Idle and
Active cycles. When no channel is requesting DMA transfer, the 8237A controller
enters the Idle cycle. In this cycle, the 8237A samples the DREQ lines every clock

Fig. 3.4 Intel 8237A DMA
controller. The signals used
to initialize the DMA
controller are not shown

DRQ0

DACK0

DRQ1

DACK1

DRQ2

DACK2

DRQ3

DACK3

HRQ

HLDA

MEMR#

MEMW#

EOP#

A[7:0]

INTEL
8237A

} Channel 0

} Channel 1

} Channel 2

} Channel 3

166 3 Direct Memory Access

Table 3.1 Intel 8237A signals description

Signal name Signal description

HRQ Hold request is an output used to request the bus

HLDA Hold acknowledge is an input that signals that the CPU has granted the bus

DREQ[3:0] DMA request inputs are used to request a DMA transfer for each of the four DMA
channels

DACK[3:0] DMA acknowledge outputs acknowledge the a channel DMA request and select
the I/O device during the DMA transfer

A[7:0] These pins are outputs and are used to provide the DMA transfer memory address

EOP# End-of-process is a bidirectional active-low signal used as an input to terminate a
DMA transfer or as an output to signal the end of a DMA transfer

MEMR# Memory read is an active-low output used to read data from the selected memory
location during a DMA transfer

MEMW# Memory write is an active-low output used to write data to the selected memory
location during a DMA transfer

cycle to determine if any channel is requesting a DMA transfer. When a channel
requests a DMA service by asserting its DREQ signal, the 8237A asserts the HRQ
signal to the microprocessor requesting the bus and enters the Active cycle. It is in
the Active cycle that the DMA transfer will take place.

There are three modes of operation: single mode, block mode, and demand mode.
In single mode, the device is programmed to make one transfer only. Single-mode
transfer releases the HRQ signal after each byte is transferred. In this mode, DRQ
must be held active until DACK becomes active. If the DRQ is held active, the 8237A
again requests the bus with the HRQ signal. Upon receipt of a new HLDA, another
single transfer will be performed.

Block mode automatically transfers the number of bytes indicated by the count
register. The count register will be decremented, and the address register will be
decremented or incremented following each transfer. In block mode, the DMA con-
troller is activated by DREQ to continue making transfers until the count register
goes from 0x0000 to 0xFFFF, or an external EOP# is activated. DREQ needs to be
held active only until DACK becomes active.

In demand mode, the DMA controller transfers data until an external EOP# is
asserted or until DREQ goes inactive. This mode is used when there is a block of
data to be transferred, but the I/O device does not have a high data capacity, and
the transfer should be paused until the I/O device is ready again. During the time
when the transfer is paused, the CPU is allowed to use the bus, and the intermediate
values of address and word count are preserved. When the I/O is ready to continue,
the DMA transfer is re-established by activating the DREQ signal.

Intel 8237A was also used for a DRAM memory refresh. The content of the
DRAM memory must be regularly refreshed in order to preserve the data. We will
detail DRAM operations in the next chapter. For now, it suffice to say that a row of

3.5 Real-World DMA Controllers 167

data in DRAM is refreshed by reading it into an internal row register and writing it
back. To refresh one data row in DRAM, the 8237A DMA controller reads data from
memory onto the data bus. During this dummy read, data from the DRAM array is
read into the row register. This automatically leads to the refresh of one memory cell
row. However, no I/O devices fetch the data, as no device issued a DRQ. Hence, the
DMA controller does not assert a DACK.

Summary: Intel 8237A DMA Controller

The Intel 8237A controller is a “fly-by” DMA controller. Subsequently, the
DMA can only transfer data between an I/O device and a memory. Each DMA
transfer requires only one memory transaction. It was used in Intel-based PC
systems.

It contains four DMA channels, and any of the channels may be active at
any moment. Each channel in The 8237A DMA controller has two internal
registers that control the transfer: the count register and the address register.
Both registers are programmable by the CPU.

3.5.2 STM32H7 Series DMA Controller

This subsection describes the direct memory access (DMA) controller available in the
STM32H7 Arm Cortex-M7 core-based series of systems-on-chips. The STM32H7
series DMA controller allows data transfers to occur in the background without the
intervention of the Cortex-M7 processor. During this operation, the processor can
execute other tasks, and it is only interrupted when a whole data block is transferred
and available for processing. The STM32H7 series DMA controller is a fly-through
DMA controller and supports the transfer of large amounts of data with no significant
impact on system performance. The DMA controller can do automated memory-to-
memory, peripheral-to-memory, and peripheral-to-peripheral transfers.

Figure 3.5 illustrates the simplified block diagram of the STM32H7 series DMA
controller. The STM32H7 series DMA controller features three ports: a programming
port for DMA programming and two ports (peripheral and memory ports) that allow
the DMA to initiate data transfers between different I/O devices and memory. A
port connects the data, address, and control bus. Thus, one port comprises data
lines, address lines, and control signals, which are not depicted in Fig. 3.5 due to
simplicity.

Each STM32H7 series DMA controller supports up to eight streams. A stream
is an active DMA transfer between a peripheral device and memory, two peripheral
devices, or between two memory blocks. Each stream is associated with a peripheral
device that can trigger a data transfer request when ready. More than one enabled
DMA stream must not serve the same peripheral request.

168 3 Direct Memory Access

ARBITER

REQ_STREAM0

REQ_STREAM1

REQ_STREAM7

FI
FO

 0

FI
FO

 1

FI
FO

 2

FI
FO

 3

FI
FO

 4

FI
FO

 5

FI
FO

 6

FI
FO

 7

DMA Controller
Control Logic and

Programming
Interface

MEMORY PORT

PERIPHERAL PORT

PROGRAMMING
PORT

ST
RE

A
M

_S
EL

ST
RE

A
M

_S
EL

ST
RE

A
M

 0

ST
RE

A
M

 1

ST
RE

A
M

 2

ST
RE

A
M

 3

ST
RE

A
M

 4

ST
RE

A
M

 5

ST
RE

A
M

 6

ST
RE

A
M

 7

ST
RE

A
M

 0

ST
RE

A
M

 1

ST
RE

A
M

 2

ST
RE

A
M

 3

ST
RE

A
M

 4

ST
RE

A
M

 5

ST
RE

A
M

 6

ST
RE

A
M

 7

Memory Address Registers: S0MAR..S7MAR
Peripheral Address Registers : S0PAR..S7PAR
Number of Data Registers: S0NDR..S7NDR

Status registers

DMA

Fig. 3.5 Simplified block diagram of a STM32H7 series DMA controller

The DMA controller contains an arbiter for handling the priority between DMA
streams. Stream priority is software-configurable (four levels: very high, high,
medium, low). The arbiter selects the stream with the highest priority. The low-
est stream number gets priority if two or more DMA streams have the same software
priority level.

The programmable 8-channel DMAMUX multiplexer block (Fig. 3.6) enables
routing DMA request lines between the peripherals and the DMA controller. Each
channel contains one 128-to-1 multiplexer and selects a unique DMA request line
from peripherals. Each DMA stream is driven by one DMAMUX output channel
(request). Any DMAMUX output request can be individually programmed to select
the DMA request source signal from up to 128 available request input signals. The
assignment of DMAMUX request multiplexer inputs to the DMA request lines from
peripherals are detailed in the product reference manual.

3.5 Real-World DMA Controllers 169

peripheral_req0
peripheral_req1

peripheral_req0
peripheral_req1

peripheral_req0
peripheral_req1

peripheral_req0
peripheral_req1

peripheral_req127

MUX
Channel0

MUX
Channel1

MUX
Channel2

MUX
Channel7

REQ_STREAM7

REQ_STREAM0

ARBITER

FI
FO

 0

FI
FO

 1

FI
FO

 2

FI
FO

 3

FI
FO

 4

FI
FO

 5

FI
FO

 6

FI
FO

 7

DMA Controller
Control Logic and

Programming
Interface

MEMORY PORT

PERIPHERAL PORT

PROGRAMMING
PORT

ST
RE

A
M

_S
EL

ST
RE

A
M

_S
EL

ST
RE

A
M

 0

ST
RE

A
M

 1

ST
RE

A
M

 2

ST
RE

A
M

 3

ST
RE

A
M

 4

ST
RE

A
M

 5

ST
RE

A
M

 6

ST
RE

A
M

 7

ST
RE

A
M

 0

ST
RE

A
M

 1

ST
RE

A
M

 2

ST
RE

A
M

 3

ST
RE

A
M

 4

ST
RE

A
M

 5

ST
RE

A
M

 6

ST
RE

A
M

 7

Memory Address Registers: S0MAR..S7MAR
Peripheral Address Registers : S0PAR..S7PAR
Number of Data Registers: S0NDR..S7NDR

Status registers

REQ_STREAM2

REQ_STREAM1

DMAREQ_ID[6:0]

DMADMAMUX

Fig. 3.6 Simplified block diagram of DMAMUX block and STM32H7 DMA controller

When a peripheral is ready, it sends a DMA request to the DMAMUX, which
routes the request to a selected DMA stream request input of the DMA controller.
Depending on the stream priority, the DMA controller will serve the DMA request.
As this is a “fly-through” DMA controller, the data flows through the DMA controller,
which has a FIFO buffer associated with each stream. The FIFO buffer is used to
temporarily store the data and amortize the difference in transmission speeds of two
peripheral devices. Standard block transfer is accomplished by the DMA controller
performing a sequence of memory transfers. Each transfer involves a load operation
from a source address into the FIFO, followed by a store operation from the FIFO
to a destination address.

The DMA controller’s control logic and programming interface are accessed
through the programming port. The programming interface comprises a set of
memory-mapped registers per stream. Each stream is characterized by four reg-
isters: Memory Address Register (SxMAR), Peripheral Address Register (SxPAR),
Number of Data Register (SxNDR), and Configuration Register (SxCR). All these
registers are memory-mapped and will be discussed in the following subsections.

STM32H7 devices embed two DMA controllers, offering up to 16 streams in total
(eight per controller), each dedicated to managing memory access requests from one
or more peripherals.

170 3 Direct Memory Access

Summary: STM32H7 series DMA controller

The STM32H7 series DMA controller is a “fly-through” DMA controller
used in the STM32H7 Arm Cortex-M-based systems.

The STM32H7 series DMA controller features three ports: a programming
port for DMA programming and initialization and two ports (peripheral and
memory ports) that allow the DMA to initiate data transfers between different
I/O devices and memory.

Each STM32H7 series DMA controller supports up to eight streams. A
stream is an active DMA transfer between a peripheral device and mem-
ory, two peripheral devices, or between two memory blocks.

Each DMA stream is driven by one DMAMUX output channel (request).

As this is a “fly-through” DMA controller, the data flows through the DMA
controller, which has a FIFO buffer associated with each stream.

STM32H7 devices embed two DMA controllers.

3.5.2.1 Peripheral and Memory Addresses
Each DMA transfer is defined by a source address and a destination address. Both
addresses should be aligned to transfer size. The transfer size value defines the
volume of data to be transferred from source to destination. Each stream has a pair
of registers to store these addresses: Peripheral Address Register (SxPAR—Stream
x Peripheral Address Register) and Memory Address Register (SxMAR—Stream
x Memory Address Register). Before each transfer, the CPU should initialize both
registers with valid addresses. It is possible to configure the DMA to automatically
increment the source and/or destination address after each data transfer.

3.5.2.2 Transfer Size,Type and Mode
The transfer size and the transfer mode also define each DMA transfer. The transfer
size is a value that defines the volume of data to be transferred from source to desti-
nation. This value is stored in the so-called Number of Data Register (NDR). Each
stream has its Number of Data Register, labeled as SxNDTR. Each SxNDTR is a 16-
bit register, and the number of data items to be transferred is software-programmable
from 0 to 65535. After each transfer, the value in SxNDTR is decreased by the amount
of the transferred data; thus, SxNDTR contains the number of data transfers still to
be performed.

The STM32H7 series DMA controller can perform two transfer types: normal
type and circular type. In normal type, once the SxNDTR register reaches zero
(the transfer has been completed), the stream is disabled. This means that the CPU
should reinitialize the DMA controller in order to activate the stream again. In the
circular type, the DMA controller can handle circular buffers and continuous data
flow. In this type, the SxNDTR register is reloaded automatically with the previously
programmed value when a transfer has been completed.

3.5 Real-World DMA Controllers 171

Each STM32H7 series DMA controller is capable of performing three different
transfer modes:

1. peripheral to memory,
2. memory to peripheral,
3. memory to memory.

3.5.2.3 FIFOs and Burst Transfers
Each stream has a 4x32-bit FIFO that temporarily stores data coming from the source
before transmitting them to the destination. The DMA FIFOs help reduce memory
access and do burst transactions, which optimize the transfer bandwidth. They also
allow independent source and destination transfer width (byte, half-word, word).
When the data widths of the source and destination are not equal, the DMA automat-
ically packs/unpacks the necessary transfers to optimize the bandwidth. For example,
the data from the source can be transferred into FIFO as bytes or 16-bit half-words
and then transferred to the destination from FIFO as bytes, 16-bit half-words, or
32-bit words.

Because of the internal FIFOs, the DMA controller is capable of burst transfers
of length 4x, 8x, or 16x data units. A data unit can be a byte, a 16-bit half-word, or a
32-bit word. The burst size on the DMA peripheral port must be set according to the
peripheral needs/capabilities. The size of the burst is software-configurable, usually
equal to half the FIFO size of the peripheral.

3.5.2.4 DMA Transactions
A DMA transaction consists of a sequence of a given number of data transfers. The
number of data items to be transferred and their width (8-bit, 16-bit, or 32-bit) are
software-programmable. Each DMA transfer consists of three operations:

1. loading from the peripheral data register or a location in memory addressed
through the DMA_SxPAR or DMA_SxM0AR register

2. storage of the data loaded to the peripheral data register or a location in memory
addressed through the DMA_SxPAR or DMA_SxM0AR register

3. post-decrement of the DMA_SxNDTR register containing the number of trans-
actions that still have to be performed.

The peripheral sends a request signal to the DMA controller through the DMA-
MUX block. The DMA controller serves the request depending on the channel pri-
orities. As soon as the DMA controller accesses the peripheral, an acknowledgment
signal is sent to the peripheral by the DMA controller, which in turn releases its
request. Once the peripheral de-asserts the request, the DMA controller releases the
acknowledge signal.

Figure 3.7 illustrates a peripheral-to-memory DMA transaction. Each time a
peripheral request occurs, the stream initiates a transfer from the source (address
is in SxPAR) to fill the FIFO. Then, the contents of the FIFO are drained and stored

172 3 Direct Memory Access

Memory
port

Peripheral
port

SxMAR

SxPAR

FIFO

Memory

I/O
Device

Memory
Bus

Peripheral
Bus

DMA Controller

Peripheral DMA Request

2

3

1

Fig. 3.7 A peripheral-to-memory DMA transaction

in the destination (address is in the SxMAR). The transfer stops once the SxNDTR
register reaches zero or when the enable bit in the SxCR register is cleared by software
(stream disabled).

Figure 3.8 illustrates a memory-to-peripheral DMA transaction. In this mode, the
stream immediately initiates transfers from the source (address is in SxMAR) to fill
the FIFO entirely, and the SxMAR register is incremented/decremented. The DMA
controller does not wait for a DMA request from a peripheral device to read from
memory. When a peripheral request occurs, the contents of the FIFO are drained and
stored in the destination (address is in the SxPAR). The DMA controller reloads the
empty internal FIFO again with the next data to be transferred from memory (address
is in SxMAR). The transfer stops once the SxNDTR register reaches zero or when
the enable bit in the SxCR register is cleared by software (stream disabled).

3.5.2.5 Programming and Using the STM32H7 Series DMA Controller
Programming and using the STM32H7 series DMA controller is relatively easy. Each
stream is controlled using four memory-mapped registers: memory address register
(SxMAR), peripheral address register (SxPAR), number-of-data register (SxNDTR),
and configuration register (SxCR). Once set, the DMA controller handles data trans-
fers and increments memory addresses without disturbing the CPU. To configure the
DMA controller and a DMA stream, the following procedure should be applied:

3.5 Real-World DMA Controllers 173

Memory
port

Peripheral
port

SxMAR

SxPAR

FIFO

Memory

I/O
Device

Memory
Bus

Peripheral
Bus

DMA Controller

Peripheral DMA Request

4

2

3

1

Fig. 3.8 A memory-to-peripheral DMA transaction. In this mode, the stream immediately initiates
transfers from the memory to entirely fill the FIFO. When a peripheral request occurs, the contents
of the FIFO are stored in the peripheral device

1. If the stream is enabled, disable it by resetting the stream enable bit in the SxCR
register, then read this bit to confirm that there is no ongoing stream operation.
When the EN bit is 0, the stream is ready to be configured.

2. Set the peripheral port register address in the SxPAR register. After the peripheral
DMA request, the data will be moved from/to this address to/from the peripheral
port.

3. Set the memory address in the SxMAR register. After the peripheral DMA request,
the data will be written to or read from this memory address.

4. Configure the total number of data items to be transferred in the SxNDTR register.
After each (burst) transfer, this value is decremented accordingly.

5. Use DMAMUX to route a peripheral DMA request line to the DMA stream
request signal.

6. Configure the stream priority, the data transfer direction, single or burst trans-
actions, peripheral and memory data widths, circular/normal transfer type, and
interrupts in the SxCR register.

7. Activate the stream by setting the stream enable bit in the SxCR register.

As soon as the stream is enabled, it can serve any DMA request from the peripheral
connected to the stream, and DMA transactions using the stream can be performed.

174 3 Direct Memory Access

Summary: STM32H7 series DMA transfers

Source and destination addresses define each DMA transfer. Each stream
has a pair of registers to store these addresses: Peripheral Address Regis-
ter (SxPAR -Streamx Peripheral Address Register) and Memory Address
Register (SxMAR -Stream x Memory Address Register)

Each DMA transfer is also defined by the transfer size and the transfer mode.
Each stream has its Number of Data Register (SxNDR), which stores the
transfer size.

The STM32H7 series DMA controller can perform two transfer types: normal
type and circular type.

FIFOs allow independent source and destination transfer width and burst
transfers.

Each DMA transfer consists of two transactions on the bus: loading from the
peripheral data register or a location in memory and storage of the data to
the peripheral data register or a location in memory.

3.6 Bus Mastering DMA

So far, we have learned that we can use a special piece of hardware, a DMA controller,
to transfer large amounts of data between a peripheral device and memory. This
approach is sometimes referred to as third-party DMA. Third-party DMA requires
an independent DMA controller, which is built into motherboard chipsets, to move
data between a peripheral device (referred to as the first party) and system RAM
(referred to as the second party). Here, the DMA controller is shared by multiple
peripheral devices, which is why it is viewed as a third-party DMA. As we have
learned previously, each “fly-through” DMA transfer (the type of DMA used in
most of today’s computer systems) requires two memory transactions: one to load
the data from the source and one to store the data to the destination.

The better approach to DMA transfers would be having only one memory transac-
tion per DMA transfer while avoiding third-party “fly-by” DMA controllers. This is
possible with the latest I/O devices built into modern computer systems, where each
I/O device can act as a bus master, i.e., each device can directly access any other
I/O device or memory on the bus. Indeed, each modern I/O device now contains
its own integrated DMA controller, which is not shared by other I/O devices. This
highest performing DMA type is called first-party DMA or Bus Mastering DMA.
Peripheral devices, which support the Bus Mastering technology, have the ability
to move data to and from system memory without the intervention of the CPU or a
third-party DMA controller.

Bus Mastering allows data to be transferred much faster than third-party DMA.
This is because half as many bus cycles are needed. The third-party DMA requires

3.6 Bus Mastering DMA 175

PCIe endpoint
(e.g. a GPU card)

Intel Core i7

Memory Controler
Hub

PCIe Root Complex

MAIN MEMORY

DMA Controller

Bus Mastering
DMA

Fig. 3.9 Bus Mastering in an Intel-based system. Bus Mastering is the feature integrated into
PCIe endpoint devices. A DMA transfer either transfers data from an endpoint device into system
memory or from system memory into the endpoint device on the PCI Express bus. The DMA request
is always initiated by the integrated DMA controller in the endpoint device after being initialized
from the application driver (i.e., receiving parameters that define DMA transaction and memory
buffer address)

the DMA controller to alternately read a segment of data from one device (this
can be a peripheral device or system memory) and write it to the other device.
Each data segment requires at least one bus cycle to be read and one bus cycle to
be written. Bus mastering devices only require bus cycles when accessing system
memory, so half as many bus cycles are needed. Because of this, devices that support
Bus Mastering can move data many times faster than third-party DMA. While bus
mastering theoretically allows one peripheral device to communicate directly with
another, in practice, almost all peripherals master the bus exclusively to perform
peripheral-to-memory and memory-to-peripheral transfers.

Bus Mastering is used in the computer systems with a PCI Express (PCIe) bus.
A Bus Mastering DMA implementation is by far the most common type of DMA
found in systems based on PCI Express and resides within the peripheral device,
which is called Bus Master because it initiates the movement of data to and from
system memory. Figure 3.9 shows a typical Intel system architecture. The system
includes the CPU core(s) and a memory controller hub, forming the so-called PCIe
root complex. The system in Fig. 3.9 also contains the main memory and one PCIe
peripheral device (e.g., a GPU card). The peripheral device is connected to the PCIe
bus. PCIe peripheral devices are called PCI endpoint devices. The memory controller
hub also acts as a bridge between the PCIe bus, the CPU bus, and the main memory
bus. A DMA transfer either transfers data from an endpoint device into system

176 3 Direct Memory Access

memory or from system memory into the endpoint device on the PCI Express bus.
The DMA request is always initiated by the integrated DMA controller in the endpoint
device after being initialized from the application driver (i.e., receiving parameters
that define DMA transaction and memory buffer address).

Summary: Bus Mastering

Bus Mastering DMA is the highest-performing DMA type. Peripheral
devices, which support the Bus Mastering technology, have the ability to
move data to and from system memory without the intervention of the CPU
or a third-party DMA controller.

Bus Mastering is used in the computer systems with a PCI Express (PCIe)
bus.

PCIe peripheral devices are called PCI endpoint devices. Endpoint devices
have their own integrated DMA controller, which is not shared by other
endpoint devices.

4Main Memory

CHAPTER GOALS

In this chapter, we will cover the modern memory design and operations in
memory chips and modules that enable efficient data transfer between the
memory controller and the so-called DIMMs, i.e., memory modules used in
modern computer systems. To fully understand the organization and opera-
tion of modern memory chips, we need to start with some fundamental dig-
ital building blocks. Then, we gradually build memory components, arrays,
operations inside the memory chips, timings, and techniques to boost the
performance of memory chips. At the end of the chapter, you should fully
understand modern DDR SDRAM chips, DDR memory technology, memory
timings, DIMM modules, and multi-channel architecture.

From this chapter, you should gain a basic understanding of the design
and operation of computer memory and storage circuits, including:

• Static memory circuits using the six-transistor cell.
• Dynamic memory circuits, including the one-transistor cell.
• Understand the fundamental principles and operation of Dynamic Random
Access Memory (DRAM).

• Examine the organization of DRAM chips and modules, including row
and column addressing schemes.

• Understand the different access modes of DRAM, including page mode,
fast page mode, and burst mode.

• Explore the historical evolution and key advancements in DRAM technol-
ogy.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
P. Bulić, Understanding Computer Organization, Undergraduate Topics in Computer
Science, https://doi.org/10.1007/978-3-031-58075-8_4

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58075-8_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58075-8_4&domain=pdf
https://doi.org/10.1007/978-3-031-58075-8_4
https://doi.org/10.1007/978-3-031-58075-8_4
https://doi.org/10.1007/978-3-031-58075-8_4
https://doi.org/10.1007/978-3-031-58075-8_4
https://doi.org/10.1007/978-3-031-58075-8_4
https://doi.org/10.1007/978-3-031-58075-8_4
https://doi.org/10.1007/978-3-031-58075-8_4
https://doi.org/10.1007/978-3-031-58075-8_4
https://doi.org/10.1007/978-3-031-58075-8_4
https://doi.org/10.1007/978-3-031-58075-8_4
https://doi.org/10.1007/978-3-031-58075-8_4

178 4 Main Memory

CHAPTER GOALS

• Explore the implications of DRAM organization and access modes on
memory access latency and bandwidth.

• Learn about the various timing parameters and specifications that charac-
terize DRAM performance.

• Explore the impact of DRAM timing parameters on memory access speed
and system performance.

• Understand how architectural enhancements improve DRAM perfor-
mance, reliability, and scalability.

• Explore the evolution of Double Data Rate (DDR) memory standards
and their impact on DRAM technology and learn about different DDR
generations, including DDR2, DDR3, DDR4, and DDR5.

• Learn from practical examples of SDRAM usage.
• Understand the basic concept and purpose of Dual In-Line Memory Mod-
ules (DIMMs) in computer systems.

• Learn about DIMM slots, memory channels, and population rules on moth-
erboards.

4.1 Introduction

In the intricate ecosystem of computer systems, Random Access Memory (RAM)
emerges as a cornerstone, playing a pivotal role in storing and accessing data for rapid
retrieval and manipulation. As the primary volatile memory component in modern
computing devices, RAM is a dynamic workspace where programs, applications,
and data reside during active use, facilitating seamless multitasking, efficient data
processing, and responsive system performance.

At its essence, RAM embodies the essence of immediacy and accessibility, offer-
ing fast, byte-addressable storage that enables rapid read and write operations. Unlike
non-volatile storage mediums such as hard disk drives (HDDs) or solid-state drives
(SSDs), which store data persistently but incur latency penalties for access, RAM
provides near-instantaneous access to stored data, making it indispensable for tasks
that demand high-speed data manipulation and real-time responsiveness.

In this chapter, we focus on the main memory used in modern computer systems
as one in Fig. 4.1. Figure 4.1 illustrates the memory hierarchy in the Intel i7-860
based system. Intel i7-860 is an out-of-order execution processor that includes four
cores. The L1 and L2 caches are separate for each core, while the L3 cache is shared
among the cores on a chip. The L1 cache is the 32 KB, four-way set-associative
cache. There are two L1 caches per core: instruction (I) and data (D). The L2 cache
is the 256 KB, eight-way set-associative cache. Finally, the L3 cache is the 8 MB,
16-way set-associative cache.

A CPU core directly accesses only its L1 cache. If a hit in L1 occurs, the data
is returned after an initial latency of 4 cycles. If the L1 cache misses, the L2 cache

4.2 Basics of Digital Circuits: A Quick Review 179

 Intel Core i7-860

64

64

Channel 0

Channel 1

DDR 3 DIMMsCPU Core0
L1 I

L2
L1 D

CPU Core1
L1 I

L2
L1 D

CPU Core2
L1 I

L2
L1 D

CPU Core3
L1 I

L2
L1 D

L3

D
ua

l-C
ha

nn
el

M

em
or

y
Co

nt
ro

lle
r

 Main Memory
64

6464

64

128

128

64

6464

64

64

6464

64

64

6464

64

128

128

128

Fig. 4.1 Intel i7-860 memory hierarchy

is accessed. If a hit in L2 occurs, the block of size 64B is returned after an initial
latency of 10 cycles at a rate of 8 bytes per clock cycle. If the L2 cache misses, the L3
cache is accessed. If a hit occurs in L3, the 64-byte block is returned after an initial
latency of 35 cycles at a rate of 16 bytes per clock. If L3 misses, memory access is
initiated—the on-chip memory controller must get the block of size 64B from the
main memory.

The main memory is implemented using DDR SDRAM memory chips placed
on the printed circuit boards called Dual In-Line Memory Module (DIMM). The
memory controller on i7-800 supports two 64-bit memory channels. Each channel
is used to access eight 8-bit memory chips placed on one side of DIMM (64 bits
per access). Two 64-bit memory channels are used simultaneously as one 128-bit
channel (since there is only one memory controller, and the same address of the
missing block in L3 is sent on both channels) to fill the missing block in L3. Thus,
the memory controller fills the 64-byte cache block at a rate of 16 bytes (124 bits)
per memory clock cycle.

Have you struggled to read the description of the memory hierarchy in the Intel
i7-860-based system? Don’t worry; at the end of this chapter, you should be able
to understand it. Let us now begin our journey into the world of modern memory.
Throughout this exploration of the main memory, we will delve into its fundamental
characteristics, architecture, and functionality, unraveling the intricate mechanisms
that govern its operation within the broader context of computer systems.

4.2 Basics of Digital Circuits: A Quick Review

Before looking under the hood of modern memory chips used in computer systems,
we should apprehend some basic concepts from digital electronics like MOS tran-
sistors used as logical switches and MOS inverters. The aim is to understand the
operations in modern memory chips and not fall into the physical equations of elec-

180 4 Main Memory

Fig. 4.2 nMOS and pMOS
transistor symbols G

D

S

G

S

D

nMOS pMOS

tronic circuits. Therefore, the description of the basic concepts of digital circuits will
be significantly simplified.

The basic building block of all digital circuits is the MOS transistor. MOS is an
acronym for Metal-Oxid-Semiconductor and indicates the manufacturing process
used to make transistors. The MOS transistor has three terminals: gate (G), drain
(D), and source (S). The gate terminal is a control input: it controls the flow of
electrical current between the source and drain terminals. There are two types of
MOS transistors: nMOS and pMOS. Figure 4.2 shows the symbols of both MOS
transistors. We will consider only the type of operation where MOS transistors act
as logical switches.

4.2.1 MOS Transistor as a Switch

Consider first an nMOS transistor. No current flows between the drain and the source
if the gate terminal is grounded (logical 0). Hence, we say the transistor is OFF. If
the gate voltage is high and corresponds to logic 1, a conducting path of electrons is
formed from the source to drain, and current can flow. We say the transistor is ON.

The reverse holds for a pMOS transistor. When the gate is at a positive voltage that
corresponds to logic 1, there is no current flow, so the transistor is OFF. A sufficiently
low gate voltage that corresponds to logic 0 forms a conducting path from source to
drain, so the transistor is ON.

In summary, the gate of a MOS transistor controls the flow of current between
the source and drain. Simplifying this to the extreme allows us to view the MOS
transistors as ON/OFF switches. When the gate of an nMOS transistor is 1, the
transistor is ON, and the current flows between the source and the drain. When the
gate is 0, the nMOS transistor is OFF, and no current flows between the source and
the drain. A pMOS transistor is just the opposite, being ON when the gate is low and
OFF when the gate is high. Figure 4.3 illustrates this switch model.

4.2.2 CMOS Inverter

The most straightforward logic gates that can be built using MOS transistors are
inverters. An inverter is built from two complementary MOS transistors, one nMOS,
and one pMOS, hence the name complementary MOS (CMOS) inverter. Figure 4.4
shows the schematic and the switch-level model for a CMOS inverter or NOT gate
using one nMOS transistor and one pMOS transistor. The bar at the top of the
schematic indicates a supply voltage (Vdd), and the triangle at the bottom indicates

4.2 Basics of Digital Circuits: A Quick Review 181

Fig. 4.3 Switch-level
models of nMOS and pMOS
transistors

G

D

S

G

S

D

nMOS

pMOS

D

S

D

S

D

S

D

S

OFFON

OFF ON

G=1G=0

G=0 G=1

Fig. 4.4 CMOS inverter and
its switch-level models Vdd

IN OUT

1

0

1

0

OUT=0OUT=1

IN=0 IN=1

the ground terminal (GND). The input IN connects both transistors’ gates. When the
input IN is 0, the nMOS transistor is OFF, and the pMOS transistor is ON. Thus, the
output OUT is pulled to logic 1 because it is connected to Vdd through the pMOS
transistor. Conversely, when IN is 1, the nMOS is ON, the pMOS is OFF, and OUT
is pulled down to ‘0’, because it is connected to GND through the nMOS transistor.

4.2.3 Bistable Element

Now that we are familiar with MOS transistors and CMOS inverters, it is time to learn
how we can store one bit of information in a MOS digital circuit, i.e., how to form
a 1-bit storage (memory) cell using MOS transistors and inverters. The fundamental
building block of memory is a bistable element—a logic element with two stable
states. Figure 4.5 shows the bistable element composed of two inverters, I1 and I2.
The inverters are cross-coupled, meaning that the input of I1 is the output of I2 and
vice versa.

If.Q = 0, I2 receives a FALSE input, producing a TRUE output on. Q. I1 receives
a TRUE input, producing a FALSE output on Q. This is consistent with the original
assumption that Q = 0, so the circuit is in a stable state. If.Q = 1, I2 receives a TRUE
input, producing a FALSE output on . Q. I1 receives a FALSE input, producing a
TRUE output on Q. This is consistent with the original assumption that Q = 1, so

182 4 Main Memory

Fig. 4.5 A bistable element I1

I2

QQ

the circuit is again in a stable state. Because the cross-coupled inverters have two
stable states, 0 and 1, the circuit is said to be bistable. The state of the cross-coupled
inverters is contained in one binary state variable, Q. Specifically if .Q = 0, it will
remain 0 forever, and if .Q = 1, it will remain 1 forever. Although the cross-coupled
inverters can store a bit of information, they are not practical because the user has no
inputs to control the state. So, we have to expand the bistable element with circuitry,
which provides inputs to control the value of the state variable. One such element
that can accept the inputs to control the value stored in the bistable is a static RAM
cell.

Summary: Transistors, Inverter and Bistable

The gate of a MOS transistor controls the flow of current between the source
and drain. Simplifying this to the extreme allows us to view the MOS tran-
sistors as ON/OFF switches.

An inverter is built from two complementary MOS transistors, one nMOS
and one pMOS.

The fundamental building block of memory is a bistable element. It is com-
posed of two cross-coupled inverters. It stores one bit of information.

4.3 SRAM Cell

Static random-access memory (static RAM or SRAM) is a type of random-access
memory (RAM) that uses a bistable element to store one bit of information. This is
the type of memory used as the building block of most caches because of its superior
performance over other memory structures, specifically DRAM, which we will cover
later. SRAM is faster and more expensive than DRAM; it is typically used for CPU
cache and registers, while DRAM is used for a computer’s main memory.

A typical SRAM cell is made up of six MOS transistors—two complementary
pairs that form two cross-coupled inverters (bistable), and two access nMOS tran-
sistors that serve as a switch used to control the state of the bistable element during
the read and write operations. Figure 4.6 shows an SRAM cell. Each bit in an SRAM
cell is stored in the bistable element composed of four transistors that form two
cross-coupled inverters. As we have already learned, this cross-coupled connection
creates regenerative feedback that allows it to store a single bit of data indefinitely

4.3 SRAM Cell 183

Fig. 4.6 SRAM cell WL

BLBL

(a) A basic structure of an SRAM cell.

Vdd Vdd

WL

BLBL

(b) 6-transistor SRAM cell.

provided that power is supplied to the SRAM cell. The SRAM cell also has two bit
lines that control both the input and output of the data from the cell. The first bit line
(.BL), holds the same value that is stored in the cell. The second bit line (.BL) holds
the inverse of the value that is stored in the cell.

When the word line (WL) is not selected (WL = 0), the cell is in standby mode.
Setting the word line to a logic high enables access to nMOS transistors. This connects
the cell with both bit lines and allows the cells to be read or written. The SRAM cell
is read by asserting a WL and detecting the voltage difference at the bit lines.BL and
.BL. The SRAM cell is written by setting the content on the bit lines.BL and.BL and
asserting the word line.

Due to the ability to store the information indefinitely and the high speed of
SRAM cells, they are used to implement caches and registers in microprocessors.
Furthermore, the main advantage of SRAM is that it uses the same fabrication process
as the microprocessor core, simplifying the integration of cache and CPU registers
onto the processor die. On the other hand, the main disadvantages of SRAM cells are
price, low density, and high operational power consumption. These disadvantages
prevent the usage of SRAM cells in the main computer memory.

Since SRAM cells are not used to build the main memory, we will end up dealing
with and learning about SRAM cells at this point, and we will dive deep into DRAM
cells. By contrast, DRAM typically uses a different process that is not optimal for
logic circuits, making the integration of CPU logic and DRAM harder than the inte-
gration of CPU logic and SRAM. But DRAMs are smaller, cheaper, and consume less
power, which makes them the better candidate for implementing the main memory.

184 4 Main Memory

Summary: SRAM cell

A SRAM cell uses a bistable element to store one bit of information. It is
made up of a bistable and two access nMOS transistors that serve as a switch
used to control the state of the bistable element during the read and write
operations.

Due to the ability to store the information indefinitely and the high speed of
SRAM cells, they are used to implement caches and registers in micropro-
cessors.

4.4 DRAM Cell

Dynamic Random Access Memory (DRAM) is the main memory used for all com-
puters. To pack more bits per chip, a DRAM cell consists only of a single MOS
transistor (T) and a storage capacitor (C), as shown in Fig. 4.7. The data in the cell
can be read or written through the bit line (BL) terminal. In contrast to SRAMs,
DRAMs store their contents as a charge on a capacitor C. This way, the DRAM cell
is substantially smaller than the SRAM cell. The transistor T acts as a switch between
the storage capacitor and the bit line. The word line (WL) terminal is used to switch
the transistor T on/off. Reading the bit from the DRAM cell discharges the capacitor
and thus destroys the information. Even if we do not read the DRAM cell, the charge
leaks from the capacitor because the cell transistor does not entirely disconnect the
storage capacitor from the bit line. Even though the transistor is switched off, a tiny
current flows from the capacitor to the bit line and discharges the capacitor. There-
fore, the charge (information) must be refreshed several times each second. Hence
the name dynamic.

Fig. 4.7 A DRAM cell WL (Word Line)

BL (Bit Line)

Vdd/2

C

T

4.4 DRAM Cell 185

Summary: SRAM cell

A SRAM cell uses a bistable element to store one bit of information. It is
made up of a bistable and two access nMOS transistors that serve as a switch
used to control the state of the bistable element during the read and write
operations.

Due to the ability to store the information indefinitely and the high speed of
SRAM cells, they are used to implement caches and registers in micropro-
cessors.

4.4.1 Basic Operation of DRAM

The transistor T acts as a switch between the storage capacitor C and the bit line
BL. One capacitor node is connected to .Vdd/2. The voltage across the capacitor is
either .+Vdd/2, if the capacitor stores “1”, or .−Vdd/2, if the capacitor stores “0”.
The charge stored in a capacitor is equal to capacitance times voltage across the
capacitor:

.Q = C × Vdd/2. (4.1)

In a 90 nm DRAM process technology, the capacitance of a DRAM storage cell is
30 fF. If we assume.Vdd = 3.3V , then

. Q = 30 f F × 3.3V/2 = 34.5 f C.

As you may recall from physics class, one electron equals a charge of.1.6·10−19C ;
thus, the storage capacitor stores only 210000 electrons! Even though the transistor
has a very high resistance when switched off, the charge on the capacitor leaks away
through the switched-off transistor in tens to hundreds of milliseconds. Therefore,
DRAM storage cells should be regularly refreshed to avoid data loss.

The data is written into a memory cell by placing the “1” or “0” charge into the
storage capacitor. To write data into a cell, we first set the bit line to Vdd (“1”) or
to GND (“0”) and assert the word line to connect the capacitor to the bit line. The
storage capacitor then retains the stored charge after the word line is de-asserted and
the transistor is turned off. The electric charge on the storage capacitor slowly leaks
off, so without intervention, the data on the chip would soon be lost. This capacitor
will be accessed for either a new write, a read, or a refresh (Fig. 4.8).

To read data from the DRAM cell, the bit line is first precharged to .Vdd/2. The
word line is then driven high to connect a cell’s storage capacitor to its bit line.
This causes the transistor to conduct, transferring charge from the storage cell to the
connected bit line (if the stored value is “1”) or from the connected bit line to the
storage cell (if the stored value is “0”). This process is depicted in Fig. 4.8. In both
cases, information stored in the DRAM cell is lost. Thus, reading from DRAM is a
destructive operation. The bit lines are relatively long because they connect storage
cells in all memory words, and they act as a capacitor with relatively high capacitance
(the capacitance of the bit lines is ten times the capacitance of the storage capacitor).

186 4 Main Memory

Vdd/2

C

T

WL

BL = Vdd/2

"1"

+8V

discharge

"1" WL"1"

T

Vdd/2

C

BL = Vdd/2

charge

-8V

"0"

READ "1" READ "0"

(a) (b)

Fig. 4.8 Reading from a DRAM cell. a Reading “1” from a DRAM cell discharges the storage
capacitor and slightly increases the voltage of the bit line. b Reading “0” from a DRAM cell charges
the storage capacitor and slightly decreases the voltage of the bit line. In both cases, information is
lost

Fig. 4.9 A DRAM cell with
a sense amplifier

− +

Vdd/2

BL

WL

Data

Vdd/2

C

T

According to the charge-sharing equation (capacitive voltage divider), the voltage
swing (the magnitude of a voltage difference) .δV on the bit line during readout is

.δV = Vdd
2

C

C + CBL
, (4.2)

where. C is the capacitance of the storage capacitor and.CBL is the capacitance of the
bit line. If the capacitance of the bit line is ten times the capacitance of the storage
capacitor and .Vdd = 3.3V , the voltage difference .δV on the bit line during the read
operation is only 150 mV! When dealing with such a tiny voltage swing, correctly
detecting the bit value is quite a challenge. Thus, we need a special circuit to sense
this small voltage swing. Sensing is necessary to read the cell data properly. A special
circuit used to detect the voltage swing and read the data is a sense amplifier.

To sense the voltage swing on the bit line, a sense amplifier is used, as presented in
Fig. 4.9. A sense amplifier has two inputs. One input is connected to the bit line, and
the other input is tied to .Vdd/2. The sense amplifier detects the voltage difference at
its inputs and outputs 0 at the Data terminal if the voltage on the bit line is less than
.Vdd/2, or 1 otherwise.

4.4 DRAM Cell 187

BL

OUT

Vdd/2

p1p2

n1n2

>Vdd/2
a

b

c
d

Vdd

=1

(a) Sensing "1".

BL

OUT

Vdd/2

p1p2

n1n2

a

b

c

d

Vdd

<Vdd/2

=0

(b) Sensing "0".

Fig. 4.10 A simplified structure and operation of a sense amplifier. a Sensing “1”. b Sensing “0”

4.4.2 Basic Operation of Sense Amplifiers

A sense amplifier is a simple circuit made up of two cross-coupled CMOS inverters—
so it is an SRAM cell. Figure 4.10 shows a sense amplifier built from cross-coupled
CMOS inverters. The bit line (BL) is initially precharged to .Vdd/2. During a read,
the bit line changes its voltage by a small amount,.δV . If the voltage of the bit line is
higher than.Vdd/2 (Fig. 4.10a), the n2 nMOS transistor begins to conduct and pulls
the precharged line down to “0”. This, in turn, causes the p1 pMOS transistor to
conduct. After a small delay, BL is pulled high, and OUT = 1. On the other hand, if
the voltage of the bit line is lower than.Vdd/2 (Fig. 4.10b), the (p2) pMOS transistor
begins to conduct and pulls the precharged line up to “1”. This, in turn, causes the n1
nMOS transistor to conduct. After a small delay, BL is pulled down to “0”, and OUT
= 0. The feedback that occurs from the cross-connected inverters thereby amplifies
the small voltage difference between the BL and the precharged input reference until
the bit line is entirely at the lowest voltage or the highest voltage.

We have just learned that the main function of sense amplifiers is to sense the tiny
voltage swing on the bit lines that occurs when an access transistor is turned on and
a storage capacitor places its charge on the bit line. The second function of sense
amplifiers is to restore the value of cells after the voltage on the bit lines is sensed.
Recall that turning on the access transistor allows a storage capacitor to share its
stored charge with the bit line. However, the process of sharing the charge from a
storage cell discharges that storage cell. Thus, the information in the cell is lost and
cannot be read again. But this information is stored in the sense amplifier, as the
sense amplifier is a bistable circuit made up of two cross-coupled inverters. As such,
it can store information as long as the supply voltage is present. Consequently, after
sensing, the sense amplifier is used to write back the bit value to the storage cell.
This operation is referred to as precharge.

188 4 Main Memory

Summary: DRAM cell

Dynamic Random Access Memory (DRAM) is the main memory used for all
computers. DRAMs store their contents as a charge on a capacitor. A DRAM
cell consists only of a storage capacitor and a single nMOS transistor that
acts as a switch between the storage capacitor and the bit line.

Reading from a DRAM cell is a destructive operation. Besides, the charge on
the capacitor leaks away through switched-off transistors in tens to hundreds
of milliseconds. Thus, DRAM cells should be regularly refreshed.

A sense amplifier is a special circuit used to detect the tiny voltage swing on
the bit line and read the data. The sense amplifier is also used to write back
the bit value to the storage cell. This operation is referred to as precharge.

4.5 DRAM Arrays and DRAM Banks

DRAM is usually arranged in a rectangular memory array of storage cells organized
into rows and columns. Figure 4.11 shows a simplified basic structure of a DRAM
cell array containing R-by-C cells. DRAM arrays usually contain many hundreds
or thousands of cells in height and width. The cells of a DRAM are accessed by a
row address and a column address. The row address lines (i.e., the word lines) are
connected to the gates of the nMOS transistors, and the column lines are connected
to the sense amplifiers.

The array size represents a trade-off between density and performance. Larger
arrays contain more bits of information, but they also require longer word lines and
bit lines. Longer word and bit lines have a higher capacitance. An array that contains
thousands of cells in height and width has an order of magnitude higher capacitance
on a bit line than in a cell, so the bit line voltage swing .δV during a read is tiny,
which is hard to detect. Besides, due to a higher capacitance, larger arrays are slow.
A typical array size in a recent DRAM is 8K words (rows) by 1024 bits (columns).

A DRAM memory chip usually has 4-16 DRAM arrays that are accessed simul-
taneously. Hence, a DRAM chip transmits or receives a number of bits equal to the
number of arrays each time the memory controller accesses the DRAM. Each array
provides a single bit to the output pin. DRAM chips are described as xN, where N
refers to the number of memory arrays and output pins. For example, in a simple
organization, a x8 DRAM (pronounced ‘by eight’) indicates that the DRAM has
at least eight memory arrays and that a column width is 8 bits (each column read
or write access transmits 8 bits of data). This means that the DRAM transmits or
receives eight bits each time the memory controller accesses the DRAM. A set of
memory arrays accessed simultaneously is referred to as a bank.

4.6 DRAM Chips 189

WL0

WL1

BL0 BL1 BL2 BL3

Sense Amplifiers

WLR-1

BLC-1

Fig. 4.11 A simplified structure of a DRAM array

Summary: DRAM Arrays and DRAM Banks

DRAM is arranged in a rectangular memory array of storage cells organized
into rows and columns.

The cells of a DRAM are accessed by a row address and a column address.

A bank is a set of N memory arrays accessed simultaneously, forming an
N-bit width column. Usually, there are 4, 8, or 16 DRAM arrays in a bank.

4.6 DRAM Chips

Figure 4.12 presents the basic structure of a DRAM chip. As we have learned, the
DRAM memory is organized as a rectangular matrix of rows and columns. The
DRAM chip in Fig. 4.12 contains a bank of 8 arrays. Each array has 1024-by-256
storage cells. All arrays in a bank are accessed at the same time, so the DRAM chip in
Fig. 4.12 reads or transmits eight bits in a single access (D0 to D7). The components
identifying the row and column are referred to as the row address decoder and the
column selector. The row address decoder is used to activate the appropriate word
line from the given row address. The column selector is used to select the appropriate
column from the given column address.

190 4 Main Memory

Refresh
counter

Row
address

MUX

Row
address

latch
and

decoder

Memory Bank
8 arrays

(1024x256x8)
C

ol
um

n
ad

dr
es

s
la

tc
h

/ c
ou

nt
er

IO gating and
write drivers

Column decoder

256 (x8)

2048

OE#

WE#

CAS#

RAS#

A[9:0]
10 10

10

10

88

10

8

A[9:0]

A[7:0]

1024

1

D[7:0]

Oscillator

1

8

1

1

1

Fig. 4.12 Simplified structure of a .256K × 8-bit DRAM chip

As the capacity of DRAMs is large, the DRAM chips would require a large number
of address lines to address a row and a column. For example, to address a cell in a
32256-by-1024 array, we need 15 bits to select a word and 10 bits to select a column.
Such a large number of address bits could be an issue. The solution is to multiplex
the address lines. Firstly, the row address is applied to the address lines, then the
column address follows. In such a way, the number of address pins is cut almost in
half. The same holds for DRAM in Fig. 4.12. Instead of having 18 address bits (10
for the row and 8 for the column), only 10 address bits are used. To indicate which
of two addresses is currently on the bus, we need two additional control signals:
the row access strobe (RAS) and the column access strobe (CAS). When the RAS
signal is activated, the address bits A0 to A9 are latched into the row address latch.
Similarly, when the CAS signal is activated, the address bits A0 to A7 are latched
into the column address latch.

Two more control signals are required to transfer data into and from a DRAM
chip appropriately. The write enable (WE) signal is used to choose a read or write
operation. A low voltage level signifies that a write operation is desired; a high voltage
level is used to choose a read operation. During a read operation, the output enable

4.6 DRAM Chips 191

Fig. 4.13 . 256K × 8-bit
DRAM chip pinout GND

D0

D1

D2

D3

WE#

RAS#

A0

A1

A2

A3

A4

VCC

GND

D7

D6

D5

D4

CAS#

OE#

A10

A9

A8

A7

A6

A5

1

2

3

4

5

6

7

8

9

10

11

12

13

26

25

24

23

22

21

20

19

18

17

16

15

14

25
6K

 x
 8

 D
RA

M

(OE) signal is used to prevent data from appearing at the output until needed. When
OE is low, data appears on the data outputs as soon as it is available. OE is kept high
during a write operation. Figure 4.13 illustrates a pinout diagram of a . 256K × 8-bit
DRAM from Fig. 4.12.

Summary: DRAM Chips

DRAM chips contain at least one memory bank. The row address decoder
is used to activate the appropriate word line from the given row address. The
column selector is used to select the proper column from the given column
address.

As the number of address bits required to select rows and columns can be
quite large, the address lines are multiplexed. To indicate which of the two
addresses is currently on the bus, we need two additional control signals: the
row access strobe (RAS) and the column access strobe (CAS).

The write enable (WE) signal is used to choose a read or a write operation.
During a read operation, the output enable (OE) signal is used to prevent
data from appearing at the output until needed.

192 4 Main Memory

FALLACY: Memories (DRAMs) are physically organized as a liner vec-
tor of memory words.

It is a common and erroneous belief that memory is physically organized
as a vector of memory words (and not as a rectangular array of rows and
columns). Such an organization of memory would otherwise be ideal. A
memory array would be just one long vector of memory cells, and there
would be only one memory cell in a word. All memory cells would then be
connected to the same bit-line. In that case, a DRAM array would contain
R-by-1 memory cells. The memory with 8-bit words would then be composed
of eight parallel R-by-1 memory arrays. In this case, the row address would
already be the column address because there would be only one column
in a row. The memory addresses would not be multiplexed, and we would
not need the RAS and CAS signals. Wouldn’t that be great? However, it is
physically impossible to make such a memory because, in such a memory,
the bit lines would be extremely long and would have huge capacitance. The
capacitance of such long bit lines is several thousand times greater than the
capacitance of the memory cells, and it is impossible to detect a tiny voltage
swing.

4.7 Basic DRAM Operations and Timings

The most challenging aspect when working with DRAMs is resolving the timing
requirements. DRAMs are generally asynchronous, responding to input signals
whenever they occur. The DRAM works appropriately as long as the signals are
applied in the proper sequence, with signal durations and delays between signals that
meet the specified limits. The following signals control the DRAM operations:

1. Row Address Strobe (RAS). RAS is active low. To enable RAS, a transition from
a high voltage to a low voltage is required. The voltage must remain low until
RAS is no longer needed. During a complete memory cycle, there is a minimum
amount of time that RAS must be active (tRAS). There is a minimum amount
of time that RAS must be inactive before activating it again, called the RAS
precharge time (tRP). tRP tells us how fast the row can be precharged before we
can engage another RAS.

2. Column Address Strobe (CAS). CAS is used to latch the column address and to
initiate the read or write operation. It is active low. The memory specification lists
the minimum amount of time CAS must remain active (tC AS). For most memory
operations, there is also a minimum amount of time that CAS must be inactive
before activating it again, called the CAS precharge time (tC P).

3. Write Enable (WE). The write enable signal is used to choose a read operation or
a write operation. It is active low.

4.7 Basic DRAM Operations and Timings 193

4. Output Enable (OE). It is active low. When OE is low during a read operation, data
appears on the data outputs as soon as it is available. During a write operation,
OE should be high.

5. Address. The addresses are used to select a memory location on the chip. The
address pins on a memory device are used for both row and column selection
(multiplexing).

6. Data In or Out. The DRAM memory device’s data pins are used for input and
output. Data at data pins are stored in the selected memory cells during a write
operation. During a read operation, data from the selected memory cells appear
on the data pins once access is completed, and OE is low.

4.7.1 Reading Data from DRAM Memory

To read the data from a DRAM memory cell, we must select the DRAM memory
cell by applying its row and column addresses to the address input pins. The charge
on the selected DRAM cell must then be sensed by the sense amplifier and sent to
the data output (pins). In terms of timing, the following steps must occur (Fig. 4.14):

1. The row address must be applied to the address input pins on the memory device
before RAS goes low.

2. RAS must go from high to low and remain low for the prescribed amount of time
(tRAS). When RAS goes low, the memory row addressed by the row address is
open, and the charge from the cells in the selected row starts to flow to the bit
lines.

3. The column address must be applied to the address input pins on the memory
device before CAS goes low.

4. WE must be set high for a read operation to occur before the transition of CAS
and remain high after the transition of CAS.

5. Only after the prescribed amount of time (tRC D), CAS must go from high to low
and remain low for the prescribed amount of time (tC AS). RAS-to-CAS delay
(tRC D) time ensures that the charge from the selected cells is on the bit lines and
properly sensed by the sense amplifiers.

6. Data appears on the data output pins of the memory device. The time the data
appears on the output pins is called CAS latency (tCL).

7. Before the read cycle can be considered complete, CAS and RAS must return to
their inactive states. A new read or write access can start only after the prescribed
time (tRP—Row Precharge).

The read access lasts for a row cycle time (tRC):

.tRC = tRAS + tRP . (4.3)

The row cycle time, tRC , determines the minimum time a memory row takes to
complete a full cycle, from row activation up to the precharging of the active row.
This is an interval between accesses to different rows in a given set of DRAM arrays.

194 4 Main Memory

ADDR ROW COL

RAS#

CAS#

WE#

OE#

DOUT

t_RCD t_CL

t_RC

t_RAS t_RP

t_CAS

1

2

3

4

5

6

7

8 9

Fig. 4.14 Simplified DRAM read cycle

4.7.2 Writing Data to DRAM Memory

To write to a DRAM memory cell, the row and column address for the DRAM
cell must be selected, and data must be presented at the data input pins. The sense
amplifier either charges the memory cell’s capacitor or discharges it, depending on
whether a 1 or 0 is to be stored. In terms of timing, the following steps must occur
(Fig. 4.15):

1. The row address must be applied to the address input pins on the memory device
before RAS goes low.

2. RAS must go from high to low and remain low for the prescribed amount of time
(tRAS). When RAS goes low, the memory row addressed by the row address is
open.

3. Data must be applied to the data input pins before CAS goes low.
4. The column address must be applied to the address input pins on the memory

device after RAS goes low and before CAS goes low.
5. WE must be set low for a write operation to occur.
6. Only after the prescribed amount of time (tRC D), CAS must switch from high to

low and remain low for a prescribed amount of time (tC AS).
7. Before the write cycle can be considered complete, CAS and RAS must return to

their inactive states. A new read or write access can start only after the prescribed
amount of time (tRP).

The write access also lasts for a row cycle time (tRC) (Fig. 4.15).

4.7 Basic DRAM Operations and Timings 195

ADDR ROW COL

RAS#

CAS#

WE#

OE#

DIN

t_RCD

t_RC

t_RAS t_RP

t_CAS

1

2

3

4

5

6 7

8 9

Fig. 4.15 Simplified DRAM write cycle

4.7.3 Refreshing the DRAM Memory

Since DRAM memory cells are capacitors, their charge can leak away over time.
If the charge is lost, the data is lost! To prevent the loss of data, DRAMs must be
refreshed, i.e., the charge on the individual memory cells must be restored. DRAMs
are refreshed one row at a time. The frequency of refresh depends on the silicon
technology used to manufacture the memory chip and the design of the memory
cells. Most of today’s DRAMs require a refresh to occur every 64 ms.

Reading or writing a memory cell has the effect of refreshing the selected cell
because after reading/writing, the entire row is precharged. Unfortunately, not all
cells are read or written within a 64 ms time frame. Hence, each row in the array
must be accessed and restored during the refresh interval. The refresh cycles are
distributed across the entire refresh interval of 64 ms in such a way that all rows
are refreshed within the required interval. If, for example, a DRAM array has 4096
rows, every 15.6 microseconds, a new row must be refreshed. At the end of the 64
ms interval, the process begins again.

DRAMs use an internal oscillator to determine the refresh frequency and a
counter to keep track of which row is to be refreshed and initiate the refresh period-
ically. Such an auto-initiated refresh is referred to as self refresh. To refresh one row
of the memory array, the so-called CAS-before-RAS refresh is used. The following
steps form the CAS-before-RAS refresh:

1. CAS must switch from high to low while the WE signal remains in a high state
(equivalent to read).

2. After the prescribed delay, RAS must switch from high to low.
3. The internal counter determines which row is to be refreshed and applies the row

address at the address pins

196 4 Main Memory

4. After the required delay, CAS returns to a high level.
5. After the necessary delay, RAS returns to a high level.

Summary: DRAM Operations and Timings

DRAMs are asynchronous systems, responding to input signals whenever
they occur. The DRAM will work properly as long as the input signals are
applied in the proper sequence, with signal durations and delays between
signals that meet the specified limits.

Typical operations in DRAMs are read, write, and refresh. All these opera-
tions are initiated and controlled by the input signal sequence.

The read and write accesses last for a row cycle time (tRC):

tRC = tRAS + tRP .

DRAMs must be refreshed in order to prevent the loss of data. DRAMs are
refreshed one row at a time. DRAMs use an internal oscillator to determine
the refresh frequency and initiate a refresh and a counter to keep track of
the row to be refreshed. Such an auto-initiated refresh is referred to as self
refresh. Self-refresh uses the so-called CAS-before-RAS sequence.

Summary: Important timings in DRAMs.

Name Symbol Description

Row Active Time tRAS
The minimum amount of time RAS is required to be active (low)
to read or write to a memory location.

CAS latency tCL
This is the time interval it takes to read the first bit of memory from
a DRAM with the correct row already open.

Row Address to
Column Address
Delay

tRC D

The minimum time required between activating RAS
and activating CAS. It is the time interval between row access
and data ready at sense amplifiers.

Random Access
Time

tRAC

This is the time required to read any random memory cell.
It is the time to read the first bit of memory from an DRAM
without an active row. tRAC = tRC D + tCL .

Row Precharge
Time

tRP
After a successful data retrieval from the memory, the row
that was used to access the data needs to be closed.
This is the minimum amount of time that RAS must be inactive.

Row Cycle
Time

tRC
This is the time associated with single rad or write cycle.
tRC = tRAS + tRP

4.8 Improving the Performance of DRAMs 197

4.8 Improving the Performance of DRAMs

As mentioned earlier, one DRAM access is divided into row access and column
access. Let’s first look at how we read two consecutive columns from the same row
in classic DRAMs. A timing diagram for reading two consecutive columns, A and
B, in the same row X is shown in Fig. 4.16. Although both columns are in the same
row X, we have to repeat the entire reading cycle from Fig. 4.14 to read each column.
Wouldn’t it be better to keep the entire row ‘open’ once the amplifiers sensed all bits
in that row? Actually, the sense amplifiers can act like a row buffer to keep the row
data. That way, we don’t have to access the row every time and then close it after
reading each column. Exactly this solution was used for one of the first performance
enhancements in DRAM memories. But wait, how often do we access two or more
consecutive columns from the same row? Very often, indeed, due to temporal and
spatial locality. All methods used to improve the performance of a DRAM chip and
to decrease the access time rely on the ability to access all of the data stored in a row
without having to initiate a completely new memory cycle.

4.8.1 Fast Page Mode DRAM

Fast Page Mode DRAM is a minor modification to the first-generation DRAMs
that allows faster access to data in the same row. The performance of read and
write accesses to a row was improved by avoiding the inefficiency of opening and
precharging the same row repeatedly to access different columns in the same row. Fast
Page Mode DRAM eliminates the need for a row address if data is in the previously
accessed row. In the Fast Page Mode DRAM, after a row has been opened by holding
RAS low, the row bits are kept by the sense amplifiers, and multiple reads or writes
could be performed to any of the columns in the open row. Each column access is
initiated by asserting CAS and presenting a column address.

We start a regular read operation using Fast Page Mode by addressing the row
(same steps 1 through 6 as in Fig. 4.14). Once the row data is valid, we switch
CAS high but leave RAS low. There is a minimum amount of time that CAS must

ADDR ROWx COLa ROWy COLb

RAS#

CAS#

DOUT DATAxa DATAyb

t_RCD t_CL

t_RC

t_RCD t_CL

2

3

4

5

6

7

Fig. 4.16 Simplified read timing for two columns in the same row for conventional DRAM

198 4 Main Memory

ADDR ROWx COLa COLb COLc

RAS#

CAS#

DOUT DATAa DATAb DATAc

t_RCD t_CL t_CL t_CL

t_CP

2

3

4

5 6

7

8

9

Fig. 4.17 Simplified timing diagram illustrating a read cycle in Fast Page Mode DRAM

be inactive, called the CAS precharge time (tC P). When CAS has been inactive
(high) for the required amount of time (tC P), we repeat steps 3 through 6 of the read
operation from Fig. 4.14. We can continue in this way until a new row address is
required or the chip needs to be refreshed. Figure 4.17 is a simplified timing diagram
that illustrates a Fast Page Mode read cycle.

Let’s use an example to illustrate how fast page mode impacts the system’s perfor-
mance. In this example, we compare two scenarios: 4 memory accesses in the same
row without fast page mode and four memory accesses in the same row with fast page
mode. We assume that tRC is 70 ns, tRC D is 20 ns, and tCL is 15 ns. In the first scenario,
the data from the fourth column will be available after.3 · tRC + tRCD+ tCL = 245 ns.
In the second scenario, we also assume that CAS should remain high for 5 ns before
going down again (.tC P is 5 ns) and that data is kept valid for 20 ns. Now, the data
from the fourth column will be available after.tRCD +3 · (tCL +20+ tC P) = 140 ns.

4.8.2 Extended Data Output DRAM

The second change to improve the performance is Extended Data Out (EDO) DRAM.
EDO is very similar to FPM. The primary advantage of EDO DRAMs over FPM
DRAMs is that the data outputs are not disabled when CAS goes high on the EDO
DRAM, allowing the data from the current read cycle to be present at the outputs
while the next read cycle begins, i.e., data is still present on the output pins, while
CAS is changing and a new column address is latched. This enables the shorter time
required for CAS to be active (low), allowing a certain amount of overlap in operation
(pipelining), resulting in faster access (cycle) time. Figure 4.18 is a timing diagram
that illustrates an EDO mode read cycle. Let’s now illustrate how EDO impacts the
system’s performance using the same example as before, i.e., four memory accesses
in the same row with EDO. Assuming that we keep the data valid for 20 ns, the data
from the fourth column becomes available after ..tRCD + tCL + 3 · 20 = 95 ns.

4.9 Synchronous DRAM 199

ADDR ROWx COLa COLb COLc

RAS#

CAS#

DOUT DATAa DATAb DATAc

t_RCD t_CL t_CL t_CL

t_CP

2

3

4

5 6

7

8

9

Fig. 4.18 Simplified read timing for two columns in the same row for conventional DRAM

Summary: FPM and EDO DRAMs

Due to temporal and spatial locality, we often access two or more consecutive
columns from the same row.

All methods used to improve the performance of a DRAM chip and decrease
the access time rely on the ability to access all of the data stored in a row
without initiating a completely new memory cycle.

Fast Page Mode DRAM eliminates the need for a row address if data is
located in the row previously accessed.

In EDO DRAMs, data remains on the output pins while CAS is changing,
and a new column address is latched. This allows a certain amount of overlap
in operation (pipelining), resulting in faster access time.

4.9 Synchronous DRAM

Originally, DRAMs we have just covered and were produced from the early 1970s
to early 1990s had an asynchronous interface in which input control signals directly
affect internal functions. The synchronous DRAM (SDRAM) device represents a
significant improvement over the DRAM devices. In particular, SDRAM devices
differ from previous generations of DRAM devices in two significant ways:

1. The clock signal was added to the SDRAM device; hence, the SDRAM device
has a synchronous device interface, where commands instead of signals are used
to control internal latches and

2. SDRAM devices contain multiple independent banks.

200 4 Main Memory

Besides, SDRAMs typically also have a programmable mode register to hold
the number of bytes requested and hence can send many bytes over several cycles
per request without sending any new addresses. This type of transfer is referred to
as burst mode.

SDRAMs have a clock signal, and all internal actions occur on its negative edge.
As we saw, in DRAM devices, the RAS, CAS, and WE signals from the memory
controller directly control internal latches and input/output buffers, and these signals
can arrive at the DRAM device’s pins at any time. The DRAM devices then respond
to the RAS, CAS, and WE signals immediately. On the contrary, in SDRAM devices,
the RAS, CAS, and WE signals do not directly control internal latches and buffers. In
SDRAM devices, these signals form a command bus used to transmit commands
to the internal state machine, which executes the commands at the falling edge of
the clock signal. In this way, the control of internal latches and input/output buffers
moved from the external memory controller into the state machine in the SDRAM
device’s control logic. The RAS, CAS, and WE names were retained for signals on
the command bus, which transmits commands, although these specific signals no
longer control latches and buffers internal to the SDRAM device.

The second feature that significantly differentiates the SDRAM device from the
DRAM devices is that the SDRAM devices contain multiple banks. The presence of
multiple independent banks in each SDRAM device means that while one bank is
busy with a row activation command or a precharge command, the memory controller
can send a new command to a different bank. Multiple banks now enable the inter-
leaving of memory requests to different banks in a single SDRAM device. SDRAM
devices contain either 2, 4, or 8 independent banks. One to three bank address inputs
(BA0, BA1, and BA2) determine which bank the command refers to.

4.9.1 Functional Description

Figure 4.19 shows the simplified block diagram of an SDRAM device with two
independent banks. The hash (#) beside a signal name denotes the signal is active
low. Each bank has its row address latch and decoder, column decoder, and sense
amplifiers. Each bank in the SDRAM device in Fig. 4.19 consists of eight DRAM
arrays of size 4096-by-1024 bits. The address now consists of a bank number (BA0),
a row address (A[11:0]), and a column address (A[9:0]).

In an SDRAM device, commands are decoded on the rising edge of the clock
signal (CLK) and executed on the falling edge of CLK if the chip-select signal (CS)
is active. The command is asserted on the command bus by the external memory
controller. The command bus consists of WE, CAS, and RAS signals. All these
signals are active low. Although the signal lines retain the function-specific names
from DRAMs, they only form a command bus. Table 4.1 shows the command set
of the SDRAM device and the input signal combinations on the command bus that
designate the commands. The table also shows that as long as CS is not active, the
SDRAM device ignores the signals on the command bus.

4.9 Synchronous DRAM 201

Control logic

Mode register

Co
m

m
an

d
de

co
de

Refresh
counter

Row
address

MUX

Bank 0
Row

address
latch
and

decoder

Bank 0
8 arrays

(4096x1024x8)

Bank 1
Bank 1

Row address latch
and decoder

Ad
dr

es
s

re
gi

st
er

Bank control
logic

Co
lu

m
n

ad
dr

es
s

la
tc

h
/ c

ou
nt

er

IO gating and
write drivers

Column decoder

D
at

a
ou

tp
ut

re

gi
st

er

D
at

a
in

pu
t

re
gi

st
er

IO
logic

1024 (x8)

8192

CKE

CLK

CS#
WE#

CAS#
RAS#

A[11:0], BA0

13 13 13

1

12

12

10

10

10

12

8192

8

8

8

8

8

12

BA0

A[11:0]

A[9:0]

Control block

Input/output block

4096

4096

1

DQ[7:0]

Fig. 4.19 Simplified block diagram of a SDRAM device with two banks

Table 4.1 SDRAM commands

Command CS# RAS# CAS# WE# Address

COMMAND INHIBIT H X X X X

NO OPERATION (NOP) L H H H X

ACTIVE (select bank and activate row) L L H H Bank/row

READ (select bank and column, and start
READ burst)

L H L H Bank/col

WRITE (select bank and column, and start
WRITE burst)

L H L L Bank/col

PRECHARGE (deactivate row in bank) L L H L Bank/row

AUTO REFRESH L L L H X

LOAD MODE REGISTER L L L L Code

The control block in Fig. 4.19 consists of control logic, a multiplexor to select
a row address, a refresh counter, and bank control logic. The refresh counter keeps
track of the row to be refreshed. The multiplexor is used to select a row address to be
transferred into the row address latch and decoder. The address is either an address
coming from the refresh counter (in case the control logic performs a refresh cycle)
or an address on the external address bus coming from the DRAM controller. Control
logic contains a command decoder, a finite state machine that executes commands,
and the mode register. The mode register is a programmable 10-bit register whose
individual bits determine:

202 4 Main Memory

Fig. 4.20 Simplified state
diagram of the internal state
machine

Idle
All banks

precharged

Row
Active

Read Write

Precharge

Auto
Refresh

Self
Refresh

ACT

READ

WRITE

PREPRE

PRE

READ WRITE

AUTO
REFRESH

WRITEREAD

• CAS latency (CL). CL is tCL rounded up to the nearest number of clock cycles,
• the length of the burst transfer,
• and the order of memory words in the burst transfer.

The control logic receives a command from the command bus. Then, depending on
the command type and values contained in the respective fields of the mode register,
the control logic performs specific sequences of operations to execute the command.
These operations are performed by the internal state machine on successive clock
cycles without requiring clock-by-clock control from the memory controller. Figure
4.20 illustrates a simplified state diagram of the internal state machine. After the ini-
tialization of the mode register, the internal state machine is in the Idle state with all
banks and rows precharged. The SDRAM chip will regularly perform the self-refresh
if no command is issued to SDRAM. The internal counter drives the self-refresh oper-
ation. To start memory access, the memory controller should first issue the ACTIVE
command. This will eventually open a row/bank, and the internal state machine waits
in the Active state for additional commands. To read data, the memory controller
should issue the READ command, and to write data into memory, the memory con-
troller should issue the WRITE command. Then, the internal state machine enters the
Read or Write state and uses the column address to generate the appropriate internal
signals to access the column. The READ or WRITE commands can be followed by
any number of READ or WRITE commands, or the PRECHARGE command can be
issued to restore the data and close the open bank/row. After the precharge operation
has been executed, the internal state machine will wait in the IDLE state.

4.9 Synchronous DRAM 203

For example, in the case of the ACTIVE command, the state machine passes
the row address to the row address latch and the decoder through the multiplexor.
The address bit BA0 determines the bank which will be accessed. The bank con-
trol block, which acts as a decoder, selects the appropriate row address latch, the
decoder, and the appropriate column decoder based on the BA0 bit. The selected
row is then opened, and its content is transferred into the sense amplifiers. When the
memory controller asserts a READ command, the internal state machine drives the
bank control logic, which selects the appropriate column decoder based on the BA0
bit. The column decoder then selects the word from the sense amplifiers of the cho-
sen bank. Each bank has its own column decoder—this feature is especially useful
when interleaving transfers from two (or more) active banks. The SDRAM device in
Fig. 4.19 allows two rows of the DRAM to be opened simultaneously. Memory
accesses between two opened banks can be interleaved to hide RAS-to-CAS delay
and row precharge time. When an address that designates a new bank is sent for
the first time, the row in that bank must be opened. But when subsequent access
specifies the same row in an already open bank, the access can happen quickly, send-
ing only the column address. This feature requires that each bank has its own row
address latch, sense amplifiers, and a column decoder. For example, while one row is
accessed, the memory controller can send an ACTIVE command to a different bank
and, in such a way, transfer a new row into the sense amplifiers. This row can then
be read or written to without waiting for tRC D . Later, we will learn how data is trans-
ferred to/from the SDRAM chip and how the burst transfers and bank interleaving
can speed up memory transactions.

Summary: SDRAMs

SDRAM devices have a synchronous device interface, where commands,
instead of signals, control internal latches.

In SDRAM devices, signals CAS, RAS, WE, and CS form a command bus
used to transmit commands to the internal state machine.

SDRAM devices contain multiple independent banks.

SDRAMs can transfer many columns over several cycles per request without
sending any new addresses. This type of transfer is referred to as burst mode.

4.9.2 Basic Operations and Timings

Now that we are familiar with the basic functionality of SDRAMs, we will present
four basic operations in SDRAMs: ACTIVE, READ, WRITE, and PRECHARGE.

4.9.2.1 Activate (Open) Row
A row in a bank must be opened before any READ or WRITE commands can
be issued to that bank within the SDRAM. This is accomplished via the ACTIVE
command. The purpose of the ACTIVE command is to open (activate) a row in a

204 4 Main Memory

Control logic

Mode register

Co
m

m
an

d
de

co
de

Refresh
counter

Row
address

MUX

Bank 0
Row

address
latch
and

decoder

Bank 1
Bank 1

Row address latch
and decoder

Ad
dr

es
s

re
gi

st
er

Bank control
logic

Co
lu

m
n

ad
dr

es
s

la
tc

h
/ c

ou
nt

er

IO gating and
write drivers

Column decoder

D
at

a
ou

tp
ut

re

gi
st

er

D
at

a
in

pu
t

re
gi

st
er

IO
logic

1024 (x8)

8192

CKE

CLK

CS#
WE#

CAS#
RAS#

A[11:0], BA0

13 13 13

1

12

12

10

10

10

12

8192

8

8

8

8

8

12

BA0

A[11:0]

A[9:0]

4096

12

1

DQ[7:0]

L

H
L

H

Bank 0
8 arrays

(4096x1024x8)

ACTIVATE

Fig. 4.21 The progression of the ACTIVE command

selected bank and move data from the DRAM arrays to the sense amplifiers of the
open bank. Figure 4.21 illustrates the progression of the ACTIVE command. The
address A11-A0 from the address bus is stored in the row address latch and decoder
of the selected bank. The address bit BA0 selects the bank and its row address latch
and decoder. Then, the entire row of data is read into the sense amplifiers. Similarly
to DRAMs, two timings are associated with the ACTIVE command: Row Address
to Column Address Delay (tRC D) and Row Active Time tRAS . tRC D is the time it
takes for the ACTIVE command to move data from the DRAM cell arrays to the
sense amplifiers that hold the entire row of data. After tRC D , a column read or write
access commands can be issued to move data between the sense amplifiers and the
memory controller through the input/output block and data bus (Fig. 4.22). Row
address to column address delay, tRC D , should be divided by the clock period and
rounded up to the nearest whole number to determine the earliest clock edge after
the ACTIVE command on which a READ or WRITE command can be issued. For
example, a tRC D of 20 ns with a 125 MHz clock (8ns period) results in 2.5 clock
periods, rounded to 3. A subsequent ACTIVE command to a different row in the
same bank can only be issued after the previous active row has been precharged.

Row active time, tRAS , is the minimum amount of time that must elapse before
the PRECHARGE command can be issued to the open row. tRAS is also referred to
as ACTIVE-to-PRECHARGE time.

4.9.2.2 Read
Figure 4.23 illustrates the progression of a column read command. A column read
command moves data from the sense amplifiers of a selected bank to the memory
controller through IO gating and write drivers and data output register. The address

4.9 Synchronous DRAM 205

CK

CMD ACT NOP NOP READ/WRITE NOP

ADDR ROW,BANK COL,BANK

t_RCD=3

T_CLK

1 2 3 4 5 6

Fig. 4.22 Meeting tRC D

Control logic

Mode register

Co
m

m
an

d
de

co
de

Refresh
counter

Row
address

MUX

Bank 0
Row

address
latch
and

decoder

Bank 1
Bank 1

Row address latch
and decoder

Ad
dr

es
s

re
gi

st
er

Bank control
logic

Co
lu

m
n

ad
dr

es
s

la
tc

h
/ c

ou
nt

er

IO gating and
write drivers

Column decoder

D
at

a
ou

tp
ut

re

gi
st

er

D
at

a
in

pu
t

re
gi

st
er

IO
logic

1024 (x8)

8192

CKE

CLK

CS#
WE#

CAS#
RAS#

A[11:0], BA0

13 13 13

1

12

12

10

10

10

12

8192

8

8

8

8

8

12

BA0

A[11:0]

A[9:0]

4096

4096

1

DQ[7:0]

L

L
H

H

Bank 0
8 arrays

(4096x1024x8)

READ

Fig. 4.23 The progression of the READ command

A[9:0] from the address bus is stored in the column address latch and column decoder
of the selected bank. The address bit BA0 selects the bank and its column decoder
and sense amplifiers. Then, the selected 8-bit data is read from the sense amplifiers
and output to DQ pins. There are two (timing) parameters associated with a column
read command: CAS latency (CL) and burst length (BL).

CL is the time it takes for the SDRAM device to move the requested data from
the sense amplifiers through IO gating and output register onto the data DQ bus.
For SDRAMs, the CAS latency (CL) is the delay, in clock cycles, between the
registration of a READ command and the availability of the output data. In modern
SDRAMs, the CAS latency can be set to two or three clocks. If a READ command
is registered at clock edge . n, and the CL is .m clocks, the data will be available by

206 4 Main Memory

CK

CMD READ NOP NOP NOP NOP NOP

ADDR COL

DQ D0 D1 D2 D3

CL=2

T_CLK

1 2 3 4 5 6

Fig. 4.24 The READ burst with CL = 2 and BL = 4

clock edge .n + m. Now, we can combine the timing parameters, tRC D and CL, to
form a random access time (tRAC).

.tRAC = tRCD + CL (4.4)

Random access time, tRAC , denotes the speed at which the SDRAM device can move
data from the DRAM arrays into the memory controller.

Modern memory systems move data in relatively short bursts, and the burst length
(BL) is programmable. The burst length determines the maximum number of column
locations that can be accessed for a given READ or WRITE command. Typically, BL
is 2, 4, or 8. Read bursts are initiated with a READ command, as shown in Fig. 4.24.
The starting column and bank addresses are provided with the READ command.
During READ bursts, the valid data from the starting column address is available
following the CAS latency after the READ command. Each subsequent data will be
valid by the next positive clock edge. Upon completion of a burst, assuming no other
commands have been initiated, the DQ signals will go to High-Z.

Data from a fixed-length READ burst can be followed immediately by data from
a new READ or WRITE command. In such a way, a continuous flow of data can be
maintained. SDRAM devices use a pipelined architecture, and therefore, a READ
command can be initiated on any clock cycle following a READ command. The new
READ command should be issued . x cycles before the clock edge at which the last
desired data element is valid, where .x = CL − 1. This is shown in Fig. 4.25 for
CL = 2 and BL = 4. Full-speed random read accesses can be performed to the same
bank, or each subsequent READ can be performed to a different open bank (bank
interleaving).

4.9.2.3 Write
Figure 4.26 illustrates the progression of the WRITE command. The WRITE com-
mand moves data from the DQs pins through IO gating and write drivers and data

4.9 Synchronous DRAM 207

CK

CMD READ NOP NOP NOP READ NOP NOP NOP NOP

ADDR COLx COLy

DQ D0 D1 D2 D3 D4 D5 D6 D7

CL=2 CL=2

T_CLK x=CL-1

1 2 3 4 5 6 7 8 9 a

Fig. 4.25 Two consecutive READ bursts with CL = 2 and BL = 4

Control logic

Mode register

Co
m

m
an

d
de

co
de

Refresh
counter

Row
address

MUX

Bank 0
Row

address
latch
and

decoder

Bank 1
Bank 1

Row address latch
and decoder

Ad
dr

es
s

re
gi

st
er

Bank control
logic

Co
lu

m
n

ad
dr

es
s

la
tc

h
/ c

ou
nt

er

IO gating and
write drivers

Column decoder

D
at

a
ou

tp
ut

re

gi
st

er

D
at

a
in

pu
t

re
gi

st
er

IO
logic

1024 (x8)

8192

CKE

CLK

CS#
WE#

CAS#
RAS#

A[11:0], BA0

13 13 13

1

12

12

10

10

10

12

8192

8

8

8

8

8

12

BA0

A[11:0]

A[9:0]

4096

4096

1

DQ[7:0]

L

L
H

L

Bank 0
8 arrays

(4096x1024x8)

WRITE

Fig. 4.26 The progression of the WRITE command

input register to the sense amplifiers of a selected bank. The column address A[9:0]
from the address bus is stored in the column address latch and column decoder of
the selected bank. The address bit BA0 selects the bank and its column decoder and
sense amplifiers.

Figure 4.27 shows a write burst with BL = 4. The starting column and bank
addresses are provided with the WRITE command, which initiates write bursts.
During write bursts, the first valid data is registered with the WRITE command.
Subsequent data are registered on each successive positive clock edge. Upon com-
pletion of a fixed-length burst, assuming no other commands have been initiated, the
DQ pins remain at High-Z, and any additional input data is ignored.

Data from a fixed-length WRITE burst can be followed immediately by data from
a new READ or WRITE command. In such a way, a continuous flow of data can be
maintained. Figure 4.28 shows two consecutive write bursts with BL = 2.

208 4 Main Memory

CK

CMD WRITE NOP NOP NOP NOP

ADDR COL

DQ D0 D1 D2 D3

T_CLK

1 2 3 4 5

Fig. 4.27 The WRITE burst with BL = 4

CK

CMD WRITE NOP WRITE NOP

ADDR COL COL

DQ D0 D1 D0 D1

T_CLK

1 2 3 4 5

Fig. 4.28 Two consecutive WRITE bursts with BL = 2

4.9.2.4 Precharge
So far, we have seen that accessing data in an SDRAM device is a two-step process.
First, the ACTIVE command opens a row in a selected bank and moves data from the
DRAM cells in that row to the sense amplifiers. The data then remains in the sense
amplifiers and can be transferred to or from SDRAM using the READ and WRITE
commands. The PRECHARGE command is used to deactivate the open row in a
particular bank or the open row in all banks—it restores data in the row, resets the
sense amplifiers and the bit lines, and prepares the sense amplifiers for another row
access. Figure 4.29 illustrates the progression of the PRECHARGE command. The
address A[11:0] from the address bus is stored in the row address latch and decoder

4.9 Synchronous DRAM 209

Control logic

Mode register

Co
m

m
an

d
de

co
de

Refresh
counter

Row
address

MUX

Bank 0
Row

address
latch
and

decoder

Bank 1
Bank 1

Row address latch
and decoder

Ad
dr

es
s

re
gi

st
er

Bank control
logic

Co
lu

m
n

ad
dr

es
s

la
tc

h
/ c

ou
nt

er

IO gating and
write drivers

Column decoder

D
at

a
ou

tp
ut

re

gi
st

er

D
at

a
in

pu
t

re
gi

st
er

IO
logic

1024 (x8)

8192

CKE

CLK

CS#
WE#

CAS#
RAS#

A[11:0], BA0

13 13 13

1

12

12

10

10

10

12

8192

8

8

8

8

8

12

BA0

A[11:0]

A[9:0]

4096

12

1

DQ[7:0]

L

H
L

L

Bank 0
8 arrays

(4096x1024x8)

PRECHARGE

Fig. 4.29 The progression of the PRECHARGE command

of the selected bank. The address bit BA0 selects the bank and its row address latch
and decoder. Then, the selected bank is precharged.

The timing parameter associated with the (row) PRECHARGE command is row
precharge time, tRP . The bank(s) will be available for a subsequent access row
precharge time (tRP) after the PRECHARGE command is issued. Recall that tRAS

is the minimum amount of time that the row should remain open before issuing
the PRECHARGE command (i.e., ACTIVE-to-PRECHARGE time). Now, we can
combine the timing parameters, tRP and tRAS , to form a row cycle time (tRC):

.tRC = tRAS + tRP (4.5)

Row cycle time, tRC , denotes the speed at which the SDRAM device can bring data
from the DRAM arrays into the sense amplifiers, restore the data to the DRAM cells,
and be ready for another ACTIVE command. tRC is the fundamental limitation to the
speed at which data may be retrieved from different rows within the same SDRAM
bank.

A PRECHARGE command may follow a READ or WRITE burst to the same
bank. In the case of PRECHARGE after READ, the PRECHARGE command should
be issued.x = CL − 1 cycles before the clock edge at which the last data element in
a burst is valid. This is shown in Fig. 4.30 for CL = 2. In the case of PRECHARGE
after WRITE, the PRECHARGE command should be issued at least one clock period
after the positive clock edge at which the last input data is registered, regardless of
frequency (Fig. 4.31).

Following the PRECHARGE command, a subsequent command to the same bank
cannot be issued until tRP is met. The disadvantage of the PRECHARGE command

210 4 Main Memory

CK

CMD READ NOP NOP NOP PRE NOP NOP ACT NOP

ADDR COL COL ROW

DQ D0 D1 D2 D3

CL=2 t_RP=3

T_CLK x=CL-1

1 2 3 4 5 6 7 8 9

Fig. 4.30 READ to PRECHARGE

CK

CMD WRITE NOP PRE NOP NOP NOP ACT NOP

ADDR COL BANK ROW

DQ D0 D1

t_RP=4

T_CLK

1 2 3 4 5 6 7 8

Fig. 4.31 WRITE to PRECHARGE

is that it requires that the command and address buses be available at the appropriate
time to issue the command.

4.9.3 Case Study: Using the STM32F Flexible Memory Controller
to Access SDRAM

The Flexible Memory Controller (FMC) found in STM32 microcontrollers consists
of the following main blocks:

1. The interface to the CPU’s Advanced High-performance Bus (AHB),
2. The NOR Flash/SRAM memory controller,
3. The SDRAM memory controller, and
4. NAND Flash controller.

The block diagram of the FMC is shown in Fig. 4.32. The AHB interface allows the
CPU (and other bus master peripherals) to access the external memories through the
FMC controller. Two primary purposes of FMC are to translate transactions on the

4.9 Synchronous DRAM 211

Fig. 4.32 FMC block
diagram

Fig. 4.33 Memory regions
accessible from the FMC
controller

high-speed CPU bus (namely AHB bus) into the appropriate external protocol and
to meet the access time requirements of the external memory devices.

From the FMC (or microprocessor) point of view, the external memory is divided
into six fixed-size regions of 256 Mbytes each, called banks (Fig. 4.33). The first
bank is used to address NOR Flash memory devices. The third bank is used to address
NAND Flash memory devices. The last two banks are used to address two SDRAM
devices (one device per bank). The address bit 28 on the AHB bus (internal AHB

212 4 Main Memory

Fig. 4.34 FMC SDRAM
Controller block diagram
and signals

address line 28) selects one of the memory devices (banks). Let us focus only on the
FMC SDRAM controller and an SDRAM device in the fifth bank.

All external memories share the addresses, data, and control signals with the
controller, and each external device is accessed utilizing a unique chip-select signal.
The FMC performs only one access at a time to an external device. Here, we will
describe only the SDRAM controller and its use to interface a 128 Mbit SDRAM
memory chip. All AHB transactions, in this case, translate into the SDRAM device
protocol.

The FMC SDRAM controller supports SDRAM devices of up to 256 Mbytes. It
can issue a 13-bit row address, an 11-bit column address, and a 2-bit bank address.
The memory accesses can be 8-bit, 16-bit, and 32-bit. We will use Micron’s 1
Meg x 32 x 4 banks MT48LC4M32B2 SDRAM chip, organized as 4096 rows x
256 columns x 32 bits per bank. Hence, the memory controller would issue a 12-bit
row address, an 8-bit column address, and a 2-bit bank address.

The SDRAM controller in Fig. 4.34 accepts single and burst read and write
requests and translates them into single memory accesses. In both cases, the SDRAM
controller keeps track of the active row in each bank to be able to perform consecu-
tive read and write accesses. The FMC SDRAM controller comprises a read FIFO (6
lines x 32 bits). It is used to read data in advance—the memory controller anticipates
READ commands to the open row if the RBURST bit is set in the FMC_SDCRx reg-
ister and stores data in the FIFO. Two bits RPIPE[1:0] in the FMC_SDCRx register
defines how much data will be anticipated and stored into the FIFO during the read
access. If we set both RPIPE[1:0] bits to zero, four data will be anticipated during
a single read access. The first read data will be transmitted to the AHB bus, and the
other three will be stored in the read FIFO buffer. The read FIFO buffer stores a
14-bit address tag for each line to identify its content: 11 bits for the column address,
2 bits for the internal bank in the active row, and 1 bit for the SDRAM device. Each

4.9 Synchronous DRAM 213

Fig. 4.35 Address maping for a 128-bit SDRAM (4096 rows x 256 columns x 4 banks x 32 bit)

time a read request occurs, the SDRAM controller checks if the address matches one
of the address tags in the read FIFO buffer. In such a case, data are directly read from
the FIFO buffer. Otherwise, a new read command is issued to the SDRAM device,
and new data is read to the FIFO buffer.

The FMC SDRAM controller periodically issues auto-refresh commands to
refresh the SDRAM. The programmer should initialize the internal counter value in
the FMC_SDRTR. This value defines the number of memory clock cycles between
two refresh cycles (refresh rate). When this counter reaches zero, the FMC SDRAM
controller issues the auto-refresh command. If there is ongoing memory access,
the auto-refresh request is delayed until the memory access finishes; otherwise, the
auto-refresh request takes precedence. If the memory access request occurs during an
auto-refresh operation, the request is buffered and processed when the auto-refresh
is complete.

For our particular case, where the FMC SDRAM controller is used to access the
MT48LC4M32B2 SDRAM chip, the 32-bit memory address from the AHB bus is
mapped into the SDRAM address as presented in Fig. 4.35. This Fig. illustrates how
the 32-bit addresses issued by the CPU on the AHB bus map to the 26-bit addresses
issued by the SDRAM controller to the SDRAM device.

In order to use the FMC SDRAM controller with an external SDRAM device
residing in the SDRAM Bank 1, we should:

1. first, initialize the FMC SDRAM controller according to the used SDRAM device,
and

2. secondly, initialize the SDRAM device.

The first step involves programming two FMC SDRAM controller configuration
registers, SDRAM Control Register 1 (FMC_SDCR1) and SDRAM Timing Register
1 (FMC_SDTR1). The bits in FMC_SDCR1 (Fig. 4.36) define the SDRAM clock
period, CAS Latency, whether the FMC anticipates READ commands (burst read),
data bus width and the internal organization of the SDRAM chip (rows, columns and
banks).

The bits in FMC_SDTR1 define SDRAM timing parameters, e.g. RAS-to-CAS
delay, row-precharge delay, etc. In order to correctly set the bits in these two registers,
we should consult the datasheet for a particular SDRAM chip (Fig. 4.37).

214 4 Main Memory

Fig. 4.36 Control register (FMC_SDCR)

Fig. 4.37 Timing register (FMC_SDTR)

The second step initializes the SDRAM chip. During the SDRAM chip initializa-
tion, the FMC controller sends several predefined commands to the SDRAM chip.
We should write these commands into the FMC SDRAM Command Mode Register
(FMC_SDCMR) to send them. The required initialization steps are described in the
datasheet for a particular SDRAM chip and involve the following:

1. providing stable CLOCK signal,
2. performing a PRECHARGE ALL command, which puts all rows in all banks into

an idle state,
3. issuing several AUTO REFRESH commands
4. issuing several NOP commands before SDRAM is ready for access.

Instead of directly setting bits in the FMC SDRAM configuration registers, we
will rather use the HAL library. The HAL library abstracts most of the FMC SDRAM
controller hardware details. The FMC SDRAM controller is abstracted in HAL with
the SDRAM_HandleTypeDef C structure. The two most important members of
this structure are the C reference to FMC_SDRAM_TypeDef Instance struc-
ture and FMC_SDRAM_InitTypeDef Init. The Instance is a reference to
the SDRAM registers (it holds the base address of the FMC SDRAM registers),
while the Init structure allows for FMC SDRAM controller configuration. The
FMC_SDRAM_InitTypeDef Init structure is defined as follows:

4.9 Synchronous DRAM 215

1 typedef struct
{

3 uint32_t SDBank;
uint32_t ColumnBitsNumber;

5 uint32_t RowBitsNumber;
uint32_t MemoryDataWidth;

7 uint32_t InternalBankNumber;
uint32_t CASLatency;

9 uint32_t WriteProtection;
uint32_t SDClockPeriod;

11 uint32_t ReadBurst;
} FMC_SDRAM_InitTypeDef;

Listing 4.1 FMC SDRAM FMC_SDRAM_InitTypeDef C structure

Let us briefly describe the elements of the FMC_SDRAM_InitTypeDef Init
structure:

• SDBank: Specifies the SDRAM memory device that will be used (bank 1 or bank
2 according to Fig. 4.33).

• ColumnBitsNumber: Defines the number of bits of the column address.
• RowBitsNumber: Defines the number of bits of the row address.
• MemoryDataWidth: Defines the memory device width.
• InternalBankNumber: Defines the number of the device’s internal banks.
• CASLatency: Defines the SDRAM CAS latency in the number of memory clock
cycles.

• WriteProtection: Enables/Disables the SDRAM device to be accessed in
write mode.

• SDClockPeriod: Defines the SDRAM Clock Period for SDRAM devices. The
SDRAM clock period can be HCLK/2 or HCLK/3, where HCLK is the clock
period on the CPU’s AHB bus.

• ReadBurst: Enables the SDRAM controller to anticipate the next read com-
mands during the CAS latency and stores data in the Read FIFO.

Besides the FMC_SDRAM_InitTypeDef C structure, which abstracts the con-
tent of FMC_SDCR1 register, the FMC_SDRAM_TimingTypeDef C structure is
used to abstract the content of FMC_SDTR1 register. It is defined as follows:

typedef struct
2 {

uint32_t LoadToActiveDelay;
4 uint32_t ExitSelfRefreshDelay;

uint32_t SelfRefreshTime;
6 uint32_t RowCycleDelay;

uint32_t WriteRecoveryTime;
8 uint32_t RPDelay;

uint32_t RCDDelay;
10 } FMC_SDRAM_TimingTypeDef;

Listing 4.2 FMC SDRAM FMC_SDRAM_TimingTypeDef C structure

216 4 Main Memory

The elements of the FMC_SDRAM_TimingTypeDef C structure are self-
explanatory (they represent the particular timings for SDRAM chips), and there
is no need to describe them.

The code Listing 4.3 shows the FMC SDRAM controller initialization.

uint8_t Init_SDRAM(void)
2 {

static uint8_t sdramstatus = SDRAM_ERROR;
4 /* SDRAM device configuration */

sdramHand.Instance = FMC_SDRAM_DEVICE;
6

/* Timing configuration for 100Mhz as SDRAM clock frequency
8 (System clock is up to 200Mhz) */

/* These parameters are from the MT48LC4M32B2 Data Sheet ,
10 Table 18 and Table 19 */

sdramTiming.LoadToActiveDelay = 2; // t_MRD
12 sdramTiming.ExitSelfRefreshDelay = 7; // t_XSR

sdramTiming.SelfRefreshTime = 5; // t_RAS
14 sdramTiming.RowCycleDelay = 7; // t_RC

sdramTiming.WriteRecoveryTime = 2; // t_WR
16 sdramTiming.RPDelay = 2; // t_RP

sdramTiming.RCDDelay = 2; // t_RCD
18

20 sdramHand.Init.SDBank = FMC_SDRAM_BANK1;
sdramHand.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_8;

22 sdramHand.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12;
sdramHand.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_32;

24 sdramHand.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4 ;
sdramHand.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_3 ;

26 sdramHand.Init.WriteProtection = ←>

FMC_SDRAM_WRITE_PROTECTION_DISABLE;
sdramHand.Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_2;

28 sdramHand.Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE ;
sdramHand.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0 ;

30

/* SDRAM controller initialization */
32

if(HAL_SDRAM_Init (&sdramHand , &sdramTiming) != HAL_OK)
34 {

sdramstatus = SDRAM_ERROR;
36 }

else
38 {

sdramstatus = SDRAM_OK;
40 }

42 /* Once the FMC SDRAM Ctrl is initialized , we can access
and initialize the SDRAM chip */

44 /* SDRAM initialization sequence */
SDRAM_Initialization_sequence (REFRESH_COUNT);

46

return sdramstatus;
48 }

Listing 4.3 FMC SDRAM controller initialization

Firstly, we set the SDRAM timing parameters (in the FMC_SDTR1 regis-
ter) considering the 100MHz SDRAM clock, and then we set the SDRAM con-
figuration (in the FMC_SDCR1 register). To initialize the FMC SDRAM con-

4.9 Synchronous DRAM 217

troller (that is to copy the elements of both C structures into the appropriate
fields of the FMC_SDCR1 and FMC_SDTR1 registers), we call the HAL function
HAL_SDRAM_Init(SDRAM_HandleTypeDef *hsdram, FMC_SDRAM_
TimingTypeDef *Timing).

After the FMC SDRAM initialization, we should initialize the SDRAM chip.
SDRAMs must be powered up and initialized in a predefined manner. This is a
necessary step required to put all SDRAM rows in the idle state (precharge all
rows) and prepare the SDRAM chip for accepting and executing the commands. The
SDRAM initialization sequence is described in the SDRAM datasheet in detail. The
code Listing 4.4 shows the FMC SDRAM chip initialization. Briefly, the initialization
procedure contains four steps:

1. Enable the stable SDRAM clock.
2. Wait for at least 100us prior to issuing any command.
3. Perform a PRECHARGE ALL command.
4. Issue at least two AUTO REFRESH commands.
5. The SDRAM is now ready for mode register programming. Because the mode

register will power up in an unknown state, it should be loaded with desired bit
values prior to applying any operational command.

/**
2 * @brief Init the SDRAM device.

* SDRAMs must be initialized in a predefined manner. Operational ←>

procedures
4 * other than those specified in the SDRAM Data Sheet may result in ←>

undefined operation.
* @param RefreshCount : SDRAM refresh counter value

6 * @retval None
*/

8 void SDRAM_Initialization_sequence (uint32_t RefreshCount)
{

10 __IO uint32_t tmpmrd = 0;

12 /* Step 1: Configure a clock configuration enable command */
sdramCmd.CommandMode = FMC_SDRAM_CMD_CLK_ENABLE;

14 sdramCmd.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;
sdramCmd.AutoRefreshNumber = 1;

16 sdramCmd.ModeRegisterDefinition = 0;

18

/* Send the Clock Configuration Enable command to the target bank*/
20 /* The command is sent as soon as the Command MODE field in the

CMR is written */
22 HAL_SDRAM_SendCommand (& sdramHand , &sdramCmd , SDRAM_TIMEOUT);

24 /*
* Once the clock is stable , the SDRAM requires a 100us delay

26 * prior to issuing any command
*/

28

/* Step 2: Insert 100 us minimum delay */
30 /* Inserted delay is equal to 1 ms due to systick time base unit */

HAL_Delay (1);

218 4 Main Memory

32

34 /*
* Once the 100us delay has been satisfied , a PRECHARGE command

36 * should be applied. All banks must then be precharged ,
* thereby placing the device in the all banks idle state.

38 */
/* Step 3: Configure a PALL (precharge all) command */

40 sdramCmd.CommandMode = FMC_SDRAM_CMD_PALL;
sdramCmd.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;

42 sdramCmd.AutoRefreshNumber = 1;
sdramCmd.ModeRegisterDefinition = 0;

44

/* Send the Precharge All command to the target bank */
46 /* The command is sent as soon as the Command MODE field

in the CMR is written */
48 HAL_SDRAM_SendCommand (& sdramHand , &sdramCmd , SDRAM_TIMEOUT);

50 /*
* Once in the idle state , at least two AUTO REFRESH cycles must

52 * be performed. If desired , more than two AUTO REFRESH
* commands can be issued in the sequence.

54 */
/* Step 4: Configure an Auto Refresh command */

56 sdramCmd.CommandMode = FMC_SDRAM_CMD_AUTOREFRESH_MODE ;
sdramCmd.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;

58 sdramCmd.AutoRefreshNumber = 8;
sdramCmd.ModeRegisterDefinition = 0;

60

/* Send the Auto -refresh commands to the target bank */
62 /* The command is sent as soon as the Command MODE

field in the CMR is written */
64 HAL_SDRAM_SendCommand (& sdramHand , &sdramCmd , SDRAM_TIMEOUT);

66

/*
68 * The SDRAM is now ready for mode register programming.

* Because the mode register will power up in an unknown state ,
70 * it should be loaded with desired bit values prior to

* applying any operational command. Using the LMR command ,
72 * program the mode register.

*/
74 /* Step 5: Program the external memory mode register */

tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_1 |\
76 SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL |\

SDRAM_MODEREG_CAS_LATENCY_3 |\
78 SDRAM_MODEREG_OPERATING_MODE_STANDARD |\

SDRAM_MODEREG_WRITEBURST_MODE_SINGLE;
80

sdramCmd.CommandMode = FMC_SDRAM_CMD_LOAD_MODE ;
82 sdramCmd.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;

sdramCmd.AutoRefreshNumber = 1;
84 sdramCmd.ModeRegisterDefinition = tmpmrd;

86 /* Send the Load Mode Register command to the target bank */
/* The command is sent as soon as the Command MODE field in

88 the CMR is written */
HAL_SDRAM_SendCommand (& sdramHand , &sdramCmd , SDRAM_TIMEOUT);

90

/*
92 * Wait for at least tMRD time. This is automatically performed by

* the FMC SDRAM controller. At this point the DRAM is ready for
94 * any valid command.

*/

4.9 Synchronous DRAM 219

96

/* Step 6: Set the refresh rate counter in Refresh Timer register ←>

*/
98 /* This 13-bit field defines the refresh rate of the SDRAM device.

It is expressed in number of memory clock cycles. */
100 HAL_SDRAM_ProgramRefreshRate (& sdramHand , RefreshCount);

}

Listing 4.4 SDRAM initialization sequence

To enable the above procedure, the FMC SDRAM controller provides a spe-
cial register called Command Mode register (FMC_SDCMR), illustrated in Fig.
4.38. It contains four fields. The MODE field defines the command issued to
the SDRAM chip. The possible commands are, for example, “CLK ENABLE”,
“PRECHARGE ALL”, “AUTO REFRESH”, and “LOAD MODE REGISTER”. The
CTB1 and CTB2 fields select the SDRAM chip to which the command is sent. As
soon as the MODE field is written, the FMC SDRAM controller will issue the corre-
sponding command to SDRAM chips selected by CTB1 and CTB2 command bits.
The NRFS field defines how many consecutive Auto-refresh commands are issued in
the fourth step of the initialization sequence, the MRD field contains the content that
should be written to the SDRAM Mode Register. The mode register is a 12-bit special
register inside the SDRAM chip and is used to define the specific mode of operation
of the SDRAM. This definition includes the selection of a burst length (BL), a burst
type, a CAS latency (CL), an operating mode and a write burst mode, as shown in
Fig. 4.39. The mode register is programmed from the FMC SDRAM controller via
the “LOAD MODE REGISTER” command and retains the stored information until
it is programmed again or the SDRAM device loses power.

The initialization of the SDRAM device is performed by sending a series of
commands from the FMC_SDCMR register to the SDRAM device. Each command
contains the actual instruction and its parameters. To facilitate the SDRAM chip
initialization, HAL provides the FMC_SDRAM_CommandTypeDefC structure and
HAL_SDRAM_SendCommand function. The FMC_SDRAM_CommandTypeDef
C structure abstracts the content of FMC_SDCMR register and is defined as follows:

Fig. 4.38 Command Mode register (FMC_SDCMR)

220 4 Main Memory

Fig. 4.39 SDRAM mode register

1 typedef struct
{

3 uint32_t CommandMode;
uint32_t CommandTarget;

5 uint32_t AutoRefreshNumber;
uint32_t ModeRegisterDefinition;

7 } FMC_SDRAM_CommandTypeDef ;

Listing 4.5 FMC SDRAM FMC_SDRAM_CommandTypeDef C structure

Let us briefly describe the elements of the FMC_SDRAM_CommandTypeDef
Init structure:

• CommandMode: Defines the command issued to the SDRAM device.
• CommandTarget: Defines which SDRAM device (1 or 2) the command will be
issued to.

4.9 Synchronous DRAM 221

• AutoRefreshNumber: Defines the number of consecutive auto-refresh com-
mands issued in auto-refresh mode.

• ModeRegisterDefinition: Defines the SDRAM Mode register content.

In order to send a command to the SDRAM device, we first fill the fields in
the FMC_SDRAM_CommandTypeDef Init structure and then call the HAL_
SDRAM_SendCommand function.

At the end of the SDRAM chip initialization, we set the auto-refresh period in the
FMC SDRAM controller. The AUTO REFRESH command is used during the regular
operation of the SDRAM to refresh its content. This command is nonpersistent, so
it must be issued each time a refresh is required. If memory access is in progress,
the auto-refresh request is delayed. The refresh controller inside the SDRAM chip
generates the address of the row that should be refreshed. For example, the 128Mb
SDRAM requires 4096 AUTO REFRESH commands every 64ms. To ensure that
each row is refreshed according to this requirement, the SDRAM controller must
issue an AUTO REFRESH command every 15.625us. The FMC SDRAM controller
provides the Refresh Timer register (FMC_SDRTR). This register holds the 13-bit
refresh rate in number of SDRAM clock cycles. This 13-bit field should be set
immediately after the initialization of SDRAM. The 13-bit refresh rate is calculated
as follows. As the SDRAM clock runs at 100 Mhz (10 ns period), 15.625 us equals
1562 SDRAM clock periods. We should subtract at least 20 SDRAM clock periods
from this value to obtain a safe margin if an auto-refresh request occurs when a
read request has been accepted. Hence, the 13-bit refresh rate in the FMC_SDRTR
register corresponds to 1542.

To demonstrate the different scenarios when using the FMC SDRAM controller,
we copy a matrix of size 64 rows times 256 columns from the external SDRAM
to the internal SRAM. The elements of the matrix are 32-bit unsigned integers. In
the first scenario (Listing 4.6), the matrix is accessed in row-major order, while in
the second scenario (Listing 4.7), the matrix is accessed in column-major order. The
constants PA3_SDRAM_DEVICE_ADDR and SDRAM_COLS in Listings 4.6 and 4.7
equal 0xC0008000 and 256, respectively. Hence, the matrix is read from the SDRAM
startin at address 0xC000800.

1 void SDRAM_mat_row_access_test(void){
volatile uint32_t address;

3

for (int i = 0; i<MAT_ROWS; i++) {
5 for(int j=0; j<SDRAM_COLS; j++) {

address = PA3_SDRAM_DEVICE_ADDR + ((i*SDRAM_COLS + j) <<2);
7 matrixB[i][j] = *(uint32_t *) address;

}
9 }
}

Listing 4.6 Read matrix from SDRAM in row-major order

222 4 Main Memory

CK

CMD ACT NOP READ READ READ READ NOP NOP NOP

ADDR ROW COL(x) COL(x+1) COL(x+2) COL(x+3)

DQ D0 D1 D2 D3

t_RCD=2 CL=3

7 SDRAM clocks

1 2 3 4 5 6 7 8 9

Fig. 4.40 Using row-major order to read a matrix, the SDRAM controller anticipates four consec-
utive READ command to the active SDRAM row for each read initiated from the CPU

void SDRAM_mat_col_access_test(void){
2 volatile uint32_t address;

4 for (int i = 0; i<SDRAM_COLS; i++) {
for(int j=0; j<MAT_ROWS; j++) {

6 address = PA3_SDRAM_DEVICE_ADDR + ((j*SDRAM_COLS + i) <<2);
matrixB[j][i] = *(uint32_t *) address;

8 }
}

10 }

Listing 4.7 Read matrix from SDRAM in column-major order

Figure 4.40 illustrates one read issued from the CPU for the first scenario (row-
major order access). The FMC SDRAM controller does not support SDRAM burst
reads or writes (the only allowable burst length is 1). Instead, it supports burst reads
on the CPUs AHB bus by utilizing the internal FIFO. Hence, it anticipates four
READ commands to fill in the internal FIFO. The FIFO content is then transferred
to the CPU using the AHB burst read of length 4.

In the second scenario, the matrix is accessed using column-major order.
Figure 4.41 illustrates two consecutive reads issued from the CPU. As the CPU
reads data from consecutive rows in each iteration, the CPU controller first reads
four consecutive words from the active SRAM row and fills the internal FIFO, but
it only returns one word to the CPU over the AHB bus. As the CPU starts another
read from the next row, the SDRAM controller first precharges the active row. It
then waits for two SDRAM clock periods (Row Precharge time) before activating
the next row.

It is obvious that row-major order access is considerably faster than column-
major order access. A rough estimate of the access time for row-major order access
considering an already open row is seven (7) SDRAM clock periods per four words.
On the other side, a rough estimate of the access time for column-major order access
is eight (8) SDRAM clock periods per word. Recall that only one word is transferred
to the CPU, although the SDRAM controller anticipates four consecutive reads from
the active row.

4.9 Synchronous DRAM 223

CK

CMD ACT NOP READ READ READ READ PRE NOP ACT NOP READ READ READ READ

ADDR ROW(y) COL(x) COL(x+1) COL(x+2) COL(x+3) ROW(y+1) COL(x) COL(x+1) COL(x+2) COL(x+3)

DQ D0 D1 D2 D3 D0

t_RCD=2 CL=3 t_RP=2 t_RCD=2 CL=3

8 SDRAM clocks

1 2 3 4 5 6 7 8 a b c d e f

Fig.4.41 Using column major order results in activating, reading and precharging an SDRAM row
for every read issued from the CPU

To assess the performance (speed) of the row-major and column-major matrix
reads, we use the code in Listing 4.8. For each test, the code first sets the PC8 pin
and reads the timer TIM3 counter value (this is the start of the test). After the test,
we reset the PC8 pin and read the timer TIM3 counter value (this is the start of the
test). By setting and resetting the PC8 pin, we can measure the duration of each test
using an oscilloscope. The timer TIM3 runs at 1MHz (1 us resolution). Hence, we
can estimate the duration of each test simply by reading the timer counter before and
after the test.

// Row -major order access:
2 HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_SET);
timer_val_start = __HAL_TIM_GET_COUNTER (& TIM3Handle);

4 SDRAM_mat_row_access_test ();
HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_RESET);

6 timer_val_end = __HAL_TIM_GET_COUNTER (& TIM3Handle);
if (timer_val_end > timer_val_start)

8 elapsed_rows = timer_val_end - timer_val_start;
else

10 elapsed_rows = timer_val_end + (65536 - timer_val_start);

12 // Column -major order access:
HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_SET);

14 timer_val_start = __HAL_TIM_GET_COUNTER (& TIM3Handle);
SDRAM_mat_col_access_test ();

16 timer_val_end = __HAL_TIM_GET_COUNTER (& TIM3Handle);
HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_RESET);

18 if (timer_val_end > timer_val_start)
elapsed_cols = timer_val_end - timer_val_start;

20 else
elapsed_cols = timer_val_end + (65536 - timer_val_start);

Listing 4.8 Code used to test the speed of row-major and column-major matrix read from the
SDRAM

Figure 4.42 shows the oscilloscope trace for the signal on the GPIOC pin. It shows
that the row-major order read lasts for about 2.3 ms, while the column-major order
read lasts for about 10 ms. Using the timer counter, we estimate the duration of the
row-major order read to 2365 us and the duration of the column-major order read
to 9816 us. Both measurements show that the row-major order read is about four
times faster than the column-major order read, which is in accordance with the rough
estimation from Figs. 4.40 and 4.41.

224 4 Main Memory

Fig. 4.42 Oscilloscope trace on the GPIOC pin 8. The row-major order matrix read lasts for about
2.5 ms while the column-major order matrix read lasts for more than 10 ms

4.9.3.1 Using DMA to Transfer Data from an External SDRAM
to the Internal SRAM

Direct memory access (DMA) is used to provide high-speed data transfer between
peripherals and memory and between memory and memory without any CPU action
(except DMA controller initialization and DMA transfer request in case of memory-
to-memory transfer). As already described in Sect. 3.5.2, the DMA controller in
STM32 microcontrollers (actually, there are two DMA controllers, DMA1 and
DMA2, respectively) have 16 streams in total (8 for each DMA controller), each
dedicated to managing memory access requests from one or more peripherals.
Each stream can have up to 8 channels (requests) in total. Each DMA controller
has an arbiter for handling the priority between DMA requests. According to the
STM32F69I reference manual, the memory-to-memory mode in DMA is a mode
that doesn’t need any triggering request from a peripheral, and it will happen just
after the stream enable bit is set. Also, according to the STM32F69I reference man-
ual, only the DMA2 could handle memory-to-memory data transfers. The stream
can be enabled just by setting the Enable bit (EN) in the DMA SxCR register. Then,
the stream immediately fills the FIFO up to the threshold level. When the threshold
level is reached, the FIFO contents are drained and stored in the destination.

Before using the DMA2 controller to transfer data from one memory region
to another, we must configure (initialize) the DMA2 controller as described in
Sect. 3.5.2. When configuring the DMA controller we:

4.9 Synchronous DRAM 225

1. Select a stream that we wish to use. Any available stream in the DMA2 controller
can be used for memory-to-memory transfers.

2. Select a channel; this is irrelevant for memory-to-memory transfers because a
peripheral device does not trigger the DMA transfer through a channel. Instead,
it is triggered by setting the EN bit in the DMA SxCR register.

3. Set a priority for a selected DMA stream.
4. Set the number of data to be transferred (it can be any value from 1 to 65535).
5. Set the source and destination transfer width (byte, half-word, word).
6. Set the source and destination addresses.
7. Select whether the source and destination addresses should be incremented during

the transfer. For memory-to-memory transfers, both addresses should be incre-
mented during the transfer.

8. Select whether the burst transfers of 4, 8 or 16 beats should be used during the
transfer.

Programming DMA is relatively easy. Recall from Sect. 3.5.2 that each stream
can be controlled using four registers: memory address register, peripheral address
register, number of data register, and configuration register. Once set, DMA takes
care of memory address increment without disturbing the CPU. Now that it is clear
how the DMA works from a theoretical point of view, we can use the HAL library
to configure and use a DMA controller. The HAL library abstracts most of the
underlying hardware details. The DMA controller is abstracted in HAL with a C
structure DMA_HandleTypeDef. Let us describe more in-depth only the two most
important fields of this structure:

• Instance: this is the pointer to the DMA Stream descriptor we will use.
For example, DMA2_Stream1 indicates the first stream of DMA2. The stream
descriptor is a C structure that contains all DMA stream registers. The reference
to the Instance structure points to the actual peripheral address. For example, the
DMA2_Stream1 is defined in HAL as a pointer to the stream descriptor structure,
and it holds the register base address for DMA2 Stream1 registers.

• Init: is an instance of the C structure DMA_InitTypeDef, which is used to
configure the DMA Stream and channel.

DMA_InitTypeDef is defined in the following way:

1 typedef struct
{

3 uint32_t Channel;
uint32_t Direction;

5 uint32_t PeriphInc;
uint32_t MemInc;

7 uint32_t PeriphDataAlignment ;
uint32_t MemDataAlignment;

9 uint32_t Mode;
uint32_t Priority;

11 uint32_t FIFOMode;
uint32_t FIFOThreshold;

226 4 Main Memory

13 uint32_t MemBurst;
uint32_t PeriphBurst;

15 }DMA_InitTypeDef;

Listing 4.9 DMA DMA_InitTypeDef C structure

Let us briefly describe the C DMA_InitTypeDef structure:

• Channel: Specifies the channel used for the specified stream. It can assume the
values DMA_CHANNEL_0, DMA_CHANNEL_1 up to DMA_CHANNEL_7.
The peripherals are bound to streams and channels during the MCU design, so
we should consult the datasheet for our microcontroller to see the stream/channel
bound to the peripheral we want to use with DMA.

• Direction: Specifies if the data will be transferred from memory-to-peripheral,
memory-to-memory or peripheral-to-memory.

• PeriphInc: Specifies whether the Peripheral address register should be incre-
mented or not during the DMA transfer. Recall that a DMA controller has one
peripheral port used to specify the address of the peripheral register involved in
the DMA transfer. Since a DMA transfer usually involves several bytes, the DMA
can be configured to increment the peripheral register for every transmitted byte.

• MemInc: Specifies whether the memory address register should be incremented
or not during the DMA transfer.

• PeriphDataAlignment: Specifies the Peripheral data width. Transfer data
sizes of the peripheral and memory are fully programmable through this field
and the next one. The DMA controller is designed to automatically perform data
alignment when source and destination data sizes differ.

• MemDataAlignment: Specifies the Memory data width.
• Mode: the DMA controller has two working modes: normal and circular. In nor-
mal mode, the DMA sends the specified amount of data from the source to the
destination port and stops the activities. It must be re-activated again to do another
transfer. In circular mode, it automatically resets the transfer counter at the end of
transmission and starts transmitting again from the first byte of the source buffer.

• Priority: Specifies the software priority for the DMA Stream. The priority
allows the internal arbiter in the DMA controller to rule concurrent requests.

• FIFOMode: Specifies if the stream uses the FIFO buffer. Recall that each stream
has an independent 4-word (4 * 32 bits) FIFO. The FIFO temporarily stores data
coming from the source before transmitting it to the destination. The FIFO intro-
duces one important advantage: it reduces S(D)RAM access time by supporting
burst transactions. The FMC SDRAM controller used in our case issues four READ
commands in a row, thus reading four consecutive words from an active SDRAM
row. Using the FIFO allows for storing these four words efficiently before they
are sent to SRAM.

• FIFOThreshold: Specifies the FIFO threshold level. The FIFO will be drained
to the destination when this threshold is achieved.

4.9 Synchronous DRAM 227

• MemBurst: Specifies the amount of data to be transferred to/from memory in a
single non-interruptible transaction.

• PeriphBurst: Specifies the amount of data to be transferred to/from periph-
eral (or memory for mem-to-mem DMA transfers) in a single non-interruptible
transaction.

All HAL functions related to DMA manipulation are designed so that they
accept as the first parameter an instance of the C structure DMA_HandleTypeDef.
To initialise the DMA Stream, we first set all desired parameters in the DMA_
InitTypeDef structure and then use the HAL function HAL_DMA_Init
(DMA_HandleTypeDef *hdma). The following code illustrates configuring
and initialising the DMA2 Stream 1 for memory-to-memory transfers using FIFO
and burst of length 4:

1 HAL_StatusTypeDef DMA2_SDRAM_Config(DMA_HandleTypeDef* DmaHandle)
{

3 /* Enable DMA2 clock */
__HAL_RCC_DMA2_CLK_ENABLE ();

5

/* Select the DMA Stream to be used #*/
7 DmaHandle ->Instance = DMA2_Stream1;

9 /* Set the DMA Parameters */
/* DMA_CHANNEL_0 */

11 DmaHandle ->Init.Channel = DMA_CHANNEL_0 ;
/* M2M transfer mode */

13 DmaHandle ->Init.Direction = DMA_MEMORY_TO_MEMORY;
/* Peripheral increment mode Enable */

15 DmaHandle ->Init.PeriphInc = DMA_PINC_ENABLE ;
/* Memory increment mode Enable */

17 DmaHandle ->Init.MemInc = DMA_MINC_ENABLE ;
/* Peripheral data alignment : Word */

19 DmaHandle ->Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD ;
/* memory data alignment : Word */

21 DmaHandle ->Init.MemDataAlignment = DMA_MDATAALIGN_WORD ;
/* Normal DMA mode */

23 DmaHandle ->Init.Mode = DMA_NORMAL;
/* priority level : high */

25 DmaHandle ->Init.Priority = DMA_PRIORITY_HIGH;
/* FIFO mode enabled */

27 DmaHandle ->Init.FIFOMode = DMA_FIFOMODE_ENABLE ;
/* FIFO threshold: full */

29 DmaHandle ->Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL ;
/* Memory burst */

31 DmaHandle ->Init.MemBurst = DMA_MBURST_INC4 ;
/* Peripheral burst */

33 DmaHandle ->Init.PeriphBurst = DMA_PBURST_INC4 ;

35 /* Initialize the DMA stream */
if (HAL_DMA_Init(DmaHandle) != HAL_OK)

37 {
/* Initialization Error */

39 return HAL_ERROR;
}

41

/* Configure NVIC for DMA transfer complete/error interrupts */

228 4 Main Memory

43 HAL_NVIC_SetPriority(DMA2_Stream1_IRQn , 0, 0);

45 /* Enable the DMA STREAM global Interrupt */
HAL_NVIC_EnableIRQ (DMA2_Stream1_IRQn);

47

return HAL_OK;
49 }

Listing 4.10 DMA2 controller configuration and initialization

In the above code, the DMA2 Stream 1 is configured to automatically increment
the source and destination addresses for each transmitted word. Remember that we
are transferring the block of contiguous memory words in the matrix from the external
SDRAM to the matrix in the internal SRAM. Hence, the addresses in the source and
destination block should increase for each word transferred. Also, we enable the
FIFO, set the FIFO threshold level to full and enable the burst transfers of size 4. In
such a way, the DMA controller will read four words from SDRAM to the FIFO and
then transfer them to SRAM.

After DMA initialisation, we should set the priority for the DMA2 Stream 1 inter-
rupt and enable the interrupt request generated by DMA2 Stream 1. The DMA2
Controller will then assert an interrupt request whenever the DMA 2 Stream 1 com-
pletes the DMA transfer. Hence, we should also implement the minimal interrupt
handler for the DMA2 Stream 1 as follows:

1 void DMA2_Stream1_IRQHandler(void)
{

3 /* Check the interrupt and clear flag */
HAL_DMA_IRQHandler (& DMA2_SDRAM_Handle);

5 }

Listing 4.11 DMA2 stream 1 interrupt handler

Now we should create a DMA handle variable and initialize the DMA2 Stream 1
by passing reference to the DMA handle into the DMA2_SDRAM_Config function:

1

DMA_HandleTypeDef DMA2_SDRAM_Handle;
3

...
5

// Configure DMA2 for SDRAM:
7 if (DMA2_SDRAM_Config (& DMA2_SDRAM_Handle) != HAL_OK) {

Error_Handler ();
9 }

Listing 4.12 DMA2 stream 1 handle and its configuration

To initiate the memory-to-memory DMA transfer, we use HAL_DMA_Start
(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t
DstAddress, uint32_t DataLength). The arguments are the pointer to
the DMA handle, the source address, the destination address and the number of data
to transfer. This function sets the EN bit in DMA SxCR, which in turn triggers the
DMA controller to start the transfer. Hence, to transfer a matrix from the external
SDRAM to SRAM, we implement and use the following function:

4.9 Synchronous DRAM 229

1 void SDRAM_DMA_mat_row_access_test(void){
volatile uint32_t address;

3

for (int k = 0; k < N; k++)
5 {

HAL_DMA_Start (& DMA2_SDRAM_Handle ,
7 (uint32_t) PA3_SDRAM_DEVICE_ADDR_RW ,

(uint32_t) matrixB ,
9 MAT_ROWS * SDRAM_COLS);

HAL_DMA_PollForTransfer (& DMA2_SDRAM_Handle ,
11 HAL_DMA_FULL_TRANSFER ,

HAL_MAX_DELAY);
13 }

}

Listing 4.13 Matrix transfer using DMA

The function HAL_DMA_PollForTransfer() waits for DMA transfer to
complete. Otherwise, the CPU would continue to execute the program and would
not bother with DMA transfer (which would be the desired way), but in our case,
we are going to measure the time required to transfer the matrix from SDRAM to
SRAM using DMA; hence, we should wait for DMA to terminate. The function
HAL_DMA_PollForTransfer() is used here for the sake of simplicity, but it
is strongly recommended to use the DMA interrupt handler instead. Finally, we can
add the DMA matrix transfer to a set of the previous performance tests in Listing 4.8
as follows:

// Row -major order access:
2 HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_SET);
timer_val_start = __HAL_TIM_GET_COUNTER (& TIM3Handle);

4 SDRAM_mat_row_access_test ();
HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_RESET);

6 timer_val_end = __HAL_TIM_GET_COUNTER (& TIM3Handle);
if (timer_val_end > timer_val_start)

8 elapsed_rows = timer_val_end - timer_val_start;
else

10 elapsed_rows = timer_val_end + (65536 - timer_val_start);

12 // Column -major order access:
HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_SET);

14 timer_val_start = __HAL_TIM_GET_COUNTER (& TIM3Handle);
SDRAM_mat_col_access_test ();

16 timer_val_end = __HAL_TIM_GET_COUNTER (& TIM3Handle);
HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_RESET);

18 if (timer_val_end > timer_val_start)
elapsed_cols = timer_val_end - timer_val_start;

20 else
elapsed_cols = timer_val_end + (65536 - timer_val_start);

22

// DMA transfer:
24 HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_SET);

timer_val_start = __HAL_TIM_GET_COUNTER (& TIM3Handle);
26 SDRAM_DMA_mat_row_access_test ();

timer_val_end = __HAL_TIM_GET_COUNTER (& TIM3Handle);
28 HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_RESET);

if (timer_val_end > timer_val_start)
30 elapsed_cols = timer_val_end - timer_val_start;

else
32 elapsed_cols = timer_val_end + (65536 - timer_val_start);

Listing 4.14 Code used to test the speed of row-major, column-major and DMA matrix read from
the SDRAM

230 4 Main Memory

Fig. 4.43 Oscilloscope trace on the PC8 pin. The row-major order matrix read lasts for about 2.5
ms, the column-major order matrix read lasts forabout 10 ms while DMA transfer lasts for about
1.5 ms

When executing the DMA performance test, we observe from Fig. 4.43 that the
time required to transfer the matrix from the external SDRAM to the internal SRAM
is only about 1500 us. Why is the DMA controller faster than the CPU, considering
that the same amount of data is being transferred from/to the same devices in both
cases?

J_LOOP:
2 ; address = PA3_SDRAM_DEVICE_ADDR_RW + ((i*SDRAM_COLS + j)←>

<<2);
add.w r1 , r3 , #0 ; r1 <- r3

4 ldr r2 , [pc , #60] ; r2 <- 0xC0008000 (SDRAM ←>

address)
add.w r2 , r2 , r1 , lsl #2 ; r2 <- r2+(r1*4) LOAD FROM ←>

SDRAM
6 ; matrixB[i][j] = *(uint32_t *) address;

ldr r0 , [r2 , #0] ; r0 <- M_SDRAM[r2]
8 ldr r2 , [pc , #52] ; r2 <- matB base address

str.w r0 , [r2 , r1 , lsl #2] ; matB[i][j] <- r0 STORE TO ←>

SRAM
10 ; for(int j=0; j<SDRAM_COLS; j++) {

adds r3 , #1 ; inc r3 (r3 holds j)
12 cmp r3 , #255 ; if j <= 255

ble.n J_LOOP ; loop back

Listing 4.15 Assembly code corresponding to the instructions created by the compiler for the
innermost loop in Listing 4.6. There are 11 instructions executed in each iteration of the innermost
loop; hence 11 instructions are executed for transferring one word from SDRAM to SRAM. The
first four instructions are used to calculate the address in SDRAM. Then, four instructions are
used to read the word from SDRAM and write it to SRAM, and finally, the last three instructions
increments the innermost loop counter, compare it to 255 and loop if not equal

4.10 Double Data Rate SDRAM 231

Well, the answer lies in the fact that the DMA controller does not execute instruc-
tions. For each word transferred, the CPU fetches the LDR instruction (load register
with word), executes it (it loads the data from SDRAM to an internal register),
fetches the STR instruction (store register as word), and finally executes it (it stores
the data from the internal register to SRAM). Besides LDR and STR instructions,
in each loop iteration, the CPU executes a bunch of other instructions required to
calculate the address in SDRAM, increment and compare the loop index, etc. (see
Listing 4.15). The DMA controller only transfers data from SDRAM (in bursts!) and
forwards them to SRAM (in bursts!) without fetching and executing the load/store
instructions! Besides offloading the CPU, this is another benefit of utilizing DMA
controllers.

4.10 Double Data Rate SDRAM

How can we further speed up memory transfers? The solution is to access two
adjacent columns simultaneously with one READ/WRITE command. So, instead of
reading/writing one 8-bit memory word (column), we can read/write two adjacent 8-
bit memory words (columns). But with that solution, a new challenge arises. How to
transfer two 8-bit words in the same amount of time as one 8-bit word? One solution
would be to have a bus twice as wide. Thus, instead of the 8-bit data bus (DQ[7:0]), the
SDRAM device would have had a 16-bit data bus (DQ[15:0]). However, this could
be challenging because more wires mean more noise on the data bus and worse
data/signal integrity. The second solution would be to have a twice as fast bus. But
this is also challenging because higher frequency means worse data/signal integrity
and higher power consumption. The better solution is to transfer data at both clock
edges to double data bus bandwidth without a corresponding increase in clock
frequency or in data bus width.

In SDRAM devices, each time a column read command is issued, the control
logic determines the duration of the data burst, and each column is moved separately
from the sense amplifiers through the I/O logic to the external data bus. However,
the separate control of each column limits the operating data rate of the SDRAM
device. In Double Data Rate (DDR) SDRAM devices, two adjacent columns are
moved in parallel from the sense amplifiers to the output data register, and the
data is then pipelined through a multiplexor to the external data bus. The feature to
access two columns at a time is referred to as 2N-prefetch. Figure 4.44 illustrates the
simplified block diagram of a DDR SDRAM device with four independent banks.
We can see that the internal structure is similar to the internal structure of an SDRAM
device except for the IO block. The memory arrays and banks used in DDR SDRAMs
are the same as in SDRAMs. The name “double data rate” refers to the fact that a
DDR SDRAM with a certain clock frequency achieves nearly twice the bandwidth
of an SDRAM running at the same clock frequency due to this double pumping.
Double data rate SDRAM is a significant improvement of SDRAM. DDR SDRAMs
have been used in computer systems’ memory since 2001.

232 4 Main Memory

Control logic

Mode register

Co
m

m
an

d
de

co
de

Refresh
counter

Row
address

MUX

Bank 0
Row

address
latch
and

decoder

Bank 0
8 arrays

(4096x1024x8)

Bank 1
Ad

dr
es

s
re

gi
st

er

Bank control
logic

Co
lu

m
n

ad
dr

es
s

la
tc

h
/ c

ou
nt

er

IO gating and
write drivers

Column decoder

16
-b

it
ou

tp
ut

re

gi
st

er

W
rit

e
FI

FO

IO
logic

1024 (x8)

8192

CKE

CLK#

CS#
WE#

CAS#
RAS#

A[11:0],

BA0,BA1
13 13 13

2

12

12

9

9

10

12

8192

16

16

8

16

8

12

BA0,BA1

A[11:0]

A[9:0]

4096

1

DQ[7:0]

Bank 2
Bank 3

CLK

8

8

8

8

DQS

CLK

CLK

DQS
generator

1

DM

1

DQSIO
drivers

Input
registers

Input/output block

Fig. 4.44 Simplified block diagram of a DDR SDRAM device with four banks

The main difference in the internal organization of DDR SDRAM over SDRAMs
is an improved I/O block. The I/O block of an 8-bit DDR SDRAM device from
Fig. 4.44 now consists of a 16-bit output register, a 2/1 multiplexor, a DQS generator,
two 8-bit input registers, a write FIFO and IO logic. Figure 4.44 shows that, in the
case of the READ access, given the width of the external data bus (DQ) as 8-bit, 16
bits are moved from the sense amplifiers to the output register, and the 16 bits are then
pipelined through the multiplexor to the external data pins. The clock signal controls
the select input of the multiplexor. In the case of the WRITE access, two 8-bit data
are stored successively (one after the other) in two 8-bit input registers and then
transferred together into a 16-bit write FIFO. From there, data is transferred to the
sense amplifiers through IO gating and write drivers. Besides, DDR SDRAMs have
two new control signals: data strobe (DQS) and data mask (DM). In the following
subsections, we are going to describe the operation of the IO block during the READ
and WRITE accesses and the role of DQS and DM in more detail.

The downside of the 2N-prefetch architecture is that short column bursts are no
longer possible. In DDR SDRAM devices, a minimum burst length of 2 columns of
data is accessed per column read command.

4.10.1 Functional Description

The DDR SDRAM uses a double data rate architecture to achieve high-speed opera-
tion. The double data rate architecture is essentially a 2N-prefetch architecture with
an I/O block designed to transfer two data words per clock cycle at the I/O pins.
A single read or write access for the DDR SDRAM effectively consists of a sin-

4.10 Double Data Rate SDRAM 233

gle 2N-bit-wide, one-clock cycle data transfer at the internal DRAM core and two
corresponding N-bit-wide, one-half clock cycle data transfers at the I/O pins.

The DDR SDRAM operates from a differential clock. Differential clock employs
two complementary clock signals, CLK and CLK#. In general, a clock signal can
be regarded as a binary signal whose duty cycle is nominally 50%. As we know, the
clock signal is used to synchronize and capture data at its rising or falling edges. In
DDR SDRAMs, data are synchronized and captured at both clock edges. But clocks
are notoriously bad at having 50% duty cycles at high frequencies. As a rule of
thumb, high frequency is generally considered to be above 100MHz. So, the reason
for having two separate clocks is to allow for more precise alignment of the rising
edges of the clock with the data. The crossing of CLK going HIGH and CLK# going
LOW is referred to as the positive edge of CLK. Commands (address and control
signals) are registered at every positive edge of CLK.

Read and write accesses to the DDR SDRAM are burst-oriented. Accesses start at a
selected location and continue for the BL number of locations in a sequence. Similarly
to SDRAMs, accesses begin with the registration of an ACTIVE command, which
may then be followed by a READ or WRITE command. The address bits registered
coincident with the ACTIVE command are used to select the bank and row to be
accessed. The address bits registered coincident with the READ or WRITE command
are used to select the bank and the starting column location for the burst access. The
DDR SDRAM provides for programmable READ or WRITE burst lengths of 2, 4,
or 8 locations.

4.10.1.1 Read
Figure 4.45 illustrates the Operation of the I/O block during the READ access to an
8-bit DDR SDRAM. First, 16 bits (two adjacent 8-bit columns) are transferred from
the sense amplifiers to the 16-bit output register as the consequence of the READ
command. Then, when CLK is HIGH, the first 8-bit word is transferred through the
multiplexor onto the I/O pins; when the CLK signal is LOW, the second 8-bit word is
transferred through the multiplexor onto the IO pins. In such a way, two 8-bit words
from the DRAM array are transferred in one clock cycle. A bidirectional data strobe
(DQS) signal is transmitted, along with data, for use in data capture at the memory
controller. The DQS generator generates the DQS signal and synchronizes it with
the memory controller’s global clock. Hence, the DQS signal is edge-aligned with
data for READs.

4.10.1.2 Write
Figure 4.46 illustrates the operation of the I/O block during the WRITE access to an
8-bit DDR SDRAM. Two 8-bit words are successively transferred from the data bus
into the input registers. Two input registers form a DDR input pair. A bidirectional
data strobe (DQS) signal is now transmitted by the memory controller, along with
data, for use in data capture at DDR SDRAM. The first 8-bit word is captured into
the first data input register at the positive edge of DQS, while the second 8-bit word
is captured into the second input register at the negative edge of DQS. Hence, input
data is registered on both edges of DQS, and DQS signal is center-aligned with

234 4 Main Memory

16
-b

it
ou

tp
ut

re

gi
st

er

W
rit

e
FI

FO

IO
logic

16

16

8

16

8

DQ[7:0]

8

8

8

8

DQS

CLK

CLK

DQS
generator

1

DM

1

DQSIO
drivers

Input
registers

CLK=1

CLK=0

CLK

DQS

Fig. 4.45 Operation of the IO block during READ

16
-b

it
ou

tp
ut

re

gi
st

er

W
rit

e
FI

FO

IO
logic

16

16

8

16

8

DQ[7:0]

8

8

8

8

DQS

CLK

CLK

DQS
generator

1

DM

1

DQSIO
drivers

Input
registers

CLK

DQS

8-bit input data
registered in the

8-bit input data
registered in the
second input reg

16-bit input data
registered in

write FIFO

Fig. 4.46 Operation of the IO block during WRITE

4.10 Double Data Rate SDRAM 235

data for WRITEs. Then, the 16-bit data is transferred into the write FIFO at the
positive edge of the CLK signal and written to the sense amplifiers and the DRAM
array during the PRECHARGE command.

4.10.2 DDR SDRAM Timing Diagrams

Within the realms of computer memory, understanding DDR SDRAM timings and
timing diagrams is paramount for optimizing system performance, ensuring data
integrity, and unlocking the full potential of memory modules. DDR SDRAM tim-
ing diagrams represent the intricate timing relationships governing the operation of
DDR synchronous dynamic random-access memory. These diagrams visually depict
the various timing parameters, such as CAS latency, tRCD, tRP, commands, data,
and addresses, along with their respective timing intervals and relationships. By pre-
senting these timings in a graphical format, DDR SDRAM timing diagrams provide
a clear and concise means of understanding the precise sequence of events that occur
during memory read, write, and refresh operations. They offer invaluable insights
into the synchronization and coordination required for efficient data transfer within
the memory module and between the memory module and the rest of the system,
facilitating optimal performance tuning and troubleshooting in computer memory
subsystems.

4.10.2.1 Read Bursts
Figure 4.47 shows the timing for a read burst with CL = 2 and BL = 4. During
READ bursts, the valid data-out element from the starting column address is available
following the CL after the READ command. Each subsequent data-out element is
valid at the next positive or negative clock edge (i.e., at the next crossing of CLK
and CLK#). The DDR SDRAM drives DQS along with output data. The initial LOW
state on DQS is known as the read preamble; the LOW state coincident with the last
data-out element is known as the read postamble. Upon completion of a read burst,
assuming no other commands have been initiated, the DQ will go High-Z.

Data from any READ burst may be concatenated with data from a subsequent
READ command. In such a way, a continuous flow of data can be maintained. The
first data element from the new burst will follow the last element of a completed

Fig. 4.47 The DDR READ burst with CL = 2 and BL = 4

236 4 Main Memory

Fig. 4.48 Two consecutive DDR READ bursts with CL = 2 and BL = 4

Fig. 4.49 DDR READ to PRECHARGE

burst if the new READ command is issued. x cycles after the first READ command,
where. x equals the number of desired data element pairs (recall that the 2N-prefetch
architecture requires pairs). This is shown in Fig. 4.47.

A PRECHARGE command may follow a READ burst to the same bank. The
PRECHARGE command should be issued. x cycles after the READ command, where
. x equals the number of desired data element pairs (.x = BL/2). This is shown in Fig.
4.49. Following the PRECHARGE command, a subsequent command to the same
bank cannot be issued until both tRAS and tRP have been met (Fig. 4.48).

4.10.2.2 Write Bursts
Figure 4.50 shows the timing for a WRITE burst with BL = 4. Input data appearing on
the DQ is written to the memory array subject to the data mask (DM) input coincident
with the data. The DQS and DM signals are now transmitted by the memory con-
troller, along with data. If the DM signal is registered LOW, the corresponding input
data is written to memory. If the DM signal is registered HIGH, the corresponding
input data is ignored, and a WRITE is not executed to that column location. During
WRITE bursts, the first valid input data element is registered on the first rising edge
of DQS following the WRITE command. Subsequent data elements are registered
on the successive edges of DQS. The LOW state on DQS between the WRITE com-
mand and the first rising edge is known as the write preamble, and the LOW state on
DQS following the last input data element is known as the write postamble. The first

4.10 Double Data Rate SDRAM 237

Fig. 4.50 The DDR WRITE burst with BL = 4

Fig. 4.51 Two DDR WRITE bursts with BL = 4

input data element following the WRITE command, along with its DQS, should be
valid on the data bus one clock period after the WRITE command. Actually, most
modern DDR SDRAMs specify this time between the WRITE command and the
first corresponding rising edge of DQS from 75% to 125% of one clock cycle. In all
of the WRITE diagrams, this time is one clock cycle.

Data for any WRITE burst may be concatenated with a subsequent WRITE com-
mand. The new WRITE command should be issued . x cycles after the first WRITE
command, where . x equals the number of desired data element pairs. Figure 4.51
illustrates two concatenated bursts with BL = 4.

A PRECHARGE command to the same bank may follow a WRITE burst, as shown
in Fig. 4.52. There is a time period, write recovery time (tW R), associated with
the WRITE-to-PRECHARGE command sequence. Only the data-in pairs registered
prior to the tW R period are written to the internal array. After the PRECHARGE
command, a subsequent command to the same bank cannot be issued until tRP is
met.

238 4 Main Memory

Fig. 4.52 DDR WRITE to PRECHARGE

4.10.3 Address Mapping

Now that we are familiar with the basic operations in SDRAMs, we can move forward
and see how an address from the CPU should be mapped into SDRAM’s bank, row,
and column address. The memory controller performs the address mapping. Suppose
we are addressing a DDR SDRAM chip that consists of 8 banks, and each bank has
eight DRAM arrays of size 4096 rows by 1024 columns. To address such a DDR
SDRAM chip, we need 12 bits for the row address, three bits for the bank address,
and 10 bits for the column address.

Figure 4.53 shows the naive way of address mapping, where the top address bits
are used to address the bank, the middle 14 bits are used to address the row, and
the last 10 bits select the column. The main problem of such naive address mapping
is that consecutive rows are in the same bank; hence, there is no bank interleaving.
In the case of consecutive memory transfers consisting of more than one row, the
currently open row should first be precharged before the new row is open.

The better way of address mapping would be to take advantage of bank interleav-
ing, such that consecutive rows are in different banks. In this way, we can open a
new row before the currently accessed row is precharged. We say that the precharge
time is masked. Figure 4.54 shows the address mapping, where bank interleaving
is used. Now, the top address bits select the row, while the middle address bits select
the bank. Each time the end of a row is reached, the same row in a different bank is
accessed (Fig. 4.55).

ColumnRowBank

10123

Fig. 4.53 Naive address mapping

ColumnRow Bank

3 1012

Fig. 4.54 Bank interleaving

4.10 Double Data Rate SDRAM 239

BankRow Low columnHi col.

12 3 82

Fig. 4.55 Cache block interleaving

Table 4.2 Summary of important timings in SDRAMs

Name Symbol Description

CAS latency CL

The number of cycles between sending a column address to the

memory and the beginning of the data in response to a READ command.

This is the number of cycles it takes to read the first bit of memory from

a DRAM with the correct row already open. CL is an exact number that

must be agreed on between the memory controller and the memory

Row Address to

Column

Address Delay

tRC D

The minimum number of clock cycles required between opening a row

and issuing a READ/WRITE command. The time to read the first bit of

memory from an SDRAM without an active row is tRC D+ CL

Row Precharge

Time
tRP

The minimum number of clock cycles required between issuing the

precharge command and opening the next row. The time to read the first

bit of memory from an SDRAM with the wrong row open is

tRP+ tRC D+ CL

Row Active

Time
tRAS

The minimum number of clock cycles required between a row active

command and issuing the precharge command. This is the time needed

to refresh the row internally, and overlaps with tRC D .

In SDRAM modules, it is usually tRC D+ CL

The third way of address mapping would be to take into account the cache memory.
Typically, the cache block is 64 bytes in size. In reality, memory reads or writes are
rarely random due to the locality of reference. If a cache is used to support the locality
of references, the CPU will access consecutive cache blocks. Hence, the cache misses
will occur on the consecutive 64 bytes in memory. For example, if a cache block is
stored in the last 64 bytes of a row, the cache miss on the next cache block would
require precharging the row and opening a new one. In the case where consecutive
cache blocks are stored in different banks, a row precharge would not be required.
Thus, it would be better to put consecutive cache blocks into different banks—this
is called cache block interleaving. Figure shows the address mapping, where cache
block interleaving is used. Now, the column bits are split into two parts. Low column
bits select the word within the cache block. The remaining high column bits address
the cache block in different banks.

4.10.4 Memory Timings: A Summary

So far, we have learned that each memory operation is associated with one or more
memory timings that should be met in order to perform these operations correctly.
Table 4.2 summarizes the most important memory timings.

240 4 Main Memory

CL, tRC D , and tRP are for most modern SDRAMs, typically around 13 ns, and
have not changed significantly since the SDRAMs were first introduced. Actually,
the DRAM cell and array process technologies have not significantly changed over
the decades, and only the techniques to speed up memory transfers have been (e.g.,
synchronous interface, bank interleaving, etc.). The next subsection covers the tech-
niques to speed up memory transfers in DDR SDRAMs.

4.10.5 DDR Versions

To boost the performance of DDR SDRAMs, DDR SDRAMs have been further
improved. Due to its nature (data is stored as a charge) and the process technology
used to implement DRAM cells, the DRAM core (DRAM arrays) has mostly stayed
the same over the decades, and its speed of operation remains relatively low. In
SDRAMs, the clock rate used to transfer data on the data bus equals the clock rate
used to transfer data between internal latches, sense amplifiers, and input/output
data registers. The following improvements aim to speed up memory transfers by
employing larger prefetch or by increasing the frequency on the data bus (and not
the frequency of the SDRAM core). These subsequent improved versions of DDR
SDRAM are numbered sequentially: DDR2, DDR3, and DDR4.

DDR SDRAMs have 2N-prefetch, and the typical frequencies of the SDRAM
core and the data bus are 133, 167, and 200 Mhz. In DDR2 SDRAM devices, the
number of columns prefetched is 4. Hence, DDR2 employs 4N-prefetch. Besides,
the DDR2 internal clock runs at half the DDR2 external bus clock rate. DDR2 offers
data bus clock rates of 266 MHz, 333 MHz, and 400 MHz. DDR2 also lowers power
by dropping the voltage from 2.5 v (DDR) to 1.8 v. DDR3 increased the prefetch to
8N. DDR3 bus clock rate is four times faster than DDR3 internal clock rate. DDR3
also drops the voltage to 1.5 v and has a maximum data-bus clock speed of 800
MHz. DDR4 also employs 8N-prefetch but drops the voltage to 1 to 1.2 v and has
a maximum data-bus clock rate of 1600 MHz. DDR4 bus clock rate is four times
faster than DDR4 internal clock rate.

DDR5, or Double Data Rate 5, is the latest generation of DDR SDRAM tech-
nology. It represents a significant advancement over its predecessor, DDR4, offering
improvements in speed, capacity, and efficiency. DDR5 offers significantly higher
data transfer rates compared to DDR4 memory. 16N-prefetch is a new feature intro-
duced with DDR5 memory, offering higher memory bandwidth and improved per-
formance compared to DDR4 memory with 8N prefetch. With 16N prefetch, DDR5
memory doubles the data throughput compared to 8N prefetch in DDR4. While
DDR4 memory modules typically operate at a voltage of 1.2 v, DDR5 memory mod-
ules operate at a reduced voltage of around 1.1 V. The lower operating voltage of
DDR5 memory helps reduce power consumption and heat generation, which is espe-
cially important in high-performance computing systems, servers, and data centers
where power efficiency is critical. Lower voltage operation can also improve system
stability and reliability by reducing the risk of electrical overstress and component
degradation. DDR5 also has higher frequencies than DDR4, with a bus clock rate of
3200–4200 MHz.

4.11 DIMMModules 241

4.11 DIMM Modules

The capacities of one DDR3 SDRAM chip are 1, 2, 4, and 8 Gbits, while the capacities
of one DDR4 SDRAM chip are 4, 8, 16, and 32 Gbits. We can connect two or
more chips together to increase memory capacity and bandwidth, as illustrated in
Fig. 4.56. Each chip in Fig. 4.56 is the DDR SDRAM chip from Fig. 4.44, containing
four banks, each of size 4096x1024x8 bits. Hence, one DDR SDRAM chip is 16Mx8
bits in size. Both chips in Fig. 4.56 share the memory, the control (DQS and DM), and
the command bus (CS#, WE#, RAS#, and CAS#); hence, both chips are accessed
simultaneously. A set of DRAM chips connected to the same chip select (CS#)
signal, which are therefore accessed simultaneously, is referred to as a rank. The
chips in Fig. 4.56 form a DDR SDRAM of size 16Mx16 bits. Hence, by connecting
two DRAM chips as in Fig. 4.56, we have increased the capacity and the data bus
bandwidth, as now 16 data bits are transferred simultaneously.

We can further increase DRAM’s size and bandwidth by connecting more than
two chips in one rank. Figure 4.57 illustrates a rank composed of four DDR SDRAM
chips of size 16Mx8 bits. Again, all four DDR SDRAM chips share the same CS#
signal and are accessed simultaneously. The rank is of size 16Mx32 bits, as now 32
data bits are transferred simultaneously.

We can even form two independent ranks. In such a way, we can interleave the
accesses to both ranks (similarly to bank interleaving) and mask latencies. While
accessing one rank, we can activate a row in another rank or refresh another rank.
Figure 4.58 illustrates two independent ranks, Rank0 and Rank1. For each rank, there
is a separate CS# signal: CS0# for Rank0, and CS1# for Rank1. Now, both ranks
share the same data bus, as only one rank can be read or written simultaneously.

In modern computer systems, DRAM chips are combined on a printed circuit
board designed for use in personal computers, workstations, and servers. The memory
chips are placed on both sides of the printed circuit board. Typically, there are eight

CS#
WE#
RAS#
CAS#

A[11:0]
BA[1:0]

DQ[7:0]
DQS,DM

16Mx8
DDR SDRAM

CS#
WE#
RAS#
CAS#

DDR SDRAM
16Mx8

DQ[7:0]
DQS,DM

A[11:0]
BA[1:0]

CS#
WE#
RAS#
CAS#

A[11:0]
BA[1:0]

14 14

2 8 2 8

DQ[15:8]

DQ[7:0]
DQS,DM

Fig. 4.56 A rank composed of two DRAM 16Mx8 chips

242 4 Main Memory

CS#
WE#
RAS#
CAS#

A[11:0]
BA[1:0]

DQ[7:0]
DQS,DM

16Mx8
DDR SDRAM

CS#
WE#
RAS#
CAS#

DDR SDRAM
16Mx8

DQ[7:0]
DQS,DM

A[11:0]
BA[1:0]

CS#
WE#
RAS#
CAS#

A[11:0]
BA[1:0]

14

14

2 8 2 8

DQ[15:8]

DQ[7:0]
DQS,DM

CS#
WE#
RAS#
CAS#

DDR SDRAM
16Mx8

A[11:0]
BA[1:0]

DQ[7:0]
DQS,DM

CS#
WE#
RAS#
CAS#

DDR SDRAM
16Mx8

A[11:0]
BA[1:0]

DQ[7:0]
DQS,DM

2 8 2 8

DQ[31:24]
DQ[23:16]

14 14 14

Fig. 4.57 A rank composed of four DRAM 16Mx8 chips

CS#
WE#
RAS#
CAS#

A[11:0]
BA[1:0]

DQ[7:0]
DQS,DM

16Mx8
DDR SDRAM

CS#
WE#
RAS#
CAS#

DDR SDRAM
16Mx8

DQ[7:0]
DQS,DM

A[11:0]
BA[1:0]

WE#
RAS#
CAS#

A[11:0]
BA[1:0]

14 14

2 8 2 8

DQ[15:8]

DQ[7:0]
DQS,DM

CS#
WE#
RAS#
CAS#

DDR SDRAM
16Mx8

A[11:0]
BA[1:0]

DQ[7:0]
DQS,DM

CS#
WE#
RAS#
CAS#

DDR SDRAM
16Mx8

A[11:0]
BA[1:0]

DQ[7:0]
DQS,DM

2 8 2 8

CS0#
CS1#

Rank 0 Rank 1

Fig. 4.58 Two ranks each containing two DRAM 16Mx8 chips

Front side of DIMM Back side of DIMM

Rank 0: collection of 8 DRAM chips Rank 1: collection of 8 DRAM chips

Fig. 4.59 A DIMM module

4.11 DIMMModules 243

Table 4.3 Comparison of DDR SDRAM generations and DIMMs

Generation Chip Data bus Timings DIMM

DRAM DRAM Clock Prefetch Clock MT/s CL-tRCD-tRP tCL MB/s Voltage DIMM

name (Mhz) (MHz) (ns) name

DDR DDR-266 133 2N 133 266 2.5-3-3 18.8 2128 2.5 PC-2100

DDR DDR-300 150 150 300 2400 PC-2400

DDR DDR-400 200 200 400 3-3-3 15 3200 PC-3200

DDR2 DDR2-533 133 4N 266 533 4-4-4 15 4264 1.8 PC2-4300

DDR2 DDR2-667 166 333 667 5-5-5 5336 PC2-5300

DDR2 DDR2-800 200 400 800 6-6-6 6400 PC2-6400

DDR3 DDR3-1066 133 8N 533 1066 7-7-7 13.12 8528 1.5 PC3-8500

DDR3 DDR3-1333 166 666 1333 9-9-9 13.5 10664 PC3-10700

DDR3 DDR3-1600 200 800 1600 11-11-11 13.75 12800 PC3-12800

DDR4 DDR4-2400 300 8N 1200 2400 18-18-18 13.5 19200 1.2 PC4-19200

DDR4 DDR4-2666 333 1333 2666 20-20-20 13.6 21333 PC4-21333

DDR4 DDR4-3200 400 1600 3200 22-22-22 13.75 25600 PC4-25600

DDR5 DDR5-6400 400 16N 3200 6400 52-52-52 16 51200 1.1 PC5-51200

(8) memory chips placed on one side of the printed circuit boards. A printed circuit
board containing memory chips on both sides is referred to as dual in-line memory
module (DIMM). For instance, the 64-bit data bus for DIMM requires eight 8-bit
chips addressed in parallel. The DRAM chips on one side of the DIMM module form
one rank: they share the same chip select (CS#) signal and are, therefore, accessed
simultaneously. Figure 4.59 illustrates a DIMM module and its two ranks, Rank 0
and Rank 1. In practice, all DRAM chips on DIMM share all of the other command
and control signals, and only the chip select pins for each rank are separate. Each
side of a DIMM, containing eight 8-bit DRAM chips, is one rank, and each rank has
a 64-bit-wide data bus.

Manufacturers use the rather confusing labeling of SDRAM chips and DIMM
modules. When DDR SDRAMs are packaged as DIMMs, they are confusingly
labeled by the peak DIMM bandwidth. For example, when DDR SDRAMs with
a clock frequency of 133 MHz are packed as a DIMM, the DIMM name becomes
PC2100. The name comes from 133MHz x 2(DDR) x 8 bytes (eight 8-bit DRAM
chips in a rank) equals 2100 MB/sec. Also, confusing names are used to label
the DRAM chips. DRAM chips are labeled with the number of bits per second
rather than their clock rate, so a 133 MHz DDR SDRAM chip is called a DDR266.
Table 4.3 shows the relationships among internal and data-bus clock rates, prefetch,
transfers per second per chip, chip names, DIMM bandwidth, DIMM supply voltage,
and DIMM names.

DDR, DDR2, DDR3, DDR4, and DDR5 memories are classified according to the
maximum speed at which they can work, as well as their timings. The important
memory timings of commercial memory chips are usually given as triple:

. CL − tRCD − tRP ,

where CL, tRC D , and tRP are given in data-bus clock cycles. For example, a DDR3-
1333 chip can be described as 9-9-9, meaning that CL equals nine bus clock cycles,

244 4 Main Memory

Fig. 4.60 288-Pin Micron (1G x 64 bit) DDR4 SDRAM DIMM—Front side

tRC D equals nine bus clock cycles, and tRP equals nine bus clock cycles. As the bus
clock rate of a DDR3-1333 chip is 667MHz, all timings equal 13.5 ns.

DDR5 memory modules support higher capacities compared to DDR4, allowing
for larger memory configurations in computer systems. DDR5 modules are expected
to offer capacities of up to 128 GB per module initially, with the potential for even
higher capacities as the technology matures. Compared to DDR4, DDR5 modules
further reduce memory voltage to 1.1 V, thus reducing power consumption. DDR5
DIMMs also introduce a new voltage regulator module (VRM) on the memory mod-
ule itself, allowing for more precise power delivery control and potentially reducing
overall system power consumption. DDR5 memory includes features to enhance
reliability and data integrity, such as improved error correction capabilities and sup-
port for on-die termination (ODT) to minimize signal reflections and improve signal
integrity. The initial availability of DDR5 modules began in 2021, with mass adop-
tion expected to ramp up in subsequent years as the technology matures and prices
become more competitive.

Unlike the previous DDR version, each DDR5 DIMM has two independent
channels. Earlier DIMM generations featured only a single channel and one Com-
mand/Address bus controlling the whole memory module with its 64 data lines. Both
subchannels on a DDR5 DIMM each have their own Command/Address bus, con-
trolling 32 data lines, resulting in a total number of 64 data lines. The reduced data
bus width is compensated by a doubled minimum burst length of 16 (also because of
16N-prefetch), which preserves the minimum access size of 64 bytes, which matches
the cache line size used by modern microprocessors.

4.11.1 Micron DDR4 DIMM Module

DDR4 DIMMs have a standardized structure and connector layout designed to facil-
itate easy installation and compatibility with a wide range of computer systems.
Figures 4.60 and 4.61 show the front and back sides of a Micron DDR4 DIMM mod-
ule. Each side contains one rank composed of eight DDR4 DRAM chips (U1-U4,
U5-U8, U10-U17).

The small chip located alongside the memory chips on the front side of a DDR4
DIMM module is a serial presence detect (SPD) EEPROM (Electrically Erasable
Programmable Read-Only Memory). The SPD EEPROM is essential in providing

4.12 Memory Channels 245

Fig. 4.61 288-Pin Micron (1G x 64 bit) DDR4 SDRAM DIMM—Back side

vital information about the DDR4 DIMM module to the system BIOS during ini-
tialization and configuration. The SPD EEPROM stores crucial information about
the DDR4 DIMM module, including its manufacturer, model, capacity, speed rat-
ing, timing parameters, and other relevant details. During the system boot-up pro-
cess, the BIOS reads the information stored in the SPD EEPROM to identify the
DDR4 DIMM module and configure it appropriately for optimal performance. This
information helps the system BIOS determine the supported operating frequencies,
timings, and voltage settings for the DDR4 DIMM module, ensuring compatibility
and stability. The presence of the SPD EEPROM allows DDR4 DIMM modules
to support plug-and-play functionality, enabling the system to detect and configure
memory modules automatically without requiring manual intervention. By reading
the information stored in the SPD EEPROM, the system BIOS can determine the
characteristics of the DDR4 DIMM module and adjust its settings accordingly, sim-
plifying the installation and setup process for end users.

DDR4 DIMMs have a row of gold-plated connectors along the bottom edge of the
module, which are used to connect the DIMM to the memory slot on the motherboard.
These connectors are arranged in a specific pattern and configuration to ensure proper
alignment and electrical connection with the memory slot on the motherboard. The
number and arrangement of connectors may vary depending on the DIMM’s form
factor and capacity. Common configurations include 288-pin DIMMs for desktop
and server applications.

DDR4 DIMMs feature a small notch located near the middle of the connector
row on the bottom edge of the module. The notch is offset slightly from the center
of the DIMM and is used to ensure correct orientation and alignment when inserting
the DIMM into the memory slot. The position and size of the notch are standardized
across DDR4 DIMMs to prevent compatibility issues and ensure proper installation.

Figure 4.62 shows the functional diagram of the DDR4 DIMM module. Each rank
has its own chip select signal.

4.12 Memory Channels

We have learned that multiple banks and multiple ranks enable concurrent DRAM
accesses. Multiple ranks can be further used to form a channel, but only one rank
can be activated at a time. Multiple independent channels serve the same pur-

246 4 Main Memory

Fig. 4.62 288-Pin Micron (1G x 64 bit) DDR4 SDRAM DIMM functional block diagram

Rank 0 (front) Rank 1 (back)

6464

64

ADDR
CMD

CS[1:0] DQ[63:0]

MEMORY CHANNEL

Fig. 4.63 A memory channel

4.12 Memory Channels 247

 Intel Core i7-800

Memory
controller

CPU Cores

Multilevel
Cache

64

64

Channel 0

Channel 1

DIMM 1

DIMM 2

Fig. 4.64 A dual channel configuration supported by Intel Core i7-800. DIMM 1 and DIMM 2
should be identical in capacity, speed and CAS latency

Channel A, socket 0

Channel A, socket 1

Channel B, socket 0

Channel B, socket 1

Fig. 4.65 Color codes of channels on PC motherboard

pose as multiple banks or ranks, but they are even better because they have sep-
arate data buses. In such a way, bus bandwidth is increased. The advantage of
running two or four channels is that they will provide the same capacity as a larger
single-channel while doubling and quadrupling the amount of memory bandwidth.
Of course, multiple channels bring a few disadvantages: more board wires and more
pins (on the memory controller) are required. Multiple-channel architecture is a
technology implemented on motherboards by the motherboard manufacturer and
does not apply to memory modules. Also, a memory controller (which is a part of
the chipset) must support multiple-channel architecture. Theoretically, dual-channel
configurations double the memory bandwidth when compared to single-channel con-
figurations.

Figure 4.63 illustrates one channel formed from two ranks on the same DIMM
module. Indeed, in multi-channel architectures, one channel is formed from at least
one DIMM module. In today’s desktop computers, up to two DIMM modules can
be used to form one channel.

Most of today’s computer systems support dual-channel configuration. Dual-
channel-enabled memory controllers in a PC system architecture use two 64-bit
data channels. For example, the Intel Core i7-800 series supported dual-channel
configuration, as illustrated in Fig. 4.64.

Figure 4.65 shows a part of a motherboard that supports two memory channels.
The motherboard has four DIMM sockets. To distinguish the channel’s sockets on
the motherboard, the sockets are color-coded. The motherboards use two colors. The
colored pair of sockets is a dual-channel set. A matching pair of DIMMs are two

248 4 Main Memory

A matching pair of DIMM
modules inserted into
sockets 0 of channels A and B.

Fig. 4.66 A matching pair of DIMMs form two channels

DIMMs that are identical in capacity, speed, and CAS latency. A matching pair
should be used in both memory channels, i.e., a matching pair of DIMMs should
be installed on the same color sockets. Another matching pair then goes into the
remaining two sockets. Figure 4.66 shows two identical DIMM modules (a match-
ing pair) inserted into the same-color sockets (red), forming two identical memory
channels, A and B. Ideally, all DIMM modules should be identical in a system, or
else we may end up with some memory being potentially downclocked to the lowest
common denominator.

Intel Core i7-900 series DDR3 uses a triple-channel architecture, while modern
high-end processors like the Intel Core i9 and AMD Ryzen Threadripper series sup-
port quad-channel memory. The quad-channel architecture can be used only when
all four DIMM memory modules (or a multiple of four) are identical in capacity
and speed and are placed in the same-color quad-channel sockets. When two DIMM
memory modules are installed, the architecture will operate in a dual-channel mode;
when three memory modules are installed, the architecture will operate in a triple-
channel mode. On motherboards supporting quad-channel configuration, a similar
color-coding scheme is used for dual-channel DIMM sockets. A same-color quadru-
ple is a quad-channel set. A matching DIMM module quadruple (i.e., four DIMMs
that are identical in capacity, speed, and CAS latency) should be installed on the
same color sockets.

4.12.1 Case Study: Intel i7-860 Memory

At the beginning of the chapter, we have introduced the i7-860 and its memory
hierarchy. This system is again illustrated in Fig. 4.67. Now, we are going to describe
the system with its real memory components and the case of an L3 miss.

The i7-860 supports up to two 64-bit memory channels, each consisting of a
separate set of DDR3 1066/1333 DIMMs, each of which can transfer in parallel. The
i7-860 supports up to two DIMMs per channel and a total of up to 16 GB of memory.

In the case of L3 miss, both 64-bit memory channels are used simultaneously as
one 128-bit channel (since there is only one memory controller, and the same address
of the missing block in L3 is sent on both channels) to fill the missing block in L3.

4.12 Memory Channels 249

Fig. 4.67 Intel i7-860 memory

 Intel Core i9-9900K

64

Channel 0

CPU Core0
L1 I

L2
L1 D

CPU Core1
L1 I

L2
L1 D

CPU Core7
L1 I

L2
L1 D

L3

Q
ua

d-
Ch

an
ne

l
M

em
or

y
Co

nt
ro

lle
r

 Main Memory

64

6464

64

256

256

64

6464

64

64

6464

64

256

256

 PC4-21333 DIMMs

64

Channel 1

64

Channel 2

64

Channel 3

Fig. 4.68 Intel i9-9900K memory

Using DDR3-1333 (DIMM PC3-10700), the i7-860 has a peak memory bandwidth
of just over 21 GB/sec. Thus, the memory controller fills the 64-byte cache block at
a rate of 16 bytes (124 bits) per memory clock cycle.

If we assume the peak memory bandwidth, a 64-byte block is transferred at the
rate of 21GB/s, which equals three ns. Of course, we cannot assume that the missing
block is transferred at the peak memory bandwidth. At best, we can assume that the
row in SDRAMs containing the missing block is open. Thus, we have to add the
CAS latency (CL), which equals 13.5 ns for DDR3-1333 chips. Thus, the missing
block in L3 can be filled in 16.5 ns. The i7-860 runs at 2.8 GHz, which means that
one CPU cycle equals 0.36 ns. Thus, the missing block in L3 will be available no

250 4 Main Memory

prior than in 47 CPU cycles. In the case that the row containing the missing block is
not open and all rows in that bank are precharged, we should add at least tRC D to the
above block access time. As tRC D also equals 13.5 ns, the block is transferred in 29
ns or 81 CPU cycles. Finally, if we have to precharge a row before opening the row
containing the missing block, the block will be transferred in 42.5 ns or 119 CPU
cycles.

4.12.2 Case Study: i9-9900K Memory

Figure 4.68 illustrates the Intel i9-9900K system. Intel i7-9900K is an out-of-order
execution processor that includes eight cores. The L1 and L2 caches are separate for
each core, while the L3 cache is shared among the cores on a chip. The L1 cache is
the 32 KB, eight-way set-associative cache. The L2 cache is the 256 KB, four-way
set-associative cache. Finally, the L3 cache is the 16 MB, 16-way set-associative
cache. The i9-9900K supports up to four 64-bit memory channels, each consisting
of a separate set of DDR4-2666 DIMMs (PC4-21333), and each of which can transfer
in parallel, thus the peak memory bandwidth is 41.6 GB/s. The i9-9900K supports
up to two DIMMs per channel and a total of up to 128 GB of memory.

5Caches

CHAPTER GOALS

Have you ever wondered how your computer manages to access frequently
used data with lightning speed, seemingly defying the limitations of its main
memory? The answer lies in a clever and essential component of modern
computer systems: caches. These hidden heroes are crucial in optimizing
memory access and enhancing system performance by storing frequently
accessed data and instructions in a high-speed memory buffer. In this chapter,
we will unravel the mysteries of caches, exploring their architecture, opera-
tion, and impact on system performance.

From this chapter, you should gain a basic understanding of the design
and operation of caches, including:

• Understand the fundamental concept of caches and their role in computer
systems.

• Explore the motivation behind cache design and its impact on system
performance.

• Learn about the principles of locality and how they influence cache behav-
ior.

• Examine the organization and architecture of caches, including cache lev-
els, associativity, and cache line size.

• Understand the trade-offs involved in cache design, such as capacity versus
latency and hit rate versus miss rate.

• Learn about cache replacement policies and their impact on cache perfor-
mance.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
P. Bulić, Understanding Computer Organization, Undergraduate Topics in Computer
Science, https://doi.org/10.1007/978-3-031-58075-8_5

251

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58075-8_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58075-8_5&domain=pdf
https://doi.org/10.1007/978-3-031-58075-8_5
https://doi.org/10.1007/978-3-031-58075-8_5
https://doi.org/10.1007/978-3-031-58075-8_5
https://doi.org/10.1007/978-3-031-58075-8_5
https://doi.org/10.1007/978-3-031-58075-8_5
https://doi.org/10.1007/978-3-031-58075-8_5
https://doi.org/10.1007/978-3-031-58075-8_5
https://doi.org/10.1007/978-3-031-58075-8_5
https://doi.org/10.1007/978-3-031-58075-8_5
https://doi.org/10.1007/978-3-031-58075-8_5
https://doi.org/10.1007/978-3-031-58075-8_5

252 5 Caches

• Explore the concept of cache hierarchies and the benefits of multilevel
cache designs.

• Understand the organization and management of L1, L2, and L3 caches
in modern processors.

• Investigate cache design considerations in different processor architec-
tures.

5.1 Introduction

In computer systems, where performance is paramount and data access times can
make or break the user experience, caches are indispensable tools for optimizing
memory access and enhancing system responsiveness. As a crucial component of
the memory hierarchy, caches play a pivotal role in bridging the gap between high-
speed processors and slower main memory, facilitating efficient data access and
manipulation in modern computing environments.

At its core, a cache is a specialized form of high-speed memory that stores fre-
quently accessed data and instructions, enabling rapid retrieval and reducing the
latency of memory accesses. By keeping a subset of frequently used data closer to
the processor, caches mitigate the performance bottleneck associated with accessing
data from slower, larger main memory, thereby improving overall system perfor-
mance and responsiveness.

The concept of caching revolves around the principle of locality, which refers to the
tendency of programs to access a relatively small portion of memory repeatedly or to
access nearby memory locations in close succession. Caches exploit this principle by
storing recently accessed data and instructions in fast, on-chip memory, allowing the
processor to access them quickly without fetching them from slower main memory.

Throughout this exploration of caches in computer systems, we will delve into the
fundamental principles, architectures, and optimizations that underpin their opera-
tion and effectiveness. From the basics of cache organization and management to
advanced techniques for cache coherence and consistency, we will uncover the intri-
cacies of caching and its profound impact on system performance and efficiency.

5.2 Memory Hierarchy

The fastest components of computer systems are central processing units. They exe-
cute instructions and process data, and we expect them to do it as fast as possible.
However, we must remember that central processing units have instructions and
operands in the main memory. One of the main goals we try to achieve when pro-
ducing main memories is the data density per unit area in the silicon chip. We have
learned that SDRAMs are fundamental components of computer memory, offering
substantial storage capacity at a relatively low cost. However, SDRAMs come with

5.2 Memory Hierarchy 253

a significant drawback: slowness. This inherent sluggishness can lead to perfor-
mance bottlenecks, as the CPU often spends valuable clock cycles waiting for data
retrieval from SDRAM. The slowness comes from a slightly different semiconductor
technology we use to implement the SDRAM main memories than the CPU. The
semiconductor technology used to implement main memories (i.e., DRAM cells)
allows for a high density of memory cells. Unfortunately, it dramatically affects the
memory’s speed, and the main memories are ten or hundred times slower than cen-
tral processing units. The main memory could also be made with faster technology
(SRAM cells), but the price would be too high and unacceptable.

Therefore, we are faced with the following important challenge: how can we
provide central processing units with fast access to instructions and operands while
maintaining a large amount of cheap memory in the system? The solution to this
challenge lies in the so-called memory hierarchy. The memory hierarchy is a tiered
arrangement of different memory types, with each level offering a trade-off between
speed and capacity. At the top of this hierarchy are the fastest but smallest memory
components, like processor registers, while SDRAM occupies a lower tier. In the
memory hierarchy, we use several different memories in the system (in terms of
price and speed). Central processing units should only access small, fast memories
that store instructions and operands and guarantee short access times. These small
and fast memories are called caches. If the instructions or operands needed by the
CPU are not in this small and fast memory, then the instructions and operands should
be loaded from the larger and slower memories into these small and fast ones. But
wait, if CPUs are allowed to access only these small and fast memories, how do we
know what instructions and operands to store in them? Remember that modern CPUs
are based on the Von Neumann architecture. A Von Neumann CPU has a PC that
increases by 1 every time an instruction is fetched from memory and, hence, points
to the next instruction to be fetched. This means that, except for jump instructions,
we are very good at predicting which instructions the CPU will need. This is called
spatial locality, which says that if we are accessing a memory word with address A,
it is very likely that the next memory access will be to a memory word with address
A+1. In addition, we often use loops in programs, so we often access the same set
of memory words over a period of time. This is called temporal locality. Temporal
and spatial locality are fundamental principles in Von Neumman’s architecture that
describe memory access patterns within a program’s execution. These principles
are crucial for understanding and optimizing the performance of computer systems,
particularly memory hierarchies.

Temporal locality refers to the tendency of a program to access the same memory
locations repeatedly over a short period of time. In other words, if a program accesses
a specific memory location, it will likely reaccess the same location soon. The most
common reason for temporal locality is program loops. For instance, in a loop,
operands or instructions within the loop body are frequently accessed in subsequent
iterations. Besides, data items read from or written to memory remain relevant for
a significant portion of the program’s execution. Reusing previously fetched data
eliminates the need to reload it from slower memory levels, resulting in improved
performance. Small and fast memories exploit temporal locality by storing recently

254 5 Caches

 PIPELINED CPU

L1
I-CACHE

L1
D-CACHE

L2 CACHE

 PIPELINED CPU

L1
I-CACHE

L1
D-CACHE

L2 CACHE

L3 CACHE

 MAIN MEMORY

<1 ns

3-10 ns

10-20 ns

50-100 ns

Fast, Small,
Expensive

Slow, Large,
Cheap

Fig. 5.1 Memory hierarchy in modern computer systems

accessed data and instructions. When a program accesses a location, it is copied into
the small and fast memory, making future access to that location much faster.

Spatial locality refers to the tendency of a program to access memory locations
close to each other. The most common reason for temporal locality is using a program
counter to address instructions. Small and fast memories exploit spatial locality, also.
We do not store only the requested item (instruction or operand) in the small and
fast memories but also nearby items. If the program accesses one location, data from
nearby locations is readily available in the small and fast memory.

Figure 5.1 shows the typical memory hierarchy in modern computer systems.
Today, computer systems contain several pipelined CPU cores. Each CPU core has
two high-speed on-chip level one (L1) caches with instructions and operands, respec-
tively. Recall from the computer architecture course that a pipelined CPU can access
operands (in the memory stage) and instructions (in the instruction fetch stage) simul-
taneously; hence, we need two separate caches, one for instructions and the other
for operands. These L1 caches are made using the fastest and most expensive semi-
conductor technology. They are usually very small (only 16 or 32 kB) and contain a
small subset of instructions and data a CPU core needs. If the requested operands or
instruction is found in the cache, we say a cache hit occurred. Cache hits are desir-
able and essential for achieving high-performance computing because they reduce
the time spent waiting for data to arrive from slower memory levels. Because of
temporal and spatial locality, the rate of cache hit in L1 caches is very high (usually
higher than 95%). When the data or instruction requested by the CPU is not found
in the cache memory, we say that a cache miss occurred. If a cache miss occurs in
the L1 cache, the requested data or instructions are copied from the slightly slower
and slightly bigger on-chip L2 cache into the L1 cache (in the case of the L2 cache

5.3 Cache Structure and Organisation 255

hit). If an L2 cache miss occurs, the requested data or instructions are copied from
the slower and bigger L3 cache into the L2 cache (in the case of the L3 cache hit).
Finally, if an L3 cache miss occurs, the requested data or instructions are copied from
the very slow and large off-chip main memory in the L3 cache. Note that several
CPU cores share the same L3 cache.

Cache memories are a simple solution that we brought to computer science from
everyday life. Still, at the same time, they represent one of the most astonishing
and indispensable technical improvements in modern computer systems, quietly
revolutionising how our computers work behind the scenes. Cache memories are
high-speed, small-sized memory buffers that play a critical role in bridging the gap
between the blazing speed of a CPU and the relatively sluggish access times of
main memory (SDRAM). As we delve into cache memories, we’ll discover their
remarkable ability to enhance system performance by strategically storing frequently
used data and instructions, optimising memory access patterns, and keeping our
computing experiences smooth and efficient. In this exploration of cache memories,
we’ll unveil the inner workings of these vital components, shedding light on how
they improve the responsiveness of your devices and the efficiency of your software.

Caches, together with the memory hierarchy, are at the heart of computer per-
formance, ensuring that applications run swiftly and efficiently. In this chapter, we
will delve deeper into the memory hierarchy and caching, understanding how these
architectural elements form the backbone of modern computing systems. So, let
us start our journey through the intricacies of cache memories, where speed meets
intelligence to deliver a seamless computing experience.

5.3 Cache Structure and Organisation

Without locality, the cache would be useless because the probability of the operands
or instructions needed by the CPU for being in the cache would be far too small.
However, since locality exists, the cache can contain a relatively small subset of the
content of the main memory (or a slower memory level of the memory hierarchy).
Having only a subset of the main memory in the cache requires a special cache
structure that is slightly more complex than the main memory structure. Besides
keeping the subsets of the main memory, the cache should also keep the information
that tells us which subsets are in the cache. Therefore, the cache consists of two parts:
a control part and a data part.

The data part contains cache lines or blocks. A cache block is a fundamental
unit of storage within a cache memory. A cache block is nothing but .2b consecutive
(contiguous) memory words whose addresses differ only in the lower . b bits. These
blocks are organized within the cache’s data part and play a crucial role in improving
memory access times. Cache blocks are designed to exploit spatial locality, which
is the tendency of programs to access nearby memory locations sequentially. By
storing contiguous data in cache blocks, the cache takes advantage of this behaviour,
reducing cache misses when accessing nearby data. Cache blocks are used to store

256 5 Caches

a fixed-size portion of data retrieved from the main memory or a slower level of the
memory hierarchy. Each cache block contains the contiguous data or instructions
fetched from the main memory. The common cache block size in modern computers
is 64 bytes. Therefore, a cache block contains 64 adjacent memory words whose
addresses differ only in the lower six bits. Cache blocks are the smallest data units
that can be transferred between the cache and main memory or between two levels
in the memory hierarchy. When data is fetched from or written to the main memory,
it is done in entire cache blocks, even if only a portion of the block is needed.

The control part contains metadata that is used to manage and identify the contents
of the cache. Metadata for each block includes a cache tag and a valid bit. The cache
tag is the address of the block in the main memory. It stores information about which
memory address range is stored in that cache block and is used to identify the block.
The cache tag is essential for determining if a requested memory location is present
in the cache. Cache tags are used to compare the requested memory address with
the stored tags. Hence, we use cache tags to determine cache hit or miss. Besides a
cache tag, each block metadata contains a valid bit. The valid bit indicates whether
the data in the cache block is valid and can be used. If the valid bit is set, the data
is valid and can be used for memory access; otherwise, it’s not. The valid bit helps
ensure cache coherency.

Figure 5.2 presents a simple cache structure and its operation. The cache in Fig. 5.2
contains only eight blocks, each storing eight 8-bit words. This cache is used only
for explanation, and there are no such small and simple caches in reality. The CPU
address in this example is 16-bit long, and the three least significant bits determine
the offset of the memory word within a block. As there are eight blocks in the cache,
the next three address bits (bits 5 to 3) determine the index of the block (placement
of the block) within the cache. The remaining ten most significant bits determine
the address of the block in the main memory. When the CPU makes a memory
access request, the cache controller extracts the tag portion of the memory address
and compares it with the cache tag in the cache block determined by the memory
address. The cache controller performs this comparison to determine whether the
requested data is present in the cache. If the tag extracted from the memory address
matches the tag stored for a specific cache block and the valid bit is set (indicating
valid data), it is a cache hit. The requested data is then fetched from the cache,
providing faster access to the CPU. If the tag does not match or the valid bit is not set
(indicating an invalid cache block), it is a cache miss. In this case, the cache controller
must fetch the data from a slower memory level to satisfy the CPU’s request. The
retrieved block is placed in the cache for future accesses. As each block from the
main memory is mapped to exactly one cache block determined with the three bits
(5 to 2) in the address, we say that the cache is directly mapped. In direct-mapped
cache, there is a one-to-one correspondence between main memory blocks and cache
blocks, making it one of the simplest forms of cache organisation.

5.4 Direct Mapped Cache 257

Fig. 5.2 A simple direct-mapped cache with eight blocks, each storing eight 8-bit words

5.4 Direct Mapped Cache

A direct-mapped cache is one of the simplest forms of cache memory organization
used in computer systems. In a direct-mapped cache, each block of main mem-
ory is mapped to a specific cache line. Direct-mapped caches are characterized by
their straightforward structure and quick access times but may suffer from conflicts
when multiple memory blocks map to the same cache line. To delve deeper into the
details of a direct-mapped cache, we’ll explore its structure, how memory addresses
are mapped to cache lines, and the strategies employed for efficient data retrieval.
Understanding direct-mapped caches is vital to grasping the fundamental principles
of cache memory in computer architecture.

258 5 Caches

Fig. 5.3 A 4 kB cache that contains 64 blocks with 16 32-bit words per block

Figure 5.3 presents the 4 kB (.212) cache that contains 64 (. 26) cache lines (blocks)
(. 26) with 16 (. 24) words per block. The address size is 32 bits, and the data word
size is also 32 bits (. 22B). Hence, the cache size is .26 × 24 × 22B = 212B = 4kB.
To access data in the cache, the CPU provides a 32-bit memory address. The cache
controller looks up this address to determine if the requested data is present in any of
the cache lines. The memory address provided by the CPU is divided into three main
parts: the tag, the index, and the offset. Let’s break down how these components
work in our 4 KB cache with 64 cache lines (blocks), each having 16 words of 32
bits (four bytes).

The offset specifies the word within a cache line (block) that is being accessed.
We need four bits to represent the offset since we have 16 words in a cache line.
Since each memory word is 32 bits (4 bytes), the two least significant bits in the
address are ignored (always zero).

The index determines which cache line (block) within the cache is being accessed.
As our cache contains 64 cache lines, we need six bits to index all the blocks
(.26 = 64). Accessing a cache line is often called indexing. Index selects the word
from the cache line (block) using a 16-to-1 multiplexor. In practice, to eliminate the
multiplexor in real chips, caches use a separate SRAM for data and a smaller SRAM

5.4 Direct Mapped Cache 259

for tags. The index and offset fields form the address bits for the data SRAM. In our
case, the data SRAM is 32 bits wide and has 1024 32-bit data words.

The tag contains the upper bits of the memory address, uniquely identifying a
particular memory block in the main memory. To find the tag size, we subtract the
combined size of the index and offset from the total address size. Since our cache
contains 64 blocks (. 26), each block holds 16 words (. 24), and each word in the cache
line is four bytes (. 22), we need 20 bits for the tag (address size – index size – offset
size – word size .= 32 bits – 6 bits – 4 bits –2 bits .= 20 bits for the tag).

5.4.1 Read Operations in Direct-Mapped Caches

When the CPU needs to read or write data, it provides a memory address. The
memory address is split into the tag, index, and offset components based on their
respective sizes. Then, the search is performed in the cache. The index is used to
select the specific cache line (block) in the cache that corresponds to the requested
memory address. The offset field selects the searched word from the cache line.
Simultaneously, the tag from the address is compared to the tag stored in that cache
line. If the tags match, it’s a cache hit. The cache line contains the requested data,
and the data word already present at the data lines can be quickly accessed. If the
tags don’t match, it’s a cache miss. The required memory block from the next level
in the memory hierarchy is loaded into the cache line determined by the index bits.
The cache line’s tag is updated with the new tag from the address, making it ready
for future access. The cache miss often triggers an exception, and the corresponding
interrupt handler triggers the task switch. Hence, the CPU continues the execution
of another task and does not wait for a block to be filled into the cache line.

5.4.2 Handling Writes in Direct-Mapped Caches

While reading data from a direct-mapped cache is a simple and fast operation, special
consideration should be given to the write operation. The main question in write
operations is where data should be written: in the cache or the main memory? This
is an important issue because caches are local (private) to CPUs (recall that only
L3 is shared among various CPUs). If the most recent copy of the data is held in
L1 or L2 caches, other CPUs may not be aware that the most recent copy exists
outside the main memory. This is known as the problem of cache consistency.
Cache consistency requires that all copies of a particular piece of data, stored in
different levels of the memory hierarchy (e.g., cache memory and main memory),
must remain synchronized and reflect the same content. Ensuring cache consistency
is a complex task, as it requires efficient mechanisms for tracking and managing
data states and synchronizing access across multiple cache levels. However, it is
vital for the reliability, predictability, and performance of modern computer systems,
particularly in multi-core and multi-processor environments.

260 5 Caches

In a direct-mapped cache, write strategies refer to the methods employed for
handling write operations, specifically how writes are managed in the cache. There
are two primary strategies for handling writes in a direct-mapped cache: write-
through and write-back.

In a write-through cache, when the CPU performs a write operation, the data is
written not only to the cache but also immediately to the corresponding location in
upper levels and in main memory. This strategy ensures that main memory always
contains the most up-to-date data, making it consistent with the data in the cache. The
advantages of a write-through cache are data consistency and simple and predictable
behaviour. The disadvantages of a write-through cache are write latency (as writing
to both the cache and main memory can introduce some delay) and increased memory
traffic.

In a write-back cache, when a write operation is executed, the data is written only
to the cache, and the corresponding location in upper levels and the main memory is
updated later, usually when the cache line is evicted or replaced. In this strategy, the
cache maintains a dirty bit for each cache line to track modified data. A write-back
cache has lower write latency and reduces memory traffic. The main disadvantage is
complexity, as managing the dirty bit and ensuring that modified data is eventually
written back to the main memory adds complexity to cache management.

The choice between these write strategies depends on the specific requirements
of the system and the trade-offs it is willing to make. Write-through is simpler and
ensures data consistency but can introduce write latency. Write-back offers better
performance but requires more sophisticated cache management to maintain data
consistency. Some systems use a combination of both strategies, allowing the cache
to operate in a write-back mode while periodically ensuring that modified data is
written back to the main memory to maintain consistency. This approach combines
the advantages of both strategies but adds complexity to cache management.

5.5 Set Associative Cache

As we have seen, each main memory block maps to exactly one cache line in a
direct-mapped cache. The index bits in the memory address select the cache line
to which a memory block is mapped. In the direct-mapped cache from Fig. 5.3, six
index bits select one of 64 cache lines. Recall that the tag field represents the address
of a memory block that maps to a cache line selected by the index field. Therefore,
there are precisely .2tag memory block that maps to the same cache line! In the
direct-mapped cache from Fig. 5.3, there are 1M (.220) memory blocks that map to
the same cache line. This can lead to cache conflicts, causing one block to replace
another prematurely. To mitigate cache conflicts, we use set-associative caches that
have a slightly different structure. In set-associative caches, we group multiple
cache lines into one set. Here, a memory block maps to any available cache line
in exactly one set. As a result, there are fewer conflicts because multiple blocks can
map to the same set but not the same line within that set. The name set-associative
cache derives from the way it organizes cache lines into sets and associates those sets

5.5 Set Associative Cache 261

Fig. 5.4 A 16 kB four-way set-associative cache

with specific blocks in the main memory. In a set-associative cache, the term N-way
set-associative cache refers to the associativity level of the cache. Specifically, an
N-way set-associative cache means that each set in the cache contains N cache
lines.

A 16 kB four-way set-associative cache is depicted in Fig. 5.4. Locating a block
in a 4-way set-associative cache involves a process similar to locating a block in a
direct-mapped cache. When a memory address is provided to the cache, the cache
controller interprets the address to determine the set index, tag, and word offset.
The address is divided into three parts. The tag bits uniquely identify the memory
block in the main memory. It is used to check if the data in a cache line is the
same as the requested data. The index field specifies to which set in the cache the
requested memory block is mapped. Finally, offset identifies the location of the
desired memory word within a cache line. The cache in Fig. 5.4 contains 64 (. 26)

262 5 Caches

sets. Each set contains four cache lines of 16 32-bit data words. Therefore, the size
of the cache is ..64 sets × 4 lines per set × 16 × 4 = 16 kB. In the selected set,
the memory word pointed by the offset bits is selected by four multiplexors in each
cache line. Simultaneously, the tag fields of all four cache lines in the selected set are
compared to the tag field from the memory address. A cache hit occurs if there is a
match and the valid bit is set. Otherwise, a cache miss occurs. The four comparators
in Fig. 5.4 determine which element of the selected set (if any) matches the tag. The
four outputs of the comparators are 4:2 encoded, and the two-bit code is used to select
the data from one of the four indexed blocks using a 4-to-1 multiplexor. For example,
suppose the tag field in the third cache line equals the tag field from the provided
address. In that case, the 4:2 encoder encodes the output of four comparators as ‘10’
(which index of the third cache line in the selected set) and the 32-bit word from the
third cache line is selected using the output 4-to-1 multiplexor.

5.5.1 Replacing a Block in a Set-Associative Cache

Recall that in a direct-mapped cache, the newly requested block can be mapped to
exactly one cache line when a miss occurs. In this case, the content of this cache
line is replaced with a new memory block. In an N-way set-associative cache, N
cache lines in a set can hold a newly requested memory block. If all cache lines in
a set are full, we face the challenge of which cache line to replace. In other words,
all cache lines in a set are candidates for replacement, and we must choose the
most appropriate one. Set-associative caches use the Least Recently Used (LRU)
algorithm to determine which cache line within a set to replace when a new block is
brought into the set. The LRU algorithm ensures that the cache line that hasn’t been
accessed for the longest time is replaced. The key idea behind the LRU algorithm
is to evict the cache line that hasn’t been accessed for the longest time, under
the assumption that less recently used data is less likely to be needed in the near
future. The LRU algorithm ensures that the cache remains populated with the most
relevant data for the workload, potentially reducing cache misses and improving
overall cache performance.

The LRU algorithm maintains a history of the recent access patterns for each
cache set. The cache controller updates the LRU information based on the cache line
accessed during a cache hit. Initially, all cache lines in a set are considered equally
recently used. When a cache line in a set is accessed (either for a read or a write),
it is marked as the most recently used. The other cache lines in the set are adjusted
to reflect their relative access times. When a new block needs to be brought into a
set that is already full, the cache controller selects the cache line that is marked as
the “least recently used” for eviction. However, implementing the LRU algorithm
can be relatively complex and requires additional hardware to track access history
accurately.

5.6 Cache Controller 263

5.5.2 Choosing the Associativity Level

Increasing the associativity (the set size) increases the size of a set-associative cache
and reduces the miss ratio. The size of a set in a set-associative cache, often referred
to as the associativity level, directly impacts cache hits and the overall cache per-
formance. Hence, choosing the right set size is a crucial design decision. As we
increase the set size (i.e., the associativity level), we generally reduce the likelihood
of cache conflicts. Multiple memory blocks can map to the same set but not to the
same cache line within that set. This reduces the probability of cache misses caused
by contention for the same cache line. Conversely, decreasing the set size (reducing
associativity) makes the cache more similar to a direct-mapped cache. This can lead
to more cache conflicts, potentially causing cache misses when multiple memory
blocks contend for the same set.

However, larger set sizes increase the complexity of the cache design and the
hardware requirements. As associativity increases (e.g., from 8-way to 16-way
set-associative cache), the complexity and hardware requirements escalate further.
Hence, higher associativity requires more power and space. A smaller set size with
lower associativity may be favoured in cost-sensitive or power-constrained environ-
ments. There’s often a trade-off between reducing cache conflicts (by increasing
associativity) and managing hardware complexity. The balance between cache per-
formance and complexity must be carefully considered. Extremely high associativity
levels may provide diminishing returns while adding substantial complexity.

Here are some common associativity levels that are often used in various caches
within a modern computer system. A 4-way set-associative cache contains four cache
lines in each set. This is a common choice for L1 instruction and data caches, offer-
ing better performance than direct-mapped caches while maintaining manageable
hardware complexity. An 8-way set-associative cache provides even higher associa-
tivity, making it well-suited for L2 (level 2) caches. This level of associativity further
reduces cache conflicts. In some cases, particularly in shared caches for multi-core
processors or in last-level caches (L3), a 16-way set-associative cache is used to
accommodate the needs of multiple cores and diverse workloads.

Finally, if we increase the size of a set while maintaining the same cache size,
we must reduce the number of sets. Eventually, there will be only one set left in the
cache. This is a fully associative cache. It has the highest level of associativity, where
any memory block can map to any cache line. Fully associative caches provide the
greatest flexibility but are limited to only 8 or 16 cache lines due to the high hardware
complexity. They are often used in scenarios where only a few cache lines are required
to store highly frequently accessed data. We will see their usage in the next chapter.

5.6 Cache Controller

Along with a cache, a CPU always contains a cache controller. A cache controller is
a hardware component responsible for managing the operation of a cache memory
subsystem within a computer system in a largely invisible way to the program. It

264 5 Caches

plays a crucial role in coordinating data transfers between the cache memory and
the main memory, as well as controlling the cache’s behavior and policies. Here are
some key functions and responsibilities of a cache controller:

1. Cache Management: The cache controller is responsible for managing the con-
tents of the cache memory, including the storage and retrieval of data blocks from
the main memory, as well as the replacement and eviction of cache lines when
the cache becomes full. It automatically writes code or data from the main mem-
ory into the cache. When the core requests instructions or data from a particular
address, but there is a cache miss, the request must be passed to the next level of
the memory hierarchy, an L2 cache, or external memory. It also causes a cache
linefill—the contents of a piece of main memory are transferred into the cache.
Simultaneously to cache line fill, the requested data or instructions are streamed
directly to the core. Hence, the core need not wait for the linefill to complete before
using the data. This data is immediately supplied to the core pipeline while the
cache hardware and external bus interface read the rest of the cache line in the
background.

2. Cache Look-up: When it receives a request from the core, it checks to see whether
the requested address is to be found in the cache. This is known as a cache look-
up. It does this by comparing a subset of the address bits of the request with tag
values associated with lines in the cache. If there is a match, known as a hit, and
the line is marked valid, then the read or write occurs using the cache memory.

3. Cache Prefetching: The cache controller may implement prefetching techniques
to anticipate future memory accesses and proactively fetch data into the cache
before it is actually requested by the CPU, thereby reducing memory access
latency and improving overall performance.

4. Cache Control Policies: The cache controller defines and enforces various cache
control policies, such as the cache replacement policy (e.g., Least Recently
Used—LRU, Random Replacement) and cache write policies (e.g., Write-Through,
Write-Back), to optimize cache performance and behavior.

5. Cache Coherency: In multi-core or multi-processor systems, cache coherence is
essential to ensure that all caches have a consistent view of memory. Occasionally,
data and instructions in the cache and data in external memory might be different;
this is because the processor can update the cache contents, which still need to be
written back to the main memory. This is a problem known as cache coherency.
This can be a particular problem when you have multiple cores or an external
DMA controller. The cache controller implements cache coherence protocols to
maintain data consistency across multiple cache levels and processor cores.

6. Cache Synchronization: In systems with multiple cache controllers or cache
hierarchies, the cache controller may coordinate cache synchronization opera-
tions, such as cache flushes and cache invalidations, to maintain cache coherence
and ensure data consistency.

5.8 Case Study: Cache in Processors with ARMv8-A Architecture 265

5.7 Case Study: Cache in STM32F7 and STM32H7 Series Devices

The STM32F7 Series and STM32H7 Series devices feature a Cortex-M7 core with an
advanced cache system designed to improve performance in embedded applications.
They include two 16 Kbytes L1 caches for the instructions and the data. An L1 cache
stores a set of data or instructions near the CPU, so the CPU does not have to keep
fetching the same repeatedly used data.

The L1 caches on all Cortex-M7 cores are divided into lines of 32 bytes. Both
instruction and data caches have 512 lines. Each line is tagged with an address. The
data cache is a 4-way set associative (four lines per set), and the instruction cache is a
2-way set associative. Set-associative caches offer a balance between the simplicity
of direct-mapped caches and the flexibility of fully associative caches. They provide
better performance than direct-mapped caches by reducing the likelihood of cache
conflicts (where multiple memory addresses map to the same cache line) while still
maintaining a relatively simple cache structure compared to fully associative caches.

The STM32F7 Series and STM32H7 Series devices provide control and config-
uration registers for managing the operation of the cache. These registers allow the
software to enable or disable the cache and invalidate cache lines.

5.8 Case Study: Cache in Processors with ARMv8-A Architecture

Processors that implement the ARMv8-A Architecture contain two or more levels of
cache. For example, the Cortex-A53 and Cortex-A57 processors normally contain
two or more levels of cache, that is, a small L1 instruction and data cache and a larger,
unified L2 cache, which is shared between multiple cores. Additionally, clusters of
cores can share an external L3 cache implemented as an external SRAM memory
block. The in-core cache controller checks all instruction fetches and data reads or
writes in the cache. However, we can mark some parts of memory, such as those
containing peripheral devices, for example, as non-cacheable. Cortex-A57 contains
a two-way set associative 32KB L1 cache with a 64-byte cache line length. Hence,
there are 256 cache sets.

6Virtual Memory

CHAPTER GOALS

Have you ever wondered how your computer manages to run multiple pro-
grams simultaneously, juggling vast amounts of data and instructions with
apparent ease? The answer lies in a sophisticated concept known as virtual
memory. While your computer’s physical memory (RAM) has finite capacity,
virtual memory extends its capabilities by intelligently managing memory
resources. In this chapter, we will embark on a journey to explore the intricate
world of virtual memory, uncovering its underlying principles, mechanisms,
and benefits.

Upon completion of this chapter, you will be able to:

• Understand the fundamental concept of virtual memory and its role in
modern computing systems.

• Understand the motivation behind virtual memory and its benefits for mul-
titasking, memory management, and system stability.

• Examine the mechanisms used for virtual-to-physical address translation
in virtual memory systems.

• Learn about page tables, TLBs (Translation Lookaside Buffers), and the
process of address translation during memory accesses.

• Explore the concept of paging and its role in virtual memory management.
• Explore real-world examples showcasing the use of virtual memory in
diverse processors.

• Examine the interaction between caches and virtual memory systems.
• Understand how caches interact with virtual address translation and page
replacement algorithms.

• Learn about cache virtualization techniques and optimizations for improv-
ing virtual memory performance.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
P. Bulić, Understanding Computer Organization, Undergraduate Topics in Computer
Science, https://doi.org/10.1007/978-3-031-58075-8_6

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58075-8_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-58075-8_6&domain=pdf
https://doi.org/10.1007/978-3-031-58075-8_6
https://doi.org/10.1007/978-3-031-58075-8_6
https://doi.org/10.1007/978-3-031-58075-8_6
https://doi.org/10.1007/978-3-031-58075-8_6
https://doi.org/10.1007/978-3-031-58075-8_6
https://doi.org/10.1007/978-3-031-58075-8_6
https://doi.org/10.1007/978-3-031-58075-8_6
https://doi.org/10.1007/978-3-031-58075-8_6
https://doi.org/10.1007/978-3-031-58075-8_6
https://doi.org/10.1007/978-3-031-58075-8_6
https://doi.org/10.1007/978-3-031-58075-8_6

268 6 Virtual Memory

6.1 Introduction

In the previous sections, we have seen that the physical SDRAM memory is limited.
All processes running on a computer system share this limited amount of physical
memory. Moreover, the amount of physical memory varies among different computer
systems, even if they have the same processor architecture. Ideally, we would have a
computer system with a memory size that is precisely equal to the size of the CPU’s
memory space. For example, for a 64-bit CPU, we would like to have .264 physical
memory words present in the system. Theoretically, we could add additional SDRAM
memory to a computer system, but this is often limited by the available density of
memory chips, the capacity of the memory controller, and, of course, the high price
of the SDRAM chips. To overcome this limitation, we could make processes think
they have unlimited physical memory. This technique is called virtual memory.

Virtual memory enables efficient multitasking by allowing multiple programs to
run simultaneously, each with its own virtual address space. Any program running
on a system with virtual memory presumes that it is the sole program running and
can generally use any memory location within the whole CPU’s address space. In
such a way, programs are isolated from each other, preventing one program from
directly accessing the memory space of another program.

Besides, virtual memory creates a hierarchy of memory storage, with the fastest
and most expensive storage being the physical SDRAM and slower, more extensive
storage, like a hard drive disk (HDD) or solid-state drive (SDD), serving as secondary
storage. In such a way, it allows the execution of programs larger than the physical
memory by swapping portions of these programs between the smaller SDRAM and
the bigger HDD or SDD, as needed.

In summary, virtual memory is a sophisticated memory management system that
abstracts and optimizes the use of physical memory resources, enhancing computer
systems’ overall performance and capabilities. It provides a crucial layer of abstrac-
tion that allows programs to run in a seemingly limitless memory space, improv-
ing system responsiveness and supporting the execution of complex and resource-
intensive tasks. Let’s embark on a journey to explore the remarkable world of virtual
memory, understanding how it transforms the way our computers work and, ulti-
mately, how it enhances our digital.

6.2 The Benefits and Downsides of Virtual Memory

Virtual memory is a fundamental concept in computer systems that enables them to
manage and utilise the available physical memory resources efficiently, extending
the capabilities of a computer far beyond its physical constraints. It is a powerful and
versatile technology that plays a pivotal role in modern operating systems, ensuring
the seamless execution of diverse and resource-intensive applications. In this virtual
realm, the computer appears to have an almost limitless amount of memory, allowing
it to multitask, run large programs, and maintain system stability. Virtual memory
is a memory management technique used in computer systems to give applica-

6.2 The Benefits and Downsides of Virtual Memory 269

tions an illusion of a vast and contiguous memory space, even when the physical
SDRAM available may be limited. It creates an abstraction layer that separates
the address spaces used by applications from the actual physical memory.

The main reasons to have virtual memory are:

1. Program positional independence: Programs (processes) can be designed and
executed as if they have access to an unlimited, contiguous block of memory, even
if the physical memory is limited. Programs being positionally independent means
that the memory addresses used by a program during its execution are not fixed or
hardcoded. Instead, the program uses virtual addresses, and the operating system
is responsible for mapping these virtual addresses to physical addresses. Positional
independence enables dynamic loading, allowing parts of a program to be loaded
into memory only when needed. This flexibility enhances resource utilization by
loading portions of programs on-demand, reducing the initial memory footprint.
Positional independence simplifies memory management for both the operating
system and developers. It allows the OS to load programs at different memory
locations without requiring modifications to the program’s code. This abstraction
makes it easier to develop and run programs without being constrained by the
actual size of the physical memory or their position in the physical memory.

2. Isolation and Protection: Virtual memory enables the isolation of processes from
each other. Each process is allocated its own virtual address space, providing the
illusion that it has exclusive access to the entire memory. This isolation prevents
one process from interfering with the memory contents of another, enhancing
system stability and security.

3. Address space abstraction: Virtual memory abstracts the physical memory
(RAM) from the applications. Each process works with virtual addresses, and the
operating system manages the mapping between virtual and physical addresses.
This abstraction simplifies application development by allowing programmers to
work with a larger, more flexible address space.

4. Memory protection: Virtual memory systems provide memory protection mech-
anisms. Each process has its own set of permissions for accessing different parts
of its virtual address space. Unauthorized access attempts result in memory pro-
tection faults, preventing processes from corrupting each other’s data.

5. Code Sharing: Multiple instances of the same program can share the same code
in memory since the virtual addresses are independent of the physical memory
locations. This promotes efficient use of memory and helps reduce redundancy.

6. Large Program Support: Virtual memory enables the execution of programs
that exceed the size of available physical RAM. It achieves this by moving parts
of the program in and out of storage, ensuring that the active portions remain in
physical memory.

7. Effective Use of Storage: When physical memory is exhausted, less frequently
used portions of programs are temporarily moved to disk, freeing up space for
other processes. This prevents programs from being limited by the size of the
physical memory and optimizes overall system performance. In essence, virtual
memory is the architectural marvel that empowers modern computer systems to

270 6 Virtual Memory

handle complex tasks, run multiple applications concurrently, and transcend the
confines of physical memory, thereby providing a seamless and efficient comput-
ing experience.

There are also several downsides of virtual memory. Implementing virtual mem-
ory requires complex logic and resources. Each time a program accesses memory,
the virtual address must be translated into a physical address, which is a complex
and time-consuming operation. If the data being requested does not reside in main
memory (SDRAM), it must be retrieved from secondary storage (HDD or SSD).
To help alleviate the performance penalties of translating virtual addresses to phys-
ical addresses, dedicated memory management unit (MMU) hardware should be
implemented within a processor.

6.3 Memory Management Unit

The memory management unit (MMU) is a piece of hardware that translates virtual
addresses issued by a CPU core into physical addresses. Each processor core capable
of running a multiuser and multitasking operating system has an MMU. Before en-
abling the virtual memory, MMU should be properly configured by software running
at an appropriate privilege level. Figure 6.1 shows an MMU within the microproces-
sor. The CPU core executes programs with their own virtual address space. Hence,
each time an instruction is fetched, or the CPU executes LOAD/STORE instructions,
virtual addresses are issued from the CPU core. These virtual addresses are fed into
the MMU, which translates them into physical addresses. The memory controller
then uses these physical addresses to access the main memory (SDRAM).

Main memory (DDRx SDRAM)

Memory
Controller

CP
U

 C
O

RE

M
D

R
PC

 /
M

A
R

Row, Col, Bank

Command (CS, RAS, CAS, WE)

Data Data

Virtual
Address

Physical
Address

Memory
Management

Unit
(MMU)

Microprocessor

Fig.6.1 A memory management unit (MMU) within the microprocessor translates virtual addresses
into physical addresses

6.4 Virtual Address Translation 271

Each virtual address .Av can be in the main memory or on the HDD/SSD disk. If
the virtual address .Av is in the main memory, the MMU translates it to a physical
address .Ap, and the CPU accesses a word in the main memory at the address .Ap.
But if .Av is on the disk, the MMU initiates a request to transfer data from the disk
to the main memory. When the transfer is done,.Av is translated to.Ap, and the CPU
makes the access.

Unlike the cache, where the requested block from the main memory is transferred
to the cache by hardware, with the MMU, the requested data block is transferred from
the disk to the main memory by software. It usually works by raising an interrupt,
and the interrupt service program transfers a data block from the disk to the main
memory. The slowness of the software solution is negligible compared to the time it
takes to transfer a block of data from the disk to the main memory.

6.4 Virtual Address Translation

A Memory Management Unit (MMU) is a hardware component in a computer system
responsible for translating virtual addresses used by programs into physical addresses
in the system’s main memory. This translation is crucial for the proper functioning
of modern operating systems and applications.

When a program runs, it operates assuming it has access to a contiguous virtual
memory. This virtual memory space is typically much larger than the physical mem-
ory (SDRAM) available in the system. When the program accesses memory, it uses
virtual addresses. The MMU then translates these addresses into physical addresses
corresponding to specific physical memory locations (RAM).

All memory accesses issued by software use virtual addresses, requiring the MMU
to translate the virtual address to a physical address for each access. The MMU
translates the virtual addresses of contiguous blocks in virtual memory rather
than individual memory locations. Translating individual memory locations
would be highly inefficient because it would require a separate translation for
each memory access. By translating the virtual address of an entire block at once, the
MMU reduces the overhead associated with address translation. A virtual memory
block is called a page. MMUs typically work by dividing the virtual address space
into pages of equal size. Pages are typically relatively large (e.g., 4 kB) compared
to individual memory locations. This granularity strikes a balance between efficient
address translation and memory management. The process of address translation
using pages is called paging. There are several benefits of paging:

1. Efficiency: If each memory location were translated individually, the overhead
of managing and storing translation mappings would be significantly higher.

2. Spatial locality: Recall that programs often exhibit spatial locality, meaning
they tend to access memory locations near each other. The MMU leverages this
spatial locality by translating entire pages to improve performance. Once a page
is accessed, it’s likely that subsequent memory accesses within the same page
will occur, minimizing the need for additional translations.

272 6 Virtual Memory

Page number

Frame number

Page 0

Page 1

Page n

Page P-1

Frame 0

Frame k

Frame F-1

Virtual Address
Translation

(Page->Frame)

Virtual Memory Physical Memory (DDRx SDRAM)

Virtual Address

Physical Address

Fig. 6.2 Virtual address translation using paging

3. Hardware implementation: Implementing address translation for individual
memory locations would require more complex hardware and incur higher la-
tency for each memory access. Translating entire pages allows the MMU to utilize
simpler structures, resulting in faster and more efficient address translation.

Overall, translating virtual addresses at the page level rather than for each mem-
ory location provides a good balance between efficiency and hardware complexity,
making it the preferred approach in modern computer systems.

The basic idea of paging is simple and presented in Fig. 6.2. Virtual memory is
divided into blocks of equal size called pages. Physical memory is also divided into
blocks of equal size, called page frames. Pages and page frames are the same size.
Typical sizes of pages and page frames are 4 kB, 2 MB, or 4 MB (always a power of
2). Any page from virtual memory can be transferred to any of the frames in
physical memory. With a known size of the virtual and physical address space, the
number of pages and frames is fixed and known in advance. The MMU translates
the virtual address of the page (called the page number) to the physical address
of the page frame (called the frame number). Each virtual address consists of the
page number and the memory word offset within the page. Similarly, each physical
address consists of a frame number and a memory word offset within the page frame.

Suppose a computer system with a CPU that uses .n-bit virtual addresses. The
virtual address space in such a system is of size .2n memory words. Suppose this

6.4 Virtual Address Translation 273

Fig. 6.3 Virtual address
translation

system contains the main memory (physical address space) of size .2m memory
words. Suppose the pages and frames are of size.2p memory words. Then, the virtual
address space contains.2n−p pages, and the physical memory contains.2m−p frames.
Figure 6.3 shows virtual address translation for such a system.

The virtual address contains the.p-bit offset within a page and the.(n− p)-bit page
number. The page number is the address of a page in the virtual address space, while
the offset is the address of a memory word within the page. The physical address
contains the.p-bit offset within a frame and the.(m− p)-bit frame number. The frame
number is the address of a frame in the main memory, while the offset is the address
of a memory word within the frame. The virtual address space is often larger than
the physical address space, hence .n > m, but this is not a requirement in general.
Virtual and physical addresses are often of the same width despite virtual address
space being much larger than physical address space.

The MMU translates the .(n − p)-bit page number to .(m − p)-bit frame num-
ber, while the offset in the physical address is the same as the offset from the virtual
address. The physical address is formed simply by concatenating the frame num-
ber with the offset from the virtual address. The MMU performs this translation
using data structures called page tables. A page table contains mappings between
page numbers and frame numbers. The following section will describe page tables
and their usage in virtual address translation in detail.

The number of bits in the page offset field determines the page size. The number
of pages in the virtual address space need not match the number of page frames in
the main memory. The larger number of pages gives a program the illusion of an
unbound amount of memory it can use. Recall that the main memory usually does
not hold all the pages a program uses. Indeed, the main memory holds only a portion
of all pages that belong to a program. Other pages are stored on disk to save space
in the main memory and to allow other programs to use the main memory. When
a program tries to access a page that is not in the main memory, a so-called page
fault occurs. A page fault will trigger an interrupt, and the interrupt service routine
will transfer the requested page from the secondary storage (HDD or SSD) into the
main memory. Often, there is no free frame in the main memory for the requested
page, so before transferring a page from the disk, the interrupt service program will
transfer the least used frame from the main memory to the disk to free a frame for a
new page. This operation is called page swapping. Page swapping is a mechanism

274 6 Virtual Memory

used in virtual memory systems to manage memory resources efficiently. Due to a
very slow transfer between the main memory and secondary storage, the page fault
takes millions of CPU cycles to process.

The choice of page size in a virtual memory system can significantly affect system
performance. Sizes from 4 kB (.p = 12) to 4 MB (.p = 22) are typical today. Larger
page sizes typically result in fewer page faults because each page contains more
memory locations. With larger pages, there’s a higher likelihood that subsequent
memory accesses will be within the same page, reducing the number of page faults.
This can improve overall system performance by reducing the overhead associated
with handling page faults. On the contrary, smaller page sizes allow for more efficient
memory utilization. With smaller pages, the operating system can fit smaller memory
allocations more precisely, reducing internal fragmentation. Internal fragmentation
refers to the wasted space within a page due to the allocation of memory in fixed-size
pages that may not be fully utilized by the data stored within them. This inefficiency
arises when the allocated memory space within a page is larger than what is actually
needed to store the data. In other words, internal fragmentation occurs when a page
(or page frame) contains allocated memory space along with unused space that other
programs cannot utilize. This unused space represents wasted memory resources.

6.5 One-Level Paging

The MMU uses data structures called page tables to translate a virtual address to
a physical address. The translation process involves consulting the page table to
determine the mapping between the virtual address and the corresponding physical
address. Page tables are stored in the main memory. The operating system initial-
izes and maintains the page table, which stores the mappings between virtual pages
and physical frames. Entries in the page table are called page descriptors. Each
page descriptor corresponds to a virtual page and contains the corresponding
physical frame number where the page is located in physical memory. The MMU
will read the corresponding descriptor from the page table to translate a page number
to a frame number. Hence, the MMU is connected to the main memory, as presented
in Fig. 6.4. The MMU will address the main memory for two reasons: to read a page
descriptor from the page table or to physically address the memory word requested
by the CPU.

Figure 6.5 shows the virtual address translation using paging for a computer system
with 32-bit virtual and physical addresses where pages are of size 4 kB. This type of
paging is often referred to as one-level paging. The virtual address space contains
.232 one-byte memory words (4 GB in total); hence, there are . 4 GB/4 kB = 1M
pages. An in-memory page table contains 1M (1048576) 32-bit page descriptors
(one per page) that map virtual addresses into physical addresses. The size of the
page table is 4 MB (1M descriptors .× 32 bit). To perform the translation, the MMU
uses the page number extracted from the virtual address (20 uppermost bits) to index
into the page table. The descriptor corresponding to the virtual page is then retrieved.

6.5 One-Level Paging 275

Fig. 6.4 A memory management unit (MMU) within the microprocessor should have access to the
main memory in order to read page descriptors from the page table

Page descriptor 0
Page descriptor 1
Page descriptor 2
Page descriptor 3
Page descriptor 4

Page descriptor 1048575
Page descriptor 1048574
Page descriptor 1048573

V PsetubirttasseccArebmunemarF
31 12

31 0

Page number

31 12 11 0

Frame number

31 12 11 0

Page Table Base Register

+

Page Table in DDRx SDRAM
 Table size = 4 MB

MMU

Virtual Address:

Physical Address:

MMU Page Fault
 Exception

Frame number

31 12 11 0

Physical Address:

MMU

+
MMU

11 2 1 0

Fig. 6.5 Virtual address translation with one-level paging

The MMU contains a register (Page Table Base Register) that holds the page table
base address and directly accesses the page table in the main memory. The MMU
forms the address of the page descriptor that corresponds to the requested page by
summing the page number from the virtual address and the page table base address
from the Page Table Base Register. Each page descriptor contains the 20-bit frame
number where the corresponding page resides in physical memory. The MMU reads
the descriptor and combines the 20-bit frame number with the 12-bit offset portion
of the virtual address to generate the 32-bit physical address, which is then used to

276 6 Virtual Memory

access the memory location. Hence, one access to the main memory is required to
read the descriptor and form the physical address used to access the requested
memory word.

Before enabling the MMU, the operating system must appropriately set up the
page table, and the OS must tell the MMU where the page table resides in memory
by setting its base address in the MMU’s Page Table Base Register. Once the MMU
is configured, it will translate all virtual addresses issued by software to physical
addresses. The physical addresses are given to the memory controller that issues
commands and row/bank/column addresses to the SDRAM chips (or DIMM mod-
ules). Each page descriptor in the page table contains:

1. Valid bit (V): Indicates whether the page descriptor is valid. MMU uses this bit
to detect page faults and generate the page fault interrupt request. Upon reset, all
page descriptors are invalid. When a page is transferred to the main memory for
the first time, the operating system initializes the corresponding page descriptor
and sets the valid bit. When the valid bit is set, the MMU can translate the virtual
address using the descriptor. Otherwise, the page fault is generated and the OS
transfers the page to the main memory.

2. Present bit (P): Indicates whether the corresponding virtual page is currently
present in physical memory. If this bit is set, the frame number in the descriptor
is valid and can be used to form the physical address. Otherwise, the page is
currently not present in the main memory (it has been previously swapped to
secondary storage), and the MMU generates the page fault.

3. Frame Number: Specifies the physical address of the frame number where the
corresponding virtual page is located in the physical memory. When the valid and
present bits indicate that the descriptor is valid and the page is present in the main
memory, the 20-bit FN is used to construct the physical address.

4. Access Attributes: Define the access permissions for the virtual page, such as
read, write, or execute permissions. These bits control the level of access allowed
to the page. Depending on the system architecture, additional metadata, such as
dirty bits (indicating whether the page has been modified), may be included in
this field.

6.6 Two-Level Paging

More sophisticated memory management techniques, such as multi-level paging,
may be preferred. Here, we will describe the two-level paging technique presented
in Fig. 6.6.

One large page table (used in one-level paging) is split into several smaller page
tables in two-level paging. These smaller page tables are then structured as a hierar-
chical tree data structure consisting of two levels:

1. a level-2 page table (also referred to as page directory): at the top level of the
tree is the level-2 page table (page directory). The level-2 page table is an array of

6.6 Two-Level Paging 277

Fig. 6.6 Two level paging

entries, each corresponding to a portion of the virtual address space and directly
pointing to one of the level-1 page tables. The size of the page directory is typically
determined by the number of the level-1 page tables. The number of level-1 page
tables is determined by the maximum size of the virtual address space and the
desired size of pages.

2. level-1 page tables: the level-1 page tables contain entries for individual pages
(page descriptors) within the corresponding portion of the virtual address space.
The size of the level-1 page table is, in general, determined by the number of
descriptors it contains, but the most common size of the level-1 page table equals
the size of one page. In this way, each level-1 page table is regarded in the
operating system as one page that can reside in one frame in the main memory
and can be swapped between the main memory and the secondary storage.

This organization allows for the efficient management of large virtual address spaces
by dividing the address translation process into two stages. As each level-1 page
table is the same size as one page, we can manage level-1 page tables as we manage
page tables, i.e., they can reside in the main memory or the secondary storage. This
means the operating system can swap out portions of the bottom-level page tables to

278 6 Virtual Memory

secondary storage (such as a hard disk) when not actively in use and swap them back
into main memory when needed. Overall, the operating system manages bottom-
level page tables as integral components of the virtual memory system, ensuring
efficient address translation and memory management for processes running on the
system. This significantly reduces the physical memory required to store page
tables.

Figure 6.6 presents two-level paging for the system from Fig. 6.5. The large page
table from Fig. 6.5, containing 1M descriptors, is split into 1024 level-1 page tables,
each containing 1024 descriptors (.1024×1024 = 1M). Then, the level-2 page table
is added as a tree root, where each of the 1024 entries directly points to one level-1
page table. The page descriptors in level-1 page tables are 32-bit long, meaning that
each level-1 page table is of size 4 kB. Also, each entry in the level-2 page table is
32-bit long, meaning that level-1 page table has also the size of 4 kB. The operating
system need to hold in the main memory the level-2 page table and at least one level-1
page table, which is accessed by the MMU. The other level-1 page tables can reside
in the secondary storage until needed by the MMU.

The hierarchical tree structure of two-level paging allows for efficient address
translation and memory management, particularly in systems with large virtual ad-
dress spaces. It reduces the memory overhead of managing large page tables while
providing scalability and flexibility to accommodate varying memory allocation pat-
terns and page sizes. Let us now describe the virtual address translation in two-level
paging presented in Fig. 6.7.

Virtual address translation involves two stages in two-level paging: top-level trans-
lation using the level-2 page table and bottom-level translation using the level-1 page
table. When a program accesses memory using a virtual address, the MMU extracts
the level-2 page table index and the level-1 page table index from the virtual address.
The level-2 page table index identifies the entry in the top-level level-2 page table,
and the level-1 page table index identifies the entry in the bottom-level level-1 page
table.

As presented in Fig. 6.7, the MMU uses the 10-bit level-2 page table index to
index into the top-level level-2 page table, retrieving the corresponding level-2 page
table entry. The level-2 page table entry contains a 20-bit pointer to the bottom-level
page table responsible for the portion of the virtual address space specified by the
level-2 page table. Please note that level-1 page tables are 4 KB large and are kept in
4 KB physical frames in the main memory; hence, the last 12 bits of the page table
address are always 0.

The MMU then uses the level-1 page table index to index into the bottom-level
page table. It retrieves the corresponding page descriptor, which contains the physical
frame number where the requested page resides in physical memory. The MMU com-
bines the frame number from the page descriptor with the offset portion of the virtual
address to generate the physical address. The offset portion of the virtual address
specifies the byte offset within the frame. Finally, the physical address generated by
the MMU is used to access the memory location in physical memory.

If the MMU encounters an invalid level-2 table entry or page descriptor during the
translation process, or P bits of the level-2 table entry or page descriptor are cleared,

6.6 Two-Level Paging 279

Level-2 Table Entry 0
Level-2 Table Entry 1
Level-2 Table Entry 2
Level-2 Table Entry 3
Level-2 Table Entry 4

Level-2 Table Entry 1023
Level-2 Table Entry 1022
Level-2 Table Entry 1021

V PsetubirttasseccAesaBelbaTegaP1-leveL
19 0

31 0

Level-2 Table Index

31 12 11 0

Page Table 2 Base Register

+

Level-2 Table in DDRx SDRAM
 Table size = 4 KB

MMU

Virtual Address:

MMU Page Fault
 Exception

Page descriptor 0
Page descriptor 1
Page descriptor 2
Page descriptor 3
Page descriptor 4

Page descriptor 1023
Page descriptor 1022
Page descriptor 1021

V PsetubirttasseccArebmunemarF
19 0

31 0
Level-1 Page Table in DDRx SDRAM

 Table size = 4 KB

Frame number

31 12 11 0

Physical Address:

+

MMU Page Fault
 Exception

Level-1 Table Index

22 12

+

+

MMU

MMU

Frame number

31 12 11 0

Physical Address:

MMU

Fig. 6.7 Virtual address translation with two-level paging

indicating that the corresponding portion of the virtual address space is not currently
in physical memory, a page fault occurs. The operating system intervenes to load the
required page or level-1 page table from secondary storage into physical memory
and updates the level-2 page table or page table accordingly.

Overall, virtual address translation in two-level paging involves hierarchical
lookup of page directory and page table entries to map virtual addresses to physi-
cal addresses, allowing programs to access memory transparently while efficiently
managing large virtual address spaces. Unfortunately, two-level paging prolongs the
time needed to translate virtual addresses. This is because the MMU needs to access
the main memory twice: firstly, to retrieve the level-2 page table entry, and secondly,
to retrieve the page descriptor from the level-1 page table. The access time in a two-
level paging system refers to the time taken by the CPU’s Memory Management
Unit (MMU) to translate a virtual address into a physical address and access the
corresponding memory location.

Modern computer systems use even more levels to translate virtual addresses. For
example, Intel uses 5-level paging, and ARMv8 uses 4-level paging, further prolong-
ing the access time. Recall that accessing page tables in main memory can be slow
due to the long access times of SDRAM-based main memory. Therefore, minimizing
virtual address translation latency is crucial for maintaining system performance in

280 6 Virtual Memory

memory-intensive applications. The next section describes fast and efficient address
translation techniques to improve system performance and responsiveness.

6.7 Translation Lookaside Buffers

On a computer with virtual memory, every time the CPU accesses memory, it is
necessary to translate the virtual address to the physical address. Since the content
of the page table is required for virtual address translation, it would be ideal from
the point of view of translation speed if the tables were in the MMU. Unfortunately,
this is not feasible due to their sizes. The tables are so large that they are stored in
main memory or even in secondary storage when the MMU does not need them. In
an N-level paging system, the MMU must traverse N levels of page tables to find the
corresponding physical address. Each level of page table access requires accessing
main memory, which has longer access times compared to faster cache memory.
This increased number of memory accesses adds significant latency to the translation
process. The above number of accesses applies to virtual address translations that
do not result in a page fault. When a page fault occurs, the number of accesses
and, thus, the access time increases significantly. Systems with frequent and multi-
level address translation would suffer from long memory access time, resulting in
poor overall system performance and responsiveness. Moreover, accessing the main
memory consumes more power compared to accessing the CPU cache. The system
with virtual memory would need to perform frequent memory accesses, leading to
increased power consumption and reduced energy efficiency.

Obviously, if we don’t have some mechanism to accelerate the virtual address
translation, a computer with virtual memory will be much slower and less efficient
than one without virtual memory. Therefore, we must have some built-in mechanism
for accelerating virtual address translation within the CPU (MMU). This mechanism
is basically a small and fast cache that stores the most recently used page descriptors.
We have seen that the page descriptor describes a translation for several thousand
memory words (e.g., 4 KB) within one page. This means that the MMU uses the
same descriptor for a long time due to spatial and temporal locality. Therefore, the
obvious solution to speed up the virtual address translation is to store the descriptor
that the MMU is currently using in a fast cache inside the MMU. This way, the MMU
will avoid accessing the main memory each time when translating the virtual page
address.

These special caches, which contain only descriptors from the page tables, are
called Translation Lookaside Buffers (TLB). All computers with virtual memory
have a TLB; without it, the virtual memory would be useless. The TLB is similar
to the instruction and operand caches we met in the previous chapter. The only
difference is that the TLB stores descriptors rather than instructions or operands.

TLBs rely on spatial locality to improve their effectiveness in caching translations.
TLBs cache translations for recently accessed virtual addresses and their correspond-
ing physical addresses. When a virtual address is translated, the resulting physical
address and other associated information (i.e., page descriptor) are stored in the TLB.

6.7 Translation Lookaside Buffers 281

021 1131
32-bit PHYSICAL ADDRESS

021 1131

Page number

V TAG FRAME NUMBER

=

20

TLB HIT

20

Frame number

12

32-bit VIRTUAL ADDRESS

=

20

=

20

=

20
20

20
20

4:2
ENCODER

20

MUX

20
20

20
20

Fig. 6.8 Fully associative TLB with four entries

When a subsequent memory access references the same virtual address or nearby
virtual addresses (i.e., the same page), the TLB can provide the translation directly
without the need to access the page tables in the main memory. By caching transla-
tions based on spatial locality, TLBs can significantly reduce the latency of address
translation and improve the overall performance of memory access operations. This
is particularly beneficial in systems with large virtual address spaces or memory-
intensive applications, where efficient translation of virtual addresses to physical
addresses is essential for maintaining system performance and responsiveness.

There is another significant difference between instruction/operand caches and
TLBs. Since the virtual page number changes significantly more slowly than the
block addresses in the instruction/operation cache, we can achieve a very high hit
probability with a much smaller TLB. Therefore, TLBs are often implemented as
small, fully associative (or set-associative) translation caches.

The Translation Lookaside Buffer is a hardware cache used in memory manage-
ment units (MMUs) to store recently used virtual-to-physical address translations.
TLBs are typically organized as associative caches. The TLB consists of a finite
number of entries, each storing a virtual-to-physical address translation. The num-

282 6 Virtual Memory

ber of entries in a TLB can vary depending on the specific architecture and design
constraints. Figure 6.8 presents the organization of a fully associative TLB with four
entries (TLB stores four descriptors). Again, we assume 32-bit virtual and physical
addresses and a 4 KB page size. To keep the description simple, we focus only on
the read operation.

Each tag entry in TLB holds the virtual page number used to look up translations
in the TLB. In the fully associative TLB, every TLB tag is compared against the
virtual page number since the required descriptor can be stored anywhere in TLB.
This comparison determines if the translation is present in the TLB. Each data entry
in TLB contains the physical frame number (and additional metadata from the page
descriptor if necessary). If the valid bit of the matching tag is set, we have a TLB hit,
and the associated frame number is read from the TLB entry to form the physical
address. Hit in TLB always means the page is valid and present in the main memory.

In modern computer systems, TLBs can hold 16-512 entries, and the hit time is
typically one clock cycle. For example, the TLB size in ARM Cortex A8 is 32, while
in ARM Cortex A73, the TLB size is 48 entries. Designers often use a wide variety of
associativities in TLBs. Some systems use fully associative TLBs because the fully
associative mapping results in a lower miss rate. Since TLBs are small, the cost to
implement the fully associative mapping in hardware is reasonable. Other systems
may use large TLBs with small associativity.

TLBs cache recent translations of virtual addresses to physical addresses. When a
virtual address needs to be translated, the MMU first checks the TLB. If the translation
is found in the TLB (a TLB hit), the translation can be performed much faster than if it
had to access the page tables in memory. TLBs speed up memory access by reducing
the latency of address translation. Therefore, TLBs are an essential component of
MMUs in modern computer systems, providing fast and efficient address translation
to improve system performance and responsiveness.

6.7.1 Multilevel Translation Lookaside Buffers

Multilevel Translation Lookaside Buffers are a feature found in modern processors
from both Intel and AMD. Multilevel TLBs enhance translation efficiency by orga-
nizing TLBs into multiple levels, similar to multilevel caches. Intel and AMD CPUs
nowadays are built with multiple TLBs, for example, a small L1 TLB (potentially
fully associative) that is extremely fast and a larger and slower L2 TLB. Here’s a
brief overview of each level:

1. L1 TLB: The L1 TLB, also known as the primary TLB, is typically small and
fast, residing on the processor core itself. It stores a subset of frequently used
virtual-to-physical address translations, allowing for fast access to recently ac-
cessed memory locations. The L1 TLB is usually fully associative, providing
quick access to translations with minimal latency. Moreover, there are usually
two L1 TLBs, one for pages containing data (DTLB) and the other for pages
containing instructions (ITLB).

6.8 Integrating Caches and Virtual Memory 283

2. L1 TLB: The L2 TLB serves as a secondary level of translation caching, sup-
plementing the L1 TLB. It is larger in size compared to the L1 TLB, allowing
it to store a larger number of translations and accommodate a broader range of
memory access patterns. The L2 TLB is usually shared among multiple processor
cores, providing a centralized cache for translation entries.

For instance, AMD Opteron Family 15H has a fully associative L1 DTLB with
32 entries for 4 KB pages and an 8-way associative L2 TLB with 1024 entries for
4 KB pages. Similarly, Intel Core i7 has a 4-way set associative L1 DTLB with 64
entries for 4 KB pages and a 4-way set associative L2 TLB with 512 entries for
4 KB pages.

6.8 Integrating Caches and Virtual Memory

Until now, we have discussed caches and virtual memory separately, but in every
computer system, caches and virtual memory coexist and form a memory hierarchy.
Therefore, when we have a cache and virtual memory in the computer system, the
following question arises: should we access the cache with a physical or virtual
address? Let’s take a closer look at both options. First, recall two basic operations
when accessing the cache:

1. Cache Tagging: refers to the process of comparing a portion of a memory address
against a cache tag to identify the memory block stored in that cache line. During
a cache tagging, the cache controller compares the tag of the requested memory
address with the tags of the cache lines to determine if the requested data is present
in the cache.

2. Cache Indexing: refers to the process of determining the location within the
cache where a particular memory block should be stored or looked up. The cache
index is derived from part of the memory address of the data being accessed. This
portion of the memory address is used to select the specific cache block or set
where the data should be stored or retrieved.

6.8.1 Physically Indexed and Physically Tagged (PIPT) Cache

When a CPU generates a physical address, access to the cache precedes access
to the main memory. Data is checked in the cache using the tag and block index
(directly mapped cache) or set index (set-associative) bits. Such a cache where the
tag and index bits are generated from a physical address is called a Physically
Indexed and Physically Tagged (PIPT) cache. But in today’s computer systems,
the CPU generates virtual addresses. When using a PIPT cache, the virtual address
needs to be converted to its corresponding physical address before the PIPT cache
can be searched for data. Therefore, accessing a PIPT cache requires translating
the virtual address to a physical address before indexing the cache. This translation

284 6 Virtual Memory

introduces additional latency that can impact overall memory access time and system
performance.

6.8.2 Virtually Indexed and Virtually Tagged (VIVT) Cache

An immediate but naive solution is a Virtually Indexed and Virtually Tagged
(VIVT) cache. VIVT cache directly checks the data in the cache and fetches it
without translating the virtual address to a physical address, reducing the hit time
significantly. VIVT caches are simpler to implement compared to PIPT cache orga-
nizations because they use virtual addresses for both indexing and tagging. There
is no need for complex address translation or additional hardware support for phys-
ical addresses, which reduces hardware complexity and cost. However, there are
challenges with VIVT caches. One challenge is that virtual addresses may alias,
meaning different virtual addresses can map to the same cache index. This happens
when two different programs use two different virtual addresses for the same physical
address (e.g. when both programs access the same OS subroutine). These duplicate
addresses, called aliases, could result in two copies of the same data in a cache; if
one is modified, the other will have the wrong value. This can lead to cache conflicts
and reduced cache performance. With a PIPT cache, this wouldn’t happen because
the accesses would first be translated to the same physical cache block.

6.8.3 Virtually Indexed and Physically Tagged (VIPT) Cache

Today’s computer systems employ a compromise approach, such as Virtually In-
dexed and Physically Tagged (VIPT) caches, which use virtual indexing and phys-
ical tagging to balance performance and complexity. The VIPT cache uses tag bits
from a physical address and an index from a virtual address. These caches work
simultaneously with TLBs. Figure 6.9 shows such a solution where TLB and VIPT
cache work together and simultaneously.

The cache is indexed using the port of the virtual address that does not translate
(i.e., virtual offset), and the tag (part of the physical address) is obtained from the
VIPT cache. The cache indexing (data access and tag access) starts immediately
when the CPU issues the virtual address, and there is no need to translate the virtual
address for cache indexing. As the cache is indexed with the part of the virtual address
that does not change during the address translation, this is indeed equal to indexing
the cache with the physical address.

Simultaneously with indexing, the TLB is searched with a virtual page number,
and a physical address is obtained from the TLB. Finally, the tag obtained from the
VIPT cache during cache indexing is compared against the physical address from
the TLB. If they both are the same, then it is a cache hit; else, it is a cache miss.

Since TLB is smaller in size than cache, TLB’s access time will be lesser than
cache’s access time. Hence, the physical address needed for cache tagging is obtained
from the TLB in time to compare it against the tag from the VIPT cache. The VIPT
cache takes the same time as the VIVT cache during a hit and solves the problems

6.8 Integrating Caches and Virtual Memory 285

512 bits (64 bytes)

32 bits 32 bits 32 bits 32 bits20 bits

word 0 word 1 word 14 word 15V gat

TAG DATAV

21 11 6 5 2 1 031

32-bit PHYSICAL ADDRESS

=
32 32

32 32

4

32

6

6 4

20

20

block 0
block 1
block 2
block 3
block 4

block 63
block 62
block 61
block 60

MUX

CACHE HIT DATA

Frame number
tag

021 1131

Page number

V TAG FRAME NUMBER

=

20

TLB HIT

20

12

32-bit VIRTUAL ADDRESS

=

20

=

20

=

20
20

20
20

4:2
ENCODER

20

MUX

20
20

20
20

TLB

4 KB DIRECT
MAPPED CACHE

Fig. 6.9 Directly mapped VIPT cache

286 6 Virtual Memory

of the VIVT cache. Since the TLB is accessed in parallel with the cache, the flags
and tags can be checked simultaneously. The VIPT cache uses part of the physical
address as an index, and since every memory access in the system will correspond
to a unique physical address, data for multiple processes can coexist in the cache.

However, there is a small challenge with VPIT caches. As the VIPT cache is
indexed with the offset, the size of the directly mapped VIPT cache cannot exceed
the size of a page. In Fig. 6.9, we assume a 4 KB page size and a 12-bit offset (quite
common in today’s systems) used for cache indexing. Hence, the maximum size of
the directly mapped VIPT cache is 4 KB. To overcome this limitation, set-associative
VIPT caches are commonly used. Figure 6.10 presents such a solution using a 4-way
set-associative VIPT cache. In the set-associative VIPT cache, the offset from the
virtual address is used to index the set in the cache (and not the block as in the directly
mapped cache). A set, in turn, contains several blocks (four blocks in a set in the
VIPT cache presented in Fig. 6.10).

6.9 Case Study: AMD64 5-Level Paging

The AMD64 virtual address translation mechanism enables system software to create
separate address spaces for each process or application. These address spaces are
known as virtual address spaces. AMD64 uses the paging mechanism to selectively
map individual pages in the virtual address space using a set of hierarchical page
tables. The paging mechanism and the page tables are used to provide each process
with its own private region of physical memory for storing its code and data. Besides,
the AMD64 paging provides a process protection mechanism. Processes are protected
from each other simply by isolating them within the virtual address space. This way,
the process cannot access physical memory that is not assigned to its virtual address
space.

The AMD64 architecture allows the translation of 64-bit virtual addresses into
52-bit physical addresses, although processor implementations can support smaller
virtual and physical address spaces. Figure 6.11 shows an overview of the page-
translation hierarchy used in AMD64. As this figure shows, a virtual address is
divided into fields, each of which is used as an offset in a translation table. To
complete the address translation, a walk through all table entries referenced by the
virtual address fields is required. The 12 lowest-order virtual address bits are used as
the byte offset into the 4 KB physical page. In a 5-level paging with 4 KB pages, the
translation is performed by dividing the virtual address into seven fields. The virtual
address fields are as follows:

1. Bits 63:57 are a sign extension of bit 56, as required for canonical address
forms. Bit patterns that are valid addresses are called canonical addresses. The
x86-64 and AMD64 architecture divide canonical addresses into low and high
groups. Low canonical addresses range from 0x0000 0000 0000 0000 to
0x0000 7FFF FFFF FFFF. High canonical addresses range from 0xFFFF
8000 0000 0000 to 0xFFFF FFFF FFFF FFFF.

6.9 Case Study:AMD64 5-Level Paging 287

21 11 6 5 2 1 031

32-bit PHYSICAL ADDRESS

TLB HIT
Frame number

tag

512 bits20 bits

TAG DATAV

=

32

6 4

MUX

512 bits20 bits

TAG DATAV

512 bits20 bits

TAG DATAV

512 bits20 bits

TAG DATAV

= = =

4:2
ENCODER

64
 b

lo
ck

s

CACHE HIT DATA

20

3232 32 32

021 1131

Page number

V TAG FRAME NUMBER

=

20

TLB HIT

20

12

32-bit VIRTUAL ADDRESS

=

20

=

20

=

20
20

20
20

4:2
ENCODER

20

MUX

20
20

20
20

TLB

16 KB 4-WAY SET
ASSOCIATIVE CACHE

Fig. 6.10 4-way set-associative VIPT cache

288 6 Virtual Memory

L5 Entry 0
L5 Entry 1
L5 Entry 2

L5 Entry 511

L4 PT Base

63 0

Sign Extend

63 48 11 0

CR3

Level-5 Table
size = 4 KBAMD MMU

Virtual Address:

Level-5 Table Index

75 65 39

Level-4 Table Index

47 30

Level-3 Table Index

38 21

Level-2 Table Index

29 12

Page Table Index

20

L4 Entry 0
L4 Entry 1
L4 Entry 2

L4 Entry 511

L3 PT Base

63 0

Level-4 Table
size = 4 KB

L3 Entry 0
L3 Entry 1
L3 Entry 2

L3 Entry 511

L2 PT Base

63 0

Level-3 Table
size = 4 KB

L2 Entry 0
L2 Entry 1
L2 Entry 2

L2 Entry 511

L1 PT Base

63 0

Level-2 Table
size = 4 KB

PT Entry 0
PT Entry 1
PT Entry 2

PT Entry 511

FN Base

63 0

Page Table
size = 4 KB

51 0 51 0 51 0 51 0 51 0

4 KB Page

Fig. 6.11 AMD64 5-level paging

2. Bits 56:48 provide the index into the 512-entry level-5 table.
3. Bits 47:39 provide the index into the 512-entry level-4 table.
4. Bits 38:30 provide the index into the 512-entry level-3 table.
5. Bits 29:21 provide the index into the 512-entry level-2 table.
6. Bits 20:12 provide the index into the 512-entry page table.
7. Bits 11:0 provide the byte offset into the page and physical frame.

All page table entries and page descriptors are 64 bits long, and all tables are
4 KB in size. Hence, each table can fit into a physical frame. Besides control and
meta bits (Valid, Present, etc.), all table entries contain 40 bits of the base address of
the page table at the next level. Similarly, page descriptors contain the upper 40 bits
of the base address of the physical frame. AMD64 has two control registers (CR2
and CR3) that are used by the virtual address translation mechanism (i.e., MMU):

1. CR2—the processor loads this register with the page-fault virtual address when
a page-fault exception occurs.

2. CR3—this register contains the base address of the highest-level page-translation
table.

6.10 Summary of Memory Hierarchy

A memory hierarchy is a structure that organizes memory resources in a computer
system based on their speed, size, and cost characteristics. The memory hierarchy in
computer systems exists to optimize the trade-offs between speed, capacity, and cost
associated with accessing data. In memory hierarchy, we tend to put faster, smaller,
and more expensive memory near the CPU and slower, larger, and considerably
cheaper memory further from the CPU. The locality of memory references is the
main concept that enables the implementation of a memory hierarchy. Locality of
reference refers to the tendency of programs to access a relatively small portion of
memory at any given time. Locality of memory reference enables the efficient use

6.11 Case Study:The Memory Hierarchy in an Intel Core i7 289

Table 6.1 Typical levels of memory hierarchy

Name CPU registers Cache
(L1, L2, L3)

Main memory Secondary (disk)
storage

Level 1 2 3 4

Implementation
technology

CMOS CMOS
SRAM

CMOS
SDRAM

NAND Flash

Location Within CPU On CPU chip Off CPU chip,
DIMM modules

Separate device

Access time (ns) 0.1 ns 0.3–10 15–150 25000–100000

of memory by storing frequently accessed data and instructions close to the CPU in
the small, fast, and expensive memory, hence reducing memory access latency.

Table 6.1 summarizes the typical levels of the memory hierarchy. The typical
levels in the hierarchy slow down and get cheaper and larger as we move away
from the CPU. Registers are the smallest and fastest storage locations within the
CPU. They hold data and instructions that are currently being processed by the CPU.
Registers have the fastest access time, typically measured in very few CPU clock
cycles. Cache memory is a small but fast type of volatile computer memory used
to hold frequently accessed data and instructions. It sits between the CPU and main
memory, acting as a buffer to speed up memory access by storing copies of frequently
accessed data. Cache memory is divided into levels, such as L1, L2, and sometimes
L3, with each level offering progressively larger capacity and slightly slower access
time than the previous level. Cache access times are typically measured in a few
CPU cycles, making cache memory significantly faster than main memory. Main
memory is a larger, cheaper, but slower type of volatile memory that stores data
and instructions used by the CPU. It provides the working space for the operating
system, applications, and data currently being processed by the CPU. Main memory
is organized into memory modules, such as SDRAMs. Access times for main memory
are typically tens to hundreds of nanoseconds, which is slower than cache but faster
than secondary storage. Secondary storage refers to non-volatile storage devices,
such as hard disk drives (HDDs) and solid-state drives (SSDs), used for long-term
data storage. Recently, SSDs have been replacing HDDs. Secondary storage provides
a much larger storage capacity than main memory but with much slower access times.
Data stored in secondary storage persists even when the computer is powered off,
making it suitable for long-term storage of files, applications, and system data. Access
times for secondary storage are orders of magnitude slower than main memory,
typically measured in milliseconds for HDDs and microseconds for SSDs.

6.11 Case Study: The Memory Hierarchy in an Intel Core i7

The memory hierarchy in an Intel Core i7 processor consists of several levels, each
with different characteristics and access times (Fig. 6.12). An Intel Core i7 proces-

290 6 Virtual Memory

Registers
Instruction

Fetch

L1 D-Cache
32 KB, 8-way

L1 I-Cache
32 KB, 8-way

256 KB, 8-way

L1 D-TLB
64 entries, 4-way

L1 I-TLB
128 entries, 4-way

MMU
Address Translation

512 entries, 4-way

Intel i7 core

8 MB, 16-way, shared by all cores
PC4-25600 DIMMs

 DDR4 Main Memory

Fig. 6.12 The memory hierarchy in an Intel Core i7

sor typically includes multiple levels of cache, main memory (RAM), and TLBs
(Translation Lookaside Buffers). Here’s a detailed overview of the memory hierar-
chy typically found in an Intel Core i7 processor:

Registers
At the top of the memory hierarchy are registers, which are small, high-speed stor-
age locations located directly within the CPU. Registers hold data that the CPU is
actively processing, including operands, intermediate results, and memory addresses.
Registers have extremely fast access times, typically measured in tenths of nanosec-
onds, making them the fastest form of memory in the system. Registers are organized
into various types, including general-purpose registers, floating-point registers, and
special-purpose registers for control and status information.

Cache Memory
Below registers are the cache memory levels, which provide a compromise between
the speed of registers and the capacity of main memory. Intel Core i7 processors
typically feature multiple levels of cache, including L1, L2, and L3 caches:

1. L1 cache (Level 1 cache) is the smallest and fastest cache, located directly on the
CPU core. Intel Core i7 processors typically have separate instruction and data

6.11 Case Study:The Memory Hierarchy in an Intel Core i7 291

caches, each with a size of 32 KB per core. The L1 cache operates at the speed
of the CPU core, providing extremely fast access times.

2. L2 cache (Level 2 cache) is larger but slower than L1 cache. It is shared among
multiple CPU cores and serves as a buffer between the CPU cores and the main
memory. Intel Core i7 processors typically have a shared L2 cache with a size
ranging from 256 KB to 1 MB per core.

3. L3 cache (Level 3 cache) is the largest and slowest cache in the hierarchy. It is
shared among all CPU cores on the processor and acts as a centralized cache for
frequently accessed data and instructions. Intel Core i7 processors feature a shared
L3 cache, which can range in size from 4 MB to 16 MB or more, depending on
the processor model and generation. The L3 cache operates slightly slower than
the L1 and L2 caches but provides significantly larger capacity and serves as a
shared cache for all CPU cores.

Translation Lookaside Buffers (TLBs)
TLBs are specialized caches used for storing virtual-to-physical address translations,
improving the efficiency of memory access. The size and organization of TLBs in
Intel Core i7 processors can vary depending on the specific model and generation.
Typically, Intel Core i7 processors have multiple levels of TLBs, including small,
fast L1 TLBs and larger, slower L2 TLBs. The exact size and organization of TLBs
depend on factors such as the microarchitecture and specific features implemented
in the processor.

Main Memory (RAM)
Main memory is the primary form of volatile memory used for storing data and pro-
gram instructions that are actively being used by the CPU. In Intel Core i7 processors,
the main memory is typically DDR4 memory, which offers higher capacities and
bandwidth compared to earlier generations. Main memory has slower access times
compared to cache memory but provides significantly larger storage capacity. Intel
Core i7 processors support DDR4 and DDR5 memory modules, with DDR4 being
more common in earlier generations and DDR5 becoming increasingly prevalent in
newer models. DDR4 memory modules used with Intel Core i7 processors typically
have speeds ranging from 2133 MHz to 3200 MHz, although higher-speed variants
are available. DDR5 memory modules used with newer Intel Core i7 processors can
have speeds ranging from 4800 MHz to 8400 MHz, offering higher bandwidth and
improved performance compared to DDR4.

Storage Devices
Beyond main memory, the memory hierarchy may include various storage devices
such as solid-state drives (SSDs) and hard disk drives (HDDs). Storage devices offer
much larger storage capacities compared to main memory but have significantly
slower access times. These devices are typically used for long-term storage of data
and programs, with data being transferred to and from main memory as needed for
active processing.

Index

A
Access time, 197
Address decoder, 8
Address decoding, 2
full, 7
parital, 7

B
Burst, 171
DDR SDRAM, 232
DMA, 171
SDRAM, 200

Bus Mastering DMA, 174

C
Cache, 253
associativity level, 263
block, 256
control part, 256
controller, 263
direct-mapped, 257
hit, 254
in ARMv8-A Architecture, 265
in STM32F7, 265
in STM32H7, 265
index, 259
indexing, 259
Intel i7, 290
Least Recently Used (LRU), 262
line, 256
miss, 254

Physically Indexed and Physically Tagged,
283

read, 259
set associative, 260
structure, 256
tag, 256
Virtually Indexed and Physically Tagged,

284
Virtually Indexed and Virtually Tagged, 284
write, 259

Cache controller, 263
Context, 43, 56
CPU context, 43

Context switching, 59
CPU mode, 57
handler, 57
machine, 79
RISC-V, 78
supervisor, 79
thread, 57
user, 79

D
DDR SDRAM, 231
address mapping, 238
bank interleaving, 238
burst, 232
cache block interleaving, 239
DDR versions, 240
differential clock, 233
DIMM modules, 241

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2024
P. Bulić, Understanding Computer Organization, Undergraduate Topics in Computer
Science, https://doi.org/10.1007/978-3-031-58075-8

293

https://doi.org/10.1007/978-3-031-58075-8
https://doi.org/10.1007/978-3-031-58075-8
https://doi.org/10.1007/978-3-031-58075-8
https://doi.org/10.1007/978-3-031-58075-8
https://doi.org/10.1007/978-3-031-58075-8
https://doi.org/10.1007/978-3-031-58075-8
https://doi.org/10.1007/978-3-031-58075-8
https://doi.org/10.1007/978-3-031-58075-8
https://doi.org/10.1007/978-3-031-58075-8
https://doi.org/10.1007/978-3-031-58075-8

294 Index

functional description, 233
prefetch, 231
read, 233
read bursts, 235
timing diagrams, 235
timings, 239
write, 233
write bursts, 236

Digital circuits, 180
bistabile, 181
CMOS inverter, 181

DIMM modules, 241
channel, 245
matching pair, 248
rank, 241

Direct mapped cache, 257
Direct Memory Access (DMA), 156
bus mastering, 174
transaction, 171

DMA controller, 163
arbiter, 167
burst, 171
channel, 167
FIFO, 171
Fly-by, 163
Fly-through, 163
Intel 8237A, 165
STM32H7, 167
stream, 167

Double Data Rate SDRAM, 231
Dual In-line Memory Module, 241
Dynamic Random Access Memory (DRAM),

184
access time, 197
array, 188
bank, 188
basic operation, 185, 192
column, 188
column address, 188
column address latch, 190
column address strobe, 190
DRAM cell, 184
DRAM chip, 189
Extended Data Output DRAM, 198
Fast Page Mode DRAM, 197
read, 193
refresh, 195
row, 188
row address, 188
row address latch, 190
row address strobe, 190

sense amplifier, 186, 187
timings, 192
write, 194

E
Exceptions, 49
ARM9, 104
asynchronous, 49
entry, 56
exception number, 49
exception return value, 57
in ARM Cortex M7, 49
Intel, 110
number, 52
return, 57, 58
RISC-V, 77
STM32H7xx, 126
synchronous, 49
vector, 53
vector table, 53

Extended Data Output DRAM, 198

F
Fast Page Mode DRAM, 197
Frame, 272

G
General Purpose Input/Output (GPIO), 12
functional description, 27
in ARM Cortex-M STM32H7, 21
in HiFive FE310 GPIO, 13
mode, 21
program in assembly, 14
program in C, 18
program using HAL, 28

I
Interrupt controller, 112
Advanced Interrupt Controller (AIC), 115
ARM, 115
ARM Cortex-M, 122
Intel 8259A, 132
Intel 8259A cascading, 135
Intel Advanced Programmable Interrupt

Controller (Intel APIC), 138
Intel I/O APIC, 142
Intel Local APIC, 139
Nested Vectored Interrupt Controller

(NVIC), 122
Platform-Level Interrupt Controller (PLIC),

118

Index 295

SiFive FE310, 118
Interrupt-acknowledge cycle, 133
Interrupt handler, 41, 46
Interrupt service program, 41
Interrupt transparency, 41
Interrupt vector table, 46
Interrupts, 40, 41
acknowledge cycle, 133
ARM9, 104
asserting, 42
edge-sensitive, 42
entry, 56, 86
exit, 56, 86
external, 44
in ARM Cortex-M7, 46, 50
Intel, 110
latency, 44
level-sensitive, 42
Message Signaled, 151
non-maskable, 50
PCI, 145
priority, 49
RISC-V, 77
SiFive FE-310, 84
software, 44
STM32H7xx, 126
traps, 44
vector, 53
vector table, 53

L
Locality, 253
spatial, 253
temporal, 253

M
Main memory, 178
Intel i7, 291

Memory aliases, 7
Memory hierarchy, 252, 288
Intel Core i7, 289

Memory Management Unit (MMU), 270
Memory map, 20
ARM Cortex-M, 20

Memory-mapped register, 4
Message Signaled Interrupts, 151
MOS traansistor, 180

P
Page, 272
descriptor, 274

fault, 274
swapping, 274

Page table, 273
Paging, 274
AMD64 5-level paging, 286
multi-level, 276
one level, 274
two-level, 276

Prefetch, 231

R
Receiver, 30–33

S
SDRAM controller, 210
STM32F Flexible Memory Controller, 211

Serial transmission, 30
asynchronous, 31
receiver, 30
sender, 30
synchronous, 31

Set associative cache, 260
associativity level, 263

Signal, 2
chip-select signal, 2
interrupt, 42
read/write signal, 2

Stack, 56
frame, 56
full-descending, 56
main, 57
pointer, 56
process, 57

Static Random-Access Memory (SRAM), 182
SRAM cell, 182

STM32H7xx microcontrollers
External Interrupts (EXTI), 126, 127
NVIC, 126

Synchronous DRAM (SDRAM), 199
ACTIVE command, 204
address mapping, 238
bank interleaving, 238
banks, 200
burst, 200, 206, 207
cache block interleaving, 239
clock, 200
command bus, 200
commands, 200
DDR, 231
DIMM modules, 241
functional description, 200

296 Index

PRECHARGE command, 208
READ command, 205
state machine, 202
timings, 204, 239
WRITE command, 207

T
Task scheduler, 59
RISC-V, 93
SiFive FE310, 93
starting, 71
task, 60, 61
task control block, 62

Translation Lookaside Buffers, 280
Intel i7, 291
multi-level, 282

Traps, 40

U
Universal Asynchronous Receiver Transmitter

(UART), 30
baud rate, 32
in SiFive FE310, 30

program in C, 34

V
Virtual memory, 268
address translation, 270
frame, 272
MMU, 270
multi-level translation lookaside buffers, 282

one-level paging, 274
page, 272
page descriptor, 274
page fault, 274
page frame, 272
page swapping, 274
page table, 273
PIPT cache, 283
Translation Lookaside Buffers (TLB), 280
two-level paging, 276
VIPT cache, 284
virtual address, 270
virtual address translation, 271
VIVT cache, 284

	tải xuống (26)
	1
	 Preface
	 Contents
	 About the Author

	978-3-031-58075-8_1
	1 Memory-Mapped Input/Output
	1.1 Introduction
	1.2 A Memory-Mapped Register
	1.3 Two Memory Mapped Registers
	1.4 Several Memory Mapped Registers
	1.5 Registers Mapped at Consecutive Addresses
	1.6 Partial Versus Full Address Decoding
	1.7 Case Study: Using the GPIO Interface in FE310-G002 RISC-V Based System-on-Chip
	1.7.1 Program GPIO in Assembly
	1.7.2 Program GPIO in C

	1.8 Case Study: Using the GPIO Interface in ARM Cortex-M Based …
	1.8.1 Cortex-M Fixed Memory Address Space
	1.8.2 GPIO Interface in STM32H7
	1.8.3 Functional Description of the GPIO Interface in STM32H7
	1.8.4 Program GPIO in C Using HAL

	1.9 Case Study: Using the UART Interface in FE310-G002 …
	1.9.1 Universal Asynchronous Receiver Transmitter
	1.9.2 The UART Interface in the SiFive FE310
	1.9.3 Program UART in C
	1.9.4 UART Pins

	978-3-031-58075-8_2
	2 Interrupts and Interrupt Handling
	2.1 Introduction
	2.2 Why Having Interrupts?
	2.3 Interrupts
	2.3.1 Types of Interrupts
	2.3.2 Handling Interrupts

	2.4 ARM Cortex-M7 Interrupts
	2.4.1 ARM Cortex-M7 Programmer's Model
	2.4.2 System Control Block
	2.4.3 Exceptions
	2.4.4 Exception Numbers and Priorities
	2.4.5 Vector Table and Exception Handlers
	2.4.6 Exception Entry and Exit
	2.4.7 Case Study: A Simple Task Scheduler on ARM Cortex-M7

	2.5 RISC-V Interrupts and Exceptions
	2.5.1 RISC-V Privileged Modes
	2.5.2 RISC-V Machine Modes Exceptions
	2.5.3 FE-310 Interrupts
	2.5.4 Interrupt Entry and Exit
	2.5.5 Implementing Vector Table and Handlers
	2.5.6 Case Study: A Simple Task Scheduler on RISC-V Based FE310

	2.6 ARM 9 Exceptions and Interrupts
	2.6.1 Vector Table and Interrupt Priorities
	2.6.2 ARM9 Interrupt Handling
	2.6.3 Interrupt Handlers in C

	2.7 Intel Interrupts
	2.8 Interrupt Controllers
	2.8.1 ARM Advanced Interrupt Controller
	2.8.2 RISC-V Platform-Level Interrupt Controller in FE310
	2.8.3 ARM Cortex-M Nested Vectored Interrupt Controller
	2.8.4 Case Study: External Interrupts in STM32H7xx Microcontrollers
	2.8.5 Intel 8259A Programmable Interrupt Controler
	2.8.6 8259A PIC Cascading
	2.8.7 Intel Advanced Programmable Interrupt Controler

	2.9 PCI Interrupts
	2.9.1 PCI Legacy Interrupts
	2.9.2 PCI Interrupts Routing
	2.9.3 Message Signaled Interrupts

	978-3-031-58075-8_3
	3 Direct Memory Access
	3.1 Introduction
	3.2 Programmed Input/Output
	3.3 Interrupt-Driven I/O
	3.4 Direct Memory Access
	3.5 Real-World DMA Controllers
	3.5.1 Intel 8237A DMA Controller
	3.5.2 STM32H7 Series DMA Controller

	3.6 Bus Mastering DMA

	978-3-031-58075-8_4
	4 Main Memory
	4.1 Introduction
	4.2 Basics of Digital Circuits: A Quick Review
	4.2.1 MOS Transistor as a Switch
	4.2.2 CMOS Inverter
	4.2.3 Bistable Element

	4.3 SRAM Cell
	4.4 DRAM Cell
	4.4.1 Basic Operation of DRAM
	4.4.2 Basic Operation of Sense Amplifiers

	4.5 DRAM Arrays and DRAM Banks
	4.6 DRAM Chips
	4.7 Basic DRAM Operations and Timings
	4.7.1 Reading Data from DRAM Memory
	4.7.2 Writing Data to DRAM Memory
	4.7.3 Refreshing the DRAM Memory

	4.8 Improving the Performance of DRAMs
	4.8.1 Fast Page Mode DRAM
	4.8.2 Extended Data Output DRAM

	4.9 Synchronous DRAM
	4.9.1 Functional Description
	4.9.2 Basic Operations and Timings
	4.9.3 Case Study: Using the STM32F Flexible Memory Controller to Access SDRAM

	4.10 Double Data Rate SDRAM
	4.10.1 Functional Description
	4.10.2 DDR SDRAM Timing Diagrams
	4.10.3 Address Mapping
	4.10.4 Memory Timings: A Summary
	4.10.5 DDR Versions

	4.11 DIMM Modules
	4.11.1 Micron DDR4 DIMM Module

	4.12 Memory Channels
	4.12.1 Case Study: Intel i7-860 Memory
	4.12.2 Case Study: i9-9900K Memory

	978-3-031-58075-8_5
	5 Caches
	5.1 Introduction
	5.2 Memory Hierarchy
	5.3 Cache Structure and Organisation
	5.4 Direct Mapped Cache
	5.4.1 Read Operations in Direct-Mapped Caches
	5.4.2 Handling Writes in Direct-Mapped Caches

	5.5 Set Associative Cache
	5.5.1 Replacing a Block in a Set-Associative Cache
	5.5.2 Choosing the Associativity Level

	5.6 Cache Controller
	5.7 Case Study: Cache in STM32F7 and STM32H7 Series Devices
	5.8 Case Study: Cache in Processors with ARMv8-A Architecture

	978-3-031-58075-8_6
	6 Virtual Memory
	6.1 Introduction
	6.2 The Benefits and Downsides of Virtual Memory
	6.3 Memory Management Unit
	6.4 Virtual Address Translation
	6.5 One-Level Paging
	6.6 Two-Level Paging
	6.7 Translation Lookaside Buffers
	6.7.1 Multilevel Translation Lookaside Buffers

	6.8 Integrating Caches and Virtual Memory
	6.8.1 Physically Indexed and Physically Tagged (PIPT) Cache
	6.8.2 Virtually Indexed and Virtually Tagged (VIVT) Cache
	6.8.3 Virtually Indexed and Physically Tagged (VIPT) Cache

	6.9 Case Study: AMD64 5-Level Paging
	6.10 Summary of Memory Hierarchy
	6.11 Case Study: The Memory Hierarchy in an Intel Core i7

	1 (1)
	 Index

