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Preface 

This book aims to guide the student step by step in developing and solving a DSGE 
(Dynamic Stochastic General Equilibrium) model—not only from the technical and 
conceptual aspects but also through the simulation process of each model. Excellent 
books in the literature address different aspects of DSGE models. However, due to 
the richness of the topic and the limited space, these books do not take a step-by-
step approach to building DSGE models, making it difficult for students to dive into 
this area. This book attempts to fill this gap to some extent. 

Three features of this book are worth highlighting. First, it attempts to perform 
all the algebra associated with each model. For instance, the optimization problem 
of each agent is carried out step by step, in the same way as the calculation of 
steady-state and the log-linearization of the model. Likewise, the solution method 
of undetermined coefficients and that of Blanchard and Kahn are developed with 
special detail. The purpose of all these steps is to allow students to understand each 
stage of the construction model process. 

The second feature is that each model developed in each chapter has been placed 
in Dynare. In addition, some m-files have been built for certain specific tasks, such 
as model comparison. These codes allow students to replicate exactly what they find 
in the chapter. This generates learning by doing approach throughout the book. 

The third characteristic is that the models considered are toy models in the closed 
and open economy. This allows the student to learn the basic lessons and understand 
the fundamental relationships of the variables. All of this will prepare the student to 
deal with more complex models. 

Who Should Read This Book? 

This book is intended for advanced undergraduate, master’s degrees in economics 
or finance, or even applied mathematics. It also could be used as a complement to a 
basic course of business cycles at the doctoral level. We also hope this book could 
be useful for researchers in academia or central banks that use these models daily to 
prepare forecasts or simulations of aggregate variables.
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Programs 

Every chapter is accompanied by a set of codes (mod-files and m-files) that the 
reader can use to replicate the model developed in every chapter. These codes are 
available on the following webpage: 

https://academic.csuohio.edu/galindogil-hamilton/book-rbc-english/ 

Cleveland, OH, USA Hamilton Galindo Gil 
Boston, MA, USA Alexis Montecinos Bravo 
Lima, Peru Marco Antonio Ortiz Sosa 
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Chapter 1 
An Overview of RBC Models 

1.1 Introduction 

This chapter aims to provide an overview of the development of the Real Business 
Cycles (RBC) school since its inception in the 1980s. To do this, the chapter is 
divided into three parts. 

In the first part, two essential aspects of the business cycle are described: on the 
one hand, a clear definition of the business cycle is enunciated and, on the other 
hand, its main characteristics, known as the stylized facts. 

The second part develops a historical perspective of RBC models through two 
complementary approaches. The first briefly describes the evolution of economic 
schools since the Great Depression. This description allows us to locate the 
historical context in which the RBC school began to develop its main ideas. 
The second approach describes the development of the RBC school through the 
categorization of the research of this school. For example, the investigations that 
have tried to explain this school’s state of the art in the 1980s and 1990s are 
analyzed. Finally, we explore studies on the labor market, fiscal policy, the money 
market, and investment shocks. 

In the last part, the RBC models’ main assumptions have been described, as well 
as the steps for the construction, solution, and simulation of these models. 

Supplementary Information The online version contains supplementary material available at 
(https://doi.org/10.1007/978-3-031-58105-2_1). 
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2 1 An Overview of RBC Models

1.2 Business Cycles 

Snowdon and Vane (2005) indicate that the primary goal of macroeconomics is to 
analyze and understand the determinants of the aggregate economic series, such 
as the gross domestic product (GDP), unemployment, inflation, and international 
transactions (both in the real and financial sectors). In particular, macroeconomics 
studies the determinants and impacts of fluctuations in economic activity in the 
short term (business cycles) and the determinants of the long-term path of economic 
activity (economic growth). 

With this goal, many schools of economic thought have tried to provide explana-
tions of the behavior of aggregate economic series throughout history. For instance, 
the so-called Keynesian school attempted to explain the high unemployment of 
the early 1930s due to “insufficient” aggregate demand. On the other hand, the 
Neoclassical Synthesis supported the existence of an inverse relationship between 
unemployment and inflation (Phillips curve), which could serve as a framework to 
analyze economic policies. Likewise, monetarists emphasized the money market as 
the primary variable to explain business cycles. All these and subsequent schools 
of economic thought (New Classical Economics, the Real Business Cycles school, 
New Keynesian Economics, and the recent New Neoclassical Synthesis) have built 
their theoretical frameworks to explain the behavior of aggregate variables. 

Given this set of theories, the following question arises: what aspects should 
be considered to evaluate a theory in macroeconomics? Greenwald et al. (1988) 
suggest that the theory’s ability to explain the main features and “stylized facts” 
of macroeconomic instability should be considered. This idea is in line with that 
previously indicated by Kaldor (1961), who suggests that any model’s minimum 
requirement is to explain the characteristics of economic processes as they are 
observed in reality. Applying these requirements to business cycle theory, Abel and 
Bernanke (2001) suggests that in order for a business cycle theory to be successful, 
it must explain the cyclical behavior of a wide range of main economic variables. 
Furthermore, these authors state a reasonable consensus on the basic stylized facts 
of business cycles. 

From an empirical point of view, Snowdon and Vane (2005) suggest that to 
explain economic cycles, the statistical properties between the comovements of the 
cyclical component of the aggregate variables and the cyclical component of GDP 
must be identified. As a result, two relevant questions emerge for studying business 
cycles: What is the definition of business cycles? What are the stylized facts of 
business cycles? The first question is addressed in the next section and the second 
in the subsequent one. 

1.2.1 Definition 

The classic definition of business cycles was proposed by Burns and Mitchell 
(1946): they state, “the business cycle is a type of fluctuation of the aggregate
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economic activities of the countries that organize their work mainly in corporate 
business.” In addition, these authors consider that three characteristics define the 
economic cycle: the first is that the said cycle consists of a phase of expansion, 
experienced at the same time by various economic activities, followed by a recession 
phase (contraction), and a subsequent recovery, which is part of the expansion phase 
of the next cycle. 

The second characteristic is that the business cycle is recurring; that is, it 
repeatedly occurs in the economies and is nonperiodic. This characteristic implies 
that the business cycles vary in length and do not occur at predictable intervals. The 
third characteristic is that the duration of a cycle varies from a period greater than 
one year to 10 or 20 years. 

To these considerations of the cycle, Lucas (1977) contributed to its characteri-
zation in two aspects: 

• Concerning the qualitative behavior of comovements between series, business 
cycles are all the same. 

• This suggests the possibility of a unified explanation of business cycles within a 
framework of general laws that govern the market economy. 

Finally, Long and Plosser (1983) indicate that the term “business cycle” refers 
to the joint temporal behavior of many economic variables such as price, output, 
employment, consumption, and investment. At least two empirical regularities can 
describe this behavior. The first refers to the cyclical component of each variable, 
that is, the deviations of the variable with respect to its trend. The second refers to 
the joint movement of various economic activities, such as, for example, the product 
in different economic sectors. 

1.2.2 Stylized Facts 

The term “stylized facts” is used in different fields of economic science. For 
instance, it is used in economic growth, business cycles, and economic development 
(Arroyo Abad and Khalifa 2015). Furthermore, this term is attributed to Kaldor 
(1957) and essentially represents the empirical regularities observed in the statistical 
properties of time series economic variables (Snowdon and Vane 2005). 

1.2.2.1 Characterization of the Stylized Facts 

Usually, the stylized facts of economic cycles are characterized or described 
through four criteria: variability, direction, persistence, and temporality. These 
criteria are associated with particular statistics. Thus, for example, variability is 
measured by variance, direction by correlation (usually with GDP), persistence by 
autocorrelation, and temporality by dynamic correlations with respect to GDP.
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• Variability (variance) 
Measured by the variance or standard deviation (sd) of the variable. The 
normalized standard deviation is also considered, which is the division between 
the “sd” of the variable and the “sd” of the GDP. 

• Direction (correlation) 
They are the comovements of the variables in relation to GDP. 

corr(x,GDP). > 0 corr(x,GDP)=0 corr(x,GDP). < 0 
procyclical acyclic countercyclical 

• Persistence (1st-order autocorrelation) 
Persistence indicates that if a point of the variable “X” is taken above the trend, 
what is the probability that in the next period that variable will remain above that 
reference point? 

• Temporality (dynamic correlations) 
It contemplates if the variable is lagging behind, coincides with, or is ahead of 
the GDP. 

Leading Lagging Coincidence 

If the variable moves ahead 
of GDP 

If  the variable moves behind GDP  If  the variable moves at  
the same time as GDP 

It is important to mention that to obtain the cyclical component of the macroeco-
nomic variables, a method must be used that allows each component to be separated 
from the trend component of the variable. In the existing literature, various methods 
(filters) perform this work with their advantages and disadvantages. Throughout the 
book, the Hodrick and Prescott filter (HP filter) will be used due to its simplicity 
and because it has usually been used by the RBC school.1 

1.2.2.2 Stylized Facts in the United States 

[A] Business Cycle The National Bureau of Economic Research (NBER) has 
determined a set of dates that allow identifying the beginning and end of an 
economic cycle (see Table 1.1). This historical account dates back to 1854.

1 In addition to the HP filter, there are other approaches developed by Baxter and King (1999), 
Woitek (1998) and Christiano and Fitzgerald (1999). For a better detail of the HP filter and that of 
Baxter and King, see DeJong and Dave (2007, ch. 3). 
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To determine the dates that define an economic cycle, the NBER examines a set 
of macroeconomic indicators (GDP, employment, income, and sectoral variables). 
That is, this institution conceives economic activity from a holistic view. 

Also, NBER considers an expansion to be a period from the lowest point of 
economic activity to the next highest point. Similarly, a contraction (recession) 
starts from the peak of economic activity and ends at the trough. It should be added 
that for this agency, a recession is not defined as the reduction of real GDP in two 
consecutive quarters, but rather that said institution conceives that a recession is the 
significant reduction of economic activity in the vast majority of economic sectors, 
which could last several months. This contraction should be seen in real GDP, real 
income, employment, industrial production, and wholesale and retail sales.2 

Table 1.1 shows the 33 business cycles identified by NBER. Each is associated 
with its start and end date according to the two approaches used to measure the 
business cycle length. The first of these approaches counts the number of months 
between two peaks in economic activity. The second approach counts the number 
of months between two minimum points of economic activity. 

Three conclusions can be drawn from Table 1.1. The first is that between 1854 
and 2009, the US economy has experienced 33 cycles. Dividing the sample into 
three segments, two before World War II and one after, we have the following: the 
United States, between 1854 and 1919, has experienced 16 cycles; between 1919 
and 1945, that is, between the First and Second World War, there are six cycles, and 
between 1945 and 2009 (post-World War II), there are 11 cycles. 

The second conclusion is that the average time that a cycle lasts is approximately 
five years in the entire sample. However, the cycles before the Second World War 
lasted about four years, while after that, their duration rose to 6. 

Finally, the third conclusion is that the average expansion time is approximately 
three years, and the contraction time is one and a half years for the 33 cycles. 
However, these numbers change when we consider World War II as the turning point 
in the sample. Before this world conflict, the expansion lasted 2.4 years, while after 
this, the expansion doubled, reaching up to approximately five years. Similarly, with 
the time of the contraction, before the Second World War, the recession lasted about 
two years, while after this event, the recession reached approximately one year. 

Figure 1.1 illustrates the last two business cycles of the US economy since 1988, 
as determined by the NBER. It can be seen that both approaches to measuring the 
business cycles described above consider approximately the same number of months 
that a business cycle lasts. Likewise, from mid-2007 to 2016, a cycle has not been 
completed. 

[B] Stylized Facts Related to Economic Growth In the existing literature on 
economic growth, there is a large set of stylized facts. These empirical regularities 
usually encompass the behavior of accounting for the growth of physical capital, the

2 For more detail, see http://www.nber.org/cycles/cyclesmain.html. In particular, see http://www. 
nber.org/cycles/sept2010.html. 
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Table 1.1 Dates of economic cycles in the United States (1854–2009) 

Month year Duration (months) 

Maximum point (MP) Minimum point (mp) PM a PM pm a pm Cycle 

December 1854 

June 1857 December 1858 48 Cycle 1 

October 1860 June 1861 40 30 Cycle 2 

April 1865 December 1867 54 78 Cycle 3 

June 1869 December 1870 50 36 Cycle 4 

October 1873 March 1879 52 99 Cycle 5 

March 1882 May 1885 101 74 Cycle 6 

March 1887 April 1888 60 35 Cycle 7 

July 1890 May 1891 40 37 Cycle 8 

January 1893 June 1894 30 37 Cycle 9 

December 1895 June 1897 35 36 Cycle 10 

June 1899 December 1900 42 42 Cycle 11 

September 1902 August 1904 39 44 Cycle 12 

May 1907 June 1908 56 46 Cycle 13 

January 1910 January 1912 32 43 Cycle 14 

January 1913 December 1914 36 35 Cycle 15 

August 1918 March 1919 67 51 Cycle 16 

January 1920 July 1921 17 28 Cycle 17 

May 1923 July 1924 40 36 Cycle 18 

October 1926 November 1927 41 40 Cycle 19 

August 1929 March 1933 34 64 Cycle 20 

May 1937 June 1938 93 63 Cycle 21 

February 1945 October 1945 93 88 Cycle 22 

November 1948 October 1949 45 48 Cycle 23 

July 1953 May 1954 56 55 Cycle 24 

August 1957 April 1958 49 47 Cycle 25 

April 1960 February 1961 32 34 Cycle 26 

December 1969 November 1970 116 117 Cycle 27 

November 1973 March 1975 47 52 Cycle 28 

January 1980 July 1980 74 64 Cycle 29 

July 1981 November 1982 18 28 Cycle 30 

July 1990 March 1991 108 100 Cycle 31 

March 2001 November 2001 128 128 Cycle 32 

December 2007 June 2009 81 91 Cycle 33 

Source: NBER (National Bureau Economics Research) [hacer un update] 

proportion of factors in national income, and human capital, among other relevant 
variables (Jones 2016). Within these facts, there are the so-called classics proposed 
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Fig. 1.1 Cyclical component of GDP per capita (1988.3–2016.4). This series has been obtained 
by applying the HP filter to GDP per capita with a smoothing parameter λ = 1600 (Source: U.S. 
Bureau of Economic Analysis, “Table 1.1 Real Gross Domestic Product, Chained Dollars” (GDP 
in billions of US$ of 2009). In addition, the population has been obtained from “Table 7.1. Selected 
Per Capita Product and Income Series in Current and Chained Dollars”) 

by Kaldor (1961) and Kaldor (1963), who, in his/her opinion, suggested six stylized 
facts,3 which are described below: 

HE-1: Per capita production grows over time and its growth rate is not decreasing. 
HE-2: Physical capital per capita grows over time. 
HE-3: The rate of return on capital is relatively constant. 
HE-4: The capital-output ratio is relatively constant: Kt/Yt = constant . 
HE-5: The shares of labor and physical capital in national production are relatively 

constant: rtKt 
Yt 

= constant and wtLt 
Yt 

= constant . 
HE-6: The growth rate of GDP per capita is different between countries. 

HE-1 Kaldor’s first stylized fact concerns the per capita growth rate of GDP. 
Looking at the data between 1930 and 2015, it can be inferred that the average 
annual growth rate of real GDP per capita is 2.2%. From the analysis sample, it 
can be seen that, between the early 1930s and the mid-1940s, real GDP per capita 
growth has been very volatile, ranging from about −13% to 17%. This is because 
this period was characterized by the effects of the economic crisis of 1929 and the 
Second World War. After this last event, the GDP per capita growth data has shown 
greater stability. In fact, between 1947 and 2015, the average annual growth rate of 
real GDP per capita was approximately 1.9% (see Fig. 1.2). In fact, in the mentioned 
period, the standard deviation of this variable is 2.4%, significantly lower compared 
to the period 1930–1946 (std. dev.= 10%).

3 These stylized facts are usually mentioned in books on economic growth. An example of this is 
the book by Barro et al. (2009). 
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Fig. 1.2 HE-1| Annual growth rate of real GDP per capita (1930–2015). Real GDP is expressed 
in two ways: the first is in billions of 2009 US$ and the second in quantity index (2009 = 100). 
In levels, both approaches are different; however, when converted to annual growth rate, both 
approaches give the same number. To construct the GDP per capita, the real GDP (in billions 
of US$ of 2009) and the population (in thousands) have been considered (Source: U.S. Bureau 
of Economic Analysis, “Table 1.1.6. Real Gross Domestic Product, Chained Dollars” (GDP in 
billions of US$ of 2009). In addition, the population has been obtained from “Table 7.1. Selected 
Per Capita Product and Income Series in Current and Chained Dollars”) 

HE-2 Kaldor’s second stylized fact refers to the per capita growth rate of physical 
capital. To analyze this variable, it is necessary to define the stock of capital. 
This section follows Burnside et al. (1996), who define capital stock from a 
broad perspective (fixed asset components plus durable goods). Under the previous 
premise, Fig. 1.3 shows the evolution of the growth of capital per capita between 
1930 and 2015. A main idea emerges from this figure: just like the GDP growth rate 
per capita, the per capita capital growth is stable after World War II with an average 
value of 1.8%. This confirms Kaldor’s second stylized fact. 

HE-3 Kaldor’s third stylized fact indicates that the rate of return on capital is 
relatively constant. In this context, the Bureau of Labor Statistics (BLS) estimates 
the rental price of capital, which represents the rental cost of capital (as known in 
general equilibrium macroeconomic models). Estimated data for this variable are 
available from 1987 to 2014 with an annual frequency. In addition, the variable is 
estimated for various levels of the manufacturing and nonmanufacturing industry. 
However, it is worth mentioning that this estimate is not available for the US 
economy as a whole. 

Observing the data for four industrial sectors (timber, machinery, transport 
equipment, and electronic equipment), it can be inferred that the capital rental 
interest rate oscillates, on average, between 12% and 14% during the period between 
1987 and 2014 (see Fig. 1.4). If the average of the 18 industrial sectors between 
1987 and 2014 is considered, the capital rental interest rate is approximately 13%.
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Fig. 1.3 HE-2| Annual growth rate of the real capital stock per capita (1930–2015). The capital 
stock is expressed under the concept of Burnside et al. (1996). The population is expressed in 
thousands and considers the entire economy (Source: U.S. Bureau of Economic Analysis,“Table 
1.2. Chain-Type Quantity Indexes for Net Stock of Fixed Assets and Consumer Durable Goods” 
(Capital stock). In addition, the population has been obtained from “Table 7.1. Selected Per Capita 
Product and Income Series in Current and Chained Dollars”) 

Fig. 1.4 HE-3| Rate of return on capital by the industrial sector (1987–2014) (Source: Bureau of 
Labor Statistics (BLS), www.bls.gov/mfp) 

Kaldor observed that this interest rate is constant over time, which would imply that 
in a more extended sample of observations, the interest rate shows the behavior of 
reversion to the mean.

www.bls.gov/mfp
www.bls.gov/mfp
www.bls.gov/mfp
www.bls.gov/mfp
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HE-4 To assess whether Kaldor’s fourth stylized fact holds up to the present, the 
capital/output ratio has to be constructed. To do this, first of all, it must be defined 
what is considered as stock of real physical capital. Second, GDP must be obtained 
in real terms. Finally, proceed to divide both economic aggregates. It should be 
mentioned that this ratio is constructed with annual variables expressed in real terms. 

Capital Stock There are different ways of conceiving the capital stock (Jones 2016). 
Three approaches are considered in this section. The first explains that the stock 
of capital is only private nonresidential fixed assets, which contain equipment, 
structures, and intellectual property. The second approach considers that the capital 
stock encompasses not only private nonresidential fixed assets but also government 
nonresidential fixed assets. The third approach is based on Burnside et al. (1996), 
who consider that the stock of capital is the sum of four components, three related to 
fixed assets and one to the consumption of durable goods: (1) fixed assets in private 
equipment and structure, (2) private residential fixed assets, (3) public residential 
and nonresidential fixed assets, and (4) consumer durables. It should be emphasized 
that all these concepts are in real terms (quantity index) and can be found in U.S. 
Bureau of Economic Analysis, “Table 1.2. Chain-Type Quantity Indexes for Net 
Stock of Fixed Assets and Consumer Durable Goods”. 

With the previous definitions of the stock of capital and the real GDP, the 
capital/output ratio is constructed, which is shown in Fig. 1.5. Two essential ideas 
emerge from this graph: the first is that the capital/output ratio has been relatively 
constant since the Second World War (1947–2015), which is consistent with 
Kaldor’s suggestion. Thus, for example, the ratio (considering that the stock of 
capital is only nonresidential private fixed assets) is close to one. Under the second 
capital approach, this ratio is 2.2, and under Burnside et al. (1996) conception, the 
capital stock is six times the real GDP. The second idea is that among the three 
capital approaches, the first allows for obtaining a much more stable capital/output 
ratio compared to the other two. This is verified when comparing the sample 
standard deviations between the years 1947 and 2015: 

Table 1.2 Descriptive statistics of the cyclical component of the series for the United States 
(1954.1–2015.4) 

Variable 
Volatility (est. 
dev. %) 

Relative 
volatility Autocorrelation 

Correlation 
with GDP 

GDP 1.52 1 0.85 1 

Consumption 0.81 0.53 0.88 0.82 

Investment 5.95 3.91 0.83 0.93 

Stock of capital 0.26 0.17 0.96 0.08 

Hours 1.86 1.23 0.91 0.87 

Employment 1.56 1.03 0.93 0.8 

Real wage 0.96 0.63 0.69 0.22 

Productivity 0.94 0.62 0.79 −0.1 
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Non-residential (private) 

Non-residential (private+government) 

Based on Burnside-Eichenbaum (1996) 

Fig. 1.5 HE-4| Capital Stock Ratio (real)/GDP (real). GDP and the stock of capital are expressed 
in real terms (quantity index, 2009 = 100) (Source: U.S. Bureau of Economic Analysis, “Table 
1.2. Chain-Type Quantity Indexes for Net Stock of Fixed Assets and Consumer Durable Goods” 
(Stock de Capital) y “Table 1.1.3. Real Gross Domestic Product, Quantity Indexes” (GDP)) 

. σApproach-1(= 4%) < σApproach-2(= 21%) < σApproach-3(= 32%)

However, a better interpretation of the degree of burden than that suggested by the 
standard deviation is the coefficient of variation (CV = standard deviation/mean), 
which expresses the standard deviation as a percentage of the mean. For the correct 
application of this statistic, it is required that all the values of the series be positive, 
which is true for this case. The coefficient of variation is shown below: 

. CVApproach-1(= 4%) < CVApproach-3(= 5%) < CVApproach-2(= 10%)

This statistic suggests that the first and third approaches are very similar in terms 
of variability; however, both are far removed from the variability of the second 
approach. 

HE-5 This stylized fact refers to the share of labor and capital in national income. 
Figure 1.6 shows that the share of both factors in national income has been relatively 
stable. For example, in the case of capital, the average share between 1948 and 2014 
was 33.7%. For work, this is equal to 66.3%. These values are important because, 
as you will see in the course of the book, the Cobb-Douglas production function 
suggests that the capital share is constant and equal to the exponent of capital in the 
production function. Under the standard calibration process in RBC models, it can 
be considered that the said exponent is equal to 33.7%, which is observed in the 
data.
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Fig. 1.6 HE-5| Participation of factors in the National Income (1948–2014). GDP and the 
stock of capital are expressed in real terms (quantity index, 2009 = 100) (Source: Bureau of 
Labor Statistics, Multifactor Productivity Trends, “Private Business Sector” (www.bls.gov/mfp/ 
mprdload.htm, Historical Series)) 

Fig. 1.7 Long-run relationships between GDP, consumption, investment, and government pur-
chases (Source: Bureau of Economic Analysis, “Table 1.1.6. Real Gross Domestic Product, 
Chained Dollars”) 

In addition to Kaldor’s stylized facts, in the existing literature, there is a 
set of long-run relationships between GDP, consumption, and investment (Stock 
and Watson 1999), called “balanced growth relationships.” These are important 
because they serve as input in the calibration process of the RBC models, especially 
in the steady-state relationships. 

Figure 1.7 shows the consumption-GDP, investment-GDP, and government 
purchases-GDP ratios. It can be seen that the average value of each ratio between 
1947 and 2016 is 63%, 14%, and 26%, respectively. An important feature of the 
evolution of these ratios is that the government’s share has slowly declined over 
time. On the other hand, consumption and investment have gained participation in 
the GDP. However, these ratios show certain stability for the same time window.

www.bls.gov/mfp/mprdload.htm
www.bls.gov/mfp/mprdload.htm
www.bls.gov/mfp/mprdload.htm
www.bls.gov/mfp/mprdload.htm
www.bls.gov/mfp/mprdload.htm
www.bls.gov/mfp/mprdload.htm
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[C] Business Cycle Stylized Facts One of the main references regarding business 
cycle stylized facts is the research by Stock and Watson (1999)4 under the title 
“Business Cycle Fluctuations in US Macroeconomic Time Series.” In this article, the 
authors examine the cyclical properties of 71 quarterly economic variables, which 
are grouped into eight categories: sectoral employment, national accounts, aggregate 
employment, productivity, and capacity utilization, prices and wages, asset prices, 
monetary aggregates, leading indicators, and international products. 

These authors’ sample period of analysis corresponds to the data after the Second 
World War (1947–1995). This is mainly due to two reasons: the first is that the US 
economy is very different before World War II in terms of technology, institutions, 
production of goods, and services, among other characteristics. The second is 
due to the quality of the data before this world conflict occurred, which could 
generate problems of comparability of the variables throughout the entire sample. 
Moreover, the authors use this period to show the variables’ evolution graphically. 
Still, in calculating the statistics (standard deviation, correlation [dynamic], and 
autocorrelation), they focus on the postwar period between the United States and 
Korea. They thus consider the data between 1954 and 1995. 

Another important aspect is that Stock and Watson used the Baxter and King 
(1993) filter (band-pass filter) to obtain the cyclical component of the 71 variables. 
Stock and Watson (1999) suggest that an ideal filter preserves the cyclic component 
and eliminates the other fluctuations (high and low frequencies). However, as 
DeJong and Dave (2011) (Chap. 3) point out, the ideal filter cannot be implemented 
because it requires an infinite number of observations of the series prior to applying 
the filter. In the case of the Baxter and King filter, which approximates the ideal 
filter, the cyclical component has a periodicity of between six quarters and eight 
years. The advantage of this filter is that it essentially eliminates high-frequency 
(less than six quarters) and low-frequency (greater than eight years) fluctuations. 
In contrast to this filter, the one proposed by Hodrick and Prescott (1981) does not 
prevent high-frequency fluctuations from being part of the cyclic component. 

It should be mentioned that throughout this book, the filter used is that of Hodrick 
and Prescott. This is because research at the RBC school has primarily used this 
methodology. Furthermore, and despite its weaknesses, this filter is still used in the 
existing literature due to its simplicity. 

This section will show the stylized facts of eight real variables: GDP, consump-
tion, investment, capital stock, total hours, employment, real wages, and (labor)

4 Another essential reference is the work from Kydland and Prescott (1990). These authors showed 
the cyclical regularities of a set of real and nominal variables. The analysis sample corresponds 
to data after the war between the United States and Korea (1950–1953), from 1954 to 1989. The 
main difference concerning Stock and Watson’s research is that Kydland and Prescott used the 
Hodrick and Prescott filter to obtain the cyclical component of the variables. Another investigation 
with emphasis on the stylized facts in the cyclical component of the variables related to the labor 
market is that of Kydland (1995). 
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productivity. These variables are found in logarithms and quarterly frequency (they 
are not expressed in per capita terms). 

[C.1] Construction of the Macroeconomic Series Before obtaining the cyclical 
component of each variable and calculating the statistics, it is necessary to define 
each of the variables and identify the sources of information. The following 
paragraphs detail how each variable is constructed (when necessary) and the source, 
which is usually the Economic Analysis Agency (BEA). 

Gross Domestic Product (GDP) and Consumption The GDP is in real terms 
(billions of US$ of 2009). On the other hand, consumption is calculated as the sum 
(in real terms) of the consumption of nondurable goods and the consumption of 
services: 

.Real consumption = Cbnd

IPND

+ Cservices

IPS

(1.1) 

where Cbnd is personal consumption spending on nondurable goods and Cservices 
is personal consumption spending on services. Furthermore, these expenditure 
components are in nominal terms, and to transform them into real terms, it is 
necessary to deflate them by the respective price index. In this way, the consumption 
of nondurable goods is deflated by the price index of nondurable goods (IPND). 
The same procedure is applied for services whose price index is IPS . It is worth  
mentioning that each price index must be divided by 100. 

Investment It is calculated as the sum of real private investment and consumption 
of durable goods (in real terms): 

.Real investment = Invpr + Cbd

IPbd

(1.2) 

where Invpr is gross domestic private investment (in real terms) and Cbd is 
consumption of durable goods (in nominal terms), which is deflated by the durable 
goods’ price index (IPdb). Like consumption, each price index is divided by 100. 

Figure 1.8 shows the evolution of GDP, consumption, and investment, all in real 
terms and natural logarithms. From the evolution of these three variables, it can be 
seen that investment is more volatile than GDP and consumption. It is necessary to 
mention that the sample considered for the graphs and statistics comprises between 
the first quarter of 1954 and the fourth quarter of 2015. The war period between the 
United States and Korea is not considered, as Stock and Watson (1999) did.  

Capital Stock As mentioned in the previous lines, this section considers Burnside 
and Eichenbaum (1996) concept of capital stock. The available data of the said 
stock are in annual frequency. However, it is necessary to “extrapolate” these data 
to a quarterly frequency to calculate the statistics of the cyclical component. For
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Fig. 1.8 GDP, consumption, and investment (1954.1–2015.4). The variables are in natural log-
arithms with a quarterly frequency. Consumption considers nondurable goods and services. The 
investment includes private investment and consumption of durable goods (Source: Bureau of 
Economic Analysis, “Table 1.1.6. Real Gross Domestic Product, Chained Dollars” (GDP-Private 
investment); “Table 2.3.5. Personal Consumption Expenditures by Major Type of Product”; “Table 
2.3.4. Price Indexes for Personal Consumption Expenditures by Major Type of Product”) 

example, to calculate the dynamic correlation with GDP or investment, since these 
variables are in quarterly frequency, capital must be in the same frequency. In this 
context, Levy and Chen (1994) suggest four methods of constructing a quarterly real 
(net) capital stock series. 

The first method is a linear interpolation of the annual series. The idea is to 
construct the quarterly values along a segment that connects two consecutive yearly 
observations. Formally: 

. Ki,j = Ki−1 + kj i = 1948, 1849, ...2015 (years) j = 1, 2, 3, 4 (quarters)
(1.3) 

In Eq. (1.3), Ki,j represents the stock of capital for quarter “j” of year “i.” For 
example, K1948.1 is the stock of capital for the first quarter of 1948. Also, Ki−1 is 
the stock for the previous year that, in this example, it would represent the stock of 
capital for 1947. On the other hand, kj is the factor of stock of additional capital per 
quarter, which is calculated as follows: 

.kj = Ki − Ki−1

4
· j (1.4)
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Fig. 1.9 Real quarterly (net) capital stock (1954.1–2015.4). The quarterly series has been obtained 
by the linear interpolation method, considering the capital stock of 1947 as the starting point 
(Source: Bureau of Economic Analysis, “Table 1.2. Chain-Type Quantity Indexes for Net Stock 
of Fixed Assets and Consumer Durable Goods”) 

Because it is linear interpolation, the arithmetic ratio is simply the difference of 
two consecutive annual capital stocks divided by the number of quarters (points). 
Under this assumption, the calculation of the stock of capital for the first quarter 
will be equal to the stock of the initial capital (from the previous year) plus the said 
arithmetic ratio. For the second quarter, it will be the stock of the initial capital (from 
the previous year) plus twice the arithmetic ratio and so on until reaching the stock 
of the final capital (annual). This calculation logic is reflected in Eq. (1.4). It should 
be noted that this method is used in this chapter to “build” the quarterly net capital 
stock series (see Fig. 1.9). 

The second method uses the relationship between the capital stock, depreciation, 
and (real) investment, reflected in the capital equation of motion to estimate the 
depreciation rate (assumed to be constant throughout the year, but intertemporally 
distinct). Then, based on this depreciation rate and the quarterly investment (which 
is available), the quarterly capital stock is estimated. This exercise is carried out 
each year. The method follows these steps: first, the law of movement of capital is 
written for each quarter of a specific year (Eqs. (1.5) to (1.8)). 

.Ki,1 = (1 − δi)Ki−1 + Ii,1. (1.5) 

Ki,2 = (1 − δi)Ki,1 + Ii,2. (1.6) 

Ki,3 = (1 − δi)Ki,2 + Ii,3. (1.7) 

Ki,4 = (1 − δi)Ki,3 + Ii,4 (1.8)
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where Ki,4 is the capital stock for the next year (Ki) and Ki−1 is the capital stock 
of the previous year. After defining the quarterly equations, the second step is to 
recursively replace Eq. (1.5) into (1.6), the latter into (1.7), and finally the latter 
into (1.8). This recursive substitution allows obtaining a fourth-degree equation 
where the variable is the depreciation rate, which can be solved by some method 
of nonlinear equations such as “Newton’s method.” Finally, as a third step, once 
the depreciation rate is known, it is replaced in Eqs. (1.5) to (1.8) and the quarterly 
capital stock is obtained. This procedure must be carried out for each year so that 
the quarterly time series of the stock of capital can be obtained. 

The third method suggests that, instead of estimating the depreciation rate, the 
quarterly depreciation amount should be estimated directly by linear interpolation 
of the annual depreciation series. Given this calculation, the quarterly capital stock 
is calculated under the “capital movement equation” (given that the quarterly 
real investment is known). Finally, the fourth method assumes that the quarterly 
depreciation is simply the annual depreciation divided by four. With this, in a similar 
way to the third method, the quarterly capital stock is calculated. 

Total Hours and Employment Total hours worked and employment (jobs) are 
obtained from the database of Valerie Ramey. She has compiled quarterly employ-
ment data based on the Bureau of Labor Statistics (BLS) information. Ramey has 
two main aggregates of the series of hours worked: the total of the economy and 
the business sector that does not include farming (nonfarm business [all persons]). 
For calculating the statistics, this last concept of “hours worked” will be taken into 
account. This variable is found every quarter, but at an annualized level; it considers 
the total hours worked in a year. The calculation form is as follows: 

.Hourst = UEt ∗ UHt ∗ [52 weeks/year]/1000 (1.9) 

where Hourst is the number of hours “annual” of quarter “t.” For its calculation, the 
average number of jobs (jobs) during the quarter (UEt ) is multiplied by the average 
weekly hours worked during the quarter (UHt ). This number is multiplied by the 
number of weeks in a year (52). Concerning employment, similarly to total hours 
worked, the business sector that does not include farming (nonfarm business [all 
persons]) is considered. 

Real Wage and Productivity (Labor) The real wage, as well as the number of hours 
worked and employment, is calculated for the business sector that does not include 
cultivation. Also, it represents actual hourly compensation as an index 2009 =100. 
On the other hand, (labor) productivity is calculated as the ratio between real GDP 
and the total number of hours. Figure 1.10 shows the evolution of the natural 
logarithm of the variables associated with the labor market. 

[C.2] Separation of the Cyclical Component of the Variables To extract the 
cyclical component of the eight macroeconomic variables, the filter of Hodrick and 
Prescott (1981) is used. Figure 1.11 shows the trend component of real GDP. Its 
cyclical component is the difference between the value of the variable in levels (real 
GDP) and the trend component (obtained by the HP filter).
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Fig. 1.10 Macroeconomic series (1954.1–2015.4). The total number of hours (billions of hours 
worked) and employment (millions of jobs) correspond to the sector nonfarm business (all 
persons). The real salary (index 2009 = 100) is the real compensation per hour. Productivity 
(labor) is the ratio between real GDP and total hours worked (productivity=GDP/H). All variables 
are in logarithms (Source: The total hours and employment have been obtained from the data 
of Valerie Ramey (http://econweb.ucsd.edu/~vramey/). The real wage is obtained from Federal 
Reserve Bank of St. Louis, “Nonfarm Business Sector: Real Compensation Per Hour, Index 
2009 = 100, Quarterly, Seasonally Adjusted”) 

Figures 1.12 and 1.13 show the cyclical component of the eight variables and 
compare them with the cyclical component of GDP. The idea of this first comparison 
is to understand the volatility of the variables and their movements with the GDP. 
Some observations emerge from this graphical analysis: 

[Obs1] The cyclical component of GDP seems to be less volatile during the second 
half of the 1980s,5 the entire decade of the 1990s, and part of the first five years 
of the new millennium. This phenomenon is called “The Great Moderation” and 
was coined by Stock and Watson (2002). These authors found that the volatility 
of the annual GDP growth rate between 1960 and 2001 (std. dev.= 2.3%) is 
greater than the volatility between 1990 and 2001 (std. dev.= 1.5%). One of 
his/her main findings was that the reduction in volatility was found in the rate of 
GDP growth and throughout the entire economy. In other words, the growth of

5 McConnell and Perez-Quiros (2000) were the ones who found the first indication of this 
“moderation,” but they only indicated that the reduction in volatility was focused on the production 
of durable goods. Likewise, these authors found that the structural break in which volatility began 
to moderate was in the first quarter of 1984. Stock and Watson (2002) confirmed this finding with 
certain differences. 

http://econweb.ucsd.edu/~vramey/
http://econweb.ucsd.edu/~vramey/
http://econweb.ucsd.edu/~vramey/
http://econweb.ucsd.edu/~vramey/
http://econweb.ucsd.edu/~vramey/
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Fig. 1.11 US real GDP and trend component (1954.1–2015.4). The trend component has been 
obtained by applying the HP filter to the variables in logarithm (per capita) with the smoothing 
parameter λ = 1600 

employment, consumption, and sectoral GDP also showed a significant reduction 
in their volatility in the same period. These findings initiated a body of research to 
explain the sources of this “moderation” (e.g., Davis and Kahn 2008). 

[Obs2] Consumption appears to be less volatile than GDP but seems to be strongly 
(positively) correlated with output. 

[Obs3] Investment seems to be more volatile than GDP. In addition, it is more 
volatile than consumption. Between observations 2 and 3, it is concluded that 
σinvestment > σGDP > σconsumption, where σx represents volatility. 

[Obs4] The stock of capital seems to have very little volatility compared to GDP 
and also appears to have little correlation with output. 

[Obs5] Total hours seem to be a bit more volatile than GDP and have a high 
correlation with output. 

[Obs6] Employment appears to be as volatile as GDP and to have a positive 
correlation with this variable. Also, employment is almost as volatile as the number 
of hours.
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Fig. 1.12 Cyclical component of the economic series for the United States (1954.1–2015.4). The 
cyclical component has been obtained by applying the HP filter to the variables in logarithm (per 
capita) with the smoothing parameter λ = 1600 

[Obs7] Real wage volatility seems to have increased over time. Furthermore, 
between 1954 and mid-1980, the volatility of real wages appears to be much less 
than that of GDP. However, from the second half of 1980 to 2015, the volatility of 
real wages and GDP are very close. 

[Obs8] Labor productivity appears to have lower volatility than GDP. 

[C.3] Calculation of the Statistics Table 1.2 summarizes the main statistics of the 
cyclical component of the macroeconomic variables, which complements what is 
observed graphically. Some conclusions can be drawn from these calculations. 

First of all, investment shows greater volatility (5.5%) than the other variables. 
Likewise, it can be seen that its volatility is greater than that of GDP (1.52%), and, 
in turn, this is greater than that of consumption (0.81%). On the other hand, the 
variable that has less volatility is the stock of capital (0.26%); that is, this variable 
is more stable than the others. Regarding the labor market variables, it is observed 
that total hours worked and employment have volatility very close to that of GDP. 
However, employment has less volatility than the number of hours worked (1.56% 
vs. 1.86%). This suggests that the business cycle manifests itself in the labor market, 
as Cooley and Prescott (1995) mention.
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Fig. 1.13 Cyclical component of the economic series for the United States (1954.1–2015.4). The 
cyclical component has been obtained by applying the HP filter to the variables in logarithm (per 
capita) with the smoothing parameter λ = 1600 

When comparing the volatility of the real salary with that of the hours worked and 
employment, it is concluded that the real salary is less volatile than these variables; 
even the volatility of the real salary represents 50% of the volatility of the total hours 
and the 60% of employment. In RBC models, this stylized fact could be (partially) 
captured under the assumption of a highly elastic labor supply. However, as we will 
see in Chapter 6 (Hansen 1985), microeconomic data suggest that such elasticity 
is low. Given this, Hansen (1985) developed an extension of the basic RBC model 
with which he/she partially overcame this weakness. 

Second, the volatility of an investment is approximately four times that of GDP, 
and that of capital is 0.17 times that of GDP. This suggests that although investment 
can be highly volatile due to the behavior of investors, the accumulated capital stock 
behaves smoothly over time. Moreover, the volatility of an investment is 22.8 times 
that of capital. 

Third, although the stock of capital has low volatility, this variable has a high 
persistence reflected in its autocorrelation (0.96). In general, all the variables, except 
real wages and productivity, show persistence levels above 0.8. Even hours worked 
and employment exceed 90% autocorrelation. It should be noted that real wages 
and productivity show similar volatilities (0.96% vs. 0.94%) and relatively close 
autocorrelations (0.69 and 0.79).
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Fig. 1.14 Correlation between GDP (cyclical component) and labor productivity (cyclical com-
ponent) (1954.1–2015.4) 

Fourth, it is observed that consumption, investment, hours worked, and employ-
ment are highly procyclical (correlation with GDP greater than 0.8). On the other 
hand, it is appreciated that the stock of capital is eventually acyclic since it presents 
a correlation with the GDP close to zero (0.08). Likewise, the real wage is slightly 
procyclical (correlation with GDP of 0.22). 

In fifth place, it is observed that the correlation between GDP and labor produc-
tivity is negative (−0.1); that is, this suggests that productivity is countercyclical. In 
the first instance, this result seems counterintuitive, since RBC models have usually 
considered labor productivity to be procyclical. However, recent studies suggest 
that the correlation between GDP and labor productivity has declined and has even 
become negative. The first study to show this “new” feature of the US business 
cycle was conducted by Stiroh (2009), under the title “Volatility Accounting: As 
Production Perspective on Increased Economic Stability.” This research started 
an academic discussion about the possible factors that explain this behavior (for 
example, Gali and van Rens (2010) and Fernald and Wang (2016)). 

Figure 1.14 shows the correlation of the cyclical component of real GDP with the 
cyclical component of labor productivity. Each correlation value is calculated from 
the first quarter of 1954 to the fourth quarter of the year shown on the horizontal axis. 
For example, the value of 7% that appears in 1980 (first blue bar) has been calculated 
considering the sample from 1954.1 to 1980.4. Similarly, the value associated with 
1982 (greater than 10%) has been calculated with the 1954.1–1982.4 sample. 

This figure clearly shows how the correlation between both variables has 
decreased over time. This behavior can be separated into four stages: the first is 
in the 1980s when said correlation reached an average value of 10%. The second 
stage is in the 1990s, in which the said correlation showed a first reduction (average 
value of 5%) but maintained the procyclical behavior. The third stage takes place 
in the first five years of the new millennium where the correlation reaches values 
close to zero (2% on average). Finally, the last stage between 2006 and 2015 shows
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that the correlation maintains negative levels; that is, labor productivity presents a 
countercyclical behavior. 

1.3 Historical Perspective of the RBC Theory 

1.3.1 Overview of Schools of Economic Thought 

Figure 1.15 outlines the evolution of macroeconomic theory from a historical point 
of view. This figure is not exhaustive in considering all currents of economic 
thought; however, it presents an overview of economic schools. 

At least three momentous economic crises have marked the twentieth century 
and the beginning of the twenty-first century. The first manifested itself in 1929 
with the New York Stock Exchange crash, whose effects were global and persistent. 
This crisis was called the Great Depression. This event had at least two important 
impacts: the first is that it showed the weakness of the neoclassical school to explain 
this phenomenon. Likewise, the said school could not provide a solution to this 
crisis. The second effect is that the Keynesian school emerged as an alternative to 
explain this crisis and propose some economic policies to mitigate its effects. 

The Keynesian School originated with Keynes’ General Theory in 1936. In this 
research, Keynes offered an interpretation of the Great Depression and a solid 
theoretical framework with a strong argument for state intervention in the economy. 

One of Keynes’ central ideas was that the market economy is inherently unstable. 
The said instability causes situations where the level of activity falls below full 
employment without the market being able to recover independently. This situation 
produces a level of unemployment that, according to Keynes, has an involuntary 
character, reflecting an insufficient level of demand. Since the market does not 
guarantee a return to equilibrium, Keynes suggests that economic policy can correct 
this aggregate instability to bring the economy to full employment. This contrasts 
with the fundamental pillar of the neoclassical paradigm: “the automatic tendency 
towards full employment.” 

Other important ideas in the Keynesian revolution are as follows: [1] the 
dependence of the level of activity and the level of employment on effective demand; 
[2] the crucial role that expectations play in a world of uncertainty (animal spirits); 
[3] the conception of markets as rigid and imperfect mechanisms, so there is no 

Fig. 1.15 Historical development of schools in macroeconomics
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continuous emptying of them; and [4] the essential role assigned to economic policy, 
aimed at influencing effective demand of the economy. Some of these elements 
were operationalized, in a certain sense, in the IS-LM model elaborated by Hicks 
(1937), Hansen (1949), and Hansen (1953). Keynes’ main ideas and the IS-LM 
model formed the basis for what is known as “The Neoclassical Synthesis,” which 
dominated economic theory during the 1950s and 1960s. 

The Neoclassical Synthesis, a term proposed by Samuelson (1955), reconciled 
the neoclassical approach with the Keynesian approach. Between 1950 and 1970, 
the idea that the neoclassical model was relevant for microeconomic issues and the 
analysis of economic growth, while the Keynesian model was the most suitable 
for short-term analysis was accepted in academia. It should be noted that the 
Neoclassical Synthesis has three main elements: the IS-LM model for a closed 
economy, the IS-LM model for an open economy, and the Phillips curve. This 
school of thought dominated macroeconomic theory between 1950 and 1970 until 
the second crisis of the twentieth century. 

The second crisis of the twentieth century was associated with the oil price. In 
1973, OPEC (Organization of Petroleum Exporting Countries) decided to restrict 
oil exports to countries that supported Israel in the war called Yom Kippur, 
which took place in October 1973. This decision affected the United States and 
some European countries. The restriction in the production increased its price. 
Since the industrialized countries of that time depended heavily on oil, they were 
forced to reduce their production of goods, which finally increased prices. High 
unemployment and high inflation, a joint phenomenon known as stagflation, was 
the characteristic of this crisis. 

This crisis exposed at least two main weaknesses of the Neoclassical Synthesis. 
The first weakness was in the theoretical field and referred to the fact that this school 
could not explain stagflation. This is because the Phillips curve only considered an 
inverse relationship between unemployment and inflation; however, in the crisis 
of 1970, it was observed that both increased. The second weakness is in the 
methodological field, which mentions that the said school did not consider rational 
expectations in its modeling (Criticism of Lucas). All this led to a distrust of the 
economic policy recommendations of the Keynesian synthesis and gave rise to 
the resurgence of neoclassical ideas under a new approach called new classical 
economics (NEC), led by Robert Lucas. 

The novelty of the NEC was that this school proposed a new way of doing 
macroeconomics. The NEC argued that macroeconomic models were built from 
the behavior of rational agents, which optimized their decisions in a stochastic and 
dynamic environment. This was contrary to the Neoclassical Synthesis approach, 
where there was no optimization, and the models were usually static. Furthermore, 
the NEC assumes that the models are Walrasian because the markets were in 
equilibrium at all times. These models incorporate an aggregate supply based on two 
orthodox microeconomic assumptions: the rational decisions made by workers and 
firms in terms of their optimizing behavior and, second, that the labor supply and the 
level of production of firms depend on relative prices (Lucas 1972, 1973). Likewise,
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the NEC in its modeling considers rational expectations and thus overcomes Lucas’ 
criticism. 

On the other hand, the NEC rests on three sets of assumptions, mainly. The 
first is concerning the behavior of agents: they are assumed to be rational in the 
sense that they optimize their utility/profit function subject to certain constraints. 
In addition, it uses the representative agent assumption and assumes that agents are 
not carried away by the monetary illusion; that is, they make their decisions based 
on real variables. Also, expectations are rational because all available information 
is used and no systematic errors are made. Finally, the information is not always 
complete. It is used optimally and is not asymmetrical, eliminating the problems of 
adverse selection or moral hazard. 

The second set of assumptions is regarding the characteristics of the markets: 
it is assumed that there is perfect competition in all markets and that markets are 
continually clear given price flexibility. The third set of assumptions refers to the 
methodological issues: the models must have a strict microeconomic foundation, 
and the expectations must be introduced in a way that is consistent with the 
model (rational expectations). In addition, the models must be dynamic and general 
equilibrium and must overcome the Lucas critique. 

This new way of doing macroeconomics and its main assumptions led to the 
New Classical Economics becoming the main macroeconomic approach during the 
1970s. 

In the early 1980s, a branch of the NEC called real business cycle (RBC) models 
emerged. Unlike the NEC, which considered that the main driver of business cycles 
was a nominal (monetary) shock, the RBC school considered that the main driver 
should be a real shock. With this main difference, but under the same assumptions as 
to the NEC school, the RBC school gained prominence in the 1980s and the first half 
of the 1990s due to its ability to replicate the stylized facts of the North American 
economy. Although their evolution will be described in greater detail in the next 
section, two important ideas are worth underlining: the first is that RBC models 
have become a starting point for various models (theories) that do not consider real 
(or technological) shock as the main driving mechanism, and the second idea is 
that RBC models are used as laboratories for policy analysis, in line with what was 
proposed by Lucas (1980). 

In the 1980s and 1990s, parallel to the RBC models, a Keynesian approach 
was developed with new microeconomic elements. This school is known as 
New Keynesian Economics and emphasizes monopolistic competition and costly 
price adjustment. As Goodfriend and King (1997) point out, three generations 
of NEK models can be distinguished: the first introduces rational expectations in 
price/wage modeling (Taylor 1980; Gordon 1982). The second generation goes 
from investigating wage stickiness to investigating price stickiness. Furthermore, 
firms are modeled in monopolistic competition and are used to explain the effects 
of money on output when price rigidities exist. The best way to introduce dynamic 
pricing models into the monopolistic competition formulation in the third generation 
of NEK models is evaluated. The state-dependent approach was attractive because 
of its microeconomic foundations; however, it was challenging to fit it into a
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macroeconomic model. An alternative was to use the time-dependent approach 
developed by Calvo (1983). The advantage of this approach is that its incorporation 
in the macroeconomic models did not present difficulties. 

In the mid-1990s, a consensus emerged between the RBC and NEK models. 
This consensus is known as the New Neoclassical Synthesis (NSN) (Goodfriend 
and King 1997). On the one hand, the NSN is based on the RBC models by 
incorporating intertemporal optimization and rational expectations within dynamic 
macroeconomic models; on the other hand, the NSN takes elements of the NEK 
such as monopolistic competition costly price adjustment (price stickiness). The 
main model of the NSN is summarized in three equations: the dynamic IS, the 
Phillips curve, and the monetary policy rule. The NSN has dominated the way of 
doing macroeconomics until today. However, the financial crisis of 2008 caused 
some assumptions of the NSN to be rethought, which are currently being evaluated. 

The third crisis occurred in the early years of the twenty-first century and finally 
materialized in 2008. This is known as the 2008 financial crisis. The origin of this 
crisis is found in the collapse of the housing bubble in the United States in 2006 
and then sparked a subprime mortgage crisis. The effects of this crisis became 
global in 2008, and this caused, in turn, an international liquidity crisis. Faced with 
this crisis, the NSN model was limited because international interest rates were at 
very low levels (close to zero), which prevented using the Taylor rule to encourage 
the economy. One of the main challenges to these models was the absence of the 
financial sector. Elements of the financial system are currently being incorporated 
into the NEK and RBC models. The idea is to evaluate the performance of these 
models in explaining financial crises and to evaluate alternative policies that smooth 
the economic cycle. 

1.3.2 The Historical Development of the RBC School 

The 1980s and the first half of the 1990s witnessed the development of the real 
business cycle theory. The initial model proposed by Kydland and Prescott (1982) 
was extended in several directions. These directions include the study of money, the 
labor market, public spending, financial assets, imperfect competition, and the open 
economy in the theoretical framework proposed by the RBC school. The objective 
of all these investigations was to increase the understanding of how these variables 
help explain the business cycle. To understand how the main ideas of this school of 
economic thought have evolved, it is necessary to study chronologically the different 
investigations associated with real business cycles, which together provide a holistic 
view of the RBC school. 

In 1981 a new technique emerged to separate the cyclical component from the 
trend of a variable. This technique was proposed by Hodrick and Prescott (1981), 
who conducted an empirical study of cycles for the United States after World War II. 
These authors proposed a methodology to separate the cycle and the trend of a
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series, known as the HP filter. Under this methodology, Hodrick and Prescott found 
empirical regularities of the cycles (volatility, comovements, and persistence). 

Kydland and Prescott published research in 1982 in which they used the 
neoclassical growth theory with some modifications to study business cycles. One 
of the main modifications was the assumption that capital construction takes several 
periods and not just one, as was the assumption of the neoclassical growth model. 
This assumption is fundamental to explaining the aggregate fluctuations because 
it behaves as a transmission mechanism with persistence over several periods. In 
addition, the authors considered modifying the utility function to be temporally 
non-separable, which indicates a high intertemporal substitution of leisure. In this 
context, productivity shocks are the only variable that explains business fluctuations. 

Under the assumptions of their model, Kydland and Prescott were successful 
in replicating several features observed in US macroeconomic series after World 
War II. For example, the model suggests that the investment’s standard deviation is 
6.45%, while the data indicates that it is 5.1%. It is worth mentioning that these 
authors used the HP filter to separate the trend cycle of main macroeconomic 
variables from both the data and the model. With this model and its results, these 
authors began the theory of real economic cycles. 

According to Rebelo (2005), three revolutionary ideas emerged from the Kydland 
and Prescott (1982) research: the first is that business cycles can be studied using 
dynamic general equilibrium models. The second is that these authors unified the 
theory of economic growth and that of economic cycles. In addition, business cycle 
models must be consistent with empirical regularities of long-term growth. Finally, 
in their research Kydland and Prescott gave importance to quantitative analysis 
when comparing the properties of the model with stylized facts. 

The contribution of Kydland and Prescott (1982) could at least be summarized 
in two groups. On the one hand, the assumptions that they considered in their 
proposal were sufficient to approach the stylized facts of the economic cycles of the 
United States. On the other hand, its influence on future research, not only those that 
emphasize the supply side (or real variables) as driving mechanisms (productivity), 
but also those that consider that the main cause of fluctuations, is on the demand 
and nominal variables side. 

In line with the above, the main assumptions considered by Kydland and 
Prescott (1982) and which have later formed part of the RBC models are as 
follows: (1) agents respond optimally to economic events all the time; (2) output 
fluctuations come from real sources, that is, business cycles are a consequence 
of exogenous change in productivity; (3) work fluctuates due to the intertemporal 
substitution of leisure (or work); (4) the product is persistent due to the effect of 
the internal propagation mechanism—capital accumulation—and (5) investment is 
more volatile than consumption because agents prefer to smooth their consumption 
and transfer any transitory movement in their income to savings (investment). 

Also, the research that grew out of the Kydland and Prescott (1982) study was 
called “RBC models” due to the emphasis on the role of “real shock.” These models 
have become a starting point for several theories that do not consider technological 
change (shock) as the main driving mechanism. For example, the New Keynesian
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Economics (NEK) models in their basic three-equation model (dynamic IS, Phillips 
curve, and the monetary policy rule) consider three shocks (demand, productivity, 
and policy), each associated with each equation. An additional contribution is that 
RBC models can be used as laboratories for policy analysis in line with what was 
proposed by Lucas (1980). 

Long and Plosser (1983) published an investigation that sought to explain the 
joint movements of the economic variables of the various productive sectors such 
as agriculture, mining, construction, etc. To do this, they proposed a model based 
on two groups of hypotheses: the hypothesis of preferences (families) and those of 
production possibilities (companies). In particular, the objective of these authors 
was to evaluate the ability of these hypotheses to explain the behavior of the 
economic cycle (at the aggregate and sectoral level). 

Usually, when hypotheses about preferences are studied, emphasis is placed on 
their intra-temporal implication (static approach), which indicates that in the face 
of an unexpected increase in wealth, the consumer increases his/her demand for 
consumption current of goods and leisure. In addition to this, Long and Plosser, in 
their research, highlight that these hypotheses also have intertemporal implications 
(dynamic approach), which suggest that the same wealth shock encourages the 
consumer to increase his/her consumption demand future of goods (including 
leisure). The main implication of the latter is that consumption (of different goods) 
as a time series presents comovements and persistence. 

Although the preference hypotheses help to describe the comovement and 
persistence of consumption, they fail to explain why these characteristics are due. 
This is related to the fact that price movements are required for consumption 
(demand) to find its counterpart on the side of production (supply). That is why, 
to better understand the cyclical movements of the variables, the hypotheses of 
production possibilities must be considered. In this respect, Long and Plosser (1983) 
assumes a neoclassical production function (described in Chapter 3). Furthermore, 
they assume that all goods are perishable, in other words, that all goods available at 
the beginning of the current period are new units produced at the beginning of this 
period. In practical terms, the depreciation rate is assumed to be equal to one. 

The main conclusion of Long and Plosser (1983) was that the time series 
properties derived from the model show a certain approximation to those found 
in the data. Also, the authors acknowledge that this model does not capture all the 
empirical regularities due, in part, to the full depreciation assumption; however, this 
model is a good starting point (benchmark) to evaluate the inclusion of other factors 
such as money, fiscal policy, etc. 

In 1985, two landmark investigations emerged at the RBC school. The first is the 
Hansen model, and the second is the Mehra and Prescott model. 

One of the main criticisms of the Kydland and Prescott (1982) model was 
that the model did not capture the high volatility of hours worked and the low 
volatility of real wages. This criticism, in part, is based on the fact that the model 
of Kydland and Prescott (1982) considered that there is no unemployment and that 
the volatility of working hours is only because the worker adjusts his/her number of 
working hours. However, Hansen (1985) found that the data suggest that 55% of the
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variance of “total working hours” is explained by the number of workers entering 
and leaving the labor market, and only 20% is explained by the working hours of 
each individual. This led Hansen to postulate the main assumption of his/her model: 
“the individual decides to work a fixed number of hours or not to work,” that is, 
work is indivisible. The main result of Hansen’s model is that it explains the high 
volatility of employment compared to wages, without requiring a high elasticity of 
substitution of leisure, which is consistent with the data. 

On the other hand, Mehra and Prescott (1985) published an investigation in 
which they wondered if the RBC model could capture two stylized facts of the 
financial series: the first corresponds to the historical average of the real return 
of risky assets (SP500), the which is 6.98% for the period 1889–1978, and the 
second is the same empirical moment for the risk-free real return on assets (treasure 
bill), which is 0.8% for the same period. Based on these data, the risk premium is 
6.18% on average. The results of these authors’ model suggest that the RBC model 
can capture the qualitative characteristics of the relationships between financial 
and macroeconomic series, but not their quantitative characteristics. The authors 
indicate that the maximum risk premium that the model can generate is 0.35%. This 
result opened an essential line of research that has sought to solve this enigma. 

Until now, the RBC models had emphasized the shock of productivity, that is, 
the shock on the supply side. However, Keynesian thought suggested that economic 
fluctuations were primarily due to movements in investment. With this in mind, 
Greenwood et al. (1988) introduced two features to the standard RBC model. The 
first is that physical capital is considered and its services through a utilization rate. 
It not only considers, for example, a computer (capital good) but also the number 
of hours that this good is used, which is known as the utilization rate. One impact 
of such a rate is that capital depreciates more quickly. The second is that the shock 
considered is not productivity, but one associated with the marginal efficiency of the 
investment. The main conclusion of this model is that the shock to investment under 
the described mechanism could be an essential element to explain business cycles. 

On the other hand, Cooley and Hansen (1989) studied the role of money in 
economic fluctuations. To do this, the authors used the standard RBC model, to 
which they incorporated the money through a cash-in-advance constraint. With this 
model, the authors attempted to estimate the welfare costs caused by the inflation tax 
and studied the effects of anticipated inflation on the characteristics of the economic 
series. The main conclusion is that in the short term, money does correlate with 
the product; however, the characteristics of the business cycles of an economy with 
high and low inflation are similar. This suggests that under the model’s assumptions, 
money does not help to explain business cycles better. 

Benhabib et al. (1991) considered household production in an RBC model to 
assess whether this extension could help strengthen the quantitative performance of 
the model. The result was that this model better captures the empirical moments 
of business cycles. For example, the Hansen (1985) model obtained the value of 
1.29 for the GDP standard deviation, while the Benhabib et al. (1991) recorded 
1.71, which is closer to that suggested by the data (1.74). Likewise, Hansen’s model 
(1985) overestimated the investment’s standard deviation (3.14 of the model vs. 2.82
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of the data). In contrast, the model of Benhabib et al. (1991) infers that the standard 
deviation of investment is equal to 2.73, much closer to the data. 

One of the main criticisms of the RBC models is that they do not capture the low 
correlation between the number of working hours and the real wage. The data sug-
gest that this correlation is very close to zero, while the RBC (divisible/indivisible 
work) models indicate close to 0.951/0.915, respectively. Given this deficiency of 
the model, Christiano and Eichenbaum (1992b),6 they published an investigation 
where when considering public consumption in the Hansen (1985) model, it is 
obtained that the model captures this correlation a little better (between 0.5 and 
0.7). Government consumption influences the economy in two ways: the first is 
that part of public consumption is considered within the household consumption 
basket. The second is that public spending behaves like a shock that has a permanent 
and transitory component. An interesting feature of this research is that it does not 
use the calibration like the standard RBC models, but instead, the authors use an 
econometric technique (generalized method of moments [GMM]) to estimate the 
eight structural parameters, leaving only three under the calibration approach. 

On the other hand, Baxter and King (1993) published a study that evaluated the 
macroeconomic effects of fiscal policy in an RBC model. Although the objective 
was not to assess whether fiscal policy is a source of business cycles, his/her research 
is relevant to understanding the short- and long-term effects of temporary and 
permanent government spending. In this model, the government influences families 
through transfers and the utility function. Capital and government spending are 
assumed to increase the consumer’s level of utility, but not their marginal utility. In 
addition, the influence of the government on the companies is obtained through the 
government capital that acts as a factor in the production function. This is because 
companies need public goods such as roads, highways, etc., which influence their 
production. 

One of the main assumptions of RBC models is that all markets (goods and 
factors) have a perfectly competitive structure, which suggests that price equals 
marginal cost. However, the data suggest that the price eventually is greater than the 
marginal cost, that is, that the markup (.μ = pt

cmgt
) is greater than one. Under this and 

other empirical facts, Rotemberg and Woodford (1993) published an article where 
they introduced the structure of monopolistic competition in an RBC model. In this 
scenario, the authors analyzed how this new market structure could influence the 
transmission of the shock of productivity, especially through its influence on labor 
demand. Furthermore, under this structure, the analysis of a shock to the markup 
could provide a new driving mechanism to explain the cycles.

6 A previous investigation by these authors is found in 1988, in which they question Prescott 
(1986)’s assertion that “theory comes before measurement.” Christiano and Eichenbaum’s main 
argument is that the RBC models do not capture the Dunlop-Tarshis observation, which indicates 
that the correlation between the number of hours worked and the real wage is close to zero. Under 
this argument, the authors conclude that the shock of productivity cannot be the only source of 
economic fluctuations after the Second World War. 
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Cogley and Nason (1995) published an investigation in which they evaluated the 
ability of the standard RBC model to capture two stylized facts of the dynamics 
of the gross national product (GNP) in the United States: the first is that GNP 
is positively autocorrelated in the short run and negatively (but slightly) in the 
long run, and the second is that GNP appears to have a significant trend reversal 
component, which has a hump-shaped moving average representation. The results 
of this investigation suggest that the standard RBC model needs a strong exogenous 
factor to replicate both stylized facts. This is because most RBC models have a weak 
internal propagation mechanism. Furthermore, these authors indicate that RBC 
models that consider lags or job adjustment costs partially capture both stylized 
facts. However, they still rely on large transient shocks (which is implausible) to 
replicate the impulse response found in the data. 

The criticism of RBC models, suggested by Cogley and Nason (1995), is 
supported by Rotemberg and Woodford (1996) when they publish research in 
which they show that the standard RBC model has two empirical weaknesses. 
The first is that the model suggests that the variance of the product is very small 
compared to what is observed. The second is that the comovements between output, 
consumption, and working hours have the same direction in the data, which the 
model does not capture. To improve the model’s ability to capture these stylized 
facts, the authors perform a sensitivity analysis of the value of three parameters 
(elasticity of labor supply, the intertemporal elasticity of substitution, and the capital 
share of output). The result of this effort is that the model improves the volatility 
of the product, but there is no more significant effect on the comovements of the 
variables in question. 

Given the main criticisms of Cogley and Nason (1995) and Rotemberg and 
Woodford (1996), Burnside et al. (1996) analyze the importance of the utilization 
rate of capital as a transmission mechanism to evaluate the possibility of strengthen-
ing the internal mechanism of propagation of the RBC models. The results indicate 
that this variable is important in quantitative terms to propagate the effects of a 
productivity shock. A natural result of this is that the shock needed to capture the 
empirical regularities of the business cycle is significantly less than standard RBC 
models. 

The following three Tables 1.3, 1.4, and 1.5 show the chronological development 
of the investigations in the RBC school. These tables are not exhaustive in terms of 
all the investigations carried out between 1980 and 1996, but they are referential as 
they try to point out the main investigations. 

1.3.2.1 Research on the State of the Art of RBC Models 

This section describes a set of investigations that have attempted to summarize RBC 
models’ state of the art over time. 

The first researchers who tried to summarize the development of the RBC theory 
were King, Plosser, and Rebelo, who in 1988 published two papers in the Journal 
of Monetary Economics. The first described the theoretical framework of the RBC
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models and the solution method of these models; the second described the main 
lines of research that emerged from the standard RBC model.7 

In their first research, King, Plosser, and Rebelo considered that the theoretical 
framework for studying real business cycles is the neoclassical model of growth 
augmented by job choices. Under this approach, they study the effects on the 
economic cycle of a shock of productivity. The main conclusion that emerges from 
this research is that the neoclassical model of growth (augmented with labor) can 
replicate some stylized facts of business cycles only when there is a highly persistent 
technological shock. In particular, the model captures two groups of stylized facts: 
the first is that it shows the procyclical behavior of employment, consumption, 
and investment. The second is that the model generates the observed ranking 
of the relative volatility of investment, output, and consumption (. varinvestment >

varoutput > var consumption). 
However, the model is limited in generating other stylized facts. One of them, 

which is extremely important to characterize the business cycle, is the serial 
correlation of output (first-order autocorrelation: 0.96 in the data [1948.I–1986.IV]). 
The model requires a high persistence of productivity to generate a strong serial 
correlation of output (when the persistence of the shock is equal to 0.9, it produces 
the first-order autocorrelation of the output of 0.93; however, when the first is equal 
to zero, the autocorrelation is 0.03). 

In their second investigation, King, Plosser, and Rebelo outline some new study 
directions within the theoretical framework of RBC models. One of these new 
directions is to consider that the growth path could have a stochastic component, 
that is, that it could have a unit root. This differs from the usual analysis of RBC 
models because the growth path is considered to be exogenous and deterministic in 
these models. The second line of research allows the long-run growth rate to be the 
endogenous result of technology. This clearly contrasts with the usual assumption 
in standard RBC models: the long-run growth rate is exogenously determined by the 
growth rate of labor-increasing technical change, which is assumed to be a calibrated 
parameter. 

The third line of research mentioned by these authors is the inclusion of distorting 
taxes, imperfect competition, and other elements that produce a suboptimal equilib-
rium. In this case, the authors focus on the methods to include such elements in 
the RBC model. Finally, the fourth line of research refers to heterogeneous agents, 
which contrasts with the “representative agent” assumption in RBC models. This 
line of research responds that empirical evidence suggests that families are different 
due to different variables. Furthermore, Heckman (1984) indicates that the most 
appropriate way to study the labor market is the assumption of heterogeneity among 
agents. 

Stadler (1994) published an investigation that summarizes and evaluates the 
theory of real business cycles. One of his/her main conclusions is that the RBC

7 These authors published a technical appendix after several years (2002) in the journal Computa-
tional Economics. 
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theory has changed the way of looking at business cycles. This theory suggests that 
distortions are not needed to obtain macroeconomic fluctuations; that is, an efficient 
economy with complete markets could show fluctuations if technological change 
is stochastic. This statement opens a whole line of research on business cycles. 
Another conclusion is that there are still some challenges that the RBC theory has 
not overcome. One is the difficulty of these models capturing the stylized facts very 
closely. Another difficulty is that they cannot satisfactorily explain the dynamics 
of the product, which is associated with another weakness: a weak transmission 
mechanism. Rouwenhorst (1991) indicates that the fluctuations produced in the 
Kydland and Prescott (1982) model are essentially due to the stochastic behavior 
of productivity. The role of the capital “time to build” transmission mechanism is 
small, which was expected to be important in propagating the initial impulse. 

An additional difficulty is that the assumption of a “representative agent” is 
questionable due to microeconomic data. As Stoker (1993) points out, data at the 
microeconomic level suggest the existence of heterogeneity between households 
and firms. For example, differences can be found between the size of families 
or companies. Likewise, there are differences between companies according to 
what type of factors are labor-intensive (some capital-intensive and others labor-
intensive). Finally, Stadler (1994) suggests that, despite the challenges that the CBR 
theory faces, its long-term contribution lies in the fact that it has proposed new 
methods of macroeconomic research and evaluation of economic policies. 

Cooley and Prescott (1995) published a book that brings together different 
important themes of the RBC school. As the author points out, the goal of this book 
is to provide an organized exposition of the main ideas and methods of RBC models. 
The themes addressed in the book are the following: an investigation oriented to 
economic growth and the business cycle, which provides the point of reference 
throughout the book, a set of investigations that describe the extensions of the RBC 
model (heterogeneous agents, money, domestic production, imperfect competition, 
asset prices, and open economy), and two methodological investigations, one of 
them oriented to the solution of the model in an environment of competitive 
equilibrium and the other oriented to the solution in suboptimal economies. Finally, 
the author includes an investigation on non-Walrasian economies and another on 
policy analysis in RBC models. 

In the same spirit as Cooley and Prescott (1995), Hartley et al. (1998) present a 
collection of articles that, in their opinion, define and show the development of the 
RBC school, on the one hand, and express its main criticisms, on the other hand. 
As the authors point out, the book’s goal is to balance research that is in favor 
of the RBC school and research that criticizes it. When comparing this collection 
with the book by Cooley and Prescott (1995), two main differences are observed: 
the first is that the collection by Hartley et al. (1998) has a greater extension than 
that of Cooley and Prescott (1995), so much so that Hartley et al. (1998) considers 
31 investigations, while Cooley and Prescott (1995) 12. The second important 
difference is that Hartley et al. (1998) do take stock of research in the field of RBC 
models; in other words, among his/her 31 articles, at least 11 of them are critical. 
This differs from the work of Cooley and Prescott (1995), which does not include
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any criticism, since the objective of this author was only to show the ideas and 
methods of the RBC school in an organized way. 

It is important to underline that the work of Hartley et al. (1998) is organized into 
five categories: the first contains a body of research on the fundamentals of modeling 
real business cycles. For example, this first research is the article by Kydland and 
Prescott (1982), which started the RBC school. The second category contains the 
main extensions of the RBC models. In this respect, Cooley and Prescott (1995)’s 
work is more exhaustive because it includes more extensions. For example, in 
Cooley and Prescott (1995), one can find the RBC model with an open economy or 
financial assets absent in Hartley et al. (1998). The third category contains research 
that criticizes the calibration method of RBC models. The fourth category refers 
to research on how to evaluate RBC models. It should be noted that this category 
is the largest in the book, which is not surprising given the debate that arose over 
the “unconventional” way of evaluating RBC models pioneered by Kydland and 
Prescott (1982), that is, the comparison between the theoretical moments (from 
the simulation of the model) and the empirical moments, which contrasts with the 
usual econometrics. The fifth category refers to the Solow residual, and the last one 
describes how to obtain the cyclical component of the aggregate variables. Reading 
both books provides a comprehensive overview of the strengths and weaknesses of 
RBC models. 

King and Rebelo (1999) wrote an article in the Handbook of Macroeconomics,8 

which they titled “Reanimation of real business cycles.” At least three ideas can 
be extracted from this article: the first is that the authors adopt the main weakness 
of RBC models and suggest a way to overcome this weakness. The second idea is 
that the authors show that the main criticisms or problems faced by the RBC models 
could have been successful results. Finally, the authors suggest new lines of research 
in RBC models, which indicates that this research program is still in force. 

Regarding the first idea, the authors state that the main weakness of RBC models 
is that they require large technology shocks (significant standard deviation and 
persistence) to produce business cycles close to reality. However, these technology 
shocks are not as large or as persistent in the data as the model requires. Given this 
weakness, the authors propose considering an important amplifying mechanism: 
the variable use of capital. By introducing this component into an RBC model, it 
could reproduce the observed business cycles with little shock of productivity, as 
the empirical evidence indicates. 

Regarding the second idea, the authors argue that three main criticisms have been 
resolved in favor of RBC models. The first criticism is the sensitivity of the model 
results to parameterization. As the authors point out, the RBC model is resistant to 
different values of the parameters; for example, the model results are satisfactory

8 The goal of the Handbook of Macroeconomics, as stated on its very pages, is to provide a review 
of the literature on the current state of knowledge in macroeconomics. Topics reviewed include 
the theory of economic growth and business cycles and the consequences of fiscal and monetary 
policy. Currently, there are two handbooks: the first was published in 1999 (edited by John B. 
Taylor and Michael Woodford) and the last in 2016 (edited by John B. Taylor and Harald Uhlig). 
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even in the case of a small labor supply elasticity at the individual (family) level 
but high at the aggregate level. The second criticism is the limitation of the model 
to produce a realistic behavior of prices. This has been overcome by including 
nominal variables (money supply, prices, etc.) in the RBC model. For example, this 
can be seen in Cooley and Hansen (1989). Finally, the third criticism is about the 
assumption of large technological shocks. As indicated in the previous paragraph, 
the authors recognize this weakness, which can be overcome when the variable use 
of capital is added to the standard RBC model. 

The third idea that emerges from the research by King and Rebelo (1999) is  
that the RBC model research program is still in force due to the new lines of 
research that have emerged. For example, the study of a multisectoral model is still 
pending. The usual way of studying business cycles in RBC models has been under 
a single-sector model; however, by considering various sectors, one could better 
understand the relationship between those sectors and how the variable utilization 
of capital behaves in each sector. In this field, there are previous investigations such 
as those made by Long and Plosser (1983). However, they have not been fully 
exploited, considering variable capital utilization and more realistic technological 
shocks. Another line of research is the consideration of heterogeneous agents. In 
principle, its introduction in the RBCmodel could enrich the labor market dynamics, 
bringing the model closer to reality. 

In 2005, Rebelo published an article in which he/she briefly reviews the 
contribution of RBC models to the understanding of business cycles and describes 
in detail the main open issues in the existing literature. This research complements 
the study by King and Rebelo (1999) in a meaningful way by emphasizing future 
lines of research. 

According to Rebelo (2005), two issues that still require further investigation, 
within the framework of RBC models, are, on the one hand, the explanation of the 
behavior of the prices of financial assets and, on the other hand, the understanding 
of the Great Depression. Regarding the former, the pioneering work of Mehra 
and Prescott (1985) showed that the RBC model was capable of capturing the 
qualitative characteristics of the risk premium, but failed to replicate its quantitative 
characteristics. This weakness of the model is known as the “risk premium puzzle” 
(equity premium puzzle). These findings started a line of research active to this 
day. One of the proposals to overcome this weakness was elaborated by Boldrin 
et al. (2001), who introduced habit formation in an RBC model. The result was 
that the model still maintained the weakness found by Mehra and Prescott (1985). 
Another effort in the same direction was that of Boldrin et al. (2001), who, under 
the assumption that the production of consumer and investment goods is carried out 
in different sectors and that there are frictions in the movement of capital and labor 
between sectors, obtained results for the behavior of the risk premium that is closer 
to what is observed in the data. However, this line of research demands further study. 

The second topic that demands further investigation, in light of the RBC models, 
is the Great Depression. In particular, the challenge presented by RBC models is 
to explain what caused the Great Depression. As Rebelo (2005) points out, there is 
a set of investigations in this field to date. However, it is still an open topic in the
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RBC school because the Great Depression was caused by the combination of several 
adverse shocks and inadequate economic policies. 

In addition to these two major research topics, the author mentions other open 
lines of research: one of them is the study of shocks alternative to productivity 
(oil, fiscal, and technological change specific to investment). Another line is the 
monetary model, that is, the extension of the RBC model to include nominal and 
real frictions, which in practice are NEK models. In addition to the above, Rebelo 
(2005) indicates that considering models with multiple equilibria in the spirit of 
Farmer (1997) is still an issue that requires further study. 

Table 1.6 briefly describes, from a historical perspective, the research that has 
tried to provide the state of art of the RBC school over time. 

1.3.2.2 Research Related to the Labor Market 

Kydland (1995) states that the behavior of the labor market plays a vital role in 
understanding business cycles. That is why one of the main aspects in evaluating 
RBC models is their ability to replicate the stylized facts of the labor market. In 
particular, the US economy shows two important stylized facts: the first is that hours 
worked are more volatile than real wages; the second is that the correlation between 
hours worked and real wages is close to zero. In addition, microeconometric studies 
suggest that the labor supply elasticity is small. The main investigations that have 
tried to capture these stylized facts are described below. 

One of the main criticisms of the Kydland and Prescott (1982) model was the 
assumption that the elasticity of labor supply is significant, which is not supported 
by the data. In their research, Kydland and Prescott (1982) focused on the intensive 
margin component of labor supply, which is measured as the average number of 
hours worked. These authors assumed that the movement of “added work hours” 
is essentially due to the adjustment of hours worked by the employee. However, 
Hansen (1985) considers that the variation in aggregate working hours is mainly 
due to the entry and exit of individuals in the labor market, that is, the extensive 
margin component of the job offer. Under this assumption, Hansen (1985) manages 
to obtain a labor supply elasticity that is more in line with the microeconomic data. 

Christiano and Eichenbaum (1992b) indicate that the Kydland and Prescott 
(1982) and Hansen (1985) models fail to replicate the two main stylized facts 
of the labor market: (1) hours worked are more volatile than real wages, and (2) 
the correlation between hours worked and real wages is close to zero. Given this, 
Christiano and Eichenbaum (1992b) propose a model in which public spending 
plays an important role in private consumption. Under the assumption that public 
consumption is an imperfect substitute for private consumption, these authors 
indicate that an increase in government spending produces a negative wealth effect, 
which induces families to reduce their demand for leisure and, therefore, to increase 
their job offers. With this specification, the authors find that the model is closer to 
the data.
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Another effort to improve the quantitative performance of the RBC model in the 
labor market was carried out by Benhabib et al. (1991). These authors proposed 
including in the modeling the production of the sector that works at home (not the 
market) due to its high participation in the national product (20% to 50%), according 
to Eisner (1988). The main idea of this model is that agents also obtain utility when 
they consume what is produced by this sector and those who work in this sector 
obtain disutility, as observed in the market. Under this premise, the authors find that 
there are incentives for an individual to move from working at home (nonmarket) to 
working in the market. The effect of this is that the labor supply could increase in 
a similar way to the public spending shock of Christiano and Eichenbaum (1992b). 
With this specification, the authors find that the model is closer to the data. 

1.3.2.3 Investigations Related to Fiscal Policy 

In this section, two sets of investigations are described. The first set, from the 
empirical point of view, has pointed out the relationship that exists between the 
fiscal variables (taxes, spending, and deficit) and the macroeconomic variables 
(product, consumption, investment, employment, and real wages). The second, from 
a theoretical point of view, has raised various RBC models with the public sector. 
The objective of this is to evaluate the capacity of these models to capture empirical 
evidence. From all these efforts it is concluded, as Cooper (1998) points out, that 
there is no role for fiscal policy in the standard RBC model, which considers 
complete markets and the absence of externalities. For the fiscal sector to gain an 
important role in modeling, it is necessary to consider some different assumptions 
to those proposed by the RBC school. 

[A] Empirical Evidence In the existing literature, at least two sets of empirical 
investigations can be distinguished. The first set relates the public spending shock 
as a consequence of military events rather than macroeconomic events (Hall and 
Mishkin 1980; Hall  1986; Barro  1983; Rotemberg and Woodford 1992; Ramey and 
Shapiro 1998) and usually use linear regression models or the “narrative approach”9 

to identify the shock of fiscal spending. The second set emphasizes that public 
spending responds to macroeconomic events and uses the structural autoregressive

9 The narrative approach consists of reviewing various historical sources such as the presidential 
address, the president’s economic report, and reports from congressional meetings to identify 
the motivation for each legislated tax/public spending change. The idea of this method is to 
separate the changes in legislated fiscal variables into those that legitimately respond to changes 
in macroeconomic variables from those that respond to other motivations (for example, political 
motivations). For a better description of this method, see Romer and Romer (2010). 
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vector (SVAR) approach10 to identify the fiscal shock. In this section, we will focus 
on this last set of investigations. 

Using the VAR approach, various studies have found that the fiscal policy shock 
(defined as government purchases) has positive effects on output, hours worked, 
consumption, and real wages (Fatás and Mihov 2001; Blanchard and Perotti 2002; 
Perotti 2005; Galí et al.  2007; Pappa 2009). Mountford and Uhlig (2009) find that 
anticipated public spending shock has positive effects on output and consumption, 
but they are small. 

Fatás and Mihov (2001), based on research by Blanchard and Perotti (1999),11 

studied the effect of public spending shock on consumption, investment, and 
employment. In their initial VAR model, they found that the positive shock of 
public spending increases real GDP. In a second model, in which they included 
the components of consumption (total consumption, consumption of durable goods, 
consumption of nondurable goods, and consumption of services), they observed 
that total consumption and all its components react positively to the shock of 
public spending. This suggests that consumption is procyclical. By carrying out 
the same exercise with investment and its components, the authors conclude that 
total investment contracts slightly in the first six quarters and then reacts positively 
to the shock, until returning to trend after three yearsİn addition, it is observed that 
the driver of investment behavior is residential investment, which always remains 
above the trend until the third year. From these exercises, the authors infer that 
consumption and investment react positively to public spending shock. 

By evaluating the impacts of the fiscal shock on labor market variables, the 
authors conclude that employment increases after the shock, but that real wages 
change marginally. Given this last result, the authors indicate that the real wage 
reaction of the economy is not robust enough to different nominal wage specifica-
tions and deflation methods (Burnside et al. 2000), for which they prefer to analyze 
the response of the real wages in the manufacturing sector, which is robust. Under

10 VAR (or SVAR) models have become one of the most widely used econometric tools in 
macroeconometrics. This is because this technique can describe the relationships in reduced form 
between the aggregate variables without imposing a priori on economic theory. However, when 
you want to analyze the economic structural relationships between variables, you need some form 
of identification, which is usually based on economic theory. Chudik and Fidora (2011) point out 
that in the existing literature, there are at least four approaches to impose identification constraints 
of shock: the first is to place the variables (Cholesky decomposition) recursively; the second is to 
impose “zero” constraints on the system of linear equations. These constraints are a set of variables 
that are not affected by the shock of interest for a certain period of time. The third approach 
is the decomposition into permanent and temporary components. The fourth way of imposing 
identification constraints is sign constraints. This alternative consists of indicating the sign that the 
structural impulse-response function must have for a number of periods after the shock. As Chudik 
and Fidora (2011) indicate, the basic idea behind this method is to be able to identify the structural 
shock by checking if the corresponding sign of its impulse-response function is in accordance with 
economic theory. 
11 It should be noted that this research was later published in 2002 in “The Quarterly Journal of 
Economics,” which is described in the next paragraph. 
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this change of variable, the authors find that real wages (in the manufacturing sector) 
respond positively (and significantly) to the shock of public spending. 

Fatás and Mihov (2001), in a further step, contrast their empirical results with 
the RBC model. The objective of this contrast is to evaluate if the RBC model 
with a government sector has the capacity to capture the empirical behavior of 
consumption and employment in the face of a shock of public spending. What these 
authors find is that the model is not capable of replicating the procyclical behavior 
of consumption. Furthermore, the RBC model predicts that consumption should 
contract. 

Blanchard and Perotti (2002) analyzed the effect of a shock of public spending 
and taxes on output. The main conclusion of this study is that output increases 
when faced with a positive shock of public spending and falls when faced with 
an increase in taxes. This result is consistent with what is suggested by RBC 
models that introduce public spending as a shock. At a further level of analysis, 
the authors assess the impact of fiscal shocks on GDP components. The results 
indicate that private consumption reacts positively to the shock of public spending 
and that investment contracts; that is, they find that consumption is procyclical. 
When observing the results of the RBC models that include fiscal policy, it is found 
that they are not consistent with the observed behavior of consumption, but that they 
do capture the reduction in investment. 

It should be mentioned that the research by Fatás and Mihov (2001) and 
Blanchard and Perotti (2002) have some similarities, but also some differences. 
First, in both studies the fiscal shock generates a positive output response with a 
fiscal multiplier greater than one in Fatás and Mihov (2001) and very close to one 
in Blanchard and Perotti (2002). Second, both investigations find that consumption 
increases significantly in the face of a fiscal shock. Third, there is an important 
difference in the behavior of the investment. Fatás and Mihov (2001) indicate that 
the public spending shock generates a marginally positive investment response, 
while Blanchard and Perotti (2002) find that this response is negative and significant. 

Galí et al. (2007) confirm previous evidence on the macroeconomic effects of 
the public spending shock. In particular, they find similar results for product and 
consumption. In the case of investment, their results are in line with what was 
found qualitatively by Blanchard and Perotti (2002) (reduction of investment), but 
quantitatively said response is insignificant. In addition, they find that the real wage 
and the number of hours worked increase persistently in the face of the fiscal shock. 

Given this evidence, the authors suggest a NEK model that considers a heteroge-
neous component in families. The main assumption is that two types of families 
subsist in the economy: Ricardian and non-Ricardian. The first type of family 
has a standard behavior in macroeconomic models (intertemporal optimization); 
the second type of family only consumes their labor income and cannot transfer 
resources intertemporally. Under this assumption and those corresponding to the 
NEK models (monopolistic competition and price stickiness), the model generates 
an increase in consumption in response to the shock of public spending. 

The aforementioned research has emphasized standard constraints for identify-
ing shocks, such as Cholesky decomposition or “zero” constraints. Unlike these



44 1 An Overview of RBC Models

investigations, Mountford and Uhlig (2009) studied the effects of fiscal policy 
shocks from a different perspective. The novelty of this research is the use of “sign 
constraints” in a VAR model to identify fiscal policy shocks. As these authors point 
out, the identification of these shocks is difficult due to three factors. In the first 
place, there is difficulty in discerning whether the movement of fiscal variables is 
due to the shock of fiscal policy or simply to the response to other shocks such 
as monetary or productivity. The second is that it is not clear what is meant by 
fiscal shock, which can be an increase (expected or unexpected) in public spending, 
or a tax cut, among other variables. This contrasts with the shock of monetary 
policy, which is clearly understood as the unexpected increase in the interest rate. 
The third factor is that the announcement and implementation of the fiscal policy 
must be taken into account. This is important because the announcement can cause 
movements in the macroeconomic variables without the need for the fiscal variables 
to show any previous movement. 

One of the main conclusions of this study is that an anticipated shock of public 
spending12 has a weak positive effect on output, the interest rate, and consumption; 
that is, consumption is procyclical. Furthermore, the effects of this shock are 
stronger than the shock of unanticipated public spending. In general terms, these 
results are in line with previous empirical investigations. 

Using the same econometric technique (SVAR with sign restrictions), Pappa 
(2009) focused on studying the effects of the fiscal shock on the labor market. What 
is new about this study is that the author used the results of the DSGE models with 
fiscal shock to then use the predicted “signs” as constraints on the identification of 
fiscal shocks in a model SVAR. In particular, the author proposes an RBC model 
with the fiscal sector in line with Finn (1998) and an alternative NEK model to find 
the effect of the fiscal shock on macroeconomic variables. The result of this is that, 
in both models, output and the fiscal deficit increase in the face of a positive shock 
of public consumption. This result is used by the author to identify the fiscal shock 
in his/her SVAR model. The empirical result of this econometric model is that real 
wages and employment respond positively (and significantly) to public consumption 
shock. One conclusion that emerges from this research is that the empirical evidence 
on the (positive) response of the real wage is not captured by the RBC model (which 
predicts a reduction in the real wage), but by the NEK model. 

[B] Theoretical Models Ramey (2016) suggests that the existing literature on 
public spending has usually sought to answer two main questions: (1) Do the 
theoretical DSGE models (RBC and NEK) capture the stylized facts of fiscal policy? 
(2) What are the fiscal multipliers? In this section we are going to focus on the first 
question and, in particular, on how RBC models have tried to capture the empirical 
evidence of fiscal variables.13 

12 It is assumed that the announcement of the fiscal shock is made today but its implementation is 
within a year. 
13 To see a detailed review of the literature on fiscal multipliers, see Ramey (2011, 2016).
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Before describing some RBC models that include the government sector, it is 
important to mention that usually the variables that describe public spending have 
been introduced in RBC models as shocks. This is because the question that has 
been sought to be answered in these investigations is about what are the impacts of 
government spending on output volatility. Under this premise, government spending 
has been modeled as an exogenous stochastic process, usually AR(1), like the shock 
of productivity. It is in this scenario where the RBC models have served as a 
theoretical framework to evaluate different fiscal policies (government spending). 
However, as Stadler (1994) points out, given the assumptions of the RBC models 
(representative agent and absence of nominal and real frictions), it has been difficult 
for these models to stand as a “conceptually complete framework” for the analysis 
of fiscal policies. 

In addition to the above, King and Rebelo (2000) indicate that another dis-
advantage of considering public spending as a shock in RBC models is that the 
model cannot replicate the comovements of macroeconomic variables. For example, 
when it is considered that the only shock of the model is public spending, financed 
by lump-sum taxes, it is obtained that consumption is countercyclical, which is 
inconsistent with the data. This is because the negative wealth effect produced by 
public spending induces the family to reduce its consumption, but encourages it to 
increase the hours worked and, therefore, the aggregate product. That is, an increase 
in public spending financed with lump-sum taxes (in the current period or in the 
future) reduces the wealth of families due to the present (or expected) increase in 
taxes, which ultimately encourages families to reduce their consumption. 

Hall and Mishkin (1980) and Barro (1981, 1987) analyzed the impact of 
government consumption on output, employment, and the real interest rate. In both 
cases the authors used the standard neoclassical growth model. Four conclusions 
can be drawn from these studies: first, a temporary or persistent increase in public 
consumption should increase output and hours worked. The second is that Hall and 
Mishkin (1980) suggests that the effects on employment and output of a temporary 
increase in public consumption are greater when it is temporary than when it is 
permanent. The third conclusion is that the fiscal multiplier (of public consumption) 
is less than one (in steady state); that is, .ΔY/ΔG < 1. The fourth conclusion is 
that the interest rate reacts differently depending on whether the change in public 
consumption is temporary or permanent. In the first case (temporary change), the 
interest rate responds positively, while in the second case (permanent) it practically 
does not change (Barro 1981, 1987). 

These findings were contrasted by Aiyagari et al. (1992), who used a standard 
modified neoclassical growth model that included a variable labor supply and a 
government sector, that is, an RBC model with the public sector. In addition, the 
authors made two main assumptions: the first is that government consumption is 
financed by lump-sum taxes, and the second is that the utility function is additively 
separable in public and private consumption. Under all these assumptions, the model 
provides four conclusions. The first is that similar to Hall and Mishkin (1980) and 
Barro (1981, 1987), output and employment respond positively to the increase in 
public consumption. The second is that a persistent change in public consumption
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has stronger effects on employment and output than a temporary change. This 
clearly contradicts what was suggested by Hall and Mishkin (1980). 

The third conclusion is that the fiscal multiplier (of public consumption) is 
greater than one (in steady state) if the change in public consumption is permanent; 
that is, .ΔY/ΔG > 1 (if .ΔG is permanent). The fourth conclusion is that the 
interest rate reacts positively regardless of the persistence of the change in public 
consumption. However, the persistence of the latter determines the magnitude of 
the interest rate response: the greater the persistence, the greater the interest rate 
response. 

Baxter and King (1993) address three relevant questions in fiscal policy: what are 
the macroeconomic effects of temporary/permanent government purchases? How 
do the effects of government purchases change under different financing decisions? 
And what are the macroeconomic effects if government purchases increase the stock 
of public capital? To answer these questions, the authors introduce fiscal variables 
in families and companies in the theoretical framework of a standard RBC model. 
In the case of households, it is assumed that government spending and the stock of 
public capital provide utility, but do not affect marginal utility. On the other hand, 
in the case of companies, it is assumed that the stock of public capital is a factor of 
production and that it does affect the productivity of the factors of production (stock 
of private capital and labor). Likewise, it is considered that, like the stock of private 
capital, public capital follows a law of movement of capital accumulation. This law 
considers the same depreciation rate of private capital and the way to increase public 
capital is through government investment. 

The main results of the model can be summarized in three groups. The first 
contains the impacts of the increase in government purchases. In this case, the 
model predicts that output will respond positively to a temporary or permanent shock 
from government purchases. In contrast, consumption in both scenarios contracts, 
resulting in a negative correlation between GDP and consumption. This result is not 
consistent with what is observed in the data. On the other hand, real wages contract 
and work increases regardless of the persistence of the fiscal shock (temporary or 
permanent). The real wage contraction clearly differs from the empirical evidence. 

The second group of results is about how the decision or the form of financing of 
the government could change the impacts of the fiscal shock. When comparing two 
financing alternatives (lump-sum taxes vs. distortionary taxes), it is observed that 
the model predicts a reduction in output when taxes are proportional (distortionary). 
Moreover, the negative impact is not only observed in the product, but also in 
consumption, investment, and work. Therefore, the authors conclude that the form 
of financing does influence the impacts of the fiscal shock. 

The third set of results is about the effects of the public capital shock. The model 
suggests that output and labor respond positively, while consumption contracts for 
the first six years and then shows a positive response for the remaining periods until 
it returns to a steady state. 

Ludvigson (1996) studies the macroeconomic effects of government debt. The 
usual analysis of the impact of the fiscal shock is that the current increase in public
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spending (government purchases) will be financed by lump-sum taxes in the future. 
This expected increase in taxes has a negative wealth effect today, inducing families 
to reduce their consumption and savings (. = investment, in a closed economy). 
However, Ludvigson (1996) suggests that if the reduction of distortionary taxes 
(positive fiscal shock) is financed by public debt issuance, then the said fiscal shock 
could induce an increase in consumption and investment. The rationale behind this 
result is that families see a current reduction in taxes, but expect them to increase in 
the future to pay today’s public debt. This expected increase in the tax rate reduces 
the future interest rate. This is because the tax rate affects the demand for capital 
(because it is proportional to income). Given this interest rate reduction, families 
increase their consumption/investment today due to the substitution effect, which 
reinforces the initial increase due to the tax reduction today. 

In addition, Ludvigson (1996) points out that this effect on consumption and 
investment depends on the elasticity of the labor supply and the degree of persistence 
of public debt. This is so true that as the labor supply tends to be more elastic and 
public debt tends to be more persistent, the response of consumption to debt issuance 
is strengthened. 

Finn (1998), unlike previous research, separates public spending into two 
components: purchase of final goods and labor compensation (from the public 
sector). Previous investigations have focused their analysis on the first component; 
however, labor compensation has a relevant participation in public spending (59% 
on average between 1950.1 and 1993.4). In addition, as Finn (1998) points out, 
theoretically the shock to the purchase of public sector goods has different effects 
on the business cycle than the shock to public labor compensation. Under these 
premises, the author develops an RBC model, from which a main result emerges: 
government spending is not an important source of economic fluctuations. This is 
observed when evaluating the model with only a productivity shock compared to 
the model that, in addition to the productivity shock, contains the fiscal shock. In  
particular, the simulation indicates that the fiscal shock adds 0.02% to the standard 
deviation of output. 

Fatás and Mihov (2001) use an RBC model with a government sector similar to 
that of Ludvigson (1996). The objective of these authors is to assess whether the 
RBC model, under different fiscal scenarios, could capture the positive correlation 
between GDP and consumption in the presence of public spending shock, as  
suggested by empirical evidence. For this, the authors evaluate the model in four 
scenarios: (1) increase in public spending financed by taxes (lump sum), (2) increase 
in public spending financed by taxes (distorting), (3) reduction of the tax (distorting) 
financed by debt, and (4) increase in public spending financed by debt. 

Under these scenarios, at least two results are important to mention: the first is 
that in the four fiscal scenarios of consumption contracts, this reveals the difficulty of 
the model in capturing the observed behavior of consumption in the face of a fiscal 
shock. The second result is that output increases in all cases, except when public 
spending is financed by distortionary taxes, which captures to a certain degree what 
is suggested by the empirical evidence.
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Table 1.7 describes chronologically some research on the empirical evidence of 
fiscal variables and their effects on macroeconomic variables. Likewise, Table 1.8 
shows the evolution of the different RBC models that have included the government 
sector to try to capture the empirical evidence mentioned in Table 1.7. 

1.3.2.4 Research Associated with Money 

In this section, two sets of investigations are described. The first set refers to 
empirical research, which suggests that the shock of monetary policy has effects 
on output and price. The second set summarizes the different RBC models that have 
tried to capture this observed behavior in the data. One conclusion that emerges from 
all this research is that the RBC model needs other assumptions, such as nominal 
and real frictions, to capture the effects of the monetary shock on real variables. 

[A] Empirical Evidence In the existing literature there is a vast body of research 
suggesting that the monetary shock (or monetary policy shock) has output and 
price effects (Friedman and Schwartz 1963; Romer and Romer 1989; Bernanke and 
Blinder 1992; Shapiro 1994; Leeper 1997; Christiano and Fitzgerald 1999; Faust 
and Henderson 2004; Bernanke et al. 2005; Smets and Wouters 2007; Coibion 2012; 
Ahmadi and Uhlig 2015). It is generally a consensus in the empirical literature that 
a contractionary monetary policy shock (reduction in the growth rate of the money 
supply) has (important) negative effects on output. In the case of the price response, 
the literature is not conclusive. What is expected is that in the face of a contractive 
monetary policy shock, the price will fall (due to a reduction in demand); however, 
what is observed, in some specifications,14 is that in the short run the price increases. 
Eichenbaum (1992) called this empirical fact “the price puzzle” (Price Puzzle). 

On the other hand, Christiano and Eichenbaum (1992a,b) indicate that a positive 
monetary shock (increase in the growth rate of the money supply) reduces the 
interest rate, but increases output, employment, and money—actual salary. 

In addition to the above, Christiano and Fitzgerald (1999) highlight two impor-
tant issues: the first refers to the identification of the shock of monetary policy 
and the second to the evaluation of the model that seeks to capture the empirical 
evidence. 

Regarding the first, it is important to differentiate between two components of 
the monetary policy actions: the first component is the response to nonmonetary 
behaviors in the economy, and the second is the monetary shock itself. This 
separation is important because before building any DSGE model (with money) 
it is necessary to know how the economy reacts after a monetary shock. To identify 
the monetary shock, the existing literature suggests three strategies. The first is to

14 For example, Christiano and Fitzgerald (1999) under their econometric specification (SVAR) 
find the price increases (price puzzle), but with small magnitude. In contrast, Smets and Wouters 
(2007), under an estimated DSGE, finds that the price decreases (absence of the price puzzle). 
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assume that the monetary authority responds to the state of the economy through 
a feedback rule, and all those monetary policy movements that do not follow this 
rule are classified as shock monetary. RBC models with a monetary sector usually 
follow this way of identifying the monetary shock. The second strategy is to search 
the data for any sign of exogenous monetary policy. The third is to identify the shock 
of monetary policy by assuming that this shock does not affect economic activity in 
the long run. 

The second important issue is the evaluation of the models. Unlike the usual 
way of evaluating RBC models, in which the statistics of the theoretical model 
are compared with those observed in the data, in this case the impulse-response 
functions observed in the data are compared with what is obtained from the model. 
This allows discriminating which models (and under which assumptions) are closer 
to reality. 

[B] Theoretical Models Cooper (1998) points out that any model that includes 
monetary policy faces two dilemmas. The first dilemma is that the model must have 
the capacity to generate a demand for money. The second is that the model must 
consider a source of non-neutrality (real effects of money). Although RBC models 
have tried to include these two elements to capture the real effects of the monetary 
shock observed in the empirical evidence, the result is that these models predict such 
an effect to be small (which is inconsistent with the data). This represents a major 
limitation of RBC models, which has been overcome by New Keynesian Economics 
(NEK) models. The NEK models manage to obtain the influence of money in 
the short term and its effects on the business cycle under two main assumptions: 
monopolistic competition (real friction) and price stickiness (nominal friction). 

In this section, the theoretical investigations (RBC models with money) are 
categorized, according to the way in which each of them has modeled the demand 
for money. Under this premise, in the existing literature it can be distinguished that 
RBC models have usually considered three ways of obtaining a demand for money: 
cash in advance constraint, real balances in the utility function, and liquidity effects. 
The first form indicates that money is required to buy goods, the second indicates 
that real balances provide direct utility to the consumer, and the third indicates that 
the money may be required to save transaction costs associated with the purchase of 
goods. This section describes the first two ways to obtain a demand for money. 

[B1] Cash in Advance Constraint The theoretical foundation of the cash in 
advance constraint was developed by Lucas and Stokey (1983, 1987) and Svensson 
(1985). Likewise, the empirical application has been developed by various authors 
including Eichenbaum and Singleton (1986), Cooley and Hansen (1989, 1991, 
1992), Greenwood and Huffman (1987), and Christiano (1991). In this section, 
two such investigations are described: that of Eichenbaum and Singleton (1986) 
and that of Cooley and Hansen (1989). This is because the first investigation was 
an initial effort to assess whether RBC models with money have the ability to 
capture empirical evidence. The second investigation is chosen because it represents
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a significant contribution to the study of money within the framework of RBC 
models. 

Eichenbaum and Singleton (1986) assessed whether monetary policy shocks 
were important in determining economic activity during the post-World War II 
period. For this, they were based on two models: the first is a monetary model; that 
is, a constraint of cash in advance is considered to determine the demand for money 
and a monetary rule is devised to represent the supply of money. The second is an 
RBC (no money market) model. It is worth mentioning that both models are similar 
in the representation of the agents (family and company) and in the consideration 
of the parameters. The only difference is the monetary component. Likewise, both 
models consider the two main assumptions of Long and Plosser (1983), logarithmic 
utility and total depreciation, but under the assumption that work is fixed. The 
main result is that the equilibrium expressions are similar in both models, which 
suggests that money does not play a role in explaining the cycles. Furthermore, 
under a bivariate VAR (money and output growth) formulation, the authors find that 
an exogenous monetary shock is not an important source of output variation in the 
postwar period (1949–1983). 

Although the work of Eichenbaum and Singleton (1986) is important in showing 
the weak influence of money in RBC models to explain cycles, these authors did not 
follow the standard evaluation of RBC models: comparing the theoretical moments 
(produced by the model) with the empirical moments (produced by the data), but 
instead relied on a VAR model and Granger causality. 

Unlike them, Cooley and Hansen (1989) follow the standard RBC model 
evaluation process. In particular, these authors add to Hansen (1985) model the 
money market similar to Eichenbaum and Singleton (1986). In this model, the 
main mechanism for transmitting money is the inflation tax; that is, an increase in 
money (monetary supply) produces inflation and this behaves like a tax by reducing 
the purchasing power of consumers, which ultimately affects their consumption 
and investment and their work/leisure decisions; in other words, it affects the real 
variables. The main result of the model is that the characteristics of the cycles of an 
economy with high inflation are similar to those of an economy with low inflation. 
Money does not play a relevant role in explaining business cycles. 

[B2] Real Balances in the Utility Function Farmer (1997) developed an RBC 
model where the way to obtain the demand for money is by assuming that real 
balances provide utility to families (utility function with real balances). In addition, 
another of the main differences of this model, compared to the RBC models that 
have considered money, is that the utility function does not follow the standard form 
of temporal separability.15 This is because the author seeks to capture two observed 

15 The utility function proposed by Farmer (1997) is:  

.U(C,M/P,L) = (F1(C,M/P ))1−ρ

1 − ρ
− (F2(C,M/P ))1−ρV (L).
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effects of money. On the one hand, the marginal utility of money is small (direct 
effect); on the other hand, the complementarity of money with other commodities 
(consumption and labor supply) is high (indirect effect). 

One of the main implications of this type of utility function is that in steady-state 
equilibrium not only can there be a unique solution, but that for a set of values of the 
parameters, the solution is indeterminate. That is, near the path of balanced growth, 
there is a continuum of rational expectations equilibria.16 The author emphasizes 
that the indeterminacy of the steady-state equilibrium allows the model to capture 
the main dynamic characteristics of the data in the United States. 

1.3.2.5 Research Associated with Investment Shock 

One of the main criticisms of RBC models is that their ability to replicate the 
stylized facts of business cycles rests on the fact that the productivity shock must 
be significant and persistent, which is not supported by empirical evidence. Given 
this, various authors have studied alternative shocks that would have the potential 
to explain business cycles. Among them, the main one is the specific technological 
change to the investment. This stock indicates that more units of capital could be 
produced with one unit of investment due to the existence of a specific investment 
technology. This is different from the orthodox approach which indicates that with 
one unit of investment one unit of new capital is produced, which can be observed 
in the equation of movement of capital. 

One of the first efforts to consider investment fluctuations as a possible source 
of business cycles was made by Greenwood, Hercowitz, and Huffman in 1988. 
Unlike standard RBC models, these authors introduced an investment shock. ón, 
which reflects the Keynesian view of investment fluctuations, which are important 
in explaining the cycle. In this model, the transmission mechanism is the variable 
capital utilization rate. The simulation results of this model indicate that the shock to 
investment and the transmission mechanism mentioned may be important elements 
in the explanation of business cycles. 

In the 1990s, Greenwood, Hercowitz, and Krusell produced two complementary 
investigations on the role of investment-specific technological change. The first was 
published in 1997 and focused on the long-term effects of this type of technological 
change. The main conclusion of this research was that this technological change 
explains about 60% of the growth of output per man-hour after World War II. 
In addition, in this research, these authors showed empirical evidence about the 
existence of this shock. In particular, these authors observed two behaviors in the 
data: the first is that in the long term, the relative price of equipment has decreased 
significantly while the investment in equipment/gross national product (GNP) ratio

16 The case that Farmer studies is a set of equilibria in a steady state (indeterminacy), but all of 
them are stable, in contrast, for example, to the Ramsey model where there are two steady-state 
equilibria, but only one is stable. 
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has increased. The second behavior is that in the short term there is a negative 
correlation between the price of the equipment and the investment in equipment or 
GNP. The first observation suggests that investment-specific technological change 
could be a source of economic growth, while the second suggests that such 
technological change could be a source of economic fluctuation. 

The second investigation was published in 2000 and its study focus was the short-
term effects of the same type of technological change. In this research, the authors 
used the same RBC model from 1997 with some modifications. One of them is 
that the equipment utilization rate is endogenous and has an important role in the 
transmission of shocks in the short term. The main conclusion of this research is 
that the shock specific to investment explains around 30% of the variability of the 
gross national product. The authors indicate that this result is significant since the 
investment in the new equipment is only 7%. 

In line with the above, various investigations have highlighted the importance of 
investment-specific technological change in explaining the economic cycle (Fisher 
2006; Smets and Wouters 2007; Justiniano and Primiceri 2008). However, when this 
shock is introduced into the DSGE models, it is found that it produces a negative 
correlation between consumption and investment, which is contrary to the data 
(Guerrieri et al. 2010). This represents the main weakness of this type of shock 
and is one of the main challenges of DSGE models. 

1.4 Theoretical Foundations of RBC Models 

This section describes the main assumptions of RBCmodels and the steps to develop 
such a model. 

1.4.1 Main Assumptions 

General assumptions. These assumptions focus essentially on the type of economy, 
the type of market, and the agents that participate in the model. 

• Usually, RBC models assume a closed economy, which implies that investment 
is equal to saving. However, several authors have extended the model to the open 
economy (Mendoza 1991, 1995). 

• The markets for factors and final goods are perfectly competitive. However, 
Rotemberg and Woodford (1993) evaluated the implications of the RBC model 
under the assumption of monopolistic competition in the goods market. 

• Two types of agents are assumed: families and firms. When considering the gov-
ernment, it is considered through its budget constraint. Likewise, the monetary 
authority is expressed by its budgetary restriction and by a monetary policy rule.
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• The only source of uncertainty comes from the supply side (shock of productiv-
ity). 

• The only good produced is used for consumption and investment. 

Representative Agent It is assumed that all families in the economy are identical 
and that they can be represented by a typical family. Similarly, it is assumed that 
there is a representative company. This way of simplifying the economy avoids 
aggregation problems. 

Optimization It is assumed that the representative family and firm optimize an 
explicit objective function subject to resource and technology constraints, respec-
tively. 

Impulse and Transmission Mechanisms Based on Frisch (1933) and Slutsky (1937), 
RBC models differentiate two types of mechanisms: impulse and propagation. 

• The drive mechanism causes a variable to deviate from its steady state. 
• The propagation mechanism amplifies the effects of the impulse shock on the 

endogenous variables. It makes these variables deviate from their steady-state 
values. 

The main drive mechanism in RBC models is the shock to productivity and the 
main propagation mechanism is the elasticity of substitution of leisure. In the RBC 
literature at least four types of propagation mechanisms can be observed: 

• Smoothing of consumption: a temporary (positive) shock on the economy 
would strongly affect savings. In a closed economy, investment is equal to saving; 
therefore, the investment will increase allowing a greater stock of capital in the 
following period. Given his/her participation in the production function, he/she 
would raise output in the said period (weak mechanism). 

• Investment lags: a shock today can affect investment in the future (Kydland and 
Prescott 1982) increasing future output (most used mechanism). 

• Intertemporal elasticity of substitution: a change in wages increases the 
amount of work supplied, and the effect on output is positive (most used 
mechanism). 

• Accumulation of inventories: firms accumulate inventories to face unexpected 
variations in demand (mechanism not consistent with empirical evidence). 

Rational Expectations It is assumed that the agents present in the economy have 
rational expectations in order to overcome the “Lucas critique.” 

General Equilibrium The RBC theory maintains the Walras approach (general 
equilibrium) in a context of perfect competition (flexible prices) where agents 
are price takers and there is a continuum of market equilibriums, symmetric 
information, complete markets, and absence of friction. 

Dynamic Consider an intertemporal analysis, where the decisions of the agents are 
made intertemporally.
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Fig. 1.16 Steps to develop an RBC model 

1.4.2 Steps to Develop an RBC Model 

In this section, the steps or stages that must be followed in the development of an 
RBC model and in general in any DSGE model are described in a practical way. 
Figure 1.16 outlines the 11 steps. 

[1] Build the Model In this stage the main assumptions of the model are defined, 
which include at least [a] the type of economy (open or closed), [b] agents in the 
economy (family, companies, government, and monetary authority), [c] the rules of 
behavior of each agent (objective function of maximization and the restrictions), 
[d] assumptions about the market of factors and goods (perfect competition or 
monopoly competition or some combination of both), and [e] the type of shock 
(productivity, fiscal, monetary, and international interest rate, among others). 

[2] Find First-Order Conditions, Equilibrium, and Shock In this stage we 
proceed to solve the optimization problem of each agent. For example, the family 
usually maximizes its expected, discounted utility function, subject to its budget 
constraint. Solving this optimization problem gives Euler’s equation and the job 
offer. In the same way we proceed with the company, which maximizes its 
profit function subject to the available technology (production function). From this 
optimization, the demand for labor and capital is obtained. In addition to these 
equations, it is necessary to explicitly indicate the market equilibrium equations. For 
example, it is usual to consider the equilibrium in the goods market (.ct + it = yt ). 
Finally, the behavior of the shock must also be made explicit; that is, indicate if it 
has an AR(1) behavior. This entire set of equations represents a nonlinear system. It 
is important to mention that the number of equations must be equal to the number 
of variables for the system to be well defined. 

[3] Calibration Here a value is assigned to each parameter. If the model is fully 
calibrated, then all parameters have an assigned value based on other investigations.
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At this stage, in a practical way, a list of the parameters with their assigned 
values and the investigations from which these values have been extracted could 
be drawn up. 

[4] Find the Steady State To find the steady state it is necessary to take the 
system of equations from the second stage. To this system all temporality is 
eliminated; that is, in all the equations the following change of variable is made: 
.xt = xt+1 = xss , where . xss represents the steady-state value of the variable “x.” 
Likewise, the expectations operator is eliminated in those equations where it is 
present. For example, when considering Euler’s equation .c−1

t = βEtc
−1
t+1Rt+1. In a  

steady state, expectations are eliminated, leaving .c−1
t = βc−1

t+1Rt+1, and if we also 
apply the previous principle of eliminating temporality, Euler’s equation in steady 
state would be .c−1

ss = βc−1
ss Rss . The objective of this stage is to find the steady-state 

value of each variable in the system . xss depending on the set of parameters, which 
have been previously calibrated. For example, from the Euler equation in steady 
state it follows that the real interest rate in steady state depends on the discount 
factor .Rss = 1

β
. 

[5] Log-Linearize the Model The nonlinear system of equations described in 
the second stage requires to be linearized to apply the mathematical methods of 
solving the system of linear equations. In general terms, linearization consists of 
approximating a nonlinear equation by means of the Taylor expansion of the first 
order. At this stage, the model can be linearized considering the variables in levels or 
considering the variables in logarithms. The latter is called log-linearization. In both 
cases, the linearization is performed around the stationary state of each variable. 

[6] Solution of the Linear System The solution of the linear system consists 
in finding the functions of policies, that is, the control variables as a function of 
the state variables and exogenous variables. In the existing literature, there are 
several ways to solve the system of stochastic difference equations. DeJong and 
Dave (2011) suggest that at least four methods are usual: the Blanchard and Kahn 
(1980) method, the Sims (2002) method, the Klein (2000) method, and the Uhlig 
(1999) method of undetermined coefficients. To find the solution of the system, 
a software such as Matlab is usually used because the system of equations is 
large. In some cases, such as the Long and Plosser (1983) model, in its single-
sector version, it could have an analytical solution. The solution of the system 
is important because, based on it, the following steps will be obtained (impulse-
response function, simulation of the variables, cyclical component of each variable, 
and the theoretical moments). 

[7] Find the Impulse-Response Function In this stage, the impulse-response 
function of each variable of the model is calculated before the shock previously 
defined in the model. Three elements must be observed in the response of each 
variable: the magnitude, the sign, and the number of periods that the variable takes to 
return to its stationary state. This is important because the impulse-response function 
of the model is usually compared with what is observed in the data. To obtain the
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impulse-response function, each variable is expressed in its ARMA(p,q) time series 
form. For this, the solution of each variable obtained in the previous stage is used. 

[8] Simulate the Endogenous Variables By having each variable expressed in its 
ARMA(p,q) form, it allows simulations of each variable to be carried out assuming 
that the error of the shock equation is a series with a normal distribution with 
mean zero and constant variance. Usually, the number of periods considered in the 
simulation is the same as that available in the data. For example, if the available 
sample with which the empirical moments are calculated includes 120 quarterly 
data, then this same number is considered for the simulation of the series in the 
model. Another aspect is the number of times the series will be simulated. In the 
existing literature, it is not clear the number of times that should be simulated; 
however, a number close to 100 could be considered. For example, Hansen (1985) 
simulated the series 100 times as did Cooley and Prescott (1995, Ch. 1), while 
Cooley and Hansen (1989) used 50 simulations. 

[9] Find the Cyclical Component In stages 7 and 8 the variables have been 
considered in levels; that is, each variable contains its trend and cyclical component. 
However, in order to assess whether the RBC model has the capacity to replicate 
the stylized facts of the economic cycle, the cyclical component of each variable 
must be extracted, and then its theoretical moments must be calculated. In the 
existing literature there are several methods to extract the cyclical component of 
the variables. The most widely used in the RBC school is the Hodrick and Prescott 
(1981) filter. 

[10] Find the Theoretical Moments In this stage, the theoretical moments of 
the cyclical component of each variable are calculated. Usually these theoretical 
moments are four: standard deviation, autocorrelation, correlation with GDP, and 
dynamic correlations. 

[11] Compare the Theoretical Moments with the Empirical Ones Here the 
theoretical moments provided by the model are compared with those found in the 
data. The objective of this stage is to evaluate if the model is capable of capturing 
the stylized facts of the economy. 

1.5 Codes 

Table 1.9 indicates the code used in this chapter. 

Table 1.9 Codes in Matlab and Dynare 

Codes Description 

Aggregate_stylized_facts.m This m-file plots the macroeconomic variables in levels and finds 
the cyclical component using the HP filter. In addition, it 
calculates the statistics of the cyclical component. 



Chapter 2 
Dynare Foundations: Solving 
and Simulating DSGE Models 

2.1 Introduction 

DSGE models can be summarized in a set of nonlinear difference equations. This 
system requires numerical methods to approximate the solution—a tedious and 
perhaps inefficient task without a specialized computational software. 

In this context, Matlab is a software that has implemented tools for optimizing 
and solving nonlinear difference equations using a matrix approach. These charac-
teristics make this software an important candidate for the solution and simulation 
of DSGE models. However, adapting the model to the Matlab language requires to 
have an advanced level of programming in that language, which complicates the use 
of the software. 

In this scenario, many economists with a background in mathematics and 
computer science have tried to build programs based on Matlab that facilitate 
the solution of DSGE models. From these efforts, Dynare has emerged. It is a 
preprocessor that allows us to translate a DSGE model into Matlab language1 

making it easy to solve and simulate DSGE models. 
This chapter aims to understand the main Dynare commands used to perform 

each step in the building, solution, and simulation of a DSGE model. To do this, this 
chapter is divided into three parts. 

In the first part, we describe the commands to transfer the DSGE model to 
the Dynare environment. We also explain the necessary commands to solve and 
simulate the model. In the second part, we show how to use Dynare to solve a 
basic RBC model (Long and Plosser, 1983, ’s model). Finally, the codes used in this 
chapter are described in the last section. 

1 This chapter is based on the Dynare manual available on its website “www.dynare.org.” Also, on 
this webpage, you will find this toolbox ready to download and different illustrative examples. 
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Table 2.1 Files created by Dynare 

3 intermediate files created by Dynare 

filename.m filename_dynamic.m filename_static.m 

Contains [1] variable 
declarations and [2] 
calculation tasks 

Contains the equations of the dynamic 
model; that is, it considers the leads 
and lags of the variables 

Contains the long-term 
static model, i.e., the 
equations without time 

Table 2.2 Variables created by Dynare 

3 main variables (structure) created by Dynare 

M_ options_ oo_ 

Contains various model 
information. For example, 
the mod file name and  
variable names 

Contains the values of 
various options used by 
Dynare during the 
calculation 

Contains various results of the 
calculation. For example, the 
impulse-response function 
and simulations 

2.2 What Is Dynare? 

Dynare is a preprocessor and collector for Matlab routines that acts as a toolbox. 
The main objective of Dynare is to solve, simulate, and estimate different nonlinear 
models with forward looking variables, among which are the DSGE and OLG 
(overlapping generations) models. 

The main input of this toolbox is a file with the extension “.mod,” where you 
write the model and the statements that you want Dynare to execute (solve, estimate, 
etc.). To create this file, open a notepad and save it with the extension mod. In this 
context, how is Dynare invoked? After creating the .mod file “example.mod,” the 
following is placed in the Matlab prompt: 

. ⪢ dynare example 

The command dynare starts the preprocessor2 (Dynare) on the .mod file and 
executes the instructions included in this file (“example.mod”). For instance, 
considering a generic name for the .mod file “filename.mod,” the preprocessor 
creates three intermediate files shown in Table 2.1. 

Dynare will perform the calculation tasks by executing the file “filename.m.” 
Furthermore, Dynare will provide many results, of which three are main 
variables shown in the Matlab workspace (see Table 2.2). Dynare saves these 
three variables in the current working folder (current folder) with the name: 
“filename_results.mat.” 

Figure 2.1 shows how Dynare works with Matlab. We first write down our DSGE 
model on a mod file very similar to what we have in our notebook. Then, Dynare will 
transform the .mod file in Matlab language, creating three m-files that all contain a 
different version of the model. Now Matlab plays a key role. It uses, for instance, the

2 A preprocessor is a program that processes input data (the mod file) to produce output used as 
input in another program, such as Matlab. 
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Fig. 2.1 Dynare as a Matlab preprocessor 

m-file example.m to solve the model. As a result, three main variables are created: 
M_, oo_, and options_. We then use these variables to analyze the model, such as 
plotting the impulse-response functions using the oo_ variable. 

2.3 Structure of .mod File 

The file that contains the model (.mod), which Dynare will use, has a structure of 
six main blocks (Fig. 2.2). The first block is the preamble, in which the endogenous 
and exogenous variables and the model parameters are specified. The second is the 
model itself. The equations are written in this block in a nonlinear or linear (or 
log-linear) fashion. The third is the specification of the initial values, which define 
the starting point for Dynare to calculate the system’s steady state. The fourth is 
the calculation of the steady state. The fifth corresponds to the definition of the 
variance or standard deviation of the shocks; finally, the sixth block contains the 
calculation of the model solution, the simulations, the calculation of the moments, 
and the construction of the impulse-response functions.3 

It is important to mention that in addition to these six blocks, other commands 
can be added depending on the required tasks; for example, if we want to do a 
sensitivity analysis of the parameters, we can add commands that perform this task. 
The six blocks mentioned above are the fundamental parts every mod file must have. 

2.3.1 The Preamble 

The variables (endogenous and exogenous) and the parameters (and their values) 
are specified in the preamble. Three commands will tell Dynare which variables

3 The fact that Dynare is a preprocessor implies that the statements in the mod file are “translated” 
into the Matlab language; however, it is not a m.file, and therefore we cannot execute it in parts. 
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Fig. 2.2 Structure of the 
.mod file 

Table 2.3 Examples of declaration of endogenous variables 

Example 1 Example 2 Example 3 

var var var 

y y $y_t$ y $y_t$ (long_name . = ‘Output’) 

c c $c_t$ c $c_t$ (long_name . = ‘Consumption’) 

k; k $k_t$; k $k_t$ (long_name . = ‘Capital’); 

are from the model and which are the parameters: variables (var and varexo) and 
parameters (parameters). 

Declaration of endogenous variables 

var variable_name1 $latex_name1$ (long_name= ‘name’); 

The var command declares endogenous variables and has three components: 
The first refers to the variable name that will be used throughout the .mod file 
(variable_name1); the second indicates the name that this variable will take 
in the LATEX file ($latex_name1$); and the third is an option (which has to be in 
parentheses) that allows you to write the long name of the variable (long_name= 
‘name’). Table 2.3 illustrates the use of this code.
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Table 2.4 Endogenous variable declaration examples 

Example 1 Example 2 Example 3 

varexo e varexo e $e_t$ varexo e $e_t$ (long_name . = ‘productivity shock’) 

Declaration of exogenous variables 

varexo variable_name1 $latex_name1$ (long_name= 
‘name’); 

The command varexo declares exogenous variables (shocks) and, in the same way 
as endogenous variables, has three components: The first refers to the name of the 
variable that will be used throughout the .mod file ( variable_name1); the sec-
ond indicates the name that this variable will take in the LATEX file ($latex_name1$); 
and the third is an option (which has to be in parentheses) that allows you to write 
the long name of the variable (long_name= ‘name’). 

It is worth mentioning that in a stochastic model, productivity (. at ) usually has an 
autoregressive behavior in the following form: 

. at+1 = ρat + ϵt

where . ϵt is the stochastic component with a normal distribution with zero mean 
and constant variance. To Dynare, . at is an endogenous variable, and since . ϵt is 
white noise, it is considered an exogenous variable. Therefore, under the commands 
declared in code 2, this exogenous variable could be written to Dynare in three ways 
(see Table 2.4). 

Parameters 

parameters parameter_name1 $latex_name1$ (long_name= 
‘name1’) 

parameter_name2 $latex_name2$ (long_name= ‘name2’); 

The parameters command declares the parameters to be used in the model. Not only 
those referring to the behavior equations (functions) of the agents (for instance, the 
utility function) but also the initial values, which are usually the steady state values, 
and the parameters associated with the shocks. In addition, in this block, the values 
corresponding to each parameter must be assigned (calibration). Table 2.5 describes 
three examples of the declaration of parameters and the assignment of their values.
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Table 2.5 Parameter declaration examples 

Example 1 Example 2 Example 3 

Parameters Parameters Parameters 

beta beta $ . \ beta$ beta $ . \ beta$ (long_name . = ‘Frisch elasticity’) 

delta; delta $ . \ delta$; delta $ . \ delta$ (long_name . = ‘Depreciation’); 

beta=0.99; beta=0.99; beta=0.99; 

delta=0.22; delta=0.99; delta=0.99; 

2.3.2 The Model 

The model (a system of nonlinear equations) is declared in Dynare by means of the 
block model;. . . end;. 

Model Statement 

model(options); equation1; equation2;...;equationN; 
end; 

This block details the main equations of the model. You can write the (nonlinear) 
model in Dynare as it is on the paper and to do so, enter the equations in the 
environment model;.− − − end; 

Code 

model; 

equation1; 

equation2; 

. . .  

equationN; 

end; 

It must be taken into account that the number of equations must be equal to 
the number of endogenous variables. If the model that is written in Dynare is 
linearized (either with variables in levels or variables in logarithms), then it is 
written: model(linear) (Fig. 2.3).
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Fig. 2.3 Nonlinear and linear models 

2.3.3 Initials Values 

Within this block, the initial values of each of the endogenous variables are placed, 
which are generally the steady state values calculated by the user. These values 
are used by Dynare as a starting point for the calculation of the steady state. It is 
important to mention that when the model is in log-linear form, the steady state 
values of the variables (in log deviations) are equal to zero; therefore, the initial 
values are equal to zero, too. 

Declaration of initial values 

initval; 

variable_name1 = value1; 
. 
. 
. 
variable_nameN = valueN; 

end; 

Table 2.6 describes two examples of initial values. 
Note that the variable ch is equal to “.lnct − lncss”; that is, it is the deviation of 

the variable in logarithm with respect to its steady state, which, by construction, in 
steady state is equal to zero. 

The initial values are what Dynare will use in the “filename_static.mod” to 
calculate the steady state. Dynare needs a starting point for this calculation because 
the solution method is successive approximations (Newton’s method).
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Table 2.6 Initial values (nonlinear and linear model) 

Code Example (nonlinear) Example (log-linear) 

initval; initval; initval; 

variable_name1 = value1; c = 0.5; ch = 0  

variable_name2 = value2; k = 0.1; kh = 0  

. . . . . . . . .  

variable_nameN = valueN; y = 0.8; yh = 0  

end; end; end; 

2.3.4 Stationary State 

Dynare has two ways of considering the steady state of the model. The first is that 
Dynare itself calculates the steady state. To do this, Dynare uses Newton’s method 
to solve nonlinear equations. The second is to provide Dynare with a Matlab file 
(m-file) containing the steady state. 

Newton’s method, also known as Newton–Raphson’s method, is a technique 
aimed at solving nonlinear equations. This technique finds the solution through 
successive iterations from a starting point. The goal of this technique is to find the 
values of the variable “x” that make the function (or equation) zero; that is, look for 
the roots of the function: 

. f (x) = 0

The technique starts with a starting point . x0 and approximates the next value of “x” 
by means: 

. x1 = x0 − f (x0)

f
'
(x0)

Generalizing−−−−−−−→ xn+1 = xn − f (xn)

f
'
(xn)

This, applied to the calculation of the steady state of the model, is obtained, for 
example, for the production function: 

. yt = atk
α
t h1−α

t

We define .f (x), where . x = [yt , at , kt , ht ]

. f (x) = yt − atk
α
t h1−α

t = 0

The goal is to find the solution; that is, the steady state (.xt = xt+1). To see greater 
detail of the method, review Kelley (2003).
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(Method 1) Using Newton’s method 

steady; 

For Dynare to calculate the steady state using Newton’s method, the command 
steady is placed after the model block. To do this, it considers the values indicated 
in the initval section as the starting point. Dynare applies Newton’s method to 
the static model (the .mod model without lags and leads) to find the steady state. 

Saving the steady state 

oo_.steady_state; 

The steady state computed by steady is stored in “oo_.steady_state.” It is worth 
mentioning that the order in which the steady state values appear is the same as the 
endogenous variables declared in section var. 

(Method 2) Using a file containing the steady state 

In this second method, there are two options:

• “Steady state” block in the .mod: In this case, each variable is defined 
according to the deep parameters. The code is: 

steady_state_model; r = 1/beta; k = delta*beta;...; 
end; 

The m-file in which Dynare will save the steady states is “Mod-
Name_steadystate2.m” where “ModName” is the name of the “.mod” file. 
This block is placed after the parameters block.

• m-file containing the “steady state”: In this case, you can build a Matlab func-
tion that calculates the steady states. This requires doing a bit more programming 
in an m-file. 

2.3.5 Dynare and LATEX 

In Dynare, there is a possibility to translate the model equations to LATEX format. To  
do this, two codes are used depending on what type of model you want to translate 
into LATEX language:
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Dynamic model in LATEX 

write_latex_dynamic_model; 

This code writes each model equation in LATEX format and saves it to a “.tex” file 
depending on the name of the “.mod” file. For example, if the mod file is named 
“campbell.mod,” the LATEX file will be “campbell_dynamic.tex,” which contains 
the list of all dynamic equations. It is worth mentioning that if the parameters and 
variables have names declared in version LATEX, the “.tex” file will use them. 

Static model in LATEX 

write_latex_static_model; 

This code allows you to save the model equations, in their static version, in 
a “.tex” file. The static version means that lags and delays have been removed 
from the equations. In the same way as the code for the dynamic model, the static 
version is stored in “campbell_static.tex” (when the model in Dynare is named 
“campbell.mod”). 

It is worth mentioning that these codes (dynamic or static equations) are written 
after the block model. 

2.3.6 Definition of Shocks 

In this block, the temporary shocks of the model are defined (shock of productivity, 
public spending, etc.). In Dynare, exogenous (shock) variables take random values 
that follow a normal distribution with zero mean and constant variance. In the .mod 
file, the variance must be specified. 

Definition of shocks 

To define the variance or standard deviation of the shock, there are two ways: 

Alternative 1 Alternative 2 

shocks; shocks; 

var variable_name = valor_variance; var variable_name; 

end; stderr valor_standard_deviation; 

end; 
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Table 2.7 Definition of 
shock 

Alternative 1 Alternative 2 

shocks; shocks; 

var e = 0.5; var e; 

end; stderr .0.51/2; 

end; 

Table 2.7 describes an example of the implementation of the shock block code. 

2.3.7 Model Evaluation: Blanchard and Kahn Conditions 

Dynare has the ability to compute the eigenvalues of the linearized model around 
the values assigned in the initval block, which are usually the steady states. In 
particular, if the number of eigenvalues with modulus greater than one is equal to 
the number of variables forward looking, then the system of linearized equations 
has a unique solution. Chapter 3 details these criteria and the solution method of 
Blanchard and Kahn (1980). 

Model Evaluation 

check; 

This command calculates the eigenvalues and stores them in the global 
variable “oo_.dr.eigval.” Dynare also has another command that provides 
various model health tests and prints a message if a problem is detected: 
model_diagnostics;. 

2.3.8 Computation of the Stochastic Solution 

Dynare uses the code stoch_simul to obtain the policy and state (transition) 
functions of the model. 

Model Simulation 

stoch_simul (options);
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This command solves the stochastic model (or rational expectations model) using 
the perturbation method.4 It is worth mentioning that in the process of solving the 
system of equations, Dynare uses the generalized Schur decomposition method 
(or QZ decomposition). What this method does is decompose a matrix into three 
multiplicative matrices: .A = QUQ−1. The Schur decomposition maintains the 
same spirit as the Jordan decomposition (see Chap. 3 for more details). 

Impulse-Response Functions (IRFs) 
All econometric or statistical exercises require to communicate results in a 
simple and transparent way. For multi-equation (and, potentially, nonlinear) 
models, reporting parameters seldom meet the above objective. This is why 
macroeconomists use impulse-response functions (IRFs). 

An impulse-response function gives us a profile of responses over a time 
horizon (say, 2 years for quarterly data) by applying an impulse or shock, 
hence its name. This function is usually a nonlinear combination of various 
parameters present in the model. 

In formal terms, let . xt be the endogenous variable of interest (for example, 
output) and . ε be the shock of interest (for example, a technological shock), 
and the IRF is defined as 

.IRFx,ε
τ = ∂xt+τ

∂εt

(2.1) 

In other words, it is the response in period . τ of applying the shock . ε in 
period t. 

As we mentioned, the IRFs are usually nonlinear expressions of the model 
parameters. Therefore, they are usually presented graphically, with the x axis 
showing the horizon of interest over which the response is to be evaluated, 
and the y axis showing the response of the endogenous variable to the shock . 

As the student will learn later, macroeconomists have a particular interest 
in having the IRFs in their DSGE model resemble the IRFs present in the 
data. This is because the IRFs deliver a very useful set of information to the 

(continued)

4 This method builds Taylor series approximations to the solution of the DSGE model around its 
deterministic steady state. This method has been used in physics and in other natural sciences; in 
economics, it was popularized by Judd and Guu (1993). It has gained popularity in economics in 
the last two decades due to three reasons:

•It is suitable. The perturbation method finds an approximate solution that is local; that is, it is 
well suited around the point where the Taylor expansion is taken.

•The result is intuitive and easily interpretable.
•Thanks to the development of software such as Dynare and Dynare.++, the perturbation 

method for higher degrees of expansion is easy to calculate and does not require familiarity with 
numerical methods. 
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econometrician. They allow us to compare the magnitude of the response of 
different variables with respect to the shocks, the persistence of the responses, 
and their direction, among other objects of interest. 

Strictly speaking, the IRFs are usually obtained by estimating the structural 
vector autoregressive (VAR) model and are sensitive to the economic or 
statistical assumptions imposed by the econometrician in order to identify 
them. Despite the above, in this book, we will take the IRF as external data that 
we are interested in replicating, postponing the discussion of its estimation. 

Within the options of stoch_simul you can ask Dynare to perform specific 
operations such as finding the impulse responses, estimating the parameters, etc. For 
example: 

stoch_simul(order=1;irf=30) 

This statement tells Dynare to linearize the system of nonlinear equations 
(written in the model block) by means of a first-order Taylor approximation, which 
is computed around the steady state (order = 1). He/she then uses those approxima-
tions to compute the impulse-response function and various descriptive statistics 
(moments, variance decomposition, correlation coefficients, and autocorrelation). 
Also, this statement tells Dynare to compute the impulse-response function with 30 
periods (irf = 30). The IRF is calculated as the difference between the trajectory of 
the variable before a shock (at .t = 1) and its steady state. Dynare plots the IRF for 
only 12 variables (Table 2.8). 

The “stoch_simul” code provides the policy and state functions (also known as 
decision rules), whose coefficients are stored in “oo_.dr” (dr is a shorthand for 
decision rules). It is worth mentioning that the policy function, in Dynare, has the 
following structure: 

Table 2.8 Options in stoch_simul 

[1] Solution of the model 

order . = integer Give the order of the Taylor approximation. Available values are 1, 2 y 
3 (default . = 2). 

Example: . stoch_simul(order = 1); 
loglinear Convert all variables to log-linear. Therefore, we have to ensure that 

the steady states are strictly positive. All results (IRF, moments, policy 
function, etc.) consider the variables to be log-linear. 

Example: . stoch_simul(loglinear); 
[2] Impulse-Response Function (IFR) 
irf . = integer Number of periods for the calculation of the IRF (default . = 40). IRFs 

are stored in “oo_.irfs”. 

Example: . stoch_simul(order = 1, irf  = 30); 
irf_shocks . = (name 
of the exogenous 

Calculates the IRF for the requested exogenous variable. It is used 
when there are multiple shocks in the model. 

variable) Example: .stoch_simul(order = 1, irf _shocks = (e)); 
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. yt = yss + Axt + But

where: . yss is the vector of the steady state of the variables:

• oo_.dr.ys: Stores the steady states . yss , whose order is similar to how the variables 
have been declared in the var block.

• oo_.dr.ghx: Stores array “A.” The rows correspond to all the endogenous 
variables (in order as listed in “oo_.dr.order_var”), while the columns correspond 
to the state variables.

• oo_.dr.ghu: Stores array “B.” The rows correspond to all the endogenous 
variables (in order as listed in “oo_.dr.order_var”), while the columns correspond 
to the exogenous variables. 

2.3.9 Simulation and HP Filter 

From the solution of the system of nonlinear equations, the time series behavior of 
each of the endogenous variables can be obtained. For example, the state function of 
capital might suggest that capital behaves like an AR(2); or from the policy function 
of the product, it can be deduced that the product behaves like an ARMA(2,1). 
The way to obtain the time series of each variable will be described in detail 
in Chaps. 3 and 4. By having the time series representation, a simulation of the 
variable can be carried out. For this, two inputs are important: the number of periods 
(months, quarters, or years) that we want to simulate the variable and the number 
of simulation times; for example, you might want to simulate the same variable 30 
times. 

To perform this simulation in Dynare, two commands are used in “stoch_simul”: 
periods and simul_replic. Both are described in Table 2.9. On the other 
hand, if you want Dynare to plot some simulated variable, you can write, after 
“stoch_simul,” the code “rplot name_variable,” and Dynare will display the plot. 

Furthermore, suppose you want to evaluate the ability of the model to capture 
the behavior of the economic cycle. In that case, it is necessary to calculate the 
theoretical moments of the cyclical component of each variable coming from 
the model. In this sense, it is necessary to apply a filter that allows the cycle 
to be separated from the trend. For this task, Dynare has the HP filter, whose 
code is: hp_filter . = integer, which is placed inside “stoch_simul.” The 
“ integer” reflects the smoothing parameter, which varies in value depending 
on the frequency (monthly, quarterly, or yearly). The choice of the parameter 
lies in the frequency in which the model parameters have been calibrated; for 
example, if all model parameters (depreciation rate, utility discount factor, etc.) have 
been calibrated quarterly, then the smoothing parameter in the HP filter should be 
quarterly. Table 2.9 describes in greater detail what was mentioned above.
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Table 2.9 Options in stoch_simul (continued) 

[3] Simulation of endogenous variables 

periods . = integer Indicates the number of periods to be used in the simulation of each 
endogenous variable (only perform one simulation). This simulation 
is saved in the global array oo_.endo_simul. Under this option, the 
empirical moments will be calculated instead of the theoretical ones. 

Example: . stoch_simul(order = 1, periods  = 300); 
simul_replic . = integer This option allows you to simulate the variables the number of times 

indicated in the “integer.” This option is always accompanied by the 
“periods” option. 

Example: 
.stoch_simul(order = 1, periods  = 300, simul_replic = 150);. 
This example indicates that the variables must be simulated 150 times 
for 300 periods each. It is worth mentioning that these simulations are 
not considered to calculate the empirical moments; also, they are 
saved in “ModName_simul.” The default value is one. 

rplot name_variable Plot the simulated variables, which are stored in “oo_.endo_simul.” 
This command is placed after “stoch_simul,” in which it is necessary 
to put periods. 

Example: stoch_simul(order = 1, periods=150); rplot c; 

[4] HP filter 
hp_filter . = integer Use the HP filter with .λ = integer (monthly:14400 ;quarterly:1600; 

yearly:100) to calculate moments. 

Example: . stoch_simul(order = 1, hp_f ilter  = 1600); 

2.3.10 Sensitivity Analysis 

It is usual to carry out a sensitivity analysis of the model, which consists in solving 
and simulating the model when a parameter value is changed. For example, it is 
useful to compare the IRFs of the model for two different values of the shock 
persistence parameter. To perform this type of task, Dynare provides an option 
via “macro” commands. This Dynare macro-language provides a set of macro 
commands, which can be inserted into the “.mod” file. The main tasks that this 
macro-language performs are: including a file in the .mod, the substitution of 
expressions, conditional structures (if), and loops (for). 

Loops (loops) are emphasized in this subsection because they help to perform 
sensitivity analysis. Table 2.10 shows a comparison of the Dynare macro-language 
and the Matlab code. Both produce the same; however, the main difference between 
them is that the vector containing the parameter values will not appear in the 
Matlab environment when we run the macro-language, while the Matlab code will 
successively replace the parameter values, displaying the last value in Matlab’s 
workspace, and save the array of parameter values. It is worth mentioning that these 
codes are written after the “stoch_simul.”
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Table 2.10 Macro-language 
vs. Matlab for sensitivity 
analysis 

Macro-language Matlab 

rhos . = [ 0.8, 0.9, 1]; rhos . = [ 0.8, 0.9, 1]; 

. @♯for i in 1:3 for i . = 1:length(rhos) 

rho = rhos(. @i); rho . = rhos(i); 

stoch_simul(order=1); stoch_simul(order. =1); 

save oo_ . = oo_; save oo_ . = oo_; 

. @♯endfor end 

Table 2.11 Four ways to write a model in Dynare 

Model (.mod) Description 

Long_Plosser_Dynare_linear_log.mod (mod1) This .mod contains the log-linear 
equations. It should be noted that the 
steady state value of each log-linear 
variable is equal to zero. 

Long_Plosser_Dynare_linear_niv.mod (mod2) This .mod contains the linear equations 
but with the variables in levels. 

Long_Plosser_Dynare_nonlinear_log.mod (mod3) This .mod contains the nonlinear 
equations and with the variables in 
logarithms. 

Long_Plosser_Dynare_nonlinear_niv.mod (mod4) This .mod contains the nonlinear 
equations and with the variables in levels. 

2.3.11 Ways to Write the Model in Dynare 

An advantage of Dynare is that the same model can be written in different forms. 
You can first write the nonlinear model and wait for Dynare to linearize it, or write 
the linearized model directly on the mod file. Second, the variable can be entered 
in levels or in logarithms. This is important because when Dynare linearizes the 
system or the user writes the linearized system, the coefficients of the policy and 
state functions will be read as elasticities. In the next section, the model of Long 
and Plosser (1983) will be used to illustrate the commands described above. To that 
end, four ways of writing this model in Dynare will be considered. The objective 
of the latter is to see the differences between them in terms of the solution, the 
impulse-response function, and the moments. 

Table 2.11 describes the four .mod files that reflect the four different ways to 
enter or write a model into Dynare. As mentioned previously, all four files contain 
the same model.
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Table 2.12 Agent optimization problem 

Households Firms 

. Max
{ct ,ht ,kt+1}∞t=0 

E0
∑∞ 

t=0 β
t
⎾
ln(ct ) + θln(1 − ht )

 ⏋

.ct + it = wtht + rt kt + πt . kt+1 = it 

. Max
{kt ,lt }∞t=0 

πt = yt − [wtht + rt kt ] 
. yt = at k

1−α 
t hα 

t 

Table 2.13 System of nonlinear equations of the model (Long and Plosser, 1983) 

Agent Equations Description 

Household . 1 
ct 

= βEt

⎾ 1 
ct+1 

rt+1
 ⏋

Euler’s equation 

.kt+1 = it Law of motion of capital 

. θ 
1−ht 

= wt 
ct 

Labor supply 

Firm .yt = at k
1−α 
t hα 

t Production function 

.rt = (1 − α) yt 
kt 

Capital demand 

.wt = α yt 
ht 

Labor demand 

Equilibrium .yt = ct + it Goods market equilibrium 

Shock .lnat = φlnat−1 + ϵt Productivity shock 

2.4 Long and Plosser (1983)’s Model: Application in Dynare 

2.4.1 Long and Plosser (1983)’s Model 

To apply the Dynare codes described above in the solution and simulation of a 
general equilibrium model, in this section the model of Long and Plosser (1983) 
will be used, which is described in detail in Chap. 3. In addition, it is necessary 
to mention that this model has two important assumptions: The first is that capital 
depreciates completely in each period, and the second is that utility is logarithmic 
in consumption and leisure. Table 2.12 describes the optimization problem for the 
household and the firm. 

In each optimization problem, first-order conditions are obtained that reflect 
the behavior of each agent. Together, these behavior rules make up a system of 
stochastic nonlinear equations, which are described in Table 2.13. 

These nonlinearities make their solution difficult. The usual way to reduce the 
complexity of this system of equations is to obtain a first-order approximation 
by means of the Taylor expansion, which is called linearization. As mentioned 
in Chap. 3, there are two ways to linearize the system of equations. The first is 
considering the variable in levels, and the second is considering the variable in 
logarithm. Table 2.14 shows the equations after linearizing the model considering 
the variables in levels, where for the case of consumption we have: .~ct = ct − css . 

On the other hand, Table 2.15 shows the linearized equations considering the 
variables in logarithms. In this approach, the change of variable, for example for 
consumption, follows the form: . ̂ct = lnct − lncss . 

Table 2.16 shows the values that the parameters of the model take, which are 
based on King et al. (2002). It is worth mentioning that these parameters have
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Table 2.14 System of linear equations of the model (Long and Plosser, 1983) 

Agent Equations Description 

Household .~ct = βEt (rss~ct+1 − css~rt+1) Equation from Euler 

.~kt+1 =~it Law of movement of capital 

.~wt = wss 
(1−hss )

~ht + θ 
1−hss

~ct Labor supply 

Firm .~yt = yss 
ass

~at + (1 − α) yss 
kss

~kt + α yss 
ass

~ht Production function 

. yss 
kss

~kt = ~yt − kss 
1−α

~rt Capital demand 

.~wt =
⎛

α 
hss

⎞

~yt −
⎛

αyss 
h2 

ss

⎞
~ht Labor demand 

Equilibrium .~yt = ~ct +~it Goods market equilibrium 

Shock .~at = φ~at−1 + ϵt Productivity shock 

Table 2.15 System of log-linear equations of the model (Long and Plosser, 1983) 

Log-linear equations Description 

.[1]  ̂ct = Et

⎾
 ̂ct+1 − ̂rt+1

 ⏋
Equation of Euler 

.[2]  ̂kt+1 = ̂it Law of movement of capital 

.[3] hss 
1−hss

 ̂ht =  ̂wt − ̂ct Labor supply 

.[4]  ̂yt =  ̂at + (1 − α) ̂kt + α ̂ht Production function 

.[5]  ̂rt =  ̂yt − ̂kt Capital demand 

.[6]  ̂wt =  ̂yt − ̂ht Labor demand 

.[7]  ̂yt = css 
yss

 ̂ct + iss 
yss

 ̂it Goods market equilibrium 

.[8]  ̂at = φ ̂at−1 + ϵt Productivity shock 

Note: To directly obtain the solution of the model with Dynare, you can use the file 
“Long_Plosser_Dynare_nolinear_log.mod” 

been obtained considering that the data is quarterly. Therefore, each period in the 
model, both in the simulation and in the impulse-response function, is understood 
as a quarter. 

Table 2.17 mentions the steady state of each variable. To calculate this long-term 
equilibrium, it is assumed that the variable is the same, regardless of the temporality; 
that is, .xt = xt+1. In this sense, all the lags and advances present in the system of 
equations that reflect the model disappear. It is in this scenario that the steady state 
for each variable is calculated, which ultimately depends on the model parameters. 
The detail of how each expression was arrived at is found in Chap. 3. 

2.4.2 Preamble 

Definition of endogenous variables Table 2.18 describes the declaration of 
endogenous variables in each of the .mod files, and four conclusions can be drawn
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Table 2.16 Calibration 

Parameter Remark 

.α = 0.667 Long-run share of labor in national income 

.θ = 3.968 Calibrated so that the steady state work is equal to 20% 

.ρ = 0.979 Shock persistence 

.β = 0.984 Discount factor 

.σe = 0.0072 Standard deviation of the productivity shock 

Table 2.17 Steady state 

Steady state (recursive form) Steady state (parametric form) 

.rss = 1 
β

. = 1 
β 

.hss = α 
θ(1−β(1−α))+α

. = α 
θ(1−β(1−α))+α 

.ass = 1 . = 1 

.kss = hss

⎾ 1 
β(1−α)

 ⏋−1/α 
. = ⎾ alpha 

θ(1−β(1−α))+α

 ⏋⎾
β(1 − α)

 ⏋1/α 

.iss = kss . = ⎾
α 

θ(1−β(1−α))+α

 ⏋⎾
β(1 − α)

 ⏋1/α 

.yss = kss

⎾ 1 
β(1−α)

 ⏋
. = ⎾

α 
θ(1−β(1−α))+α

 ⏋⎾
β(1 − α)

 ⏋ 1 
α

−1 

.css = kss

⎾ 1 
β(1−α) − 1

 ⏋
. = ⎾

α 
θ(1−β(1−α))+α

 ⏋⎾
β(1 − α)

 ⏋1/α⎾ 1 
β(1−α) − 1

 ⏋

.wss = α yss 
hss 

. = α
⎾
β(1 − α)

 ⏋ 1 
α

−1 

Note: Steady states calculation is in Long_Plosser.m (Sect. 3.2) (see Chap. 3). 

from it. The first is that in [mod1] each declared variable is the variable that appears 
in the nonlinear model. For example “c” represents the consumption in period “t.” 

The second is that in [mod2] each declared variable represents the natural 
logarithm of the variable. For example “cc” is equal to “.lnct .” It is worth mentioning 
that [mod1] and [mod2] contain the nonlinear model. The third is that in [mod3] 
each variable declared represents the deviation of the variable with respect to its 
steady state. For example, “ct” is equal to “.ct − css .” It is worth mentioning that 
“ct” is a way of representing . ~ct , as it appears in the level linearized model (see 
Table 2.14). 

In addition, a fourth conclusion is that in [mod4] each variable declared 
represents the deviation of the logarithm of the variable with respect to the logarithm 
of its steady state. For example “ch” is equal to “.lnct − lncss .” As in [mod3], “ch” 
is a way to represent .  ̂ct , as it appears in the log-linearized model (see Table 2.15). 

Also, it is important to mention that the number of declared variables is the same 
as the number of equations to write in the model block. Finally, productivity in 
Dynare is declared as an endogenous variable, and it is the shock . ϵt that is declared 
as exogenous. 

Definition of exogenous variables The only exogenous variable is the disturbance 
(error) of productivity ϵt . The way of entering it in the .mod file is similar between 
the four versions. 

varexo e $e_t$ (long_name = ’Productivity shock’);
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Table 2.18 Declaration of endogenous variables 

Nonlinear model Linear model 

Variable in levels Variable in logarithm Variable in levels Variable in logarithm 

(mod1) (mod2) (mod3) (mod4) 

var var var var 

c cc ct ch 

i ii it ih 

y yy yt yh 

k kk kt kh 

h hh ht hh 

r rr rt rh 

w ww wt wh 

a aa at ah 

; ; ; ; 

where: $e_t$ is the name that the variable will take in LATEX, 5 and (long_name = 
’Productivity shock’ ) is the “long” name that is assigned to the variable. 

Parameter definition Table 2.19 describes the parameter definition, which is 
similar in all four .mod files. It is worth mentioning that not only the parameters 
associated with the equations are indicated, such as the production function, for 
example, but also the steady state values are defined as parameters. 

After defining the parameters, it is necessary to indicate to Dynare the values of 
each one (calibration), including the steady state values. This is important because, 
in the linear model, the value of the steady state of some variables usually appears 
multiplicatively or additively and also because these steady states are placed in the 
block of initial values. Table 2.20 describes how to enter parameter values in Dynare. 
These codes are written after the parameter block and before the model block. 

Where Does Dynare Store Information About Variables and Parameters? 
Dynare, after reading the .mod file, creates a variable in Matlab’s workspace: M_,  
in which it stores model information. Under Matlab’s categorization of variables, 
this variable is a structure; that is, it can contain other variables, such as numeric 
(arrays and vectors), logical, and string (text); it may even contain another structure. 

In Fig. 2.4 it is observed that the variable M_ contains a wide set of other 
variables. This section mentions those in which Dynare saves the name of the 
variables and the parameters of the model. It is worth mentioning that since these 
Matlab variables store text (names), then under the Matlab typology, they are “string 
(char)” variables:

5 LATEX format is a free source software designed to write texts with high typographic quality. 
It is a very flexible tool due to the number of options it has, especially to include mathematical 
expressions (equations, regression tables, optimization problems) in an elegant and simple way. 
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Table 2.19 Parameter declaration 

Parameters 

theta $ \theta$ (long_name = ’weight of leisure in utility function’) 

beta $ \beta$ (long_name = ’discount factor’) 

alpha $ \alpha$ (long_name = ’labour share of national income’) 

rho $ \rho$ (long_name = ’shock persistence’) 

sigma_ee $ \sigma_e$ (long_name = ’std shock offset’) 

y_ss 

c_ss 

i_ss 

w_ss 

r_ss 

k_ss 

h_ss 

a_ss 

; 

Note: This parameter declaration belongs to Mod1 

Table 2.20 Declaration of 
parameter values 

For (mod1) to (mod4) 

h_ss=0.2; 

beta=0.984; 

alpha=0.667; 

rho=0.979; 

sigma_ee=0.0072; 

theta=alpha*(1-h_ss)/(h_ss*(1-beta*(1-alpha))); 

r_ss=1/beta; 

a_ss=1; 

k_ss=h_ss*(1/(beta*(1-alpha)))∧(-1/alpha); 

i_ss=k_ss; 

y_ss=k_ss*(1/(beta*(1-alpha))); 

c_ss=k_ss*(1/(beta*(1-alpha))-1); 

w_ss=alpha*y_ss/h_ss; 

Fig. 2.4 Structure M_. 
(Note: This structure M_ is 
obtained from the file 
“Long_Plosser_Dynare_nolinear_log.mod”)
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• Variable associated with model name: “fname” is a variable that contains the 
name of the .mod file.

• Variables associated with the exogenous variable: In this case there are three 
variables. The first is “exo_names,” which contains the name of the exogenous 
variable; the second is “exo_names_tex,” which contains the name that the 
variable will take in LATEX format; and finally “exo_names_long,” which contains 
the long names of the exogenous variables.

• Variables associated with the endogenous variable: As in the case of the 
exogenous variable, there are also three variables for the endogenous vari-
able. The first is “endo_names,” which contains the names of the endogenous 
variables; the second is “endo_names_tex,” which includes the name that the 
variables will take in LATEX format; finally, “endo_names_long” contains said 
extended names of the endogenous variables.

• Variables associated with the parameters: In this case there are four variables. 
One of them is “params,” which contains the values of the parameters (in the 
same order as they were written in the parameters block in the .mod). The 
remaining three variables are associated with the names of the parameters: The 
first is “param_names,” which contains the names of the parameters; the second 
is “param_names_tex,” which includes the name that the parameters will take in 
LATEX format; and finally “param_names_long,” which contains the long names 
of the parameters.

It is worth mentioning that to extract a variable found within the structure M_ 
it is enough to write in the Matlab Command Window: “M_.VariableName.” For 
example, if you want to extract the name of the .mod file, you would type the 
following:

⪢ M_.fname 

This will show: 

ans = 
Long_Plosser_Dynare_nonlinear_log 

It may be necessary to extract the long version of the endogenous variable names. 
In this case, the following is written in the Matlab Command Window:

⪢ M_.endo_names_long 

This will show: 

ans = 
Ln Consumption 

Ln Investment 
Ln Product 
Ln Capital 
Ln Work 

Ln Real interest rate 
Ln Real wage 
Productivity
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It is important to mention that one of the variables that has the structure M_ is 
Sigma_e. This is a special Dynare variable, and you cannot use this name to define 
another variable in the .mod file (for example, the standard deviation of shock). 
Sigma_e is the variance–covariance matrix of the stochastic shock and is written 
as an upper or lower triangular matrix. For example, for the nonlinear model with 
variables in logarithm (mod2), Sigma_e = 0.00005184, which corresponds to the 
variance of the shock. Since in the .mod file, we define the standard deviation of 
the shock as sigma_ee = 0.0072, then the variance is 0.00005184, which Dynare 
calculates and saves in Sigma_e (variable of the structure M_). 

2.4.3 Model 

Table 2.21 mentions how to write the nonlinear model in Dynare considering the 
variables in levels or in logarithms. The main takeaways from this table, which are 
applied to any model, are the following:

• Definition of time: It is important to mention how Dynare considers “time.” First 
of all, when you write a variable in Dynare in the current period “t,” just write 
down the variable without any time label. For example, current consumption in 
our model (. ct ) is written in the mod file as “c.” If you want to write a variable 
ahead by one period, you write “c(+1)” in the .mod file, which represents .ct+1 in 
our model.

• Control variables: Dynare considers control variables to be written in “t,” 
and variables accompanied by (+1) are forward looking. In this case, it is 
not necessary to write the expectations because Dynare understands that any 
variable written in (+1) is always accompanied by the expectations operator 
. Et . For example, the Euler equation described in Table 2.21 does not carry the 
expectation operator. 

Table 2.21 Nonlinear model declaration 

Variables in levels (mod1) Variables in logarithms (mod2) 

model; model; 

1/c=beta*(1/c(+1))*(r(+1)); 1/exp(cc)=beta*(1/exp(cc(+1 )))*(exp(rr(+1))); 

k=i; exp(kk)=exp(ii); 

theta/(1-h)=w/c; theta/(1-exp(hh))=exp(ww)/exp(cc); 

y=a*((k(-1))∧(1-alpha))*h∧(alpha); exp(yy)=exp(yy 
)*((exp(kk(-1)))∧(1-alpha))*exp(hh)∧(alpha); 

r=(1-alpha)*y/k(-1); exp(rr)=(1-alpha)*exp(yy)/exp(kk(-1)); 

w=(alpha)*y/h; exp(ww)=(alpha)*exp(yy)/exp(hh); 

y=c+i; exp(yy)=exp(cc)+exp(ii); 

ln(a)=rho*ln(a(-1))+e; aa=rho*aa(-1)+e; 

end; end;
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• State variable: It is important to mention that capital, in this model, is a state 
variable. That is, in “t” capital is already determined. So, the capital in period 
“t+1” is .kt+1 in our model, which is determined at “t.” Therefore, when we 
write that in Dynare, “k” must be placed to represent .kt+1, and when . kt appears 
in an equation, it must be written in Dynare as “k(. −1).” This can be seen in 
the capital demand and production function in Table 2.21. For example, the 
production function is .yt = atk

α−1
t hα

t in our model, which is written in Dynare 
as y=a*((k(. −1)). ∧(1-alpha))*h. ∧(alpha).

Additionally, some specific conclusions can be drawn from Table 2.21:

• Nonlinear model with variables in levels (mod1): In this case, the variable 
that represents consumption is “c,” which is similar for the other variables. The 
equations are written the same way as on the paper; that is, they are the nonlinear 
first-order relations that arise from the optimization. When Dynare is asked to 
perform the linearization, it will create the variable .x = x − xss .

• Nonlinear model with logarithmic variables (mod2): In this case, Dynare 
defines the variable “ln x” as “xx.” This is done in order to consider the variables 
in logarithms. So, in each equation of the nonlinear system, instead of writing 
“x,” we rewrite that variable as “exp(ln x),” which yields the same “x.” But we 
know that “xx = ln x,” so “exp(ln x)” becomes “exp(xx).” This last expression is 
what is written in Dynare for each variable. When Dynare is asked to perform 
the linearization, it will create the variable .xx = xx − xxss = lnx − lnxss . 

Regarding the linear version of the model, Table 2.22 shows the two alternatives 
to linearize the model: in levels (mod3) or in logarithms (mod4). It is worth 
mentioning that this linearization is previously done by the user, and then the 
linearized model is written in Dynare. In this case, Dynare will no longer apply 
the first-order Taylor approximation on the model. This is different from the two 
previous models where the user wrote the nonlinear model and only changed the 
nature of the variable (linear or logarithmic). From Table 2.22 some considerations 
can be deduced:

Table 2.22 Linear model declaration 

Variables in levels (mod3) Variables in logarithms (mod4) 

model(linear); model(linear); 

ct=beta*(r_ss*ct(+1)-c_ss*rt(+1)); ch=ch(+1)-rh(+1); 

kt=it; (h_ss/(1-h_ss))*hh=wh-ch; 

wt=(w_ss/(1-h_ss))*ht+(theta/(1-h_ss))*ct; kh=ih; 

yt=(y_ss/a_ss)*at+(1-alpha)*(y_ss/k_ss)*kt(-1) yh=ah+(1-alpha) *kh(-1)+alpha*hh; 

+alpha*(y_ss/h_ss)*ht; 

(y_ss/k_ss)*kt(-1)=yt-(k_ss/(1-alpha))*rt; rh=yh-kh(-1); 

wt=(alpha/h_ss)*yt-((alpha*y_ss)/(h_ss). ∧2)*ht; wh=yh-hh; 

yt=ct+it; yh=(c_ss/y_ss)*ch+(i_ss/y_ss)*ih; 

at=rho*at(-1)+e; ah=rho*ah(-1)+e; 

end; end;
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Table 2.23 Declaration of initial values 

Nonlinear model Linear model 

Variables in levels Variables in logarithms Variables in levels Variables in logarithm 

(mod1) (mod2) (mod3) (mod4) 

initval; initval; initval; initval; 

h =h_ss; hh =log(h_ss); ht =0; hh =0; 

k =k_ss; kk =log(k_ss); kt =0; kh =0; 

i =i_ss; ii =log(i_ss); it =0; ih =0; 

c =c_ss; cc =log(c_ss); ct =0; ch =0; 

w =w_ss; ww =log(w_ss); wt =0; wh =0; 

r =r_ss; rr =log(r_ss); rt =0; rh =0; 

y =y_ss; yy =log(y_ss); yt =0; yh =0; 

a =a_ss; aa =log(a_ss); at =0; ah =0; 

end; end; end; end; 

• Linear model: When you want to write a linearized model in Dynare, you must 
place the option linear in the block model. This is done as follows: model 
(linear); . . . end.

• Linear model with variable in levels (mod3): In this case, the variable . xt =
x − xss has been defined. This variable is the one that represents the variable . ~xt

of Table 2.14.
• Linear model with variable in logarithm (mod4): In this case, the variable 

.xh = lnx − lnxss has been defined. This variable is the one represented by the 
variable .  ̂xt of Table 2.15.

An important difference in the equations between the nonlinear and the linearized 
model is that in the latter the steady state values are present in the equations. 

2.4.4 Initial Values 

The initial values are important because they are the starting point that Dynare uses 
to calculate the steady state through successive approximations. Usually, we first 
calculate the steady state manually and then enter it in the initial values block. 
Table 2.23 contains the way to enter the initial values in Dynare according to the 
type of model we are using. The following conclusions can be drawn from this 
table:

• Nonlinear model with variables in levels: In this way of writing the model, 
the initial value of each variable is the steady state previously defined in the 
parameter block “parameters ” and then calculated (see Table 2.20).

• Nonlinear model with variables in logarithm: Because the variable that 
has been defined is the logarithm of itself (xx = ln x), then “.xx =
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lnisplacedintheinitialvaluesxss .” It is worth mentioning that in Matlab the 
natural logarithm (ln) is expressed as “log.”

• Linear model with variables in levels: Given that the defined variable is “. xt =
x −xss ,” then in the block of initial values it is placed: .xt = xss −xss , so .xt = 0.

• Linear model with logarithmic variables: Similarly to the previous case, since 
the defined variable is “.xh = lnx− lnxss ,” then the steady state is “. xh = lnxss −
lnxss ,” and, consequently, .xh = 0, this being the value that is placed in the block 
of initial values for all variables. 

Resid This command, placed after the initial values block, calculates the residual 
in each equation when each variable is replaced by its initial value; that is, put the 
initial values in each equation and compute the remainder between the expression on 
the right minus the expression on the left. For example, for the production function: 

. F = yt − atk
1−α
t hα

t

In steady state: 

. F = y − ak1−αhα

What Dynare does is plug the initial values into this equation and compute the 
remainder (F ). If this remainder is zero, it means that the initial values entered are 
exactly correct; that is, we have correctly calculated the steady state. It may be that 
the residual is different from zero, which indicates that we have made a mistake in 
the calculation of the steady state, and still, Dynare finds the true value of the steady 
state. This is because Dynare needs a starting point close to the true value of the 
steady state and with that start to iterate. After calculating the steady state, Dynare 
will display these values in Matlab’s prompt, which is found in Table 2.24. 

In addition, Table 2.24, which corresponds to the nonlinear model with variables 
in logarithm, indicates that the initial values (calculated steady state) considered 
are exactly the correct steady states of the model; therefore, the remainder of each 
equation is equal to zero. If we have not placed the initial values correctly, Dynare 
will show that the residual is different from zero in some equations, which gives 
us information to detect in which variable we have not calculated the steady state 

Table 2.24 The Resid 
command: results 

Residuals of the static equations: 

Equation number 1 : 0 

Equation number 2 : 0 

Equation number 3 : 0 

Equation number 4 : 0 

Equation number 5 : 0 

Equation number 6 : 0 

Equation number 7 : 0 

Equation number 8 : 0
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Table 2.25 Steady State 

Nonlinear model Linear model 

Variables in levels Variables in logarithms Variables in levels Variables in logarithm 

(mod1) (mod2) (mod3) (mod4) 

c 0.0770361 cc . −2.56348 ct 0 ch 0 

i 0.037545 ii . −3.28221 it 0 ih 0 

y 0.114581 yy . −2.16647 yt 0 yh 0 

k 0.037545 kk . −3.28221 kt 0 kh 0 

h 0.2 hh . −1.60944 ht 0 hh 0 

r 1.01626 rr 0.0161294 rt 0 rh 0 

w 0.382128 ww . −0.962 wt 0 wh 0 

a 1 aa 0 at 0 ah 0 

correctly. If the residual is very large, it means that the initial values are very 
different or very far from the steady state and Dynare could stop the process because 
it could not find the steady state from the given initial point.

2.4.5 Steady State 

Table 2.25 shows the results of applying the command steady;. Some conclu-
sions can be drawn from this table:

• Nonlinear model with variables in logarithms (mod2): Let us remember that 
in this model the variables are expressed in logarithms. For example, the log 
of consumption is represented by “cc”; that is, .cc = lnc. Then in steady state 
.ccss = lncss . Considering that .ccss = −2.56348, then . css = exp(−2.56348) =
0.0770361. The same is done with the other variables.

• Linear model: In the case of the linear model with variables in levels (mod3), it 
is known that each variable is expressed as the difference between its level and 
its steady state. For example, for consumption, we have .ct = c − css . Evaluating 
the variable in steady state we have: .ctss = css − css = 0. In a similar way, 
we have the linear model with variables in logarithm (mod4). For example, for 
consumption, we have .ch = lnc − lncss . When evaluating this variable in steady 
state: .chss = css − css = 0. 

Where Does Dynare Store the Steady States? 
Dynare creates a structure variable (similar to M_) called oo_, in which it saves 
the simulations, the steady state, the moments of the endogenous variables (mean, 
variance, and autocorrelation), and the impulse-response function of each variable. 
Figure 2.5 shows all the variables that have the oo_ structure. 

In particular, the variable that contains the steady states calculated by Dynare is 
“oo_.steady_state” (see Fig. 2.6).
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Fig. 2.5 Structure oo_. 
(Note: This oo_ structure is 
obtained from the file 
“Long_Plosser_Dynare 
_nolinear_log.mod”) 

Fig. 2.6 oo_.steady_state. 
(Note: This variable 
oo_.steady_state is obtained 
from the file 
“Long_Plosser_Dynare_nolinear_log.mod”) 

Table 2.26 Clash definition shock; 

var e = (sigma_ee). ∧2; 

end; 

2.4.6 Definition of Shock 

For all four .mod files the shock is defined similarly. Table 2.26 shows how the 
variance of the productivity shock is written in Dynare. 

2.4.7 Model Evaluation 

To evaluate the model, the code check; is placed. The result of this command is 
the vector of eigenvalues of matrix F . This matrix is obtained by writing the model 
(a system of linear equations) in state-space form. Equation (2.2) reflects the state-
space version of the model. Chapter 3 describes how this equation is obtained in 
greater detail. 

.

⎾
Xt+1

EtYt+1

⎤

= F

⎾
Xt

Yt

⎤

+ GVt+1 (2.2)
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Table 2.27 Eigenvalues 

Nonlinear Model 

Variables in levels (mod1) Variables in logarithms (mod2) 

Module Real Imaginary Module Real Imaginary 

0.333 0.333 0 0.333 0.333 0 

0.979 0.979 0 0.979 0.979 0 

3,052 3,052 0 3,052 3,052 0 

Low . −Low 0 9.84E+15 . −9.84E+15 0 

There are two eigenvalues greater than 1 There are two eigenvalues greater than 1 

in modulo for 2 variables forward looking in modulo for 2 variables forward looking 

The range condition is checked The range condition is checked 

Linear Model 

Variables in levels (mod3) Variables in logarithms (mod4) 

Module Real Imaginary Module Real Imaginary 

0.333 0.333 0 0.333 0.333 0 

0.979 0.979 0 0.979 0.979 0 

3,052 3,052 0 3,052 3,052 0 

4.59E+17 4.59E+17 0 Inf . −Inf 0 

There are two eigenvalues greater than 1 There are two eigenvalues greater than 1 

in modulo for 2 variables forward looking in modulo for 2 variables forward looking 

The range condition is checked The range condition is checked 

In Table 2.27 the vector of eigenvalues of each model is written; in addition, 
Dynare displays a message indicating whether the model satisfies the Blanchard and 
Kahn condition. For example, in mod1 it is observed that there are four eigenvalues 
whose modules are: 0.333, 0.979, 3.052, and . ∞. Of these four modules, two are 
greater than one. On the other hand, the model has two variables forward looking 
.ct+1 and .rt+1. Therefore, the Blanchard and Kahn condition is fulfilled, which 
indicates that if the number of eigenvalues whose modulus is greater than one is 
equal to the number of variables forward looking, then the system has a unique 
solution. This is the message that Dynare prints on the screen. 

Where Does Dynare Store the Vector of Eigenvalues? 
Inside the oo_ structure that Dynare creates when processing the model is the oo_.dr 
structure. This structure stores two important variables: the eigenvalues and the 
decision rule; that is, the solution of the model. Figure 2.7 shows the variables 
contained in oo_.dr. 

Figure 2.8 shows the variable oo_.dr.eigval, which contains the vector of 
eigenvalues.
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Fig. 2.7 Decision rules (oo_.dr). (Note: This oo_.dr structure is obtained from the file 
“Long_Plosser_Dynare_nolinear_log.mod”) 

Fig. 2.8 oo_.dr.eigval. 
(Note: This vector 
oo_.dr.eigval is obtained from 
the file 
“Long_Plosser_Dynare_nolinear_log.mod”) 

2.4.8 Solution 

Table 2.28 shows the model solution (policy and state function) for the four .mod 
files. It is worth mentioning that the code used to obtain the solution is 

. stoch_simul(order = 1, irf = 40);

where: “order = 1” indicates that the model should be approximated by the first-
order Taylor expansion. This option does not work when in the model block it has 
been specified that the model is linear by means of “model(linear).” Some 
observations emerge from Table 2.28:

• Nonlinear model with variable levels (mod1): For consumption “c,” the 
solution is as follows: 

. c = 0.077 + 0.683k(−1) + 0.075a(−1) + 0.077ϵ

Since Dynare has been asked to linearize the system (order=1), which gives a 
system of equations like Table 2.14, then the state variable k(. −1) and exogenous 
a(-1) are expressed as deviations from their steady state. That is: . k(−1) = kt −kss

and .a(−1) = at−1 − ass ; then:
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Table 2.28 Policy and state function 

Nonlinear model: variables in levels (mod1) 

c i y k h r w a 

Constant 0.077 0.038 0.115 0.038 0.2 1.016 0.382 1 

k(. −1) 0.683 0.333 1.016 0.333 0 . −18.054 3.389 0 

a(. −1) 0.075 0.037 0.112 0.037 0 0.995 0.374 0.979 

e 0.077 0.038 0.115 0.038 0 1.016 0.382 1 

Nonlinear model: variables in logarithm (mod2) 

cc ii yy kk hh rr ww aa 

Constant . −2.563 . −3.282 . −2.166 . −3.282 . −1.609 0.016 . −0.962 0 

kk(. −1) 0.333 0.333 0.333 0.333 0 . −0.667 0.333 0 

aa(. −1) 0.979 0.979 0.979 0.979 0 0.979 0.979 0.979 

e 1 1 1 1 0 1 1 1 

Linear model: variables in levels (mod3) 

ct it yt kt ht rt wt at 

kt(. −1) 0.683 0.333 1.016 0.333 0 . −18.054 3.389 0 

at(. −1) 0.075 0.037 0.112 0.037 0 0.995 0.374 0.979 

e 0.077 0.038 0.115 0.038 0 1.016 0.382 1 

Linear model: variables in logarithm (mod4) 

ch ih yh kh hh rh wh ah 

kh(. −1) 0.333 0.333 0.333 0.333 0 . −0.667 0.333 0 

ah(. −1) 0.979 0.979 0.979 0.979 0 0.979 0.979 0.979 

e 1 1 1 1 0 1 1 1 

This table has been built based on what Dynare shows in the Matlab prompt, maintaining the 
(initial) order of the variables that appear in the .mod 

. ct = 0.077 + 0.683(kt − kss) + 0.075(at−1 − ass) + 0.077ϵt

It is worth mentioning that the constant 0.077 is the steady state value of 
consumption. 

. (ct − 0.077) = 0.683(kt − kss) + 0.075(at−1 − ass) + 0.077ϵt

Factoring 0.077 from .(at−1 − ass) and . et , we have  

. (ct − 0.077) = 0.683(kt − kss) + 0.077(0.979(at−1 − ass) + et )

It is known that in the nonlinear model, the productivity equation is . lnat =
ρlnat−1+ϵt . However, when we ask Dynare to linearize the system, this equation 
is transformed into .~at = 0.979~at−1 + et , where .~at = at − ass . Therefore, 
substituting this expression in the previous equation:
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. (ct − 0.077)
◟ ◝◜ ◞

~ct

= 0.683~kt + 0.077~at

. ~ct = 0.683~kt + 0.077~at

This is the consumption policy function (expressed in deviations from its 
steady state): .~ct = F(~kt ,~at ). The coefficients are read as follows: A one unit 
increase in . ~kt (holding everything else constant) produces an increase of . ~ct

by 0.683 units; that is, if capital today is one unit away from its steady state, 
consumption is 0.683 units away from its steady state. These coefficients allow 
calculating in units the deviation of the variables with respect to their stationary 
state; however, a more appropriate measure would be to consider said deviation 
in percentage terms. To do this, the following can be done: 

. (ct − 0.077) = 0.683(kt − kss) + 0.077(at − ass) + ϵt

(ct − 0.077)

css

css = 0.683
(kt − kss)

kss

kss + 0.077
(at − ass)

ass

ass + ϵt

 ̂ct css = 0.683 ̂kt kss + 0.077 ̂atass + ϵt

 ̂ct css = 0.683kss
 ̂kt + 0.077ass ̂at + ϵt

 ̂ct0.077 = 0.683 ∗ 0.0375 ̂kt + 0.077 ∗ 1 ̂at + ϵt

 ̂ct0.077 = 0.0256 ̂kt + 0.077 ̂at + ϵt (2.3) 

From equation (2.3), the variable .  ̂xt is read as the deviation percentage of the 
variable with respect to its steady state. So: a 1% increase in .  ̂kt , that is, that capital 
is increasing by 1% with respect to its steady state and produces an increase of 
(0.0256/0.077)*1% = 0.333% of .  ̂ct ; in other words, consumption deviates above 
its steady state by 0.333%.

• Nonlinear model with variables in logarithms (mod2): In this case, for 
example, the solution for consumption is 

. cc = −2.563 + 0.333kk(−1) + 0.979aa(−1) + e

Considering that Dynare has performed the linearization taking into account that 
each variable is expressed in logarithm, then .cct = lnct , but the state variable and 
the exogenous variable are expressed as .kk(−1) = lnkt − lnkss and . aa(−1) =
lnat−1 − lnass . 

. lnct = −2.563 + 0.333(lnkt − lnkss) + 0.979ln(lnat−1 − lnass) + et

The constant in this equation corresponds to the steady state of the variable; 
that is, .lncss = −2.563, and then: .css = exp(−2.563) = 0.077, which coincides
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with what was calculated in the first model (mod1). Plugging this into the 
previous equation: 

. lnct = −2.563 + 0.333(lnkt − lnkss) + 0.979(lnat−1 − lnass) + et

lnct − lncss = 0.333(lnkt − lnkss) + 0.979(lnat−1 − lnass) + et

 ̂ct = 0.333 ̂kt + 0.979 ̂at−1 + et◟ ◝◜ ◞
 ̂at

 ̂ct = 0.333 ̂kt + ̂at (2.4) 

In this case, the coefficients are elasticities; that is, if capital increases by 1% 
with respect to its steady state (keeping everything else constant), consumption 
increases by 0.333% with respect to its steady state.

• Linear model: Regarding the linear model, it can be seen that it has the same 
coefficients as in the nonlinear model, which was linearized by Dynare. The main 
difference is that when we introduce a linear model in Dynare, the steady state is 
zero; therefore, no intercept appears in the equations of the linear model (mod3 
and mod4).

From the above, two conclusions are important to mention: The first is that it 
is preferable that in the policy functions, each variable is expressed in percentage 
deviations with respect to the steady state; that is, variables in logarithms are 
preferred. This is because the solution coefficients are understood as elasticities 
allowing a simple reading of the impulse-response function. The second conclusion 
is that the policy and state function coefficients will be the same if we put the 
nonlinear or linearized model into Dynare. For example, the nonlinear model 
(mod1) and the linear model (mod3) have the same coefficients for variables in 
levels. Similarly, for variables in logarithm (mod2 and mod4). 

Where Does Dynare Store the Coefficients of the Policy and State Function? 
Dynare stores the policy and state function in several variables inside the “oo_.dr” 
structure. There are some considerations to capture the coefficients of these 
functions correctly. 

[1] Variable order The initial variable order, as written in the .mod file, is as 
follows: c, i, y, k, h, r, w, a. So, consumption comes first, investment comes second, 
and so on for the other variables. However, when Dynare solves the system, it 
reorders these variables, saving the new order to “oo_.dr.oder_var.” This variable 
returns a vector of numbers that contains the new position of the variables: 2, 3, 5, 
7, 4, 8, 1, 6. This means that the variable that was at initial position 2 (which is 
the inversion) now it is in the first place. For instance, consumption was initially 
in the first position, but now it appears in position 7. This is important because the 
coefficients of the solution correspond to this new order. Then the reordered variable 
vector is
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. 

Initial position Reordered position
1
2
3
4
5
6
7
8

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c

i

y

k

h

r

w

a

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

i

y

h

w

k

a

c

r

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2
3
5
7
4
8
1
6

[2] Policy and state functions as a system of equations. Let be the vector of 
rearranged endogenous variables . Yt , the vector of steady state values . Yss , the matrix 
containing the coefficients of the state variables “ghx,” the vector of the state 
variables . Xt , and the vector containing the coefficients associated with the error 
“ghu.” So, the system of equations representing the policy and state functions is 

. Yt = Yss + ghx ∗ Xt + ghu ∗ Ut

Writing this system in its extensive form: 

. 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

i

y

h

w

k

a

c

r

⎤

⎥
⎥
⎥
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⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

iss

yss

hss

wss

kss

ass

css

rss

⎤

⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ηik ηia

ηyk ηya

ηhk ηha

ηwk ηwa

ηkk ηka

ηak ηaa

ηck ηca

ηrk ηra

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∗
⎾
k(−1)

a(−1)

⎤

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ηiu

ηyu
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ηwu
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ηau
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ηru

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∗ e

For example, the investment policy equation is 

. i = iss + ηikk(−1) + ηiaa(−1) + ηiue

So, for mod2, in Table 2.28, we have  

. i = −3.282 + 0.333k(−1) + 0.979a(−1) + 1e

[3] Coefficients of these functions in oo_.dr. The steady state vector is found in 
“oo_.dr.ys,” which maintains the initial order of the variables. The new order only 
applies to the array associated with the status and error variables stored respectively 
in “oo_.dr.ghx” and “oo_.dr.ghu.”
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Fig. 2.9 Impulse-response function (oo_.irfs). (Note: This impulse-response function is obtained 
from the file “Long_Plosser_Dynare_nolinear_log.mod”) 

. 

oo_.dr.ys =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2.563
−3.282
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0

⎤

⎥
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⎦

oo_.dr.ghx =
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⎢
⎢
⎣

0.333 0.979
0.333 0.979

3.09E − 15 1.03E − 14
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0.333 0.979
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−0.667 0.979

⎤

⎥
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⎥
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⎥
⎦

oo_.dr.ghu =

⎡
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⎢
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⎢
⎢
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⎢
⎢
⎣

1
1
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1
1
1
1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2.4.9 Impulse-Response Function (IRF) 

As mentioned previously, the oo_ structure also contains the impulse-response 
function of the model. Since all endogenous variables are required to respond to 
the impulse, then Dynare creates another structure called “irfs,” in which it stores 
the impulse-response function of each variable, as can be seen in Fig. 2.9. 

For example, if only the consumption impulse-response function is required, 
click on the variable “oo_.irfs.cc_e.” As shown in Fig. 2.10, the variable 
“oo_.irfs.cc_e” contains a vector of 40 periods, which was defined in 
stoch_simul when it put “irf=40.”
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Fig. 2.10 Consumption impulse-response function (oo_.irfs.cc_e). (Note: This impulse-response 
function is obtained from the file “Long_Plosser_Dynare_nolinear_log.mod”) 
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Fig. 2.11 Impulse-response function (Dynare graph). (Note: This impulse-response plot is 
obtained from the file “Long_Plosser_Dynare_nolinear_log.mod”) 

Dynare also plots each of the variables found in the “oo_.irfs” structure; however, 
the graph is essentially basic in the sense that the lines are not modified and, 
furthermore, it does not consider the names of the variables in their extended 
version. This can be seen in Fig. 2.11. 

Figure 2.11 could be improved if a code is built in Matlab that is fed from the 
.mod file and that graphs with the extended names of the variables and aesthetic 
modifications in the graph. This is done in the code “irfs_nolinear_log.m,” and you 
can see the result in Fig. 2.12. 

Description of the code First, the .mod file is run (line 1 of the code): 
dynare Long_Plosser_Dynare_nonlinear_log.mod; 

Then an array containing all the impulse-response functions (IRF) is defined in 
line 2 of the code. Third, a cell array containing the variable names (names) is  
defined. Finally, a loop is built to plot each impulse-response function with the 
appropriate variable name and the appropriate line size (lines 4 through 9 of the 
code). The last two commands of this code segment place the sheet where the 
graph is saved in landscape orientation (orient landscape) and then save it in 
pdf extension (line 11).
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Fig. 2.12 Impulse-response function (Matlab plot). (Note: This impulse-response plot is obtained 
from the file “ifrs_nolinear_log.m”) 

2.4.10 Sensitivity Analysis 

The Fig. 2.13 shows the impulse-response function for three values of the persis-
tence of the productivity shock. It can be seen that the greater the persistence of the 
shock, the greater the reaction of each endogenous variable (except the interest rate 
and labor, which remain at their steady state value). In addition, it can be seen that 
the variables take more time to return to their steady state. This graph is obtained by 
writing the following codes in the .mod file after writing stoch_simul. 

1 % Valores del parametro 
2 rhos = [0.5 0.7 0.9]; 
3 for j= 1:size(rhos,2) 
4 rho = rhos(j); 
5 stoch_simul(order=1, irf=40, nograph, nomoments,nofunctions); 
6 oo_sen{j} = oo_; 
7 end; 
8 % Grafica 
9 name = {'Consumo', ... 

'Inversion','Produccion','Capital','Trabajo','Tasa de ... 
interes real', 'Salario', 'Productividad'}; 

10 field_name = fieldnames(oo_sen{1}.irfs); time = 1:40; 
11 for j=1:size(name,2) 
12 subplot(2,4,j) 
13 plot(time,oo_sen{1}.irfs.(field_name{j}),...
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14 time,oo_sen{2}.irfs.(field_name{j}),'--',... 
15 time,oo_sen{3}.irfs.(field_name{j}),'-.', 
16 'LineWidth', 1.5) 
17 title(name{j}); 
18 grid; 
19 end; 
20 legend('\rho=0.5', '\rho=0.7', '\rho=0.9'); 
21 orient landscape 
22 saveas(gcf,'analisis_sensibilidad','pdf'); 

Code description This code has two parts. The first consists of saving the 
simulation of the model before each value of the productivity persistence. To do 
this, a vector of persistence values is defined (line 2), and then stoch_simul is 
applied to the three values, and each result (oo_) is stored in a cell vector (oo_sen). 

The second part of the code is to plot the impulse-response function under the 
three values of the parameter. To obtain this graph, first, the name of the variables 
is defined, whose order is described at the beginning of the .mod file. Second, the 
names of the structure “oo_sen{1}.irfs” (line 9) are extracted (as a cell vector). The 
utility of this is that it will serve to make loops with structures. Third, a loop is 
built to plot the impulse response of each variable to the three persistence values. 
Line 13 is of special importance: The code “oo_sen{1}.irfs.(field_name{j})” for 
j=1 is “oo_sen{1} .irfs.cc_e.” For j=2 it is “oo_sen{1}.irfs.ii_e” and so on. In this, 
you can see the usefulness of the “field” of a structure variable. Finally, the code 
orient indicates the orientation of the sheet in which the graph will be saved, and 
the code saveas indicates the name and extension with which the graph will be 
saved (usually, it is saved in pdf or eps for its usefulness in LATEX). 

2.4.11 Simulation of Endogenous Variables 

After Dynare finds the solution of the linearized system, the ARMA(p,q) time series 
representation of the endogenous variables can be obtained. For example, from 
Table 2.28 for the capital of the nonlinear model with variables in logarithm, we 
have

.kkt+1 = kkss + ηkkkkt + ηkaaat−1 + ϵt

kkt+1 − kkss = ηkkkkt + ηkaaat−1 + ϵt

(lnkt+1 − lnkss) = ηkk(lnkt − lnkss) + ηka(lnat−1 − lnass) + ϵt

 ̂kt+1 = ηkk
 ̂kt + ηka ̂at−1 + ϵt

 ̂kt+1 = 0.333 ̂kt + 0.979 ̂at−1 + ϵt◟ ◝◜ ◞
 ̂at
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Fig. 2.13 Sensitivity analysis: Persistence of the productivity shock . ρ. (Note: This impulse-
response graph is obtained from the file “Long_Plosser_Dynare_nolineal_log.mod”)

 ̂kt+1 = 0.333 ̂kt + ̂at 

(1 − 0.333L) ̂kt+1 =  ̂at (2.5) 

Considering that productivity, which behaves like an AR(1), can be expressed in 
its MA(. ∞) form, thus: 

. aat = φaat−1 + ϵt

(1 − φL)aat = ϵt

aat = ϵt

1 − φL

Given : ass = 1

lnat − lnass = ϵt

1 − φL

 ̂at = ϵt

1 − φL
(2.6) 

Introducing the equation (2.6) in the equation (2.5), we have that capital behaves 
like an AR(2):
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Fig. 2.14 Structure oo_ (simulation). (Note: This structure is obtained from 
“Long_Plosser_Dynare_nolineal_log.mod”) 

. (1 − 0.333L) ̂kt+1 =  ̂at

(1 − 0.333L) ̂kt+1 = ϵt

1 − φL

 ̂kt+1 = ϵt

(1 − 0.333L)(1 − φL)
(2.7) 

Given that we have the time series expression for each variable, Dynare could 
simulate the behavior of each variable assuming a random behavior . N(0, σ 2

e )

for the error . ϵ. For Dynare to perform this task, it is enough to indicate in the 
stoch_simul the number of periods (periods) that we want the variable to 
have. For example: 

stoch_simul(order=1, periods = 150) 
Three results can be emphasized about this code: Firstly, the simulated variables 

are stored in the oo_ structure, in particular in the variables “exo_simul” and 
“endo_simul” (see Fig. 2.14). The first variable contains the simulated exogenous 
variable; that is, the error . ϵt that is distributed as a normal with zero mean 
and constant variance .σ 2

e (see Fig. 2.15). The second (endo_simul) contains the 
simulation of all the endogenous variables (in this case, there are eight). Each row 
represents the simulation of a variable, and the number of columns is the number of 
periods defined in stoch_simul (see Fig. 2.16). 

The above shows a simulation for each endogenous variable. However, if 
someone wants to perform, for example, 300 simulations for each variable con-
sidering 150 periods, it is necessary not only to use periods = 150 but also 
simul_replic = 300. The result of these stoch_simul options is a binary 
file with the following name: “NombreMod_simul.” One disadvantage of this file is 
that it cannot be opened directly in Matlab or any other program. To read this file, a
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Fig. 2.15 Simulation of the 
exogenous variable. (Note: 
This structure is obtained 
from 
“Long_Plosser_Dynare_nolineal_log.mod”) 

Fig. 2.16 Simulation of the endogenous variable. (Note: This structure is obtained from 
“Long_Plosser_Dynare_nolineal_log.mod”) 

function created by Johannes Pfeifer6 will be used, which can be downloaded from 
the Web. The steps to apply this function are described below:

• First of all, the function “get_simul_replications.m” has to be present in the 
directory where the .mod file is located.

• In the mod file, after the command stoch_simul the following should be 
placed: 

[sim_array]=get_simul_replications(M_,options_); 
y_sim=squeeze(sim_array(strmatch(’y’,M_.endo_names,’exact’),:,:)); 
k_sim=squeeze(sim_array(strmatch(’k’,M_.endo_names,’exact’),:,:)); 

The first line calls the function “get_simul_replications.m” to convert the 
binary file into a Matlab array variable called “sim_array,” which is stored in 
the workspace. The second line creates the variable “y_sim,” which contains the 
simulation of production; that is, it contains the 300 simulations (rows) of 100 
periods (columns). This same line of code can be applied to each variable. The 
result is a matrix, per variable, of 300 rows with 100 columns. The third line, the 
code, is the same as the second, only for capital. 

Figure 2.17 shows six simulations of the set of 300 for capital and output.

6 https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Hansen_1985/get_simul_ 
replications.m 

https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Hansen_1985/get_simul_replications.m
https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Hansen_1985/get_simul_replications.m
https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Hansen_1985/get_simul_replications.m
https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Hansen_1985/get_simul_replications.m
https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Hansen_1985/get_simul_replications.m
https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Hansen_1985/get_simul_replications.m
https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Hansen_1985/get_simul_replications.m
https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Hansen_1985/get_simul_replications.m
https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Hansen_1985/get_simul_replications.m
https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Hansen_1985/get_simul_replications.m
https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Hansen_1985/get_simul_replications.m
https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Hansen_1985/get_simul_replications.m
https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Hansen_1985/get_simul_replications.m
https://github.com/JohannesPfeifer/DSGE_mod/blob/master/Hansen_1985/get_simul_replications.m
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Fig. 2.17 Six simulations of capital and output. (Note: This structure is obtained from 
“Long_Plosser_Dynare_nolineal_log.mod” and the code “simulacion_filtrohp.m”) 

2.4.12 Calculation of Moments 

Table 2.29 shows the moments calculated by Dynare for the four ways of writing 
the model in Dynare. A first observation is that the moments are similar when 
the variables have the same nature; that is, if the variables are in levels, then it 
does not matter if the model written in Dynare was nonlinear or linearized since 
the moments are similar. The same is concluded for the variables in logarithms. 
A second observation is that the moments between the model with the variables 
in levels and the model with the variables in logarithms are different, which is 
consistent with what is expected. 

Where Does Dynare Store the Moments? 
Dynare stores the mean, variance–covariance matrix, and autocorrelations within 
the oo_ structure. As you can see in Fig. 2.14, the average is stored in the variable 
“mean,” the covariance matrix in the variable “var,” and the autocorrelation matrix 
in “autocorr.” 

2.4.13 HP Filter 

Table 2.29 shows the moments of the endogenous variables. However, it does not 
show the moments of their cyclical component, which is necessary to compare 
with the stylized facts and evaluate the model’s explanatory power. To obtain the
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Table 2.29 Theoretical moments 

Nonlinear Model 

Variables in levels Variables in logarithms 

Variable Mean Des. Std. Variance Variable Mean Des. Est. Variance 

c 0.077 0.004 0 cc . −2.564 0.053 0.0028 

i 0.038 0.002 0 ii . −3.282 0.053 0.0028 

y 0.115 0.006 0 yy . −2.167 0.053 0.0028 

k 0.038 0.002 0 kk . −3.282 0.053 0.0028 

h 0.200 0 0 hh . −1.609 0 0 

r 1.016 0.008 0.0001 rr 0.016 0.008 0.0001 

w 0.382 0.020 0.0004 w w . −0.962 0.053 0.0028 

a 1 0.035 0.0012 aa 0 0.035 0.0012 

Linear model 

Variables in levels Variables in logarithms 

Variable Mean Des. Std. Variance Variable Mean Des. Est. Variance 

ct 0.077 0.004 0 ch . −2.564 0.053 0.0028 

it 0.038 0.002 0 ih . −3.282 0.053 0.0028 

yt 0.115 0.006 0 yh . −2.167 0.053 0.0028 

kt 0.038 0.002 0 kh . −3.282 0.053 0.0028 

ht 0.200 0 0 hh . −1.609 0 0 

rt 1.016 0.008 0.0001 rh 0.016 0.008 0.0001 

wt 0.382 0.020 0.0004 wh . −0.962 0.053 0.0028 

at 1 0.035 0.0012 ah 0 0.035 0.0012 

cyclical component, a filter must be applied; that is, a technique that breaks down 
the variable into its two components: trend and cycle. The HP filter is usually applied 
to accomplish this task, which Dynare has enabled as an option of stoch_simul. The 
code to use the HP filter is as follows: 

stoch_simul(order=1, hp_filter= lambda) 
where “lambda” is equal to 1600 for quarterly data (for more details, see Table 2.9). 
This code gives the moments of the cyclical component in Matlab’s command 
window, shown in Table 2.30. It is worth mentioning that Dynare does not display 
the cyclical component as a time series. 

Given the disadvantage that Dynare does not calculate the cyclical component of 
the series, Matlab has a function called “hpfilter.m,” which provides the trend and 
cyclical component of the series. The use of this function is shown below: 

[trend_k,cycle_k] =hpfilter(kk_sim(:,1),1600); 

The “hpfilter.m” function requires two inputs. The first is the series or set of 
series to which you want to apply the filter; in this case, it is the first capital 
simulation “kk_sim(:,1).” The second is the smoothing parameter, which depends 
on the frequency of the data (which is reflected in the calibration). The parameter 
takes the value of 14400 for monthly data, 1600 for quarterly data, and 100 for
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Table 2.30 Theoretical 
moments (HP filter) 

Theoretical moments (HP filter, . λ=1600) 

Variable Mean Des. Est. Variance 

cc . −2.5635 0.0126 0.0002 

ii . −3.2822 0.0126 0.0002 

yy . −2.1665 0.0126 0.0002 

kk . −3.2822 0.0126 0.0002 

hh . −1.6094 0.0000 0.0000 

rr 0.0161 0.0072 0.0001 

ww . −0.962 0.0126 0.0002 

aa 0.000 0.0094 0.0001 

Fig. 2.18 Cyclical and trend components of capital. (Note: This structure is obtained from 
“Long_Plosser_Dynare_nolineal_log.mod” and the code “simulacion_filtrohp.m”) 

annual data. In this particular case, we are considering quarterly data; therefore, 
1600 is placed. 

Likewise, this function delivers two results: The first is the trend component of 
the series (trend_k), and the second is the cyclical component (cycle_k). Figure 2.18 
shows the cyclical and trend components of the capital derived from the application 
of the HP filter. 

2.5 Codes 

Table 2.31 indicates the codes used in this chapter.
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Table 2.31 Codes in Matlab and Dynare 

Codes Description 

Matlab 

irfs_nonlinear_log.m This m-file illustrates that the graphs for the 
impulse-response function obtained from Dynare 
can be improved through Matlab codes 

simulation_hpfilter.m This m-file applies the HP filter to the simulated 
series of the model 

aux_irfs_nonlinear_log.m This m-file plots the impulse-response functions 
via a loop 

aux_analysis_sensitivity.m This m-file describes the code that can be written 
at the end of a .mod file to perform sensitivity 
analysis, that is, to obtain the impulse-response 
functions for different values of the parameters 

Dynare 

Long_Plosser_Dynare_nolinear_niv.mod This .mod contains the nonlinear equations with 
the variables in levels of Long and Plosser 
(1983)’s model 

Long_Plosser_Dynare_nolinear_log.mod This .mod contains the nonlinear equations with 
the variables in logarithms of Long and Plosser 
(1983)’s model. This code is used in Chapters 2 
and 3. In Chapter 2, this code is used to instantiate 
Dynare commands. Chapter 3 uses it to obtain the 
solution of the model and the IRFs 

Long_Plosser_Dynare_linear_niv.mod Considers the linear model with the variables in 
levels of Long and Plosser (1983)’s model 

Long_Plosser_Dynare_linear_log.mod Considers the linear model with the variables in 
logarithm of Long and Plosser (1983)’s model 

2.6 Summary 

Unlike the conventional macroeconomic models, the system of nonlinear equations 
that describes the behavior of the endogenous variables of the DSGE models rarely 
has an analytical solution. Given that, a natural question is whether any software 
equips the profession with computational tools that facilitate the solution of these 
models without requiring high programming knowledge. 

In this chapter, we have introduced Dynare, a preprocessor associated with 
Matlab that provides a set of computational tools to solve DSGE models. The main 
advantage of using Dynare is that it does not require the user to have advanced 
knowledge of the programming language underlying Matlab, which makes it highly 
accessible. 

We start explaining the structure of the .mod file and the files created by Dynare. 
We then describe step by step how to introduce the nonlinear equations that describe 
the DSGE model into a .mod file, how to calculate the initial values of the model, 
and how to obtain the steady state. Likewise, we detail how to evaluate the model 
with the Blanchard–Kahn method, calculate the solution (policy and state function),
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and simulate the model when we have an aggregate shock. We complement this 
analysis by explaining how to perform the sensitivity analysis of the model. 

Finally, to illustrate these steps, we use the Long and Plosser (1983)’s model as 
an example. In particular, we have paid attention to how to enter the lines of code 
in each step, the outputs that Dynare gives us, and their location in the workspace. 
Finally, the codes (m-file and mod-file) used in this chapter are described to facilitate 
the replication of the model by the reader.



Chapter 3 
RBC Model with Analytical Solution 

3.1 Introduction 

The goal of this chapter is to illustrate in depth each of the steps in the construction 
of an RBC model. With this end in mind, studying a simple model (toy model) is  
an advantage. To do this, this chapter is based on the model developed by Long and 
Plosser (1983) and Plosser (1989). 

The model proposed by Long and Plosser (1983) seeks to capture the dynamics 
of various economic sectors and their behaviors among themselves in the face of 
a productivity shock. On the other hand, the model proposed by Plosser (1989) is  
a single-sector model. Both models have two underlying assumptions. The first is 
that goods are assumed to be perishable and last for a single period; that is, the 
capital is fully depreciated. The second assumes that preferences are additive and 
are expressed as the logarithm of consumption and the logarithm of leisure. 

These two assumptions have important effects on the solution of the model. First, 
it allows the model to be solved analytically; that is, an exact solution to hand 
and paper can be found. The second is that the labor policy function suggests 
that this variable does not react to capital nor the shock of productivity; that is, 
it always remains in a steady state. This is because the effect of the interest rate 
on consumption is zero, which means the substitution and income effects perfectly 
offset each other. 

3.2 Model Construction 

This model is based on the work of Long and Plosser (1983) and Plosser (1989) and 
has an analytical solution; that is, it can be solved directly by means of algebraic 
operations. This is due to two assumptions: total depreciation and logarithmic utility 
(in consumption and leisure). In addition, the model assumes that there are two 
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Fig. 3.1 Long and Plosser model (1983, 1989) 

economic agents in the economy (households and firms), of which the households 
own the capital and the firms develop in an environment of perfect competition, both 
in the goods market and in that of factors. 

On the other hand, the economy is assumed to be closed, which implies that 
saving equals investment. Finally, in this economy, the only source of uncertainty 
comes from the supply side, where, in particular, a productivity shock is assumed. 
Figure 3.1 outlines the interaction between households, firms, and the markets in 
which they participate. 

3.2.1 Utility Function 

Before describing the model in detail, it is important to understand the role of the 
utility function in the construction of the general equilibrium model. King et al. 
(1988a) impose two restrictions on preferences (utility function) that allow the 
steady state to be compatible with an optimal competitive equilibrium: 

• The intertemporal substitution elasticity of consumption must be invariant at the 
scale of consumption. 

• The income and substitution effects associated with growth in labor productivity 
should not alter labor supply. 

The utility function that satisfies these two restrictions is: 

.u(c, l) =
⎧
⎨

⎩

⎾
1

1−σ
c1−σ

⏋

v(l), si σ > 0 y σ /= 1

ln(c) + v(l), si σ = 1
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where c is consumption, and l is leisure; . σ is the elasticity of substitution of 
consumption (consumption is scale-invariant) and .v(l) is a function of leisure. 
According to King et al. (1988a), a particular case of this utility function is when 
.v(l) = θln(l): 

.u(c, l) = ln(c) + θln(l) (3.1) 

In addition, other utility functions appear in the literature on RBC models, in 
which it is considered that . lt is leisure, . ht is work, and that the following relationship 
holds between them: .lt + ht = 1, where the time available by the household, which 
is usually 24 hours, has been normalized to 1. Other usual utility functions in the 
existing literature are mentioned below: 

• Hansen (1985): 

.u(ct , lt ) = ln(ct ) + Blt (3.2) 

• Greenwood et al. (1988): 

.u(ct , ht ) = 1

1 − γ

⎾⎛

ct − h1+θ
t

1 + θ

⎞1−γ

− 1

⏋

(3.3) 

• Campbell (1994): fixed labor (used in Chap. 4) 

.u(ct , ht ) = c
1−γ
t

1 − γ
(3.4) 

• Campbell (1994): variable labor (used in Chap. 5) 

.u(ct , ht ) = ln(ct ) + θ
(1 − ht )

1−γn

1 − γn

(3.5) 

• Long and Plosser (1983) and Plosser (1989): 

.u(ct , ht ) = ln(ct ) + θln(1 − ht ) (3.6) 

The utility function of equation (3.6) is obtained by considering .γn = 1 in 
the utility function (3.5). This is the utility function that Long and Plosser (1983) 
consider in their model. Two ideas stand out: the first is that . θ is the share of 
leisure in all the time available to the representative household. The second is that
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each utility function has a different level of Frisch elasticity1 and the elasticity of 
intertemporal substitution of consumption (.ESIc). 

3.2.2 Households 

One of the main assumptions of the RBC models is that the households present in 
the economy are all identical. In other words, their preferences and restrictions are 
similar. This assumption makes it possible to analyze the behavior of the households 
through the study of a representative agent (a household that represents all of them) 
and allows for the aggregation of the households in a simple way. In the Long and 
Plosser model, the representative agent assumption is considered, which maximizes 
a discounted utility function: 

. Max
{ct ,ht ,kt+1}∞t=0

E0

∞⎲

t=0

βtu(ct , ht ) (3.7) 

where . ct is the consumption of the period t and . β is the discount factor, which is 
expressed as follows: 

. β = 1

1 + ρ

Here, . ρ reflects the impatience of the representative agent. The more impatient 
the household, the larger . ρ will be; therefore, . β will be smaller. That is, the 
individual values future utilities less. For instance, .ρ = 0 means that the household 
is totally patient and, therefore, .β = 1, indicating that the household places the 
same value on utility today as tomorrow’s utility. This analysis is better appreciated 
in Table 3.1 considering that the present value of the utility function is expressed as 
follows: 

. 

∞⎲

t=0

βtu(ct , ht ) = u(c0, h0) + βu(c1, h1) + β2u(c2, h2) + β3u(c3, h3) . . .

Considering the functional form of the instantaneous utility function according 
to equation (3.6), the objective function to be maximized would be: 

. Max
{ct ,ht ,kt+1}∞t=0

E0

∞⎲

t=0

βt
(
ln(ct ) + θln(1 − ht )

)

1 The Frisch elasticity is the elasticity of labor supply holding the income effect constant. This 
elasticity will be analyzed in greater detail in Chap. 5. 
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Table 3.1 Effect of impatience on discount factor 

Impatience .ρ Effect on .β .
∑∞ 

t=0 β
t u(ct , ht ) Value 

Zero impatience 
. ρ = 0 

.β = 1 .u(c0, h0) + u(c1, h1) + 
u(c2, h2) + . . .  

The household gives the same 
value to utility over time 

Little impatience 
. ρ = 1 

.β = 1/2 .u(c0, h0) + 1 2u(c1, h1) + 
1 
4u(c2, h2) + . . .  

The household gives more 
value to the utility today than in 
the future: the value to the 
utility today is 1, while the 
value to the utility at .t = 1 is 
0.5, and at .t = 2 it is 0.25 

Greater 
impatience . ρ = 2 

.β = 1/3 .u(c0, h0) + 1 3u(c1, h1) + 
1 
9u(c2, h2) + . . .  

The household gives more 
value to today’s utility than in 
the future: the value to today’s 
utility is 1, while tomorrow’s 
utility is valued at 0.33, and in 
“.t = 2” it is 0.11  

Total impatience 
. ρ = ∞  

.β = 0 .u(c0, h0) + 0u(c1, h1) + 
0u(c2, h2) + . . .  

The individual only values the 
current consumption. He/she 
does not value anything to 
consume in the future 

The maximization of this objective function is subject to two constraints: the 
budget constraint and the law of motion of capital, which are described below. 

Budget constraint On the one hand, the household receives its income from 
renting capital . kt to firms at a real interest rate . rt . In addition, households are part 
of the labor market where they offer labor . ht at a real wage . wt . Both revenues are 
observed in each period and are equal to .rt kt + wtht . 

On the other hand, the household allocates its income to consumer goods . ct and 
savings which, in a closed economy, equals investment . it . Therefore, joining income 
and expenses, the budget constraint of the representative household is: 

.ct + it = rt kt + wtht (3.8) 

Law of movement of capital From national accounts, it is known that net 
investment is equal to gross investment minus depreciation: 

.Inet = Igross − Depreciation. (3.9) 

kt+1 − kt = it − δkt 

kt+1 = (1 − δ)kt + it (3.10) 

Equation (3.10) is known as the law of motion of capital, which describes the 
behavior of the stock of capital. It is worth mentioning that this equation assumes 
that the stock of capital depreciates by a percentage . δ (usually 2.5% quarterly) in 
each period. However, Long and Plosser (1983) assumed that the depreciation rate
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is full (.δ = 1), that is, that the capital in each period is fully depreciated in that 
same period in such a way that there is no capital left for the next (this under the 
assumption that all commodities are perishable). Although the assumption is highly 
unrealistic, it helps to remove certain nonlinearities from the system of equations. 
With this assumption in mind, equation (3.10) becomes: 

.kt+1 = it (3.11) 

The capital in .t + 1 is the investment made in “t.” Since there is no stock of 
capital, capital becomes a flow and is always equal to new goods in each period. 
Introducing equation (3.11) in the budget constraint, equation (3.8), we have:  

.ct + kt+1 = rt kt + wtht (3.12) 

So, the optimization problem of the household is: 

. Max
{ct ,ht ,kt+1}∞t=0

E0

∞⎲

t=0

βt
(
ln(ct ) + θln(1 − ht )

)

subject to: 

. ct + kt+1 = rt kt + wtht

Building the Lagrange function: 

. L = E0

∞⎲

t=0

βt
⎾
u(ct , ht ) + λt

(
rt kt + wtht − (ct + kt+1)

)⏋

where the extended version of the Lagrange function can be expressed as follows: 

.L = E0

⌠

β0⎾u(c0, h0) + λ0
(
r0k0 + w0h0 − (c0 + k1)

)⏋+

β1⎾u(c1, h1) + λ1
(
r1k1 + w1h1 − (c1 + k2)

)⏋+
β2⎾u(c2, h2) + λ2

(
r2k2 + w2h2 − (c2 + k3)

)⏋+
β3⎾u(c3, h3) + λ3

(
r3k3 + w3h3 − (c3 + k4)

)⏋+
β4⎾u(c4, h4) + λ4

(
r4k4 + w4h4 − (c4 + k5)

)⏋+
. . . +
βt
⎾
u(ct , ht ) + λt

(
rt kt + wtht − (ct + kt+1)

)⏋+
βt+1⎾u(ct+1, ht+1) + λt+1

(
rt+1kt+1 + wt+1ht+1 − (ct+1 + kt+2)

)⏋+
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. . .  + 

. . .

⎫

The first-order conditions, in period “t,” are: 

. 
∂L
∂ct

= 0 =⇒ E0

⌠

βt
⎾
uct + λt (−1)

⏋
⎫

= 0

.uct = λt (3.13) 

. 
∂L
∂ht

= 0 =⇒ E0

⌠

βt
⎾
uht + λt (wt )

⏋
⎫

= 0

.uht = −λtwt (3.14) 

Substituting equation (3.13) in equation (3.14), the labor supply is obtained: 

. uht = −λtwt

− θ

1 − ht

= − 1

ct

wt

θ

1 − ht

= wt

ct

(3.15) 

On the other hand, the first-order condition with respect to capital .kt+1 is: 

. 
∂L

∂kt+1
= 0 =⇒ E0

⌠

βt
⎾
λt (−1)] + βt+1⎾λt+1(rt+1)

⏋
⎫

= 0

.λt = βEtλt+1(rt+1) (3.16) 

Substituting equation (3.13) into equation (3.16) we get the Euler equation: 

. uct = βEtuct+1(rt+1)

1

ct

= βEt

1

ct+1
(rt+1) (3.17) 

3.2.3 Firms 

Production function It is assumed that there is only one final good in the 
economy and it is produced by a neoclassical production function .f (at , kt , ht ).
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The Cobb-Douglas production function meets the characteristics of a neoclassical 
function and describes a country’s production reasonably well: 

.yt = f (at , kt , ht ) = atk
1−α
t hα

t (3.18) 

where . kt is the default capital stock (chosen in period “t. −1”) and . ht is the labor 
input. Also, the variable . at refers to productivity, which is assumed to behave 
stochastically and is expressed by AR(1). 

An important feature of the Cobb-Douglas function is that the share of each 
factor in total income is constant and equal to the exponents of each factor in the 
production function. As is known in perfect competition (a key assumption in RBC 
models), the rental of capital is equal to the marginal productivity of capital; that is: 
rt = (1 − α) yt 

kt 
. Similarly for work: wt = α yt 

ht 
. 

The income destined for the payment of capital and labor is rt kt and wtht , 
respectively. Considering that production represents all the income of a country, 
then the fraction of the income allocated to the payment of capital with respect to 
the total income is rt kt /yt : 

.
rt kt

yt

= (1 − α)
yt

kt

kt

yt

= (1 − α) (3.19) 

In the same way, calculating the proportion of the total income oriented to the 
payment of work: 

.
wtht

yt

= α
yt

ht

ht

yt

= α (3.20) 

Equations (3.19) and (3.20) indicate that capital’s income share is equal to “1 − 
α,” and labor’s income share is “α.” Both parameters are constant and equal to the 
exponents of the factors in the production function. This suggests that the value of 
“α” could be obtained through the national accounts, which would be, in terms of 
the RBC models, a calibration of the parameter α. Chapter 1 shows that the average 
share of labor in national income between 1948 and 2014 for the North American 
economy is equal to 66.3%. This suggests that α could take that value. 

Characteristics of the neoclassical production function 
For a production function f (at , kt , ht ) to be considered neoclassical, it must 
have three characteristics (Barro et al. 2009): 

1. Constant returns to scale: the function f (at , kt , ht ) must show constant 
returns to scale; that is, if we multiply capital and labor by a constant λ, 
the product is multiplied by that same constant. 

(continued)
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.f (at , λkt , λht ) = λf (at , kt , ht ) (3.21) 

2. Positive and diminishing returns: The neoclassical production function 
exhibit positive and diminishing marginal productivity for each production 
factor. 

. Increasing returns : ∂f (·)
∂kt

> 0,
∂f (·)
∂ht

> 0

Diminishing returns : ∂2f (·)
∂k2t

< 0,
∂2f (·)
∂h2t

< 0

3. Inada conditions: These conditions state that the marginal product of 
capital approaches infinity as capital approaches zero and approaches zero 
as capital approaches infinity. The same condition holds for labor. In 
mathematical terms, these conditions are expressed as: 

. Capital : Lim
kt→0

⎛
∂f (·)
∂kt

⎞

= ∞, Lim
kt→∞

⎛
∂f (·)
∂kt

⎞

= 0

Labor : Lim
ht→0

⎛
∂f (·)
∂ht

⎞

= ∞, Lim
ht→∞

⎛
∂f (·)
∂ht

⎞

= 0

Optimization Firms operate in a context of perfect competition in the goods 
market and the factor market (labor and capital). They maximize their profit 
function considering their technology, which is assumed to have the Cobb-Douglas 
functional form. In this model, firms decide how much capital to rent and how much 
labor (in hours) to hire. Therefore, the two optimization variables are capital kt and 
labor ht . 

. Max
{kt ,ht }∞t=0

Πt = yt − (rt kt + wtht )

Subject to production function: 

.yt = atk
1−α
t hα

t (3.22) 

It is worth mentioning that since the firm does not face a dynamic constraint, it 
maximizes profits at each moment. Therefore, the optimization problem is static. To 
solve this problem, we introduce the production function in the objective function: 

. Max
{kt ,ht }∞t=0

Πt = atk
1−α
t hα

t − (rt kt + wtht ) (3.23)
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Deriving this expression, equation (3.23), with respect to capital kt : 

. 
∂Π

∂kt

= 0 =⇒ ∂(atk
1−α
t hα

t − rt kt )

∂kt

= 0 =⇒ (1 − α)atkt
−αht

α − rt = 0

From this first-order condition, the demand for capital is obtained: 

. rt = (1 − α)at

⎾
ht

kt

⏋α

rt = (1 − α)at

⎾
hα

t

kα
t

⏋

rt = (1 − α)ath
α
t k−α

t

kt

kt

rt = (1 − α)ath
α
t k1−α

t

1

kt

rt = (1 − α)
yt

kt

(3.24) 

Differentiating equation (3.23) with respect to work ht : 

. 
∂Π

∂ht

= 0 =⇒ ∂(atk
1−α
t hα

t − rt kt − wtht )

∂ht

= 0 =⇒ αatkt
1−αht

α−1 − wt = 0

From this first-order condition we obtain the labor demand: 

. wt = αat

⎾
kt

ht

⏋1−α

wt = αat

⎾
k1−α
t

h1−α
t

⏋

wt = αat

k1−α
t hα

t

ht

wt = α
yt

ht

(3.25) 

3.2.4 Market Equilibrium and Definition of shock 

To close the model, it is necessary to define the equilibrium in the goods market: 

.yt = ct + it (3.26)
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Table 3.2 Nonlinear system of equations of the model 

Agent Equations Description 

Household . 1 
ct 

= βEt

⎾ 1 
ct+1 

rt+1
⏋

Euler equation 

.kt+1 = it Law of movement of capital 

. θ 
1−ht 

= wt 
ct 

Labor supply 

Firm .yt = at k
1−α 
t hα 

t Production function 

.rt = (1 − α) yt 
kt 

Capital demand 

.wt = α yt 
ht 

Labor demand 

Equilibrium .yt = ct + it Goods market equilibrium 

Shock .lnat = φlnat−1 + ϵt Productivity shock 

In addition, it is necessary to define the behavior of productivity: 

.lnat = φlnat−1 + ϵt (3.27) 

It is worth mentioning that the shock of productivity . ϵt behaves like a normal 
distribution with zero mean and constant variance: .ϵt ∼ N(0, σ 2

ϵ ). 

3.2.5 Principal Equations 

The main equations of the model are summarized in Table 3.2: 
It is important to mention that the system of equations is made up of the 

following: 

(1) the capital market: the supply of capital represented by the law of movement of 
capital and the demand for capital; 

(2) the labor market: labor supply and labor demand; 
(3) the goods market: the supply of goods represented by the production function, the 

demand for consumption represented by the Euler equation, and the investment 
demand which is represented by the law of movement of capital. Likewise, this 
market requires that its equilibrium be made explicit through the equation . yt =
ct + it ; and finally, 

(4) the shock of productivity. All these equations are described in Table 3.2. 
Likewise, it is important to verify that the number of variables equals the number 
of equations. In this case, there are eight variables (. yt , . ct , . it , . kt , . ht , . rt , . wt , and 
. at ) and eight equations. 

3.3 Calibration 

Calibration can be understood as a way of estimation by simulation (Hoover 1995). 
This procedure consists of assigning values to the model parameters and then 
comparing the main characteristics of the simulated variables of the calibrated
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Table 3.3 Calibration 

Parameter Remark 

.α = 0.667 Long-run share of labor in national income 

.θ = 3.968 Calibrated so that the steady-state work is equal to 20% 

.φ = 0.979 Persistence of the shock 

.β = 0.984 Discount factor 

.σe = 0.0072 Standard deviation of the shock of productivity 

model with those from the data. In this chapter, as in Chap. 2, the calibration is 
based onKing and Rebelo (1999), whose values are shown in Table 3.3. 

As Cooley and Prescott (1995) mention, since the underlying structure of RBC 
models is a neoclassical growth model, the choice of parameter values (calibration) 
and functional forms (for example, utility function and the law of movement of 
capital) should ensure that the economic model shows balanced growth.2 

3.4 Steady State 

The steady state is known as a long-run equilibrium where .Δxt = 0 (for all model 
variables) and the productivity shock (. εt ) takes its average value (. = 0). Furthermore, 
given the productivity equation of motion, its steady-state value is .a = 1. Likewise, 
expectations disappear; therefore, it is known as a non-stochastic solution. The goal 
is to find the steady-state value as a function of the model parameters. To this end, 
it is important to consider the following three criteria. First, place all the model 
equations in a steady state; that is, eliminate temporality and expectations. Second, 
use the variables that only depend on the model parameters to find the steady state of 
the other variables. Third, try to solve the system of equations in terms of ratios; for 
example, instead of searching for the value of . kss (steady-state capital), one could 
search for the value of the ratio .yss/kss . It is worth mentioning that finding the 
steady state is a previous step to model log-linearization. For Euler’s equation, we 
have the following:

2 Balanced growth (balanced growth) is understood as the situation in which all sectors of an 
economy growing at the same constant rate. This is similar to the definition of “steady-state 
growth” (steady-state growth), which indicates the situation in which output, capital, labor, and 
consumption change at the same rate. Since the growth rate of capital depends on savings, steady-
state growth requires that the savings function be stable: borrowing policy can promote stability by 
keeping the interest rate constant. If the growth rate is equal to zero, then the economy is said to be 
in a steady state (stationary state or steady state). The latter is a theoretical state of the economy 
in which exactly what is produced is consumed and replaces what is consumed at the end of the 
period. Another way to understand it is when an economy has a constant population size and stock 
of capital; that is, the investment is only made to maintain the existing stock of capital; in other 
words, its steady-state growth is equal to zero (Lau et al. 2002). 
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. 
1

ct

= βEt

1

ct+1
rt+1

1

css

= βEt

1

css

rss

1 = βrss

rss = 1

β
(3.28) 

In the same way for the law of motion of capital: 

. kt+1 = it

kss = iss (3.29) 

For the labor supply: 

. 
θ

1 − ht

= wt

ct

θ

1 − hss

= wss

css

(3.30) 

for the production function: 

. yt = atk
1−α
t hα

t

yss = assk
1−α
ss hα

ss (3.31) 

For the demand for capital: 

. rt = (1 − α)
yt

kt

rss = (1 − α)
yss

kss

(3.32) 

Considering equation (3.28) in equation (3.32), we have the ratio . 
yss

kss
as a function 

of model parameters: 

. rss = (1 − α)
yss

kss

1

β
= (1 − α)

yss

kss

yss

kss

= 1

β(1 − α)
(3.33)
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It is a good strategy to find ratios, especially when the denominator is capital. 
This allows each variable to depend on capital in a steady state, which, by finding 
its value, allows finding the values of the remaining variables. 

For labor demand: 

. wt = α
yt

ht

wss = α
yss

hss

(3.34) 

For the equilibrium equation in the goods market: 

. yt = ct + it

yss = css + iss (3.35) 

But from equation (3.29) it is known that: .kss = iss . Then considering this 
equality in equation (3.35), we have:  

. yss = css + iss

yss = css + kss

yss

kss

= css

kss

+ 1

css

kss

= yss

kss

− 1

css

kss

= 1

β(1 − α)
− 1 (3.36) 

Finally, for the productivity behavior equation: 

. lnat = φlnat−1 + ϵt

lnass = φlnass + ϵss◟◝◜◞
=0(valor de su media)

lnass = φlnass

ln(ass) = ln(aφ
ss)

ass = aφ
ss (3.37) 

Two values of . ass could solve this last equation (3.37): .ass = 1 or .ass = 0. 
However, only when .ass = 1 does the .lnass exist. Therefore, the correct solution is 
.ass = 1. 

In order to find the steady states of the other variables, it is necessary to perform 
some additional algebraic operations.
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Uniting the labor supply, equation (3.30), with the labor demand, equation (3.34), 
by means of the real wage, we have: 

.
θcss

1 − hss◟ ◝◜ ◞
labor supply

= wss = α
yss

hss◟ ◝◜ ◞
labor demand

(3.38) 

Operating on the resulting equation: 

. 
θcss

1 − hss

= α
yss

hss

θhss

1 − hss

= α
yss

css

θhss

1 − hss

= α
yss/kss

css/kss

From equations (3.33) and (3.36) : 
θhss 

1 − hss 
= α 

1 
β(1−α) 
1 

β(1−α) − 1 

1 − hss 
θhss 

= (α−1) 
1 

β(1−α) − 1 
1 

β(1−α) 

1 

hss 
− 1 = θ(α−1)(1 − β(1 − α)) 

1 

hss 
= θ(α−1)(1 − β(1 − α)) + 1 

hss = α 
θ(1 − β(1 − α)) + α 

(3.39) 

Since we already have the value of . hss , then we can find the steady-state capital 
. kss of the production function (equation (3.31)): 

. yss = aα
ssk

1−α
ss hα

ss

yss

kss

=
⎾
hss

kss

⏋α

From equation (3.33) : 
1 

β(1 − α) 
=
⎾
hss 
kss

⏋α

⎾
1 

β(1 − α)

⏋1/α 
= 

hss 
kss
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kss = hss

⎾
1 

β(1 − α)

⏋−1/α 

kss =
⎾

α 
θ(1 − β(1 − α)) + α

⏋
⎾
β(1 − α)

⏋1/α (3.40) 

Since some variables are expressed as a ratio to capital, then their steady-
state value can be found as a function of the steady-state value of capital. From 
equation (3.33) we find the product . yss : 

. 
yss

kss

= 1

β(1 − α)

yss = kss

⎾
1

β(1 − α)

⏋

yss =
⎾

α

θ(1 − β(1 − α)) + α

⏋
⎾
β(1 − α)

⏋ 1
α
−1 (3.41) 

Doing the same in equation (3.36), the consumption . css is found: 

. 
css

kss

= 1

β(1 − α)
− 1

css = kss

⎾
1

β(1 − α)
− 1

⏋

css =
⎾

α

θ(1 − β(1 − α)) + α

⏋
⎾
β(1 − α)

⏋1/α
⎾

1

β(1 − α)
− 1

⏋

(3.42) 

In the labor demand, equation (3.34), substitute . yss and . hss and obtain the steady-
state wage . wss : 

. wss = α
yss

hss

wss = α

⎾
α

θ(1−β(1−α))+α

⏋
⎾
β(1 − α)

⏋ 1
α
−1

α
θ(1−β(1−α))+α

wss = α
⎾
β(1 − α)

⏋ 1
α
−1 (3.43) 

Table 3.4 summarizes the steady-state expression for each variable in the model. 
As mentioned before, this model is based on theKing and Rebelo (1999) 

calibration. In that study the authors assume that the steady-state work . hss is equal 
to 0.2. Under this premise, the value of the parameter . θ is calculated endogenously
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Table 3.4 Steady state 

Steady-state (recursive form) Steady state (parametric form) Values 

.rss = 1 
β

.= 1 
β

. rss = 1.0163 

.hss = α 
θ(1−β(1−α))+α

.= α 
θ(1−β(1−α))+α

. hss = 0.2 

.ass = 1 .= 1 . ass = 1 

.kss = hss

⎾ 1 
β(1−α)

⏋−1/α 
.= ⎾ alpha 

θ(1−β(1−α))+α

⏋⎾
β(1 − α)

⏋1/α 
. kss = 0.0375 

.iss = kss .= ⎾
α 

θ(1−β(1−α))+α

⏋⎾
β(1 − α)

⏋1/α 
. iss = 0.0375 

.yss = kss

⎾ 1 
β(1−α)

⏋
.= ⎾

α 
θ(1−β(1−α))+α

⏋⎾
β(1 − α)

⏋ 1 
α

−1 
. yss = 0.1146 

.css = kss

⎾ 1 
β(1−α) − 1

⏋
.= ⎾

α 
θ(1−β(1−α))+α

⏋⎾
β(1 − α)

⏋1/α⎾ 1 
β(1−α) − 1

⏋
. css = 0.077 

.wss = α yss 
hss 

.= α
⎾
β(1 − α)

⏋ 1 
α

−1 
. wss = 0.3821 

Note: The calculation of the steady states is found in Long_Plosser_SteadyState.m 

from the steady-state expression of work, which is derived from the model. So, 
under this consideration, we have: 

. hss = α

θ(1 − β(1 − α)
◟ ◝◜ ◞

η

) + α

hss = α

θη + α

Clearingθ :
θη + α = α

hss

θη = α(
1

hss

− 1)

θ = α

⎛
1 − hss

ηhss

⎞

(3.44) 

3.5 Linearization vs. Log-Linearization 

An important step in the model solution process is to linearize or log-linearize the 
equations of the system. Strictly speaking, the linearization technique is unique; 
what differs is the nature of the variable, which in one case is considered in levels 
and in another case in logarithms. In practical terms, the first linearization will be 
called variable in levels and the second log-linearization variable in logarithms. In
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both cases, each equation of the model is approximated by means of the first-order 
Taylor expansion (DeJong and Dave 2011). 

3.5.1 Linearization (Variable in Levels) 

Step 1 The first step consists of ordering each equation of the system in such a way 
that the right side of the equation is equal to zero. Then, the left side of the equation 
needs to be renamed as a function that depends on the variables that appear in the 
equation. For example, let the following expression be an equation of the model: 

.αxtyt = βyt + θzt (3.45) 

The terms are ordered on the left side: 

.αxtyt − βyt − θzt = 0 (3.46) 

Finally, we rename the equation as a function: 

.F(xt , yt , zt ) = αxtyt − βyt − θzt = 0 (3.47) 

Step 2 The second step is to approximate the function (3.47) by means of a first-
order Taylor expansion around the steady state. 

. F(xt , yt , zt ) = αxtyt − βyt − θzt = 0

F(xt , yt , zt ) ≈ F(·)|ss + ∂F

∂xt

|ss(xt − xss) + ∂F

∂yt

|ss(yt − yss)

+ ∂F

∂zt

|ss(zt − zss) (3.48) 

Considering that F(·)|ss = 0 and performing a change of variable:~xt = xt −xss , 
where ~xt is the deviation of the variable (in levels) with respect to its steady state. 
Applying this change of variable to equation (3.48), we have: 

.F(xt , yt , zt ) ≈ F(·)|ss + ∂F

∂xt

|ss(xt − xss) + ∂F

∂yt

|ss(yt − yss) + ∂F

∂zt

|ss(zt − zss)

F (xt , yt , zt ) ≈ 0 + ∂F

∂xt

|ss(~xt ) + ∂F

∂yt

|ss(~yt ) + ∂F

∂zt

|ss(~zt )

F (xt , yt , zt ) ≈ (αyss)~xt + (−β)~yt + (−θ)~zt

but : F(xt , yt , zt ) = 0 , so . . .

0 = F(xt , yt , zt ) ≈ (αyss)~xt + (−β)~yt + (−θ)~zt
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0 = (αyss)~xt + (−β)~yt + (−θ)~zt 

αyss~xt = β~yt + θ~zt (3.49) 

Equation (3.49) is the linear version of equation (3.46). Applying this technique 
to each equation of the nonlinear system, the linear system with the variables in 
levels will be obtained. For the case of Euler’s equation, we have: 

. F(ct , ct+1, rt+1) = 1

ct

− βEt

rt+1

ct+1
= 0

Extracting expectations :

EtF (ct , ct+1, rt+1) = Et

⎛
1

ct

− β
rt+1

ct+1

⎞

= 0

F(ct , ct+1, rt+1) ≈ F(· )|ss + ∂F

∂ct

|ss(ct − css) + ∂F

∂ct+1
|ss(ct+1 − css) +

∂F

∂rt+1
|ss(rt+1 − rss)

F (ct , ct+1, rt+1) ≈ 0 +
⎛

− 1

c2ss

⎞

~ct +
⎛

β
rss

c2ss

⎞

~ct+1 +
⎛

− β

css

⎞

~rt+1

0 = Et

⎾⎛

− 1

c2ss

⎞

~ct +
⎛

β
rss

c2ss

⎞

~ct+1 +
⎛

− β

css

⎞

~rt+1

⏋

0 =
⎛

− 1

c2ss

⎞

~ct + Et

⎾⎛

β
rss

c2ss

⎞

~ct+1 +
⎛

− β

css

⎞

~rt+1

⏋

⎛
1

c2ss

⎞

~ct = Et

⎾⎛

β
rss

c2ss

⎞

~ct+1 +
⎛

− β

css

⎞

~rt+1

⏋

~ct = βEt(rss~ct+1 − css~rt+1) (3.50) 

Doing the same linearization procedure for the law of movement of capital: 

. F(kt+1, it ) = kt+1 − it = 0

F(kt+1, it ) ≈ F(· )|ss + ∂F

∂kt+1
|ss(kt+1 − kss) + ∂F

∂it
|ss(it − iss)

F (kt+1, it ) ≈ 0 + (1)~kt+1 + (−1)~it

0 =~kt+1 + (−1)~it

~kt+1 =~it (3.51) 

For the labor supply, the linearized equation would be:
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. F(ht , wt , ct ) = θ

1 − ht

− wt

ct

= 0

F(ht , wt , ct ) ≈ F(· )|ss + ∂F

∂ht

|ss(ht − hss) + ∂F

∂wt

|ss(wt − wss) + ∂F

∂ct

|ss(ct − css)

F (ht , wt , ct ) ≈ 0 + θ

(1 − hss)2
~ht + −1

css

~wt + wss

c2ss
~ct

0 = θ

(1 − hss)2
~ht − 1

css

~wt + wss

c2ss
~ct

1

css

~wt = θ

(1 − hss)2
~ht + wss

c2ss
~ct

~wt = wss

(1 − hss)
~ht + θ

1 − hss

~ct (3.52) 

Similarly for the production function: 

. F(yt , at , kt , ht ) = yt − atk
1−α
t hα

t = 0

F(yt , at , kt , ht ) ≈ F(· )|ss + ∂F

∂yt

|ss(yt − yss) + ∂F

∂at

|ss(at − ass) + ∂F

∂kt

|ss(kt − kss)

+ ∂F

∂ht

|ss(ht − hss)

F (yt , at , kt , ht ) ≈ 0 + (~yt ) + (−k1−α
ss hα

ss)(~at ) + (−(1 − α)assk
−α
ss hα

ss)(
~kt )

+ (−αassk
1−α
ss hα−1

ss )(~ht )

0 = ~yt − yss

ass

~at − (1 − α)
yss

kss

~kt − α
yss

hss

~ht

~yt = yss

ass

~at + (1 − α)
yss

kss

~kt + α
yss

hss

~ht (3.53) 

Doing the same for capital demand: 

. F(rt , yt , kt ) = rt − (1 − α)
yt

kt

= 0

F(rt , yt , kt ) ≈ F(· )|ss + ∂F

∂rt
|ss(rt − rss) + ∂F

∂yt

|ss(yt − yss) + ∂F

∂kt

|ss(kt − kss)

F (rt , yt , kt ) ≈ 0 + (1)~rt + −(1 − α)

kss

~yt + (1 − α)yss

k2ss

~kt

0 = (1)~rt + −(1 − α)

kss

~yt + (1 − α)yss

k2ss

~kt

yss

kss

~kt = ~yt − kss

1 − α
~rt (3.54)
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In the same way for the labor demand: 

. F(wt , yt , ht ) = wt − α
yt

ht

= 0

F(wt , yt , ht ) ≈ F(· )|ss + ∂F

∂wt

|ss(wt − wss) + ∂F

∂yt

|ss(yt − yss) + ∂F

∂ht

|ss(ht − hss)

F (wt , yt , ht ) ≈ 0 + (1)~wt +
⎛−α

hss

⎞

~yt +
⎛

αyss

h2ss

⎞

~ht

0 = ~wt −
⎛

α

hss

⎞

~yt +
⎛

αyss

h2ss

⎞

~ht

~wt =
⎛

α

hss

⎞

~yt −
⎛

αyss

h2ss

⎞

~ht (3.55) 

For the equilibrium equation in the goods market: 

. F(yt , ct , it ) = yt − ct − it = 0

F(yt , ct , it ) ≈ F(· )|ss + ∂F

∂yt

|ss(yt − yss) + ∂F

∂ct

|ss(ct − css) + ∂F

∂it
|ss(it − iss)

F (yt , ct , it ) ≈ 0 + (1)~yt + (−1)~ct + (−1)~it

~yt =~ct +~it (3.56) 

Finally for the productivity shock: 

. F(at , at−1, ϵt ) = lnat − φlnat−1 − ϵt = 0

F(at , at−1, ϵt ) ≈ F(· )|ss + ∂F

∂at

|ss (at − ass) + ∂F

∂at−1
|ss (at−1 − ass) + ∂F

∂ϵt

|ss(ϵt − ϵss)

Considering : ϵss = 0

F(at , at−1, ϵt ) ≈ 0 + 1

ass

~at +
⎛

− φ

ass

⎞

~at−1 + (−1)ϵt

0 = 1

ass

~at +
⎛

− φ

ass

⎞

~at−1 + (−1)ϵt

1

ass

~at =
⎛

φ

ass

⎞

~at−1 + ϵt

Given that : ass = 1

~at = φ~at−1 + ϵt (3.57)



126 3 RBC Model with Analytical Solution

Table 3.5 Linear system of equations of the model (Long and Plosser 1983) 

Agent Equations Description 

Household ~ct = βEt (rss~ct+1 − css~rt+1) Equation from Euler
~kt+1 =~it Law of movement of capital

~wt = wss 
(1−hss )

~ht + θ 
1−hss

~ct Labor Supply 

Firm ~yt = yss 
ass
~at + (1 − α) yss 

kss

~kt + α yss 
ass

~ht Production function 
yss 
kss

~kt = ~yt − kss 
1−α

~rt Capital demand

~wt =
⎛

α 
hss

⎞

~yt −
⎛

αyss 
h2 ss

⎞

~ht Labor demand 

Equilibrium ~yt =~ct +~it Goods market equilibrium 

Shock ~at = φ~at−1 + ϵt Productivity Shock 

Table 3.5 summarizes the linearized equations of the model. 

3.5.2 Linearization (Logarithmic Variables) or 
Log-Linearization 

It is usual to consider the log-linearization of the model because the transformed 
variables are expressed as the percentage deviation from their steady state. Namely: 

.  ̂xt = ln(xt ) − ln(xss)

In that context, the coefficients of the solution of the linear system are inter-
preted as elasticities. This technique was initially proposed byKing et al. (1991) 
andCampbell (1994). 

To log-linearize the nonlinear system two ways can be applied. The first 
alternative is following the same path described in the previous section but with 
a twist. The standard form suggests that the terms of the equation are moved to the 
left-hand side and then renamed by a function (depending on the variables of the 
equation), to finally apply an approximation of this function by means of the first-
order Taylor expansion. The variant is that first, you have to apply the logarithm to 
both sides of each equation and then try to express each variable in logarithms. For 
example, if the consumption . ct is in levels, and we want to express it in logarithms, 
the following can be done: .elnct . 

The second alternative is proposed byUhlig (1995), which is much more 
practical. Uhlig (1995)’s proposal consists of replacing each of the variables by its 
log deviation (.xt = xsse

 ̂xt ) and then considering three approximation properties, 
which are mentioned later. 

It is worth mentioning that, for the model of this chapter in particular, both 
ways of log-linearizing do not represent a difference in effort. Uhlig (1995)’s 
proposal gains greater importance in terms of practicality as the model becomes
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more complex. For example, the model from Chap. 5 forward can be log-linearized 
quickly and with little effort by means of the Uhlig technique compared to the 
standard path. 

Standard method Due to the assumptions of the model of Long and Plosser 
(1983), some equations will not require a first-order Taylor approximation because 
it would be easy to obtain these equations expressed in log deviations. In these cases, 
it will be sufficient to write the equation in logarithms and subtract the equation in 
the steady state. These equations are the following: the law of movement of capital, 
the production function, the capital demand, the labor demand, and productivity. 
However, it is required to apply the Taylor expansion for the Euler equation, the 
labor supply, and the equilibrium equation of the goods market. Clearly, as the 
model becomes more complex, the application of the Taylor expansion will be more 
required. 

For Euler’s equation, we have the following: first, we take logarithms on both 
sides of equation (equation (3.58)), and then we take all the elements of this equation 
to the left side and rename it as a function of the endogenous variables that appear 
in this equation. In this particular case, the function is .f (lnrt+1, lnct+1, lnct ). 

. 
1

ct

= βEt

rt+1

ct+1

ln

⎾
1

ct

⏋

= Et ln

⎾

β
rt+1

ct+1

⏋

. (3.58) 

−lnct = Et [lnβ + lnrt+1 − lnct+1] 
Et [lnβ + lnrt+1 − lnct+1] +  lnct = 0 

F(lnrt+1, lnct+1, lnct ) = Et [lnβ + lnrt+1 − lnct+1 + lnct ] =  0 

F(lnrt+1, lnct+1, lnct ) = 0 (3.59) 

The next step is to approximate the function “.F(·)” by means of a first-order 
Taylor expansion: 

. F(lnrt+1, lnct+1, lnct ) ≈ Et

⎾
F(· )|ss + ∂F

∂lnrt+1
|ss(lnrt+1 − lnrss) +

∂F

∂lnct+1
|ss(lnct+1 − lncss) + ∂F

∂lnct

|ss(lnct − lncss)
⏋

F(yt , ct , it ) ≈ Et

⎾
0 + (1)(lnrt+1 − lnrss) + (−1)(lnct+1 − lncss)

+ (1)(lnct − lncss)
⏋

F(yt , ct , it ) ≈ Et

⎾
 ̂rt+1 − ̂ct+1 + ̂ct

⏋

 ̂ct = Et

⎾
 ̂ct+1 − ̂rt+1

⏋
(3.60)
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With respect to the law of motion of capital, we proceed in the same way as in 
the Euler equation, except that it is not necessary to apply the Taylor approximation: 

. kt+1 = it

lnkt+1 = lnit

lnkss = lniss

lnkt+1 − lnkss = lnit − lniss

 ̂kt+1 = ̂it (3.61) 

In the case of the labor supply: 

. 
θ

1 − ht

= wt

ct

ln
θ

1 − ht

= ln
wt

ct

lnθ − ln(1 − ht ) = lnwt − lnct . (3.62) 

lnθ − ln(1 − hss) = lnwss − lncss . (3.63) 

(3.62)–(3.63) : 
−ln(1 − ht ) + ln(1 − hss) = lnwt − lnct − lnwss + lncss 

Ordering : 
−ln(1 − ht ) + ln(1 − hss) = (lnwt − lnwss) − (lnct − lncss) 

−ln(1 − ht ) + ln(1 − hss) =  ̂wt − ̂ct (3.64) 

For equation (3.64) to be fully log-linearized, we need to express labor as its log 
deviation from its steady state. To do this, the following will be done: 

. ln(1 − ht ) = ln(1 − elnht )

This expression is approximated by means of the first-order Taylor expansion: 

.g(lnht ) = ln(1 − elnht ) ≈ g(· )|ss + ∂g

∂lnht

|ss(lnht − lnhss)

ln(1 − elnht ) ≈ ln(1 − elnhss ) +
⎾ −elnht

1 − elnht

⏋

(lnht − lnhss)

ln(1 − elnht ) ≈ ln(1 − hss) −
⎾

hss

1 − hss

⏋

(lnht − lnhss)
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ln(1 − elnht ) ≈ ln(1 − hss) −
⎾

hss 
1 − hss

⏋

 ̂ht (3.65) 

Replacing equation (3.65) in (3.64), the log-linear expression of the labor supply 
is obtained: 

. − ln(1 − ht ) + ln(1 − hss) =  ̂wt − ̂ct

−ln(1 − hss) +
⎾

hss

1 − hss

⏋

 ̂ht + ln(1 − hss) =  ̂wt − ̂ct

⎾
hss

1 − hss

⏋

 ̂ht =  ̂wt − ̂ct (3.66) 

To obtain the log-linear form of the production function, it is enough to apply the 
logarithm to the production function and then evaluate it in its steady state, to finally 
subtract both equations: 

. yt = atk
1−α
t hα

t

lnyt = lnat + (1 − α)lnkt + αht . (3.67) 

lnyss = lnass + (1 − α)lnkss + αhss . (3.68) 

(3.67)–(3.68) : 
lnyt − lnyss = lnat − lnass + (1 − α)lnkt − (1 − α)lnkss + αht − αhss

 ̂yt = ̂at + (1 − α) ̂kt + α ̂ht (3.69) 

The labor demand follows the same steps as the production function: 

. wt = α
yt

ht

lnwt = lnα + lnyt − lnht . (3.70) 

lnwss = lnα + lnyss − lnhss . (3.71) 

(3.70)–(3.71) : 
lnwt − lnwss = lnyt − lnyss − lnht + lnhss

 ̂wt =  ̂yt − ̂ht (3.72) 

With respect to the demand for capital, we obtain: 

. rt = (1 − α)
yt

kt

lnrt = ln(1 − α) + lnyt − lnkt . (3.73)
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lnrss = ln(1 − α) + lnyss − lnkss . (3.74) 

(3.73)–(3.74) : 
lnrt − lnrss = lnyt − lnyss − lnkt + lnkss

 ̂rt =  ̂yt − ̂kt (3.75) 

For the market equilibrium equation, we have: 

. yt = ct + it

lnyt = ln(ct + it )

lnyt − ln(ct + it ) = 0 (3.76) 

Since we want the variables to be expressed in logarithms, the following trick is 
made: each variable . xt is expressed as .elnxt . Applying this artifice to equation (3.76): 

. lnyt − ln(ct + it ) = 0

lnyt − ln(elnct + elnit ) = 0

F(yt , ct , it ) = lnyt − ln(elnct + elnit ) = 0 (3.77) 

Approximating .F(yt , ct , it ) by means of the first-order Taylor expansion, we 
have: 

. F(yt , ct , it ) ≈ F(· )|ss + ∂F

∂lnyt

|ss(lnyt − lnyss) + ∂F

∂lnct

|ss(lnct − lncss)

+ ∂F

∂lnit
|ss(lnit − lniss)

F (yt , ct , it ) ≈ 0 + (1)(lnyt − lnyss) + −elncss

elncss + elniss
(lnct − lncss)

+ −elniss

elncss + elniss
(lnit − lniss)

≈  ̂yt − css

css + iss
 ̂ct − iss

css + iss
 ̂it

≈  ̂yt − css

yss

 ̂ct − iss

yss

 ̂it

 ̂yt ≈ css

yss

 ̂ct + iss

yss

 ̂it (3.78) 

Finally, for the productivity equation: 

.lnat = φlnat−1 + ϵt
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We know : lnass = 0 

lnat − lnass = φlnat−1 − φlnass + ϵt

 ̂at = φ ̂at−1 + ϵt (3.79) 

Uhlig (1995) method .  ̂xt is defined as the log deviation of the variable . xt with 
respect to its steady-state value (. xss): 

. ̂xt = ln(xt ) − ln(xss) (3.80) 

From the above, we get: 

.xt = xsse
 ̂xt (3.81) 

In addition, it is known that for small deviations from the steady state, it is true: 

.1st property : e ̂xt ≈ 1 + ̂xt (3.82) 

This first property is obtained by applying a first-order Taylor approximation, 
which is explained below. 

Taylor approximation (1st order) Approximate the function .f ( ̂xt ) around its steady 
state .  ̂xss : 

. f ( ̂xt ) ≈ f ( ̂xss) + f '( ̂xss)

1! ( ̂xt − ̂xss) + f ''( ̂xss)

2! ( ̂xt − ̂xss)
2 + . . .

Considering a 1st-order approximation: 

. f ( ̂xt ) ≈ f ( ̂xss) + f '( ̂xss)

1! ( ̂xt − ̂xss)

If .f ( ̂xt ) = e ̂xt , then (knowing that . ̂xss = 0, because . ̂xt = xt − xss): 

. e ̂xt ≈ e ̂xss + e ̂xss ( ̂xt − ̂xss)

e ̂xt ≈ 1 + ( ̂xt − ̂xss)

e ̂xt ≈ 1 + ̂xt

Two additional properties are important: 

.First property :  ̂xt ̂yt ≈ 0. (3.83) 

Second property : Et [ae ̂xt+1 ] =  Et [a ̂xt+1] +  a (3.84)
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Applying these properties, we proceed to log-linearize the system described in 
Table 3.3: 

For Euler’s equation: 

. c−1
t = βEtc

−1
t+1rt+1

⎾
csse

 ̂ct
⏋−1 = βEt

⎾
csse

 ̂ct+1
⏋−1⎾

rsse
 ̂rt+1

⏋

e− ̂ct = Ete
− ̂ct+1e ̂rt+1

e− ̂ct = Ete
− ̂ct+1+ ̂rt+1

1 − ̂ct = Et

⎾
1 − ̂ct+1 + ̂rt+1

⏋

 ̂ct = Et

⎾
 ̂ct+1 − ̂rt+1

⏋
(3.85) 

The law of movement of capital in its log-linear form would be: 

. kt+1 = it

ksse
 ̂kt+1 = isse

 ̂it

kss(1 + ̂kt+1) = iss(1 + ̂it )
kss + kss

 ̂kt+1 = iss + iss ̂it

kss
 ̂kt+1 = iss ̂it

como : kss = iss

 ̂kt+1 = ̂it (3.86) 

For the labor supply: 

. 
θ

1 − ht

= wt

ct

Remembering : 1 − ht = lt

θ

lt
= wt

ct

θ

lsse
 ̂lt

= wsse
 ̂wt

csse ̂ct

e− ̂lt = e ̂wt− ̂ct

1 − ̂lt = 1 +  ̂wt − ̂ct

 ̂lt = ̂ct −  ̂wt (3.87)
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To finish obtaining the labor supply in its log-linear version, it is necessary to 
obtain the log-linear relationship between leisure . lt and labor . ht : 

. lt = 1 − ht

Log-linearizing this expression: 

. lt = 1 − ht

lsse
 ̂lt = 1 − hsse

 ̂ht

lss(1 + ̂lt ) = 1 − hss(1 + ̂ht )

lss + lss ̂lt = 1 − hss − hss
 ̂ht

lss ̂lt = −hss
 ̂ht

 ̂lt = −hss

lss
 ̂ht

 ̂lt = − hss

1 − hss

 ̂ht (3.88) 

Inserting (3.88) into (3.87) gives the log-linear labor supply: 

.  ̂lt = ̂ct −  ̂wt

− hss

1 − hss

 ̂ht = ̂ct −  ̂wt

hss

1 − hss

 ̂ht =  ̂wt − ̂ct (3.89) 

Doing the same for the production function: 

. yt = atk
1−α
t hα

t

ysse
 ̂yt = ⎾

asse
 ̂at
⏋⎾

ksse
 ̂kt
⏋1−α⎾

hsse
 ̂ht
⏋α

ysse
 ̂yt = asse

 ̂at k1−α
ss e(1−α) ̂kt hα

sse
α ̂ht

e ̂yt = e ̂at+(1−α) ̂kt+α ̂ht

1 + ̂yt = 1 + ̂at + (1 − α) ̂kt + α ̂ht

 ̂yt = ̂at + (1 − α) ̂kt + +α ̂ht (3.90)
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Regarding the demand for capital: 

. rt = (1 − α)

⎛
yt

kt

⎞

rsse
 ̂rt = (1 − α)

⎛
ysse

 ̂yt

ksse
 ̂kt

⎞

rsse
 ̂rt = (1 − α)

⎛
ysse

 ̂yt− ̂kt

kss

⎞

e ̂rt = e ̂yt− ̂kt

1 + ̂rt = 1 + ̂yt − ̂kt

 ̂rt =  ̂yt − ̂kt (3.91) 

For the job demand: 

. wt = α
yt

ht

wsse
 ̂wt = α

ysse
 ̂yt

hsse
 ̂ht

e ̂wt = e ̂yt

e
 ̂ht

e ̂wt = e ̂yt− ̂ht

1 +  ̂wt = 1 + ̂yt − ̂ht

 ̂wt =  ̂yt − ̂ht (3.92) 

Goods market equilibrium: 

. yt = ct + it

ysse
 ̂yt = csse

 ̂ct + isse
 ̂it

yss(1 + ̂yt ) = css(1 + ̂ct ) + iss(1 + ̂it )
yss + yss ̂yt = css + css ̂ct + iss + iss ̂it

yss ̂yt = css ̂ct + iss ̂it

 ̂yt = css

yss

 ̂ct + iss

yss

 ̂it (3.93)
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Table 3.6 Log-linear equations 

Log-linear equations Description 

.[1]  ̂ct = Et

⎾
 ̂ct+1 − ̂rt+1

⏋
Equation of Euler 

.[2]  ̂kt+1 = ̂it Law of movement of capital 

.[3] hss 
1−hss

 ̂ht =  ̂wt − ̂ct Labor supply 

.[4]  ̂yt = ̂at + (1 − α) ̂kt + α ̂ht Production function 

.[5]  ̂rt =  ̂yt − ̂kt Capital demand 

.[6]  ̂wt =  ̂yt − ̂ht Labor demand 

.[7]  ̂yt = css 
yss
 ̂ct + iss 

yss

 ̂it Goods market equilibrium 

.[8]  ̂at = φ ̂at−1 + ϵt Shock of productivity 

Note: To directly obtain the solution of the model with Dynare, you can use the mod 
“Long_Plosser_Dynare_linear_log.mod” from Chap. 2 

Finally, the productivity equation: 

. lnat = φlnat−1 + ϵt

lnasse
 ̂at = φlnasse

 ̂at−1 + ϵt

lnass + ̂at = φlnass + φ ̂at−1 + ϵt

 ̂at = φ ̂at−1 + ϵt (3.94) 

Table 3.6 summarizes the log-linear equations of the model obtained by two 
alternatives (standard method or Uhlig’s approach). 

3.6 Solution of Linear System 

The solution of the linear system consists in finding the policy functions, that is, the 
control variables as a function of the state variables and exogenous variables. In this 
model, the state variable is capital . kt and the exogenous variable is productivity . at . 
The idea is to find, for example, for consumption: 

.  ̂ct = ηck
 ̂kt + ηca ̂at

Similarly, for all endogenous variables: .  ̂yt , .  ̂ct , .  ̂it , . ̂kt+1 , .  ̂ht , .  ̂wt , and .  ̂rt . In  
the existing literature, there are several ways to solve the system of stochastic 
difference equations. DeJong and Dave (2011) suggest that at least four meth-
ods are usual: Blanchard and Kahn (1980) method, Sims (2002) method, Klein 
(2000) method, andUhlig (1999) method of undetermined coefficients. This chapter 
focuses on the two most common: the Blanchard and Kahn method and the 
method of undetermined coefficients. However, before describing and applying both 
methods, the Long and Plosser model will be solved analytically. This analytical
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solution is feasible because the nonlinearities disappear due to the two assumptions 
of the model: total depreciation and log utility. 

3.6.1 Analytical Method 

In the first place, an attempt is made to reduce the dimension of the system of linear 
equations by joining some equations. We start with the equilibrium in the labor 
market (we eliminate .  ̂wt ). From Table 3.4 we join equations [3] and [6]: 

. 
hss

1 − hss

 ̂ht + ̂ct =  ̂yt − ̂ht

1

1 − hss

 ̂ht =  ̂yt − ̂ct (3.95) 

Then investment is eliminated .  ̂it by substituting equation [2] in [7]: 

.  ̂yt = css

yss

 ̂ct + iss

yss

 ̂it

 ̂yt = css

yss

 ̂ct + iss

yss

 ̂kt+1 (3.96) 

Inserting the real interest rate (equation [5]) into the Euler equation (equation 
[1]): 

.  ̂ct = Et

⎾
 ̂ct+1 − ̂rt+1

⏋

 ̂ct = Et

⎾
 ̂ct+1 − ( ̂yt+1 − ̂kt+1)

⏋

 ̂ct = Et

⎾
 ̂ct+1 − ̂yt+1 + ̂kt+1

⏋
(3.97) 

But from equation (3.95) it is known that: 

. 
1

1 − hss

 ̂ht =  ̂yt − ̂ct

 ̂ct − ̂yt = − 1

1 − hss

 ̂ht

 ̂ct+1 − ̂yt+1 = − 1

1 − hss

 ̂ht+1 (3.98) 

Substituting equation (3.98) into Euler’s equation (equation (3.97)): 

. ̂ct = Et

⎾
 ̂ct+1 − ̂yt+1 + ̂kt+1

⏋
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 ̂ct = Et

⎾− 
1 

1 − hss

 ̂ht+1 + ̂kt+1
⏋

(3.99) 

In addition, from equation (3.96) the capital in “.t + 1”: 

.  ̂yt = css

yss

 ̂ct + iss

yss

 ̂kt+1

 ̂kt+1 = yss

iss
( ̂yt − css

yss

 ̂ct ) (3.100) 

This last expression is replaced in the Euler equation (equation (3.99)): 

.  ̂ct = Et

⎾− 1

1 − hss

 ̂ht+1 + ̂kt+1
⏋

 ̂ct = Et

⎾− 1

1 − hss

 ̂ht+1 + yss

iss
( ̂yt − css

yss

 ̂ct )
⏋

 ̂ct − yss

iss
( ̂yt − css

iss
 ̂ct ) = Et

⎾− 1

1 − hss

 ̂ht+1
⏋

 ̂ct

(css + iss)

iss
− yss

iss
 ̂yt = Et

⎾− 1

1 − hss

 ̂ht+1
⏋

 ̂ct

yss

iss
− yss

iss
 ̂yt = Et

⎾− 1

1 − hss

 ̂ht+1
⏋

yss

iss
( ̂ct − ̂yt ) = Et

⎾− 1

1 − hss

 ̂ht+1
⏋

yss

iss

⎛

− 1

1 − hss

 ̂ht

⎞

= Et

⎾− 1

1 − hss

 ̂ht+1
⏋

yss

iss
 ̂ht = Et

 ̂ht+1

1

β(1 − α)
◟ ◝◜ ◞

=φh>1

 ̂ht = Et
 ̂ht+1 (3.101) 

For a moment let us evaluate equation (3.64) without the expectation operator: 

.φh
 ̂ht = ̂ht+1 (3.102) 

Since . φh is greater than one, then this equation is explosive. The only stable 
solution is when . ̂ht = 0. This implies that the model solution for the job is that this 
variable remains in its steady state: since . ̂ht = 0, then, .lnht − lnhss = 0, which 
implies that .lnht = lnhss and therefore, .ht = hss .
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Therefore, the job policy function .  ̂ht is . ̂ht = 0. Two important conclusions 
emerge from this last equation. First, it was not necessary to use the method of 
undetermined coefficients to obtain the solution of .  ̂ht and, as we will see later, of the 
other variables. This is because the two assumptions of the Long and Plosser (1983) 
model, total depreciation and logarithmic utility, eliminate nonlinearities from the 
system of equations. This allows the model to be solved directly. Second, the work 
.  ̂ht does not depend on the exogenous variable .  ̂at nor on the state variable .  ̂kt . This  
indicates that an increase in productivity does not affect labor directly or indirectly 
through capital. 

To find the solution to the rest of the variables, their behavior equations are 
reviewed. First, the log-linear production function is reviewed: 

.  ̂yt = ̂at + (1 − α) ̂kt + α ̂ht

 ̂yt = ̂at + (1 − α) ̂kt + 0

 ̂yt = ̂at + (1 − α)
◟ ◝◜ ◞

ηyk

 ̂kt

 ̂yt = ̂at + ηyk
 ̂kt (3.103) 

From the demand for capital we obtain the solution for the real interest rate .  ̂rt : 

.  ̂rt =  ̂yt − ̂kt

From equation (3.103) :
 ̂rt = ηyk

 ̂kt + ̂at − ̂kt

 ̂rt = (ηyk − 1)
◟ ◝◜ ◞

ηrk

 ̂kt + ̂at

 ̂rt = ηrk
 ̂kt + ̂at (3.104) 

In the labor demand, the real wage .  ̂wt is obtained: 

.  ̂wt =  ̂yt − ̂ht

Of the solution : equation (3.103) y ̂ht = 0

 ̂wt = ηyk
 ̂kt + ̂at − 0

 ̂wt = ηyk
 ̂kt + ̂at (3.105) 

Substituting the solution for .  ̂ht and .  ̂wt in the labor supply, the solution for 
consumption .  ̂ct is found: 

.
hss

1 − hss

 ̂ht =  ̂wt − ̂ct
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0 =  ̂wt − ̂ct

 ̂ct =  ̂wt

 ̂ct = ηyk
 ̂kt + ̂at (3.106) 

From the equilibrium equation in the goods market, the solution for investment 
is obtained: 

.  ̂yt = css

yss

 ̂ct + iss

yss

 ̂it

 ̂it =
⎛

 ̂yt − css

yss

 ̂ct

⎞
yss

iss

 ̂it =
⎛

ηyk
 ̂kt + ̂at − css

yss

(ηyk
 ̂kt + ̂at )

⎞
yss

iss

 ̂it = (ηyk
 ̂kt + ̂at )(1 − css

yss

)
yss

iss

 ̂it = (ηyk
 ̂kt + ̂at )

iss

yss

yss

iss

 ̂it = ηyk
 ̂kt + ̂at (3.107) 

Finally, from the law of movement of capital, the solution for capital is obtained: 

.  ̂kt+1 = ̂it

 ̂kt+1 = ηyk
 ̂kt + ̂at (3.108) 

3.6.2 Blanchard and Kahn Method 

The Blanchard and Kahn method solves a system of stochastic difference equations 
by means of the Jordan decomposition; that is, it tries to split the model or the 
system into two components. The solution strategy consists of solving the unstable 
component, from which the policy function is found, and then plugging this policy 
function into the initial state-space representation to find the equation of state. 

In this section, we proceed in two subsections. In the first one, the method is 
explained in general terms, and, in the second one, the method is applied to the 
model of Long and Plosser (1983). 

Method description Blanchard and Kahn’s method can be broken down into seven 
steps (see Fig. 3.3). The first consists in transforming the system of equations 
into state-space form. The utility of this representation is that the equations can 
be written as a first-order difference system. The second step is to obtain an 
alternate state-space shape, that is, transfer to the right side the matrix of coefficients
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Fig. 3.2 Steps of the Blanchard and Kahn method 

associated with the vector on the left of the equation to the right side. The purpose 
of this is to obtain a system of the following form: .Zt+1 = FZt + GUt+1. 

The third step is to decompose the system of equations into two parts. For this, 
the Jordan decomposition is used, which partitions the matrix of coefficients “F” 
into its associated eigenvalues. The fourth step is to use the Jordan partition to 
separate the system of equations into an unstable subsystem and a stable subsystem. 
The unstable nomenclature refers to the equations associated with the unstable 
eigenvalues (module greater than one) of the matrix “F,” and the stable subsystem 
refers to the equations associated with the stable eigenvalues (module less than one). 
The fifth step is the change of variable in order to take full advantage of the Jordan 
decomposition, which simplifies the solution of the model. The sixth step consists 
in solving the unstable equation by means of the method of iterated substitution. 
The result of this is the policy function. Finally, the step is to use the policy function 
in the alternative state-space model and from there find the state function (Fig. 3.2). 

Step 1: Generalized State-Space Form 
The first step to solving the system of nonlinear equations that represent the model3 

is to put such a system in the state-space form: 

.A

⎾
Xt+1

EtYt+1

⏋

= B

⎾
Xt

Yt

⏋

+ CVt+1 (3.109) 

In the representation (3.109), the variable .Vt+1 can be shocks iid with mean equal 
to zero (.E(Vt ) = 0) and zero autocorrelation. Alternatively, .Vt+1 can behave as an 
AR(1) process, which depends on exogenous shocks iid. 

In this system of equations, two types of variables can be defined: . Xt is the 
vector of variables backward looking (default or state variables). These variables are

3 It should be mentioned that this system of nonlinear equations is also known as structural model. 
This is because it shows the deep or initial parameters of the model. The reduced model is the 
one obtained by combining the equations of this initial system; in this case, the parameters are 
combinations of the deep parameters. 
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functions only of the known variables in “t,” and since they are predetermined, the 
following holds: .EtXt+1 = Xt+1. An example of this is the capital .kt+1, which has 
been determined in “t”; that is, it is already known in “t”; therefore, .Etkt+1 = kt+1. 

It is worth mentioning that the state variables can be endogenous and exogenous. 
Usually, the exogenous state variable is productivity because it behaves like an 
AR(1) and does not depend on any variable in the model. In addition to the above, 
the second type of variable is the vector of variables forward looking (control 
variables) . Yt . 

. 

State variables Control variables Shocks variables

Xt =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

X1t

X2t

.

.

Xnt

⎤

⎥
⎥
⎥
⎥
⎥
⎦

nx1

Yt =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Y1t

Y2t

.

.

Ymt

⎤

⎥
⎥
⎥
⎥
⎥
⎦

mx1

Vt =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

V1t

V2t

.

.

Vnvt

⎤

⎥
⎥
⎥
⎥
⎥
⎦

nvx1

• The number of state variables “n” is equal to the number of endogenous state 
variables “. ns” plus the number of exogenous state variables “. nv”: 

. n = ns + nv

• The total number of variables “.n + m” is equal to the total number of equations. 

With these considerations, the system (3.72) would be characterized as follows: 

.A(n+m)x(n+m)

⎾
Xt+1

EtYt+1

⏋

= B(n+m)x(n+m)

⎾
Xt

Yt

⏋

+ C(n+m)xnv
Vt+1 (3.110) 

Step 2: Alternative State-Space Form 

. A

⎾
Xt+1

EtYt+1

⏋

= B

⎾
Xt

Yt

⏋

+ CVt+1

⎾
Xt+1

EtYt+1

⏋

= A−1B◟ ◝◜ ◞
F

⎾
Xt

Yt

⏋

+ A−1C◟ ◝◜ ◞
G

Vt+1

⎾
Xt+1

EtYt+1

⏋

= F

⎾
Xt

Yt

⏋

+ GVt+1

Step 3: Jordan Decomposition of F 
The matrix F can be expressed (by the Jordan decomposition) as follows: 

.F = HJH−1
. (3.111)
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F = [d1...dn+m] 

⎡ 

⎢ 
⎢ 
⎣ 

λ1 . . .  0 
. .  .  .  .  
. .  .  .  .  
0 . . .  λn+m 

⎤ 

⎥ 
⎥ 
⎦ [d1...dn+m]−1 (3.112) 

where H is the matrix of eigenvectors and J is the diagonal matrix of eigenvalues. 
Also, .{λi}n+m

i=1 are eigenvalues and .{di}n+m
i=1 are the associated eigenvectors . 

Introducing the Jordan decomposition, equation (3.111), in alternate state-space 
form, we have: 

. 

⎾
Xt+1

EtYt+1

⏋

= F

⎾
Xt

Yt

⏋

+ GVt+1

⎾
Xt+1

EtYt+1

⏋

= HJH−1
⎾
Xt

Yt

⏋

+ GVt+1

H−1
⎾

Xt+1

EtYt+1

⏋

= JH−1
⎾
Xt

Yt

⏋

+ H−1GVt+1 (3.113) 

Step 4: Partition the Model 
An important step in the Blanchard and Kahn method is that the eigenvalues are 
ordered in ascending order; this is done in order to identify those eigenvalues that 
are greater than one in module. Therefore, the ordered eigenvalues, in modulo, are: 

. | λ1 |<| λ2 |<| λ3 |< . . . | λn+m |< . . .

Assuming that the eigenvalue array is sorted, “J” can be expressed as follows: 

.J =
⎾
J1nxn 0nxm

0mxn J2mxm

⏋

(n+m)x(n+m)

(3.114) 

The matrix “J” has been partitioned into four elements, two of which are 
important: the first is .J1nxn , which is a diagonal matrix containing the eigenvalues 
whose moduli are minor to one (.| λ |< 1); the second is .J2mxm , which is a diagonal 
matrix containing the eigenvalues whose moduli are greater than one (.| λ |> 1). 

Based on the partition of the eigenvalue matrix, the eigenvector matrix and its 
inverse matrix are also partitioned: 

. 

Matrix of eigenvectors Inverse of the matrix of eigenvectors

H =
⎾
H11nxn H12nxm

H21mxn H22mxm

⏋

(n+m)x(n+m)

H−1 =
⎾
~H11nxn

~H12nxm

~H21mxn
~H22mxm

⏋

(n+m)x(n+m)

Considering the partition of matrices in equation (3.114):
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. H−1
⎾

Xt+1

EtYt+1

⏋

= JH−1
⎾
Xt

Yt

⏋

+ H−1GVt+1

⎾
~H11 ~H12
~H21 ~H22

⏋ ⎾
Xt+1

EtYt+1

⏋

= J

⎾
~H11 ~H12
~H21 ~H22

⏋ ⎾
Xt

Yt

⏋

+
⎾
~H11 ~H12
~H21 ~H22

⏋

GVt+1

Furthermore, considering that . G =
⎾
G1nxnv

G2mxnv

⏋

.

⎾
~H11 ~H12
~H21 ~H22

⏋ ⎾
Xt+1

EtYt+1

⏋

= J

⎾
~H11 ~H12
~H21 ~H22

⏋ ⎾
Xt

Yt

⏋

+
⎾
~H11 ~H12
~H21 ~H22

⏋ ⎾
G1

G2

⏋

Vt+1 (3.115) 

Step 5: Change of Variable 
In equation (3.114) two new variables . ~Xt and . ~Yt can be defined: 

.

⎾
~H11 ~H12
~H21 ~H22

⏋ ⎾
Xt

Yt

⏋

=
⎾
~Xt

~Yt

⏋

(3.116) 

In addition, it is considered: 

.

⎾
~H11 ~H12
~H21 ~H22

⏋ ⎾
G1

G2

⏋

=
⎾
~G1
~G2

⏋

(3.117) 

Introducing the two new variables in equation (3.116) and the new vector . ~G, we  
have: 

. 

⎾
~H11 ~H12
~H21 ~H22

⏋ ⎾
Xt+1

EtYt+1

⏋

= J

⎾
~H11 ~H12
~H21 ~H22

⏋ ⎾
Xt

Yt

⏋

+
⎾
~H11 ~H12
~H21 ~H22

⏋ ⎾
G1

G2

⏋

Vt+1

⎾
~Xt+1

Et
~Yt+1

⏋

= J

⎾
~Xt

~Yt

⏋

+
⎾
~G1
~G2

⏋

Vt+1

⎾
~Xt+1

Et
~Yt+1

⏋

=
⎾
J1 0
0 J2

⏋ ⎾
~Xt

~Yt

⏋

+
⎾
~G1
~G2

⏋

Vt+1 (3.118) 

Introducing the two new variables in equation (3.116) and the new vector . ~G, we  
have: 

. Stable equation

~Xt+1 = J1~Xt + ~G1Vt+1. (3.119) 

Unstable equation 

Et
~Yt+1 = J2~Yt + ~G2Vt+1 (3.120)
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The advantage of this decoupling is that each equation can be solved separately. 

Step 7: Solving the Unstable Equation (Finding the Policy Function) 
Equation (3.120) is a stochastic difference equation with first-order rational expec-
tations. To obtain the solution of this type of equation, the technique of repeated 
substitution is usually applied: 

. Et
~Yt+1 = J2~Yt + ~G2Vt+1

Rearranging the terms and considering that . J2 is a diagonal matrix (.m × m), 
whose elements are greater than one, we have: 

. J2~Yt = Et
~Yt+1 − ~G2Vt+1

~Yt = J−1
2◟◝◜◞

=P1

Et
~Yt+1 − J−1

2
~G2

◟ ◝◜ ◞
=P2

Vt+1

~Yt = P1Et
~Yt+1 − P2Vt+1 (3.121) 

where . P1 is a diagonal matrix, whose elements are greater than one. The solution 
of equation (3.121) is obtained by applying the method of repeated substitution. 
This technique works as follows: since this equation holds in all periods under 
rational expectations, then equation (3.121) can be moved forward one period and 
the expectation operator applied on “t”: 

. ~Yt+1 = P1Et
~Yt+1 − P2Vt+1

~Yt+1 = P1Et
~Yt+2 − P2Vt+2

Et
~Yt+1 = P1Et

~Yt+2 − P2EtVt+2 (3.122) 

Equation (3.122) is replaced in (3.121) and the following is obtained: 

. ~Yt = P1Et
~Yt+1 − P2Vt+1

~Yt = P1
⎾
P1Et

~Yt+2 − P2EtVt+2
⏋− P2Vt+1

~Yt = P 2
1 Et

~Yt+2 − P1P2EtVt+2 − P2Vt+1 (3.123) 

Moving forward two periods in equation (3.123) and applying expectations on 
“t,” we have: 

. ~Yt+2 = P1Et
~Yt+3 − P2Vt+3

Et
~Yt+2 = P1Et

~Yt+3 − P2EtVt+3 (3.124) 

Again, substituting equation (3.124) into (3.123), we get:
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. ~Yt = P 2
1

⎾
P1Et

~Yt+3 − P2EtVt+3
⏋− P1P2EtVt+2 − P2Vt+1

~Yt = P 3
1 Et

~Yt+3 − P 2
1 P2EtVt+3 − P1P2EtVt+2 − P2Vt+1 (3.125) 

Generalizing equation (3.125) for “n” periods, we have: 

. ~Yt = P n
1 Et

~Yt+n − P n−1
1 P2EtVt+n − P n−2

1 P2EtVt+(n−1)

− P n−3
1 P2EtVt+(n−2) . . . − P1P2EtVt+2 − P2Vt+1 (3.126) 

In compact form: 

.~Yt = P n
1 Et

~Yt+n −
n⎲

j=2

P
j−1
1 P2EtVt+j − P2Vt+1 (3.127) 

Considering .n → ∞: 

. ~Yt = Lim
n→∞

{
P n
1 Et

~Yt+n

}− Lim
n→∞

n⎲

j=2

P
j−1
1 P2EtVt+j − Lim

n→∞P2Vt+1

~Yt = Lim
n→∞

{
P n
1 Et

~Yt+n

}−
∞⎲

j=2

P
j−1
1 P2EtVt+j − P2Vt+1 (3.128) 

The first term of equation (3.128), .Lim
n→∞

{
P n
1 Et

~Yt+n

}
, is equal to zero. This is 

because the diagonal matrix . P n
1 has values less than one, which tend to zero as “n” 

grows. Furthermore, from an optimization point of view, the fact that this term is 
equal to zero reflects the transversality condition that is imposed on the solution of 
this difference equation. From an economic point of view, it makes sense to assume 
that the expected value of the variable in a very distant time has no influence on the 
variable today. The following shows the convergence to zero of the matrix . P n

1 when 
n tends to infinity: 

.P n
1 = (J−1

2 )n

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1/λi,1

1/λi,1

1/λi,1

. . .

1/λi,m

⎤

⎥
⎥
⎥
⎥
⎥
⎦

n
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= 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

1/λi,1 

1/λn 
i,1 

1/λn 
i,1 

. . .  
1/λn 

i,m 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

Applying limit with “n” that tends to infinity: 

. Lim
n→∞P n

1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Lim
n→∞1/λi,1

Lim
n→∞1/λn

i,1

Lim
n→∞1/λn

i,1

. . .

Lim
n→∞1/λn

i,m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Lim
n→∞P n

1 = [0]mxm

So : Lim
n→∞

{
P n
1 Et

~Yt+n

} = 0 (3.129) 

Considering the result of equation (3.129), equation (3.128) would be: 

.~Yt = −
∞⎲

j=2

P
j−1
1 P2EtVt+j − P2Vt+1 (3.130) 

Furthermore, it is known that the variable . Vt is distributed as a normal with zero 
mean and constant variance; that is, .Vt ∼ N(0, σ 2

v ). This distribution is maintained 
for each period; that is, it holds: . Vt ∼ N(0, σ 2

v ), Vt+1 ∼ N(0, σ 2
v ), · · · , Vt+n ∼

N(0, σ 2
v ), where the conditional mean of the variable is always equal to zero: 

.EtVt+n = 0 when .j = 1, 2, 3, . . . . Under this premise, then .EtVt+j = 0. Replacing 
this expression in equation (3.92) we have: 

. ~Yt = −
∞⎲

j=2

P
j−1
1 P2 EtVt+j

◟ ◝◜ ◞
=0

−P2Vt+1

~Yt = −P2Vt+1 (3.131) 

Applying the expectation operator in t to equation (3.131), we obtain: 

.~Yt = −P2Vt+1

Et
~Yt = −P2EtVt+1

We know : EtVt+1 = 0
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Then : 
Et
~Yt = 0 

Therefore :
~Yt = 0 (3.132) 

From equation (3.116) that reflects the change of variable: 

. ~H21Xt + ~H22Yt = ~Yt

~H21Xt + ~H22Yt = 0

~H22Yt = −~H21Xt

Policy function = Yt = −~H−1
22

~H21Xt (3.133) 

Equation (3.133) represents the policy function because the control variables 
(represented by the vector . Yt ) are a function of the state variables (represented by 
the vector . Xt ). 

Step 8: In the Initial System (Finding the State Function) 
Rewriting the alternative state-space representation: 

. 

⎾
Xt+1

EtYt+1

⏋

= F

⎾
Xt

Yt

⏋

+ GVt+1

⎾
Xt+1

EtYt+1

⏋

=
⎾
F11 F12

F21 F22

⏋ ⎾
Xt

Yt

⏋

+
⎾
G1

G2

⏋

Vt+1

The equation for the first variable (the state variable) is: 

.Xt+1 = F11Xt + F12Yt + G1Vt+1 (3.134) 

This equation depends on the control variable; however, from the policy function, 
equation (3.133), the relationship between . Yt and . Xt is known. Substituting this 
relation in equation (3.134): 

. Xt+1 = F11Xt + F12(−~H−1
22

~H21Xt) + G1Vt+1

State equation : Xt+1 = (F11 − F12 ~H
−1
22

~H21)Xt + G1Vt+1 (3.135) 

Equation (3.135) is the equation of state. With it, the model is solved. 

Application of the method In the application of the Long and Plosser model, the 
same steps will be followed to maintain the common thread of the solution method. 
Before applying the method, it is necessary to reduce the number of equations and, 
therefore, the number of variables. The purpose of this is to prevent any zero-filled
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row from appearing on either side (matrix A or B) of the state-space representation. 
If, for example, a row of zeros appears in matrix A, then the matrix A would not be 
invertible. This would make it impossible to apply the Blanchard and Kahn method. 
Then starting from the system of linear equations (with variables in logarithm) of 
Table 3.6, some algebraic artifices described below are performed. 

First, the real wage . wt is eliminated when considering the equilibrium in the 
labor market; that is, the labor supply (equation [3] of Table 3.6) is equalized with 
the labor demand (equation [6] of Table 3.6). The resulting equation is shown below: 

. Labor supply : hss

1 − hss

 ̂ht =  ̂wt − ̂ct

Labor demand :  ̂wt =  ̂yt − ̂ht

Equilibrium : hss

1 − hss

 ̂ht + ̂ct =  ̂wt =  ̂yt − ̂ht

: hss

1 − hss

 ̂ht + ̂ct =  ̂yt − ̂ht

: 1

1 − hss

 ̂ht =  ̂yt − ̂ct (3.136) 

Equation [5] of Table 3.6, which represents the demand for capital, can be 
inserted into equation [1] (Euler’s equation) by means of the interest rate: 

. Capital demand : ̂rt =  ̂yt − ̂kt

Euler’s equation : ̂ct = Et

⎾
 ̂ct+1 − ̂rt+1

⏋

 ̂rt+1in Euler’s equation : ̂ct = Et

⎾
 ̂ct+1 − ̂yt+1 + ̂kt+1

⏋
(3.137) 

Finally, equation [2] is plugged into the budget constraint (equation [7]): 

. Law of movement of capital : ̂kt+1 = ̂it

Budget constraint :  ̂yt = css

yss

 ̂ct + iss

yss

 ̂it

:  ̂yt = css

yss

 ̂ct + iss

yss

 ̂kt+1 (3.138) 

So far we have a set of five equations with five variables because we have 
eliminated three variables (.  ̂rt , .  ̂it and .  ̂wt ). However, the system could still be 
summarized a little more. Solving the job .  ̂ht from equation (3.100) and introducing 
this expression in the production function (equation [4] of Table 3.6), we have : 

.Equilibrium (labor market) :  ̂ht = (1 − hss)( ̂yt − ̂ct )
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Production function :  ̂yt = ̂at + (1 − α) ̂kt + α ̂ht 

:  ̂yt = ̂at + (1 − α) ̂kt + α(1 − hss)( ̂yt − ̂ct ) 

: (1 − α(1 − hss)) ̂yt = ̂at + (1 − α) ̂kt 

−α(1 − hss) ̂ct (3.139) 

With this last equation and having eliminated the work .  ̂ht and its corresponding 
equation, the system becomes four equations with four variables: .  ̂ct , .  ̂yt , .  ̂kt y .  ̂at . 

.E1 : ̂ct = Et

⎾
 ̂ct+1 − ̂yt+1 + ̂kt+1

⏋
. (3.140) 

E2 :  ̂yt = 
css 
yss

 ̂ct + 
iss 
yss

 ̂kt+1. (3.141) 

E3 : (1 − α(1 − hss)) ̂yt = ̂at + (1 − α) ̂kt − α(1 − hss) ̂ct . (3.142) 

E4 : ̂at = φ ̂at−1 + ϵt (3.143) 

At this level, one can try to write the system of four equations in state-space 
form. To do this, the control variables (.  ̂ct and .  ̂yt ) and the state variables (.  ̂kt and .  ̂at )

are defined. The first two variables have the expectation operator associated with 
them, which is why they are considered forward looking or control variables. It is 
worth mentioning that although the capital in “t+1” has the expectation operator 
associated, this is still a state variable because . ̂kt+1 is determined in “t.” So . Et

 ̂kt+1
is equal to . ̂kt+1 (without expectations). 

The following equation expresses the generic way of writing the system in the 
state-space form: 

. A

⎾
Xt+1

EtYt+1

⏋

= B

⎾
Xt

Yt

⏋

+ CVt+1

where in this particular case .Xt = [ ̂kt  ̂at ]t and .Yt = [ ̂yt  ̂ct ]t . Under this premise, 
the system is written in state-space form: 

.

⎡

⎢
⎢
⎣

−1 0 −1 1
−iss/yss 0 0 0

0 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

 ̂kt+1

 ̂at+1

Et ̂ct+1

Et ̂yt+1

⎤

⎥
⎥
⎦ = . . . (3.144) 

The state-space representation stopped because the matrix “A” has a line filled 
with zeros. This makes it impossible to find the inverse of this matrix and, therefore, 
to find a solution to the system. All this suggests that the model can be further 
summarized. 

Solve the production .  ̂yt from equation (3.142) and plug it into equations (3.140) 
and (3.141). This eliminates a variable (.  ̂yt ) and an equation (3.142):
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.From E3 :  ̂yt = 1

1 − α(1 − hss)
( ̂at + (1 − α) ̂kt − α(1 − hss) ̂ct ). (3.145) 

(3.145) in E2 : 1 

1 − α(1 − hss) 
( ̂at + (1 − α) ̂kt − α(1 − hss) ̂ct ) = 

css 
yss

 ̂ct + 
iss 
yss

 ̂kt+1 

: nc ̂ct + nk
 ̂kt+1 = ̂at + (1 − α) ̂kt (3.146) 

where .nc = css

yss
(1−α(1−hss))+α(1−hss) y .nk = iss

yss
(1−α(1−hss)). Replacing 

equation (3.145) in E1 we have: 

.E1 : ̂ct = Et

⎾
 ̂ct+1 − ̂yt+1 + ̂kt+1

⏋
. (3.147) 

: ̂ct = Et

⎾
 ̂ct+1 − [ ̂at+1 + (1 − α) ̂kt+1 − α(1 − hss) ̂ct+1] 1 

1 − α(1 − hss)◟ ◝◜ ◞
ny 

+ ̂kt+1
⏋

: ̂ct = Et

⎾
(1 + α(1 − hss)ny) ̂ct+1 − ny ̂at+1 + (1 − (1 − α)ny) ̂kt+1 (3.148) 

Finally, the system is composed of three equations with three variables—.  ̂ct , .  ̂kt

and .  ̂at : 

. E1* : ̂ct = Et

⎾
(1 + α(1 − hss)ny) ̂ct+1 − ny ̂at+1

+(1 − (1 − α)ny) ̂kt+1
⏋
. (3.149) 

E2* : nc ̂ct + nk
 ̂kt+1 = ̂at + (1 − α) ̂kt . (3.150) 

E3* : ̂at = φ ̂at−1 + ϵt (3.151) 

Considering that the only variable forward looking is consumption and that there 
are two state variables—capital and productivity—we proceed to write this system 
in the state-space form: 

. 

⎡

⎣
−(1 − (1 − α)ny) ny −(1 + α(1 − hss)ny)

nk 0 0
0 1 0

⎤

⎦

⎡

⎣

 ̂kt+1

 ̂at+1

Et ̂ct+1

⎤

⎦ =

.

⎡

⎣
0 0 −1

(1 − α) 1 −nc

0 φ 0

⎤

⎦

⎡

⎣

 ̂kt

 ̂at

Et ̂ct

⎤

⎦+
⎡

⎣
0
0
1

⎤

⎦ ϵt+1 (3.152) 

In this case, each matrix (A and B) does not have rows filled with zeros, so the 
inverse of A could be found. Next, the steps described above in the Blanchard and



3.6 Solution of Linear System 151

Kahn methodology are followed, but this time applied to the model of Long and 
Plosser (1983). 

Step 1: State-Space Form 
In general terms, the state-space form for this model would be: 

.A

⎡

⎣

 ̂kt+1

 ̂at+1

Et ̂ct+1

⎤

⎦ = B

⎡

⎣

 ̂kt

 ̂at

 ̂ct

⎤

⎦+ Cϵt+1 (3.153) 

However, for this model, the matrices A, B, and C have their own values 
depending on the parameters: 

. 

⎡

⎣
−(1 − (1 − α)ny) ny −(1 + α(1 − hss)ny)

nk 0 0
0 1 0

⎤

⎦

⎡

⎣

 ̂kt+1

 ̂at+1

Et ̂ct+1

⎤

⎦ =

.

⎡

⎣
0 0 −1

(1 − α) 1 −nc

0 φ 0

⎤

⎦

⎡

⎣

 ̂kt

 ̂at

Et ̂ct

⎤

⎦+
⎡

⎣
0
0
1

⎤

⎦ ϵt+1 (3.154) 

Replacing the parameter values, equation (3.154) would be: 

. 

⎡

⎣
−0.2860 2.14416 −2.1441
0.1528 0 0

0 1 0

⎤

⎦

⎡

⎣

 ̂kt+1

 ̂at+1

Et ̂ct+1

⎤

⎦ =

.

⎡

⎣
0 0 −1

0.333 1 −0.8472
0 0.979 0

⎤

⎦

⎡

⎣

 ̂kt

 ̂at

 ̂ct

⎤

⎦+
⎡

⎣
0
0
1

⎤

⎦ ϵt+1 (3.155) 

Step 2: Alternate State-Space Form 
Equation (3.155) is multiplied by the inverse of matrix A in order to obtain the 
alternative space state form: 

.

⎡

⎣

 ̂kt+1

 ̂at+1

Et ̂ct+1

⎤

⎦ =
⎡

⎣
2.1789 6.5434 −5.5434

0 0.9790 0
−0.2907 0.1061 1.2059

⎤

⎦

⎡

⎣

 ̂kt

 ̂at

 ̂ct

⎤

⎦+
⎡

⎣
0
1
1

⎤

⎦ ϵt+1 (3.156) 

where the matrix accompanying the vector [.  ̂kt , .  ̂at , .  ̂ct ]. t is the matrix “F ” and the 
vector [0,1,1] t is the vector “G.” It is worth mentioning that the inverse of matrix A 
is represented by the following matrix:
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. A−1 =
⎡

⎣
0 6.5434 0
0 0 1.0000

−0.4664 −0.8729 1.0000

⎤

⎦

Step 3: Jordan Decomposition of F 
By applying the Jordan decomposition of the matrix F, the following is obtained: 

.J =
⎡

⎣
0.333 0 0
0 0.979 0
0 0 3.0518

⎤

⎦ (3.157) 

In matrix J it can be seen that it has two eigenvalues with a modulus less than 
one and an eigenvalue with a modulus greater than one. The Blanchard and Kahn 
condition for the system to have a unique solution indicates that the number of 
eigenvalues with modulus greater than one must be equal to the number of variables 
forward looking. Since consumption is the only variable forward looking, then the 
Blanchard and Kahn condition holds for this model. 

Step 4: Partition the Model 
Partitioning the matrix of eigenvalues, we have . J1 that contains those stable 
eigenvalues. 

.J1 =
⎾
0.333 0
0 0.979

⏋

(3.158) 

On the other hand, . J2 contains the only unstable eigenvalue: 

.J2 = 3.0518 (3.159) 

Also, considering the matrix inverse of H and its partitioned matrices: 

. H−1 =
⎡

⎣
0.3384 −3.7805 2.1490

0 2.3860 0
0.6873 2.0640 −2.0640

⎤

⎦ H−1 =
⎾
~H11nxn

~H12nxm

~H21mxn
~H22mxm

⏋

where each partitioned array is: 

. 
~H11 =

⎾
0.3384 −3.7805

0 2.3860

⏋

~H12 =
⎾
2.1490

0

⏋

~H21 = ⎾
0.6873 2.0640

⏋

~H22 = ⎾−2.0640
⏋

Step 5: Change of Variable 
In line with equation (3.116) we have:
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. 

⎾
~H11 ~H12
~H21 ~H22

⏋ ⎾
Xt

Yt

⏋

=
⎾
~Xt

~Yt

⏋

Applying to the model parameters: 

.

⎡

⎣
0.3384 −3.7805 2.1490

0 2.3860 0
0.6873 2.0640 −2.0640

⎤

⎦

⎡

⎣

 ̂kt

 ̂at

 ̂ct

⎤

⎦ =
⎡

⎢
⎣

~ ̂kt

~ ̂at

~ ̂ct

⎤

⎥
⎦ (3.160) 

Similarly with equation (3.117): 

. 

⎾
~H11 ~H12
~H21 ~H22

⏋ ⎾
G1

G2

⏋

=
⎾
~G1
~G2

⏋

We apply it to the model parameters: 

.

⎡

⎣
0.3384 −3.7805 2.1490

0 2.3860 0
0.6873 2.0640 −2.0640

⎤

⎦

⎡

⎣
0
1
1

⎤

⎦ =
⎾
~G1
~G2

⏋

(3.161) 

Therefore, the system with the change of variable would be: 

. 

⎡

⎢
⎣

~ ̂kt+1
~ ̂at+1

Et
~ ̂ct+1

⎤

⎥
⎦ =

⎾
J1 0
0 J2

⏋
⎡

⎢
⎣

~ ̂kt

~ ̂at

~ ̂ct

⎤

⎥
⎦+

⎾
~G1
~G2

⏋

ϵt+1

⎡

⎢
⎣

~ ̂kt+1
~ ̂at+1

Et
~ ̂ct+1

⎤

⎥
⎦ =

⎡

⎣
0.3330 0 0

0 0.9790 0
0 0 3.0518

⎤

⎦

⎡

⎢
⎣

~ ̂kt

~ ̂at

~ ̂ct

⎤

⎥
⎦+

⎡

⎣
−1.6316
2.3860

0

⎤

⎦ ϵt+1 (3.162) 

Step 6: Decoupling the Equations 
From equation (3.118), two subsystems could be obtained; that is, the system can 
be decoupled: 

. Stable equation

~Xt+1 = J1~Xt + ~G1Vt+1
⎡
~ ̂kt+1
~ ̂at+1

⎤

=
⎾
0.3330 0

0 0.9790

⏋⎡~ ̂kt

~ ̂at

⎤

+
⎾−1.6316
2.3860

⏋

ϵt+1. (3.163) 

Unstable equation 

Et
~Yt+1 = J2~Yt + ~G2Vt+1 

Et
~ ̂ct+1 = 3.0518~ ̂ct + 0ϵt+1 (3.164)
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Step 7: Solving the Unstable Equation (Finding the Policy Function) 
Solving equation (3.164) we have: 

.~ ̂ct = 0 (3.165) 

In addition, it is known from the change of variable (equation (3.160)) that: 

.~ ̂ct = 0.6873 ̂kt + 2.064 ̂at − 2.064 ̂ct (3.166) 

Therefore, combining equation (3.165) and (3.166): 

.  ̂ct = 0.6873

2.064
 ̂kt + 2.064

2.064
 ̂at

 ̂ct = 0.333 ̂kt + ̂at (3.167) 

Equation (3.167) represents the policy function for consumption. 

Step 8: In the Initial System (Finding the State Function) 
The following equation is the alternative state-space representation (equa-
tion (3.156)) mentioned above: 

. 

⎡

⎣

 ̂kt+1

 ̂at+1

Et ̂ct+1

⎤

⎦ =
⎡

⎣
2.1789 6.5434 −5.5434

0 0.9790 0
−0.2907 0.1061 1.2059

⎤

⎦

⎡

⎣

 ̂kt

 ̂at

 ̂ct

⎤

⎦+
⎡

⎣
0
1
1

⎤

⎦ ϵt+1

From this equation, we can obtain the equations for the state variables. For 
example, for . ̂kt+1 we have: 

. ̂kt = 2.1789 ̂kt + 6.5434 ̂at − 5.5434 ̂ct (3.168) 

Replacing the policy equation (equation (3.167)) we have:  

.  ̂kt+1 = 2.1789 ̂kt + 6.5434 ̂at − 5.5434(0.333 ̂kt + ̂at )

 ̂kt+1 = 0.333 ̂kt + ̂at (3.169) 

This equation represents the equation of state. The same is done with the second 
variable, which shows the evolution of productivity: 

. ̂at+1 = 0.9790 ̂at + ϵt+1 (3.170) 

With the policy function for consumption and the state function, the decision 
rules for the other variables could be obtained. From Table 3.6, which contains the 
log-linear equations, equation [2] can be extracted:
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.  ̂it = ̂kt+1

 ̂it = 0.333 ̂kt + ̂at (3.171) 

Equation (3.171) represents the policy function (solution) for the investment .  ̂it . 
From equation [7] of the same table, the solution for production can be obtained 
(equation (3.172)): 

.  ̂yt = css

yss

 ̂ct + iss

yss

 ̂it

 ̂yt = css

yss

(0.333 ̂kt + ̂at ) + iss

yss

(0.333 ̂kt + ̂at )

 ̂yt = (
css

yss

+ iss

yss◟ ◝◜ ◞
=1

)(0.333 ̂kt + ̂at )

 ̂yt = 0.333 ̂kt + ̂at (3.172) 

In the same way for the interest rate (equation [5] of Table 3.6): 

.  ̂rt =  ̂yt − ̂kt

 ̂rt = (0.333 ̂kt + ̂at ) − ̂kt

 ̂rt = −0.667 ̂kt + ̂at (3.173) 

For the job .  ̂ht , equation [4] is used to obtain its solution: 

.  ̂yt = ̂at + (1 − α
◟ ◝◜ ◞
=0.333

) ̂kt + α ̂ht

0.333 ̂kt + ̂at = ̂at + 0.333 ̂kt + α ̂ht

0 = α ̂ht

 ̂ht = 0 (3.174) 

Finally, from equation [3] we obtain the solution for the real wage .  ̂wt : 

. 
hss

1 − hss

 ̂ht =  ̂wt − ̂ct

0 =  ̂wt − (0.333 ̂kt + ̂at )

 ̂wt = 0.333 ̂kt + ̂at (3.175) 

Equations (3.167) and (3.169) to (3.175) represent the solution of the system of 
log-linear equations, which are similar to those obtained analytically (Table 3.7).
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Table 3.7 Policy and state functions (model solution) 

Policy functions Coefficients (elasticities) Values 

. [1]  ̂ht = 0 

.[2]  ̂yt = ηyk
 ̂kt + ̂at .ηyk = 1 − α . ηyk = 0.333 

.[3]  ̂rt = ηrk
 ̂kt + ̂at .ηrk = ηyk − 1 . ηrk = 0.667 

. [4]  ̂wt = ηyk
 ̂kt + ̂at 

. [5]  ̂ct = ηyk
 ̂kt + ̂at 

. [6]  ̂it = ηyk
 ̂kt + ̂at 

. [7]  ̂kt+1 = ηyk
 ̂kt + ̂at 

Fig. 3.3 Policy function 

In Fig. 3.3 the function of consumption policy and interest rate is plotted. The 
relationship between these variables and capital is linear because the approximation 
of the solution has been restricted to the first-order Taylor expansion. 

3.7 Time Series Representation 

The policy and state functions are useful for finding the time series representation 
of each variable. First, productivity must be expressed in its MA(. ∞) form and then 
it is necessary to find the time series representation of the state variable . kt in its 
MA(. ∞) form. The MA(. ∞) representation allows obtaining both variables based
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on the error . ϵt . Finally, because the other variables are a function of productivity 
and capital, then the time series representation of each of them can be obtained by 
simply substituting the MA(. ∞) form of productivity and of capital in each policy 
function. The described procedure is shown below. 

.  ̂at = φ ̂at−1 + ϵt

(1 − φL) ̂at = ϵt

 ̂at = ϵt

1 − φL
(3.176) 

Following the same procedure for capital and considering the representa-
tion (3.176): 

.  ̂kt+1 = ηyk
 ̂kt + ̂at

(1 − ηykL) ̂kt+1 = ̂at

(1 − ηykL) ̂kt+1 = ϵt

1 − φL

 ̂kt+1 = ϵt

(1 − ηykL)(1 − φL)
(3.177) 

Equation (3.177) indicates that capital behaves like an AR(2): 

. (1 − (ηyk + φ)L + ηykφL2) ̂kt+1 = ϵt

 ̂kt+1 − (ηyk + φ) ̂kt + ηykφ ̂kt−1 = ϵt

 ̂kt+1 = ηyk + φ) ̂kt − ηykφ ̂kt−1 + ϵt (3.178) 

From Table 3.7 it can be seen that output, consumption, investment, and wages 
have the same policy function, which is the same as that of capital: 

.  ̂yt = ̂ct = ̂it =  ̂wt = ̂kt+1 = ηyk
 ̂kt + ̂at

Therefore, these variables also behave like an AR(2), the same time series 
representation of capital and even the same coefficients associated with each 
component of the time series. On the other hand, the interest rate policy function 
is different from the other variables in its coefficient associated with capital: 

. ̂rt = ηrk
 ̂kt + ̂at

where : ηrk = ηyk − 1

 ̂rt = (ηyk − 1) ̂kt + ̂at
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 ̂rt = ηyk
 ̂kt + ̂at

◟ ◝◜ ◞
= ̂kt+1 

− ̂kt

 ̂rt = ̂kt+1 − ̂kt

 ̂rt = ϵt 
(1 − ηykL)(1 − φL) 

− ϵt−1 

(1 − ηykL)(1 − φL)

 ̂rt = ϵt − ϵt−1 

(1 − ηykL)(1 − φL)

 ̂rt = (1 − L)ϵt 
(1 − ηykL)(1 − φL) 

(3.179) 

Equation (3.179) suggests that the interest rate behaves like an ARMA(2,1), as 
can be seen in the following equation: 

.  ̂rt = (1 − L)ϵt

(1 − ηykL)(1 − φL)

(1 − (ηyk + φ)L + ηykφL2) ̂rt = ϵt − ϵt−1

 ̂kt+1 − (ηyk + φ) ̂rt−1 + ηykφ ̂rt−2 = ϵt − ϵt−1

 ̂rt = (ηyk + φ) ̂rt−1 − ηykφ ̂rt−2 +
ϵt − ϵt−1 (3.180) 

It is worth mentioning that, like the other endogenous variables, the interest rate 
maintains the coefficients of the autoregressive component of order 2 that capital 
presents. A summary of the time series representation of the model variables is 
shown in Table 3.8. 

So far, the solution of the model has been found, which are decision rules that 
describe the optimal consumption, work, and investment of the representative agent. 
These rules depend on the (default) capital stock and productivity. To show the effect 
of the shock of productivity in these decisions, productivity could be replaced by 
its representation MA(. ∞). From equation (3.176) the moving average version of 
productivity can be obtained: 

Table 3.8 Time series 
representation 

Variable Time series 

. ̂yt AR(2) 

. ̂ct AR(2) 

. ̂it AR(2) 

. ̂kt AR(2) 

. ̂ht AR(2) 

. ̂wt AR(2) 

. ̂rt AR(2) 

. ̂at AR(1) 
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.  ̂at = ϵt

1 − φL

 ̂at = ϵt + φϵt−1 + φ2ϵt−2 + φ3ϵt−3 + . . .

Introducing this expression in the solution, for example, of the product (equa-
tion (3.172)): 

.  ̂yt = 0.333 ̂kt + ̂at

 ̂yt = 0.333 ̂kt + ϵt + φϵt−1 + φ2ϵt−2 + φ3ϵt−3 + . . .

In compact form :

 ̂yt = 0.333 ̂kt +
∞⎲

j=0

φj ϵt−j

This last equation suggests that today’s product depends on the stock of capital 
accumulated up to today (which was determined in the previous period) and on the 
accumulation of shocks on productivity (positive or negative). 

3.8 Impulse-Response Functions 

The impulse-response function represents the temporary behavior of each endoge-
nous variable before the realization of a shock. It is important to note that each 
element of this function is an equilibrium. For example, each value of the consump-
tion impulse-response function reflects the equilibrium in the goods market in each 
period. Similarly, the wage impulse-response function reflects the equilibrium in 
each period of the labor market. 

Figure 3.4 illustrates the reactions of the variables to a positive shock of 
productivity in the period “t = 1.” To understand why each variable behaves as 
shown in the Fig. 3.4, the behavior of the variables (of the model in general) will 
be analyzed from “t = 0” to “t = 4.” 

Period .t = 0 In this period, the economy is in a steady state; that is, it is in long-
term equilibrium. In such an equilibrium, all variables are equal to their steady-state 
value: 

.  ̂r0 =  ̂y0 = ̂c0 =  ̂w0 = ̂h0 = ̂i0 = ̂k0 = ̂a0 = 0

Furthermore, the capital in the period “t = 1” is equal to the investment in “t = 0”: 

.  ̂k1 = ̂i0 = 0

From the above, we conclude that the capital in the period “t = 0” and “t = 1” is 
equal to zero (it is in its steady state):
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Fig. 3.4 Impulse-response function. (Note: This impulse-response graph is obtained from the file 
“irfs_nolineal_log.m”) 

.  ̂k1 = ̂k0 = 0

Period .t = 1 In this period the shock occurs, which takes the value of its standard 
deviation .σϵ = 0.0072: 

.  ̂a1 = φ  ̂a0◟◝◜◞
=0

+ ϵ1◟◝◜◞
=σϵ

 ̂a1 = σϵ (3.181) 

Reactions of firms The increase in productivity positively influences the product, 
which in turn increases the demand for factors. 

. ↑ ̂a1 →↑  ̂y1 →↑ Pmg ̂k1(Dk1)∧ ↑ Pmg ̂h1(Dh1)

First, the direct effect of increased productivity is on the production function: 

. ̂y1 =  ̂a1◟◝◜◞
=σϵ

+(1 − α)  ̂k1◟◝◜◞
=0

+α ̂h1



3.8 Impulse-Response Functions 161

 ̂y1 = σϵ + α ̂h1 (3.182) 

Equation (3.182) suggests that output at “t = 1” is greater than at “t = 0” even 
though work is equal to zero. Second, this increase in production generates an 
increase in the marginal productivity of capital and labor; that is, it encourages a 
greater demand for these factors by the firm. 

. Labor demand :  ̂w1 =  ̂y1 − ̂h1

:  ̂w1 = σϵ + α ̂h1 − ̂h1 (3.183) 

Therefore, since . ̂y1 >  ̂y0, then the labor demand increases (see Fig. 3.5). Third, 
the demand for capital expands: 

. Capital demand : ̂r1 =  ̂y1 −  ̂k1◟◝◜◞
=0

: ̂r1 =  ̂y1 = σϵ + α ̂h1 (3.184) 

Reactions of the household The representative household is indirectly affected by 
the shock of productivity through the factor market. Faced with this change in 
conditions, the household responds by adjusting its labor and capital supply curve. 

First, since the supply of capital at “t = 1” has been determined at “t = 0,” which 
is equal to zero, that is, capital remains in the steady state, the equilibrium in 
the capital market at “t = 1” is determined at point “B” of Fig. 3.5. The increase 
in the interest rate (. ̂r1 >  ̂r0) produces two effects on consumption. The first is 
known as the substitution effect, which indicates that an increase in the expected 
interest rate in the following period reduces consumption in the current period and 
increases consumption in the following period. This is because the consumer has the 

Fig. 3.5 Firm response to productivity shock (.t = 1)
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willingness to substitute consumption intertemporally if the incentive (the interest 
rate) is getting stronger. It is worth mentioning that by “increase” we mean that the 
variable is above its steady state; that is, . ̂rt > 0. When this happens, the substitution 
effect suggests that consumption . ̂ct−1 is reduced. On the other hand, if . ̂rt < 0, the  
consumption . ̂ct−1 increases. 

The analysis of the substitution effect is carried out using the Euler equation. 
When analyzing this equation in .t = 0 we have: 

.  ̂c0 = Et [ ̂c1 − ̂r1]

In this case, an increase of .  ̂r1 would produce a decrease of .  ̂c0 and an increase 
of .  ̂c1; however, since at .t = 0 the economy is in steady state, the only effect that 
remains is the increase in consumption at “.t = 1.” That is, . ̂c1 = ̂r1 (effect 0). 

Since the household is stopped at “t = 1,” it is necessary to analyze the substitu-
tion effect in this period: 

.  ̂c1 = Et [ ̂c2 − ̂r2]

This equation suggests that if the next period’s interest rate increases, that is, 
. ̂r2 > 0, then today’s consumption .  ̂c1 decreases. As will be seen later, effectively 
at “t = 2” we have . ̂r2 > 0 and, therefore, the substitution effect indicates that .  ̂c1
decreases (effect 1). 

The second effect of the interest rate is known as the “wealth effect” or “income 
effect,” which indicates that the consumer feels richer because the rental cost of 
capital (interest rate) has increased and so has their income. To analyze this effect it 
is necessary to use the budget constraint (in levels) at “t = 1”: 

. c1 + i1 = wth1 + r1k1

Given the increase in the interest rate at “t = 1,” the household could allocate 
these resources to greater consumption .  ̂c1 and investment .  ̂i1 (effect 2). So far these 
two effects are opposed, so the natural question is: which effect is dominant? In 
this model, both effects cancel each other out because the intertemporal elasticity 
of substitution is equal to one. As will be shown in Chap. 4, the dominance of the 
substitution effect over the income effect depends on the elasticity of substitution. 
Therefore, there is no movement in consumption in this way, only because of the 
substitution effect at “t = 0” that produces an increase in consumption at “t = 1” 
(effect 0). 

Figure 3.6 shows the reaction of the household through the labor supply, leading 
the equilibrium at “t = 1” to point “B.” The question that arises is, then, to what 
extent does the household reduce its labor supply, if we assume that . h1 is the final 
equilibrium? If this is so, it must be fulfilled that the wage . w1 must balance the labor 
supply and demand:
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Fig. 3.6 Household response to productivity shock (.t = 1) 

.
hss

1 − hss

 ̂h1 + ̂c1
◟ ◝◜ ◞

labor supply

=  ̂w1 =  ̂y1 − ̂h1◟ ◝◜ ◞
labor demand

(3.185) 

Working on both sides of (3.185), we have:  

.
hss

1 − hss

 ̂h1 =  ̂y1 − ̂c1 (3.186) 

But it is known that: 

.  ̂c1 = ̂r1 =  ̂y1 = σϵ + α ̂h1

So substituting this expression into equation (3.186): 

.
hss

1 − hss

 ̂h1 = 0 (3.187) 

Therefore, the equilibrium work at “t = 1” is equal to zero; that is, it is equal to 
its steady-state value: . ̂h1 = 0. Therefore, what really happens with the labor supply 
is that it is successively reduced until it reaches point “C” (see Fig. 3.7). 

Therefore, to summarize the equilibrium values of the variables, we have the 
following: . ̂a1 = σϵ , then . ̂h1 = 0 and . ̂y1 =  ̂w1 = ̂c1 = ̂r1 = σϵ . 

Also, . ̂k1 = 0 and . ̂i1 = ̂k2. To find the value of .  ̂k2, the goods market equilibrium 
equation is used:
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Fig. 3.7 Equilibrium in the 
labor market (.t = 1) 

Fig. 3.8 Equilibrium at . t = 1

.  ̂y1◟◝◜◞
= ̂c1

= css

yss

 ̂c1 + iss

yss

 ̂i1

(
1 − css

yss

)
 ̂c1 = iss

yss

 ̂i1

iss

yss

 ̂c1 = iss

yss

 ̂i1

 ̂c1 = ̂i1 (3.188) 

Since . ̂c1 = σϵ , then . ̂i1 = σϵ and therefore . ̂k2 = σϵ . Figure 3.8 indicates the final 
equilibrium in the period “t = 1” in the factor market. 

Period .t = 2 In this period even the effect of productivity can be seen, although 
with less force. Equation (3.189) indicates that productivity in this period .  ̂a2 is lower 
than in the previous period .  ̂a1:
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.  ̂a2 = φ  ̂a1◟◝◜◞
=σϵ

+ ϵ2◟◝◜◞
=0

 ̂a2 = φσϵ (3.189) 

It is worth mentioning that the shock considered in this model is temporary; that 
is, its realization is in a single period and is equal to its standard deviation: .ϵ1 = σϵ . 
In the following periods, the shock is equal to its steady state; that is: . ϵ2 = ϵ3 =
ϵ4 = . . . = 0. In addition, by obtaining the MA(. ∞) representation of productivity, 
the effects of the shock of productivity on productivity in the following periods can 
be analyzed: 

. ̂at = ϵt + φϵt−1 + φ2ϵt−2 + φ3ϵt−3 + φ4ϵt−4 + . . . (3.190) 

When calculating the variation of productivity in “t” before a shock in the same 
period, we have: 

. 
Δ ̂at

Δϵt

= 1

Considering that .Δϵt = σϵ , then .Δ ̂at = σϵ , and also if it is known that the 
variation of productivity is with respect to its steady state (. = 0), then . ̂at = σϵ . In  
the same way, the impact of the shock is calculated at “t+1,” “t+2,” and so on, and 
we have the following: 

.  ̂at+1 = φσϵ,  ̂at+2 = φ2σϵ,  ̂at+3 = φ3σϵ . . .

This result is important and suggests two central ideas: the first is that since 
.φ < 1, then the impact of the shock is diluted or diminishes over time. The second 
idea is that the magnitude of the impact depends on the value of the persistence 
parameter . φ. If this parameter is small, then the effect will quickly disappear over 
time. 

Firms’ reactions As mentioned before, the first impact of the shock of productivity 
is on the production function: 

.  ̂y2 = ̂a2 + (1 − α) ̂k2 + α ̂h2

 ̂y2 = φσϵ + (1 − α)σϵ + α ̂h2

 ̂y2 = (φ + (1 − α))σϵ + α ̂h2, φ = 0.979, α = 0.667

 ̂y2 = 1.312σϵ + α ̂h2 (3.191) 

From the equilibrium results in period “t = 1,” it is known that . ̂y1 = σϵ . Then, 
given .  ̂h2, in equation (3.191) it is observed that coefficient (1.312) that multiplies 
. σϵ in .  ̂y2 is greater than that associated with .  ̂y1 (1). This suggests that: . ̂y2 >  ̂y1 > 0. 
The increase in product due to higher productivity encourages the firm to expand its 
demand for labor and capital as seen in the Fig. 3.9.
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Fig. 3.9 Firms’ response to productivity shock (t = 2) 

By substituting the value of the product in the demand for capital, the following 
is obtained: 

.  ̂r2 =  ̂y2 − ̂k2

 ̂r2 = (φ + (1 − α))σϵ + α ̂h2 − (σϵ)

 ̂r2 = (φ − α
◟ ◝◜ ◞
0.312

)σϵ + α ̂h2 (3.192) 

It is known that the equilibrium interest rate in period “t = 1” is . ̂r1 = σϵ . So when 
comparing this result with equation (3.192) it follows that . ̂r2 <  ̂r1. This indicates 
that the demand for capital in period “t = 2” has not expanded enough to increase 
the interest rate above .  ̂r1. It is worth mentioning that, although the interest rate is 
lower than the previous period, it is still higher than the steady state and, therefore, 
it continues to produce an incentive to substitute today’s consumption for tomorrow 
(negative substitution effect on today’s consumption), and it continues to generate 
positive income for the household (positive income effect), although to a lesser 
extent than in period “t = 1.” 

Household reactions The income effect can be seen in the budget constraint (in 
levels): 

. c2 + i2 = w2h2 + r2k2

where the income side increases due to the increase in the interest rate with respect 
to its steady state. It is worth mentioning that this increase is less than in the previous 
period. This causes consumption and investment to increase at “t = 2,” but to a lesser 
extent (with respect to the previous period). On the other hand, the substitution effect 
suggests that consumption in “t = 2” should also increase and consumption in period 
“t = 1” should decrease:
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Fig. 3.10 Household response to the productivity shock (t = 2) 

. ̂c1 = Et [ ̂c2 − ̂r2] (3.193) 

Therefore, given the increase in consumption due to the effects of the interest 
rate, the household feels that they have enough resources to sacrifice leisure. This 
leads to the reduction of labor supply in the period “t = 2” to the level at which labor 
remains at its steady-state value (see Fig. 3.10). 

After the firm and the household have reacted to the effects of shock on 
productivity, which materialized in period 1, the following equilibrium values of 
the variables are obtained in period 2: . ̂a2 = φσϵ ; then . ̂h2 = 0 and .  ̂y2 =  ̂w2 = ̂c2 =
(φ + 1 − α)σϵ . Furthermore, . ̂r2 = (φ − α)σϵ . In the same way as in period 1, we 
can conclude that under the budget constraint, the investment is equal consumption 
at the equilibrium: 

.  ̂c2 = ̂i2

Likewise, by the law of movement of capital it is known that: . ̂k3 = ̂i2. Therefore, 
the equilibrium values of all the variables are: 

.  ̂y2 =  ̂w2 = ̂c2 = ̂i2 = ̂k3 = (φ + 1 − α)σϵ,  ̂a2 = φσϵ,  ̂h2 = 0

Figure 3.11 shows the equilibrium in the factor market in the second period. 

Period .t = 3 In this period, the effects of the shock on productivity still persist, 
although with less impact.
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Fig. 3.11 Equilibrium at . t = 2

.  ̂a3 = φ  ̂a2◟◝◜◞
=φσϵ

+ ϵ3◟◝◜◞
=0

 ̂a3 = φ2σϵ (3.194) 

From equation (3.194) it can be inferred that . ̂a3 = φ2σϵ and is less than .  ̂a2 =
φσϵ . Therefore, the impact on output will be positive, but less than in period “t = 2.” 

Reactions of the firm Given that the capital stock has been increasing between 
periods 2 and 3 (going from . ̂k2 = σϵ to . ̂k3 = 1.312σϵ) and also that the effects 
of the shock that materialized in the first period still persist, to a lesser extent, in the 
third period. All this leads the product to increase in this period, as shown below: 

.  ̂y3 = ̂a3 + (1 − α) ̂k3 + α ̂h3

 ̂y3 = φ2σϵ + (1 − α)(1 + φ − α)σϵ + α ̂h3

 ̂y3 = (φ2 + (1 − α)(1 + φ − α))
◟ ◝◜ ◞

=1.3953

σϵ + α ̂h3

 ̂y3 = 1.3953σϵ + α ̂h3 (3.195) 

Comparing with the product of the period “t = 2,” we have the following: 

. 1.3953σϵ + α ̂h3 =  ̂y3 >  ̂y2 = 1.312σϵ

Given the increase in product, the firm expands its demand for capital and labor 
as in previous periods, as shown in Fig. 3.12. 

By substituting the value of the product in the demand for capital, the following 
is obtained:
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Fig. 3.12 Firm response to productivity shock (t = 3) 

.  ̂r3 =  ̂y3 − ̂k3

 ̂r3 = 1.3953σϵ + α ̂h3 − 1.312σϵ

 ̂r3 = 0.0833σϵ + α ̂h3 (3.196) 

When comparing the equilibrium value of the interest rate in the period “t = 1,” 
equation (3.192) with equation (3.196), it is observed that the interest rate in 
period 3 has been significantly reduced: the coefficient of . σϵ in the interest rate 
demand equation went from 31.2% in the second period to 8.33% in the third 
(equation 3.196). This is due to two effects: on the one hand, the influence of the 
shock on productivity is diluted over time and the expansion of the stock of capital 
is less; that is, it increases but at a slower rate. 

Reactions of the household Faced with a scenario of greater demand for labor 
and capital on the part of firms, although to a lesser extent than in the previous 
period, household income still remains positive—it is that is—above the steady state 
because the interest rate (albeit small) is still positive. Likewise, real wages remain 
on the rise. All this implies that the household experiences a lower income effect 
than the previous period but that it allows consumption, leisure, and investment to 
increase. The increase in leisure translates into a reduction in the labor supply until 
equilibrium is reached at “E” (see Fig. 3.13). 

On the other hand, the substitution effect implies a reduction in consumption in 
the second period, but an increase in the current period. It is worth mentioning that 
since the interest rate in this period is already very close to zero, the substitution 
effect is small.
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Fig. 3.13 Household 
response to the productivity 
shock (t = 3) 

The equilibrium values of all the variables are: 

.  ̂y3 =  ̂w3 = ̂c3 = ̂i3 = ̂k4 = (φ2 + (1 − α)(1 + φ − α))σϵ,  ̂a3 = φ2σϵ,  ̂h3 = 0

In the following periods, the effect of the productivity shock will practically 
disappear, which will lead to the demand for capital increasing marginally in the 
face of an expansion in the supply of capital. This will cause the interest rate to 
become negative; that is, it is below its steady state. Given this situation, due to 
the substitution effect, the household will increase its consumption today, avoiding 
transferring present consumption to the future. The increase in present consumption 
implies less investment today, which ultimately translates into a reduction in the 
stock of capital in subsequent periods. This reduction in the supply of capital on the 
household side will continue until capital returns to a steady state. This behavior 
will lead to all the variables of the economy returning to a steady state in a period 
of time. 

3.9 Simulation of Endogenous Variables 

As indicated in Chap. 2, the simulation of the endogenous variables can be carried 
out in two ways: the first is by indicating to Dynare within “stoch_simul” the number 
of periods to be simulated. The disadvantage of this path is that only one simulation 
can be done. The second is to use two Dynare options (periods and replica number). 
The first option indicates the number of periods and the second the number of times 
you want to run the simulation. The disadvantage of this method is that Dynare 
creates a binary file, which is difficult to read in Matlab. However, Johannes Pfeifer 
has created a Matlab function that solves this problem (see Chap. 2 for more details).
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Fig. 3.14 Simulation (first alternative) 

Figure 3.14 shows the simulation using the first option. It is worth mentioning 
that for this simulation the code “Long_Plosser.m” (See Section 5 of the m-file) is 
used. Likewise, Fig. 3.15 shows the tenth simulation of the variables by means of 
the second option. 

As can be seen, in both simulation alternatives, the endogenous variables (in 
logarithm) behave according to the time series representation derived from the 
solution (see Table 3.8). 

3.10 Cyclic Component of Simulated Variables 

Simulated series (100 times with 150 periods) are used to calculate the cyclical 
component. The steps are as follows: first, the HP filter is applied to each simulation 
of the variables; for example, given that the production has been simulated 100 
times, then there are 100 series and the HP filter is applied to each series in such a 
way that 100 cyclical components and 100 trends are obtained. They are related to 
the same variable—production. Second, we proceed to graph the trend and cyclical 
component of one of the 100 simulations. In this case, simulation 10 has been 
graphed (see Fig. 3.16).
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Fig. 3.15 Simulation (second alternative) 

Figure 3.16 shows the trend component of each endogenous variable (corre-
sponding to the tenth simulation). As can be seen, the trend is the smoothed series 
that passes through the middle of the entire series. It should be emphasized that the 
work has no trend; the line that fluctuates around the variable has the same value on 
the “Y” axis; therefore, it has no trend or cyclical component. 

Figure 3.17 shows the cyclic component for each variable (from the tenth 
simulation). This component is obtained from the difference between the variable 
and its trend. As a result, the average value of the cyclical component is equal to 
zero. It is worth mentioning that Figs. 3.16 and 3.17 are obtained from the code 
“Long_Plosser.m” (See Section 4 of the m-file). 

3.11 Calculation of Theoretical Moments 

In this section, the 100 simulations from the previous section will be taken to 
calculate the distribution of each moment, especially the standard deviation. For 
the calculation of the moments of the cyclic component of the variables, the code 
“Long_Plosser.m” (See Section 5 of the m-file) is used. 

The model assumes that the error . ϵt is distributed as a normal (0.. σϵ). Then, each 
of the variables is also distributed as a normal, with its own mean and standard
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Fig. 3.16 Trend 

Fig. 3.17 Cycle
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Fig. 3.18 Distribution of the standard deviation 

deviation. Figure 3.18 shows the standard deviation of each simulated variable (100 
times). The standard deviation value of each variable produced by the model is 
the mean or median of each distribution. For example, the mean of the standard 
deviation distribution of the log product is 0.0124. Similarly, for the logarithm of 
consumption, it is 0.0124. 

3.12 Comparison of the Theoretical Model with the Data 

A key test that evaluates the power of the model to capture reality is to compare the 
theoretical moments (provided by the model) with the empirical moments (found in 
the data). Table 3.9 shows the moments obtained from the model compared to those 
obtained from the data. It should be noted that the theoretical moments are obtained 
using the file “Long_Plosser_Dynare_nolineal_log.mod,” which considers the HP 
filter. 

Two conclusions can be drawn from Table 3.9: the first is that Long and Plosser’s 
model is very far from replicating reality. This was to be expected given the 
assumptions considered. The second is that the model can be strengthened in several 
directions; for example, the assumption of total depreciation can be raised or a utility 
function can be assumed that allows obtaining an elasticity of substitution different 
from one.
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3.13 Codes 

In Table 3.10 the codes used in this chapter are indicated. 

Table 3.9 Comparison of the cyclical behavior of the theoretical model with the empirical data 

US empirical data Theoretical model 

Variable Std. Corr. with product (t) Std. Corr. with product (t) 

Product 1.72 1 0.0126 1 

(0.0017) 

Consumption 1.27 0.83 0.0126 1 

(0.0017) 

Investment 8.24 0.91 0.0126 1 

(0.0017) 

Capital 5.34 0.9 0.0126 1 

(0.0017) 

Labor 1.59 0.86 0 

(0) 

Wage 0.757 0.68 0.0126 1 

(0.0017) 

Interest rate 0.0072 0.2841 

(0.00045) 

Note: The empirical values have been taken from Cooley and Prescott (1995), which have been 
calculated under the sample period from 1954.I to 1991.III, while the theoretical values have been 
obtained from a 100-fold simulation considering a period of 150 quarters. The values shown in 
the theoretical model are the average values of each distribution. These values are obtained from 
the file “Long_Plosser_Dynare_nolinear_log.mod” 

Table 3.10 Codes in Matlab and Dynare 

Codes Description 

Matlab 

Long_Plosser.m This m-file calculates the steady state and the 
coefficients of the model solution and applies 
the HP filter to the simulated variables (100 
times with 150 periods). In addition, the 
theoretical moments of the cyclic component 
are calculated 

Long_Plosser_BlanchardKahn.m This m-file seeks to follow step by step the 
application of the Blachard and Kahn method 
to the Long and Plosser model 

ifrs_nolinear_log.m This m-file plots the impulse-response 
function of the Long and Plosser model, 
which is described in the mod file described 
below 

Dynare 

Long_Plosser_Dynare_nolinear_log.mod This .mod contains the nonlinear equations 
with the variables in logarithms of the Long 
and Plosser (1983, 1989) model 



Chapter 4 
RBC Model with Constant Labor 

4.1 Introduction 

The main objective of this chapter is to understand in detail the process of building 
and solving a model of real business cycles. Additionally, it is important to 
understand how the simulation of the variables is constructed and how the impulse-
response function is obtained. For these purposes, in this chapter, one of the models 
proposed by Campbell (1994) is analyzed in detail. 

The base model proposed by Campbell (1994) is a stationary model (without 
trend) but with nonzero growth in the steady state. This model is an extension of the 
stochastic growth model, which allows tracking the dynamic effects of any random 
event (shock). 

However, the solution of the stochastic model is difficult to characterize, mainly 
because of the nonlinearities that emerge from the model itself, which are derived 
from the interaction between multiplicative elements (function Cobb-Douglas 
production model) and additive elements (law of movement of capital). A special 
case is the model proposed by Long and Plosser (1983), described in Chap. 3. In  
this model, the nonlinearities disappear due to the unrealistic assumption that the 
depreciation is total; that is, the depreciation rate is equal to one (.δ = 1) and that, 
furthermore, the utility function is logarithmic (.u(ct , ht ) = lnct + θln(1 − ht )). In 
this case, the model becomes linear and can be solved analytically; in the others, an 
“approximate solution” is required. 

In line with the above, Campbell (1994) mentions that a typical paper in the RBC 
literature outlines the model and then moves directly to the discussion of solution 
properties without specifying how this solution has been arrived at. The above does 
not allow the reader to understand the process to obtain the said solution properties, 
nor the solution itself. 

Given this, the author proposes a simple analytical approach to the stochastic 
growth model, whose log-linear version can be solved analytically to show the 
solution mechanism in the most accurate way, ás transparent as possible. In order to 
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illustrate the solution method, Campbell (1994) applies it to four models: (1) model 
with fixed labor supply, (2) model with variable labor supply and with function with 
an additively separable utility function, (3) a model with variable labor supply and 
a nonadditively separable utility function, and (4) the second extended model with 
a shock of public spending. 

This chapter focuses on the first model (constant or fixed labor supply), leaving 
the model with variable labor supply for the next chapter. 

4.2 Model Building 

This model is made up of households and firms in a closed economy environment, 
in which there is only one good. On the one hand, households have permanent jobs; 
that is, all households are employed. On the other hand, households own the capital 
and therefore demand goods to invest, which in turn creates a supply of capital. 
Likewise, households demand consumer goods. 

On the other hand, firms have the technology to produce the only good in the 
economy based on capital. Therefore, firms demand capital. Figure 4.1 outlines the 
model. 

4.2.1 Households 

In this model, it is assumed that the economy is populated by a set of identical 
households that have infinite life. The representative household seeks to maximize 
its discounted utility function: 

Fig. 4.1 Scheme of the constant labor supply model
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. Max
{ct ,kt+1}∞t=0

E0

∞⎲

t=0

βtu(ct ) (4.1) 

where . ct is the consumption of the period t and . β is the discount factor. In addition, 
the instant utility function is described by the following functional form: 

.u(ct ) = c
1−γ
t

1 − γ
(4.2) 

Utility Function Properties 
The prior utility function has a risk aversion coefficient equal to . γ and 
elasticity of intertemporal substitution (of consumption) . σ = 1/γ
Computation of .EISc

t+1,t (σ ): 

. uct = c
−γ
t

T MgSIc
t+1,t = −Et

⎾
uct

βuct+1

⏋
= −Et

⎾
c
γ
t

βc
γ

t+1

⏋

EISc
t+1,t = ∂ln(

ct+1
ct

)

∂ln(T MgSIc
t+1,t )

= T MgSIc
t+1,t

ct+1
ct

1
∂T MgSIc

t+1,t

∂
(

ct+1
ct

)
= 1

γ

The elasticity of intertemporal substitution (EIS) of consumption (. σ ) is under-
stood as the household’s willingness to substitute consumption today (.↓ ct ) for  
consumption tomorrow (.↑ ct+1). When the said elasticity is said to be strong (. σ is 
large), it is understood that the consumer is willing to reduce his/her consumption 
today by a greater amount. 

On the other hand, it is assumed that the household owns the physical capital (. kt ), 
whose accumulation dynamics is represented by the law of movement of capital: 

.kt+1 = (1 − δ)kt + it (4.3) 

The said capital (. kt ) is rented to firms at a real interest rate . rt . This positive flow 
.(rt kt ) represents the household’s income, which is distributed between consumption 
(. ct ) and investment (. it ). This equivalence of flows, for each period of time, is 
represented in the budget constraint: 

.ct + it = rt kt (4.4)
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Optimization Problem 
The optimization problem of the representative household is the following: 

. Max
{ct ,kt+1}∞t=0

E0

∞⎲

t=0

βt c
1−γ
t

1 − γ

subject to budget constraint: 

. ct + kt+1 − (1 − δ)kt = rt kt

where the investment (. it ) has been replaced by its expression derived from 
the law of movement of capital (Eq. 4.3). Also, it is worth mentioning that the 
control variables in this optimization problem are: . ct and .kt+1. 

The household optimization problem can be written as a Lagrange function: 

. L = E0

∞⎲

t=0

βt
⎾
u(ct ) + λt

(
rt kt − (ct + kt+1 − (1 − δ)kt )

)⏋

where, similarly to Chap. 3 (Long and Plosser (1983) model), the extended version 
of the Lagrange function can be expressed as follows: 

. L = E0

⌠
β0⎾u(c0) + λ0

(
r0k0 − (c0 + k1 − (1 − δ)k0)

)⏋ +

β1⎾u(c1) + λ1
(
r1k1 − (c1 + k2 − (1 − δ)k1)

)⏋ +
β2⎾u(c2) + λ2

(
r2k2 − (c2 + k3 − (1 − δ)k2)

)⏋ +
β3⎾u(c3) + λ3

(
r3k3 − (c3 + k4 − (1 − δ)k3)

)⏋ +
β4⎾u(c4) + λ4

(
r4k4 − (c4 + k5 − (1 − δ)k4)

)⏋ +
... +
βt

⎾
u(ct ) + λt

(
rt kt − (ct + kt+1 − (1 − δ)kt )

)⏋ +
βt+1⎾u(ct+1) + λt+1

(
rt+1kt+1 − (ct+1 + kt+2 − (1 − δ)kt+1)

)⏋ +
... +
...

⎫

The first-order conditions, in period “t,” are:
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. 
∂L
∂ct

= 0 =⇒ E0

⌠
βt

⎾
uct + λt (−1)

⏋⎫ = 0

.uct = λt (4.5) 

. 
∂L

∂kt+1
= 0 =⇒ E0

⌠
βt

⎾
λt (−1)] + βt+1⎾λt+1(rt+1 + (1 − δ))

⏋⎫ = 0

.λt = βEtλt+1(rt+1 + (1 − δ)) (4.6) 

Substituting Eq. (4.5) into Eq. (4.6) we get the Euler equation: 

. uct = βEtuct+1(rt+1 + (1 − δ))

c
−γ
t = βEtc

−γ

t+1(rt+1 + (1 − δ)) (4.7) 

In line with Campbell (1994), the variable . Rt is defined as the one-period 
investment gross interest rate, which is equal to the interest rate net real interest 
(. rt ) plus the non-depreciated capital (.1 − δ). In the period “t+1,” this relationship is 
expressed as follows: 

.Rt+1 = rt+1 + (1 − δ) (4.8) 

Considering the previous expression, the Euler equation would have the follow-
ing form: 

.c
−γ
t = βEtc

−γ

t+1Rt+1 (4.9) 

Euler’s equation expresses a marginal benefit/cost comparison of consuming one 
unit of the good. On the one hand, there is the marginal cost of not consuming an 
additional unit of the good, which is expressed by the marginal utility . uct and, on 
the other hand, there is the marginal benefit of not consuming the said unit of the 
good at “t,” which in the next period “.t + 1” becomes .1(1+ rt+1 − δ) units of good. 
This is because there is an interest rate and a depreciation rate. The marginal utility 
provided by this additional unit at “t+1” is .uct+1Rt+1. However, to compare it with 
the marginal cost in “t,” it is necessary to bring it to present value by means of the 
discount factor “. β.” Therefore, the marginal benefit at “t” is equal to .βuct+1(Rt+1). 
This is observed in the following equation: 

. uct◟◝◜◞
marginal cost

= βEtuct+1(rt+1 + (1 − δ))
◟ ◝◜ ◞

marginal benefit

Therefore, Euler’s equation indicates that the household is willing to sacrifice 
consumption today until the marginal cost of not consuming a unit of the good 
today is equal to the marginal benefit of the said unit of the good brought to present 
value.
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4.2.2 Firms 

It is assumed that firms develop in a context of perfect competition both in the 
market for goods and in the market for factors of production. In this scenario, 
the representative firm maximizes its profit function subject to its technology 
(production function). This optimization problem is described as follows: 

. Max
{kt }∞t=0

Πt = yt − rt kt

Subject to the production function: 

.yt = aα
t k1−α

t (4.10) 

The production function only depends on the productivity . at and the capital . kt

because the work . ht is assumed to be constant (fixed). Also, because the firm does 
not make intertemporal decisions, its optimization problem is performed for each of 
the periods. Therefore, the optimization problem can be performed on t and extend 
the result for the following periods. 

Introducing the production function in the objective function and differentiating 
the latter with respect to the only control variable (. kt ), the following expression is 
obtained: 

. 
∂Π

∂kt

= 0 =⇒ ∂(aα
t k1−α

t − rt kt )

∂kt

= 0 =⇒ (1 − α)

⎾
at

kt

⏋α

− rt = 0

From this first-order condition, the demand for capital is obtained: 

.rt = (1 − α)

⎾
at

kt

⏋α

(4.11) 

4.2.3 Market Equilibrium and Shock Definition 

To complete the model described above, it is necessary to specify two additional 
equations. The first describes equilibrium in the goods market; that is, everything 
that is produced in the economymust find its counterpart in the different components 
of aggregate spending. The second specifies the behavior of productivity. With 
respect to the latter, it is usually assumed that it is stationary in the mean and 
that it has a constant variance. The standard way to represent it is assuming that 
productivity follows an autoregressive process of order one. 

In this particular model, it is assumed that there is no government spending (. gt =
0) and that the economy is small and closed. Therefore, the whole production will
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have two possible destinations: consumption (. ct ) and investment (. it ). In that sense, 
the equilibrium condition is described by the following equation: 

.yt = ct + it (4.12) 

On the other hand, productivity follows a stationary behavior AR(1), in which the 
shock is represented by the white noise . ϵt , which has a distribution function normal 
with zero mean and constant variance [.N(0, σ 2

ϵ )]. In a steady state, it is assumed that 
the said white noise takes the value of its mean. Likewise, when it is said that the 
economy has suffered a “shock” at .t = 0, it means that in that period the white noise 
(. ϵt ) has ceased to be zero and has taken, only in that period, some value proportional 
to its standard deviation (. nσϵ). Usually, n is considered to be equal to one. Equation 
(4.13) describes the behavior of productivity: 

.lnat = φlnat−1 + ϵt (4.13) 

It should be noted that the logarithm of productivity behaves like an AR(1) 
and not productivity itself. This is important because it allows the steady-state 
productivity to be equal to one, which avoids any division by zero. 

4.2.4 Main Equations 

The main equations of the model are summarized in Table 4.1. 
This set of equations represents a system of nonlinear and stochastic difference 

equations. To solve this system, as usual in the literature, it is transformed into a 
system of linear equations. This is because the mathematical techniques for solving 
linear systems are widely known. The solution of the linear system will then be an 
approximation of the solution of the nonlinear system. It is worth mentioning that 
a previous step to the linearization of the system of equations is the assignment of 
values to the parameters (calibration) and the calculation of the steady state. 

Table 4.1 Nonlinear system of equations of the model 

Equations Description 

.c
−γ
t = βEtc

−γ

t+1Rt+1 Euler’s equation 

.yt = aα
t k1−α

t Production function 

.rt = (1 − α)
⎾

at

kt

⏋α Capital demand 

.Rt = rt + (1 − δ) . Rt is the real (gross) interest rate 

. rt is the real (net) interest rate that considers depreciation 

.yt = ct + it Goods market equilibrium 

.kt+1 = (1 − δ)kt + it Law of motion of capital 

.lnat = φlnat−1 + ϵt Productivity shock 

Note: These 7 equations can be written directly in a “mod” in Dynare to get the model solution 
and IRFs
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4.3 Calibration 

Calibration is an empirical methodology, which consists of assigning a value to 
the parameters of the general equilibrium model based on a variety of sources. 
According to Heer and Maussner (2009), the most common sources are the 
following: 

1. The use of the average of the level of economic variables of time series or the 
average of the ratios of the said variables 

2. The econometric estimate of an equation 
3. The reference to econometric studies based on microeconomic or macroeco-

nomic data 
4. The adjustment of the parameters so that the model replicates certain empirical 

facts such as second moments of the data or impulse-response of a structural 
VAR 

The way to evaluate the power of the model to capture reality is by comparing the 
values of the second moments and the impulse-response functions with the values 
obtained empirically. Table 4.2 indicates the values of the model parameters, which 
are based on Campbell (1994). 

4.4 Steady State 

For the calculation of the stationary state, it is considered that the variable . xt remains 
constant. Then, in the stationary state, .xt = xt+1 = xss . This last condition applies 
to all endogenous variables. Furthermore, in the steady state the shock . ϵss takes its 
average value, which is equal to zero. 

For Euler’s equation we have the following: 

. c
−γ
t = βEtc

−γ

t+1Rt+1

c
−γ
ss = βc

−γ
ss Rss

Table 4.2 Calibration (base values) 

Parameter Name Annual calculation 

.α = 0.667 (.1 − α) is the share of capital in the product 

.δ = 0.025 Depreciation rate 10% annual 

.ln(Rss) = 0.015, 
implies . Rss = 1.015
and hence . β = 0.9852

Steady-state gross real interest rate 6.184% 
annual: 
. (1+0.015)4−1

.σ = 0.2 Consumption elasticity of intertemporal 
substitution 

.φ = 0.95 Persistence of the shock 

.σϵ = 1 Standard deviation of the shock
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1 = βRss 

Rss = 
1 

β 
(4.14) 

For the production function: 

. yt = aα
t k1−α

t

yss = aα
ssk

1−α
ss (4.15) 

For the demand for capital: 

. rt = (1 − α)

⎾
at

kt

⏋α

rss = (1 − α)

⎾
ass

kss

⏋α

(4.16) 

From the gross interest rate equation: 

. Rt = rt + (1 − δ)

Rss = rss + (1 − δ) (4.17) 

by Eq. (4.14): 

. 
1

β
= rss + (1 − δ)

rss = 1

β
− (1 − δ) (4.18) 

For the equilibrium equation in the goods market: 

. yt = ct + it

yss = css + iss (4.19) 

In the same way for the law of motion of capital: 

. kt = (1 − δ)kt + it

kss = (1 − δ)kss + iss

iss = δkss (4.20) 

Finally, for the productivity behavior equation:
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. lnat = φlnat−1 + ϵt

lnass = φlnass + ϵss◟◝◜◞
=0(value of its mean)

lnass = φlnass

ln(ass) = ln(aφ
ss)

ass = aφ
ss (4.21) 

As in the Long and Plosser (1983) model, two values of . ass could solve this 
last Eq. (4.21): .ass = 1 or .ass = 0. However, only when .ass = 1 does the . lnass

exist. Therefore, the correct solution is .ass = 1. The advantage of considering the 
productivity shock equation in logarithms is that it prevents steady-state productivity 
from being zero. This is important because it prevents any number or variable 
divided by zero from being found in the steady-state equations and in the log-linear 
equations. 

So far we have found the steady-state value of the gross interest rate . Rss , the net 
interest rate . rss , and the productivity . ass ; however, to find the steady state for the 
other variables, some additional algebraic operations have to be performed. From 
Eq. (4.16) we have: 

. rss = (1 − α)

⎾
ass

kss

⏋α

Since the value of . rss is already known from Eq. (4.18) and of . ass , then the value 
of capital . kss can be known: 

. rss = (1 − α)

⎾
ass

kss

⏋α

kss = ass

⎾
rss

(1 − α)

⏋− 1
α

(4.22) 

Since . kss is already known, then the value of the product . yss , of the investment 
. iss , and of the consumption . css can be found: 

.yss = aα
ssk

1−α
ss , from Eq. (4.15). (4.23) 

iss = δkss, from Eq. (4.20). (4.24) 

css = yss − iss , from Eq. (4.19) (4.25) 

Table 4.3 summarizes the steady-state expression for each model variable.
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Table 4.3 Stationary state Steady state (recursive form) Steady state (parametric form) 

.Rss = 1
β

. = 1
β

.rss = Rss − (1 − δ) . = 1
β

− (1 − δ)

.ass = 1 . = 1

.kss = ass

⎾
rss

(1−α)

⏋− 1
α

. =
⎾

1
β

−(1−δ)

1−α

⏋− 1
α

.yss = aα
ssk

1−α
ss . =

⎾
1
β

−(1−δ)

1−α

⏋− (1−α)
α

.iss = δkss . = δ

⎾
1
β

−(1−δ)

1−α

⏋− 1
α

.css = yss − iss . =
⎾

1
β

+αδ−1

1−α

⏋⎾
1
β

−(1−δ)

1−α

⏋− 1
α

Note: Computation of steady states can be found in Camp-
bell_Lfijo.m (Sect. 4.1) 

4.5 Log-Linearization 

The system of equations that describes the model of Campbell (1994) is nonlinear. 
This characteristic of the model makes it difficult to find the solution. A standard 
way of dealing with this difficulty is to log-linearize each equation, that is, to 
transform a nonlinear equation to a linear equation in terms of the log deviation 
of the variable with respect to its steady state. Furthermore, for small deviations 
from the steady state, the log deviation of a variable has an important economic 
interpretation: it is approximately equal to the deviation, in percentage, of the 
stationary state (Uhlig 1995). 

The advantage of applying log-linearization is that it converts the nonlinear 
system into a linear one, to which the standard mathematical methods for solving 
such systems can be applied (Blanchard and Kahn 1980). 

First, the variable is defined in log deviations: 

. ̂xt = lnxt − lnxss (4.26) 

Second, clearing the variable . xt from Eq. (4.26) we have: 

.xt = xsse
 ̂xt (4.27) 

Third, a first-order Taylor approximation of . e ̂xt is made with respect to the steady 
state, in which . ̂xt = 0; that is, .xt = xss : 

.e ̂xt
||
 ̂xt=0

∼= e ̂xt=0 + e ̂xt=0( ̂xt − 0)
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e ̂xt
||
 ̂xt=0 

∼= 1 + ̂xt 

e ̂xt ∼= 1 + ̂xt (4.28) 

This last equation is replaced in Eq. (4.27): 

.xt = xsse
 ̂xt ∼= xss(1 + ̂xt ) (4.29) 

From Eq. (4.29), we obtain .  ̂xt : 

. ̂xt
∼= xt − xss

xss

(4.30) 

Therefore, the variable in log deviations is approximately equal to the deviation, 
in percent, from the steady state. From a practical point of view, we can replace each 
variable by its log-linear expression and then apply the first-order approximation 
according to Eq. (4.28). 

The log-linearized Euler’s equation is given by 

. c
−γ
t = βEtc

−γ

t+1Rt+1

⎾
csse

 ̂ct
⏋−γ = βEt

⎾
csse

 ̂ct+1
⏋−γ ⎾

Rsse
 ̂Rt+1

⏋

e−γ ̂ct = Ete
−γ ̂ct+1e

 ̂Rt+1

e−γ ̂ct = Ete
−γ ̂ct+1+ ̂Rt+1

1 − γ ̂ct = Et

⎾
1 − γ ̂ct+1 +  ̂Rt+1

⏋

 ̂ct = Et

⎾
 ̂ct+1 − 1

γ
 ̂Rt+1

⏋
(4.31) 

Doing the same for the production function: 

. yt = aα
t k1−α

t

ysse
 ̂yt = ⎾

asse
 ̂at

⏋α⎾
ksse

 ̂kt
⏋1−α

ysse
 ̂yt = aα

sse
α ̂at k1−α

ss e(1−α) ̂kt

e ̂yt = eα ̂at+(1−α) ̂kt

1 +  ̂yt = 1 + α ̂at + (1 − α) ̂kt

 ̂yt = α ̂at + (1 − α) ̂kt (4.32) 

Regarding the capital demand:
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. rt = (1 − α)

⎛
at

kt

⎞α

rsse
 ̂rt = (1 − α)

⎛
asse

 ̂at

ksse
 ̂kt

⎞α

rsse
 ̂rt = (1 − α)

⎛
ass

kss

⎞α⎛
e ̂at

e
 ̂kt

⎞α

rsse
 ̂rt = (1 − α)

⎛
ass

kss

⎞α

(eα( ̂at− ̂kt ))

e ̂rt = eα( ̂at− ̂kt )

1 + ̂rt = 1 + α( ̂at − ̂kt )

 ̂rt = α( ̂at − ̂kt ) (4.33) 

In the case of the gross interest rate, its log-linear form is obtained as follows: 

. Rt = rt + (1 − δ)

Rsse
 ̂Rt = rsse

 ̂rt

Rss(1 +  ̂Rt) = rss(1 + ̂rt )

 ̂Rt = rss

Rss

 ̂rt (4.34) 

In goods market equilibrium: 

. yt = ct + it

ysse
 ̂yt = csse

 ̂ct + isse
 ̂it

yss(1 +  ̂yt ) = css(1 + ̂ct ) + iss(1 + ̂it )

yss + yss ̂yt = css + css ̂ct + iss + iss ̂it
yss ̂yt = css ̂ct + iss ̂it

 ̂yt = css

yss

 ̂ct + iss

yss

 ̂it (4.35) 

The law of movement of capital in its log-linear form would be: 

.kt+1 = (1 − δ)kt + it

ksse
 ̂kt+1 = (1 − δ)ksse

 ̂kt + isse
 ̂it

kss(1 + ̂kt+1) = (1 − δ)kss(1 + ̂kt ) + iss(1 + ̂it )
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kss + kss
 ̂kt+1 = (1 − δ)kss + (1 − δ)kss

 ̂kt + iss + iss ̂it 
kss

 ̂kt+1 = (1 − δ)kss
 ̂kt + iss ̂it

 ̂kt+1 = (1 − δ) ̂kt + 
iss 
kss

 ̂it (4.36) 

Finally, the productivity equation is: 

. lnat = φlnat−1 + ϵt

lnasse
 ̂at = φlnasse

 ̂at−1 + ϵt

lnass + ̂at = φlnass + φ ̂at−1 + ϵt

 ̂at = φ ̂at−1 + ϵt (4.37) 

Table 4.4 summarizes the log-linear equations of the model. 
The number of equations in Table 4.4 can be reduced to five. To do so, the 

equilibrium equation of the goods market (Eq. 4.5) is introduced in the equation on 
the movement of capital (Eq. 4.6). The variable that connects these two equations is 
the investment. First, we write investment on the left side of Eq. 4.5: 

.  ̂it =
⎾
 ̂yt − css

yss

 ̂ct

⏋
yss

iss

Second, this equation is inserted into the law of motion of capital: 

.  ̂kt+1 = (1 − δ) ̂kt + iss

kss

⎛⎾
 ̂yt − css

yss

 ̂ct

⏋
yss

iss

⎞

In addition, the equation of the production function (. yt ) is introduced: 

Table 4.4 Log-linear equations 

Log-linear equations Description 

.1.  ̂ct = Et

⎾
 ̂ct+1 − 1

γ
 ̂Rt+1

⏋
Euler’s equation 

.2.  ̂yt = α ̂at + (1 − α) ̂kt Production function 

.3.  ̂rt = α[ ̂at − ̂kt ] Capital demand 

.4.  ̂Rt = rss
Rss

 ̂rt Gross interest rate 

.5.  ̂yt = css

yss
 ̂ct + iss

yss

 ̂it Equilibrium in the goods market 

.6.  ̂kt+1 = (1 − δ) ̂kt + iss
kss

 ̂it Law of movement of capital 

.7.  ̂at = φ ̂at−1 + ϵt Productivity shock 

Note: To directly obtain the solution of the model with Dynare, you can use the mod “Camp-
bell_Lfijo_Dynare.mod”
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Table 4.5 Log-linear 
equations (reduced system) 

Log-linear equations 

. 1.  ̂ct = Et

⎾
 ̂ct+1 − 1

γ
 ̂Rt+1

⏋

. 2.  ̂yt = α ̂at + (1 − α) ̂kt

. 3.  ̂Rt = λ3[ ̂at − ̂kt ]

. 4.  ̂kt+1 = λ1 ̂kt + λ2 ̂at + (1 − λ1 − λ2) ̂ct

. 5.  ̂at = φ ̂at−1 + ϵt

.  ̂kt+1 = (1 − δ) ̂kt + iss

kss

⎛⎾(
α ̂at + (1 − α) ̂kt

) − css

yss

 ̂ct

⏋
yss

iss

⎞

Putting the algebraic terms in order, we have: 

. ̂kt+1 =
⎾
(1 − δ) + δ(1 − α)

yss

iss

⏋

◟ ◝◜ ◞
λ1

 ̂kt + δα
yss

iss◟ ◝◜ ◞
λ2

 ̂at − δ
css

iss
 ̂ct (4.38) 

From the coefficients of Eq. (4.38) it is shown that: 

. − δ
css

iss
= 1 − λ1 − λ2

Therefore, the final equation is: 

. ̂kt+1 = λ1 ̂kt + λ2 ̂at + (1 − λ1 − λ2) ̂ct (4.39) 

On the other hand, Eq. (4.3) (demand for capital) is plugged into Eq. (4.4) (gross 
interest rate): 

.  ̂Rt = α
rss

Rss

 ̂rt

 ̂Rt = α
rss

Rss

[ ̂at − ̂kt ]
 ̂Rt = λ3[ ̂at − ̂kt ] (4.40) 

where, in the previous equation, the coefficient . λ3 has been defined: 

. λ3 = α
rss

Rss

Table 4.5 summarizes the five main log-linear equations of Campbell (1994) 
fixed work model.
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4.5.1 Substitution and Income Effect of the Interest Rate 

Before solving the log-linear system, it is important to analyze the impact of the real 
interest rate on consumption. To approach this analysis it is very useful to use the 
log-linear equations. 

Consumer theory suggests that when the price (. pt ) of a good (. qt ) changes, there 
are two effects on the consumer: first, the price of . qt relative to other products 
changes, and second, due to the change in . pt , the consumer’s real income also 
changes. The change in optimal consumption as a result of a change in price contains 
both effects. 

The substitution effect is the effect obtained only by the change in relative prices, 
keeping real income constant, while the income effect is the effect obtained only by 
the change in real income. 

The interest rate represents the relative price of the basket in period “t+1” (.ct+1) 
with respect to today (. ct ). Therefore, a change in the interest rate will produce two 
effects: substitution and income. 

Substitution Effect (ES) An increase in the real interest rate makes tomorrow’s 
consumption .ct+1 relatively less expensive compared to today’s consumption . ct . 
This is because saving is more profitable to reach the same amount of consumption 
tomorrow; that is, the consumer needs to sacrifice less consumption today. There-
fore, the substitution effect is summarized as follows: 

. ↑ Rt
Substitution Effect−−−−−−−−−−→↓ ct y ↑ ct+1

It is worth mentioning that the Euler equation reflects the substitution effect of 
consumption. In addition, . σ is EIS: 

.  ̂ct = Et

⎾
 ̂ct+1 − 1

γ
 ̂Rt+1

⏋

The magnitude of the substitution effect is controlled by . σ . The larger . σ , the  
larger the substitution effect; namely: 

. ↑ Rt
Substitution effect−−−−−−−−−−→↓↓ ct y ↑↑ ct+1

Income Effect (IE) An increase in the interest rate produces an income effect. If 
the consumer has assets (bonds or savings), an increase in the interest rate produces 
higher profits for those assets and, consequently, higher income. This effect tends to 
increase consumption in all periods: 

. ↑ Rt
Income effect−−−−−−−→↑ ct y ↑ ct+1
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It is worth mentioning that the budget constraint reflects the income effect: 

. ct + it = rt kt

An increase in the interest rate produces two effects: 

.SE → .↓ ct y .↑ ct+1 (Euler’s equation) 

.IE → .↑ ct y .↑ ct+1 (Budget constraint) 

.− − − . − − −
.TE → Depends on EIS .σ y . ↑ ct+1

Total Effect (TE) To observe the final effect of the interest rate on consumption, 
we will rely on the budget constraint and the Euler equation (of the variables in 
levels): 

.ct + it = rkkt . (4.41) 

but it is known : 
kt+1 = (1 − δ)kt + it 

clearing it : 
it = kt+1 − (1 − δ)kt . (4.42) 

(4.42) en (4.41) : 
ct + kt+1 − (1 − δ)kt = rkkt 

ct + kt+1 = (rk + (1 − δ)◟ ◝◜ ◞
Rt 

)kt 

ct + kt+1 = Rtkt (4.43) 

As is known, the income of the representative household in “t” is .Rtkt , which is 
summarized in . At . Likewise for the income at “t+1”: .Rt+1kt+1 = At+1. Rewriting 
Eq. (4.43) in terms of income, we have: 

. ct + kt+1 = Rtkt

ct + Rt+1kt+1

Rt+1
= Rtkt

ct + At+1

Rt+1
= At (4.44)
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Equation (4.44) is a difference equation, which can be solved by iterating 
forward. By mathematical induction, we do the following: 

.At = ct + At+1

Rt+1
. (4.45) 

At+1 = ct+1 + 
At+2 

Rt+2 
. (4.46) 

At+2 = ct+2 + 
At+3 

Rt+3 
(4.47) 

Then Eq. (4.47) is replaced in (4.46): 

. At+1 = ct+1 + At+2

Rt+2

At+1 = ct+1 + 1

Rt+2
(ct+2 + At+3

Rt+3
)

At+1 = ct+1 + ct+2

Rt+2
+ At+3

Rt+2Rt+3
(4.48) 

Equation (4.48) is replaced in (4.45): 

. At = ct + At+1

Rt+1

At = ct + 1

Rt+1
(ct+1 + ct+2

Rt+2
+ At+3

Rt+2Rt+3
)

At = ct + + ct+1

Rt+1
+ ct+2

Rt+1Rt+2
+ At+3

Rt+1Rt+2Rt+3
(4.49) 

Dividing the entire Eq. (4.49) by . Rt to make a simpler generalization (in 
summation): 

. 
At

Rt

= ct

Rt

+ ct+1

RtRt+1
+ ct+2

RtRt+1Rt+2
+ At+3

RtRt+1Rt+2Rt+3

summarizing : in a summation...

At

Rt

=
2⎲

s=0

ct+s∏s
j=0 Rt+j

+ At+3∏3
j=0 Rt+j

. (4.50) 

generalizing for “n” : 
At 
Rt 

= 
n⎲

s=0 

ct+s∏s 
j=0 Rt+j 

+ 
At+(n+1)∏n+1 
j=0 Rt+j
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applying Limit when : n → ∞  

At 
Rt 

= 
∞⎲

s=0 

ct+s∏s 
j=0 Rt+j 

+ Limn→∞ 
At+(n+1)∏n+1 
j=0 Rt+j

◟ ◝◜ ◞
=0(by transversality) 

At 
Rt 

= 
∞⎲

s=0 

ct+s∏s 
j=0 Rt+j 

(4.51) 

To find the relationship of the interest rate with today’s consumption, it is 
necessary to find the relationship of .ct+s with current consumption . ct . For this, 
the Euler equation is used (abstracting the expectation operator) for “t,” “.t + 1,” and 
“.t + 2”: 

. c
−γ
t = βc

−γ

t+1Rt+1

c
−γ

t+1 = βc
−γ

t+2Rt+2

c
−γ

t+2 = βc
−γ

t+3Rt+3

Multiplying these equations, we get: 

. c
−γ
t c

−γ

t+1c
−γ

t+2 = β3c
−γ

t+1Rt+1c
−γ

t+2Rt+2c
−γ

t+3Rt+3

c
−γ
t = β3c

−γ

t+3
Rt

Rt

Rt+1Rt+2Rt+3

c
−γ
t = β3 c

−γ

t+3

Rt

3∏

j=0

Rt+j

generalizing for “s” :

c
−γ
t = βs c

−γ
t+s

Rt

s∏

j=0

Rt+j

⎛
ct+s

ct

⎞−γ

= Rt

βs
∏s

j=0 Rt+j

clearing ct+s :

ct+s =
⎾

Rt

βs
∏s

j=0 Rt+j

⏋− 1
γ

ct (4.52)
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Plugging Eq. (4.52) into Eq. (4.51): 

. 
At

Rt

=
∞⎲

s=0

⎾
Rt

βs
∏s

j=0 Rt+j

⏋−1
γ

ct

∏s
j=0 Rt+j

At

Rt

=
∞⎲

s=0

β
s
γ
⎾ s∏

j=0

Rt+j

⏋ 1
γ

−1
ctR

−1/γ
t

At

Rt

= ct

⎾ ∞⎲

s=0

β
s
γ
⎾ s∏

j=0

Rt+j

⏋ 1
γ

−1
R

−1/γ
t

⏋
(4.53) 

Simplified Case To analyze the effect of the interest rate on today’s consumption 
. ct , it is assumed that the interest rate is the same in all periods; that is, . Rt = Rt+1 =
Rt+2 = ... = Rt+j = R. Introducing this assumption in the producer of Eq. (4.53), 
then: 

. 

s∏

j=0

Rt+j = Rs+1

Replacing the previous expression in Eq. (4.53) we have: 

. 
At

R
= ct

⎾ ∞⎲

s=0

β
s
γ
⎾
Rs+1⏋ 1

γ
−1

R−1/γ
⏋

At

R
= ct

⎾ ∞⎲

s=0

β
s
γ R

(s+1) 1
γ

−1
R−1/γ

⏋

At

R
= ct

⎾ ∞⎲

s=0

β
s
γ R

(s( 1
γ

−1)+ 1
γ

−1
R−1/γ

⏋

At

R
= ct

⎾ ∞⎲

s=0

β
s
γ R

(s( 1
γ

−1)
R−1

⏋

At = ct

⎾ ∞⎲

s=0

β
s
γ R

(s( 1
γ

−1)
⏋

At = ct

⎾ ∞⎲

s=0

⎛
β

1
γ R

1
γ

−1
⎞s⏋

(4.54)
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By geometric progression of .
∑∞

s=0

⎛
β

1
γ R

1
γ

−1
⎞s

we have that: 

. 

∞⎲

s=0

⎛
β

1
γ R

1
γ

−1
⎞s

= 1 +
⎛

β
1
γ R

1
γ

−1
⎞

+
⎛

β
1
γ R

1
γ

−1
⎞2

+
⎛

β
1
γ R

1
γ

−1
⎞3

...

∞⎲

s=0

⎛
β

1
γ R

1
γ

−1
⎞s

= 1

1 − β
1
γ R

1
γ

−1
(4.55) 

Substituting the expression (4.55) into Eq. (4.54): 

. At = ct

⎾
1

1 − β
1
γ R

1
γ

−1

⏋

ct = At

⎾
1 − β

1
γ R

1
γ

−1⏋ (4.56) 

Applying logarithm to Eq. (4.56): 

.ln(At ) = ln(ct ) + ln
⎾
1 − β

1
γ R

1
γ

−1⏋ (4.57) 

Applying the first-order Taylor approximation to .ln
⎾
1 − β

1
γ R

1
γ

−1⏋ must: 

.ln
⎾
1 − β

1
γ R

1
γ

−1⏋ ≈ −β
1
γ R

1
γ

−1 (4.58) 

Replacing (4.58) in (4.57): 

.ln(At ) = ln(ct ) + β
1
γ R

1
γ

−1 (4.59) 

Taking differential to Eq. (4.59) and considering that . At does not change and, 
furthermore, . 1

γ
= σ (EIS), then: 

. Δln(ct ) = −(σ − 1)βσ Rσ ΔR

Δln(ct )

ΔR
= −(σ − 1)βσ Rσ (4.60) 

Equation (4.60) reflects the final effect on today’s consumption as a movement 
in the real interest rate. An important conclusion is that the final effect depends 
on the elasticity of intertemporal substitution of consumption (. σ ). The following 
expression shows the final effect on consumption depending on the value of the 
EIS:
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. σ < 1 −→ Δln(ct )

ΔR
> 0 −→↑ ct

σ = 1 −→ Δln(ct )

ΔR
= 0 −→ R does not affect consumption

σ > 1 −→ Δln(ct )

ΔR
< 0 −→↓ ct

General Case Considering Eq. (4.53) and developing it, we have: 

. 
At

Rt

= ct

⎾ ∞⎲

s=0

β
s
γ
⎾ s∏

j=0

Rt+j

⏋ 1
γ

−1
R

−1/γ
t

⏋

At

R
1−1/γ
t

= ct

⎾ ∞⎲

s=0

β
s
γ
⎾ s∏

j=0

Rt+j

⏋ 1
γ

−1
⏋

being explicit in the sum:

At

R
1−1/γ
t

=

. ct

⎾
1+ β

1
γ (RtRt+1)

1
γ

−1 + β
2
γ (RtRt+1Rt+2)

1
γ

−1 + β
3
γ (RtRt+1Rt+2Rt+3)

1
γ

−1
...◟ ◝◜ ◞

Nt

⏋

. At = ctR
1−1/γ
t [1 + Nt ]

At = ctR
1−1/γ
t + ctR

1−1/γ
t Nt (4.61) 

Differentiating Eq. (4.61) with respect to .Rt+1 and considering that .Rj . (j /= 1)
does not depend on .Rt+1: 

.
ΔAt

ΔRt+1
= R

1−1/γ
t

Δct

ΔRt+1
+ Δct

ΔRt+1
R
1−1/γ
t Nt + ctR

1−1/γ
t

ΔNt

ΔRt+1
(4.62) 

Expanding the differential: . ΔNt

ΔRt+1
, 

.
ΔNt

ΔRt+1
= ( 1

γ
− 1

)
β

1
γ (RtRt+1)

1
γ

−2
Rt + ( 1

γ
− 1

)
β

2
γ (RtRt+1Rt+2)

1
γ

−2
RtRt+2 +

( 1
γ

− 1
)
β

3
γ (RtRt+1Rt+2Rt+3)

1
γ

−2
RtRt+2Rt+3 + ...

multiplying and dividing byRt+1
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= 
1 

Rt+1

⎾( 1 
γ 

− 1
)
β 

1 
γ (RtRt+1) 

1 
γ −2 

RtRt+1 +
( 1 
γ 

− 1
)
β 

2 
γ (RtRt+1Rt+2) 

1 
γ −2 

RtRt+1Rt+2 +
( 1 
γ 

− 1
)
β 

3 
γ (RtRt+1Rt+2Rt+3) 

1 
γ −2 

RtRt+1Rt+2Rt+3 + ...
⏋

= 
1 

Rt+1

( 1 
γ 

− 1
)⎾

β 
1 
γ (RtRt+1) 

1 
γ −1 + β 

2 
γ (RtRt+1Rt+2) 

1 
γ −1 + 

β 
3 
γ (RtRt+1Rt+2Rt+3) 

1 
γ −1 + ...

⏋

= 
1 

Rt+1

( 1 
γ 

− 1
)
Nt 

= ( 1 
γ 

− 1
) Nt 
Rt+1 

(4.63) 

Plugging Eq. (4.63) into Eq. (4.62): 

. 
ΔAt

ΔRt+1
= R

1−1/γ
t

Δct

ΔRt+1
+ Δct

ΔRt+1
R
1−1/γ
t Nt + ctR

1−1/γ
t

ΔNt

ΔRt+1

ΔAt

ΔRt+1
= R

1−1/γ
t

Δct

ΔRt+1
+ Δct

ΔRt+1
R
1−1/γ
t Nt + ctR

1−1/γ
t

( 1
γ

− 1
) Nt

Rt+1

ΔAt = R
1−1/γ
t Δct + ΔctR

1−1/γ
t Nt + ΔRt+1ctR

1−1/γ
t

( 1
γ

− 1
) Nt

Rt+1
(4.64) 

It is known that .ΔAt = 0, so:  

. 0 = R
1−1/γ
t Δct + ΔctR

1−1/γ
t Nt + ΔRt+1ctR

1−1/γ
t

( 1
γ

− 1
) Nt

Rt+1

0 = R
1−1/γ
t

⎾
Δct + ΔctNt + ( 1

γ
− 1

)
ctNt

ΔRt+1

Rt+1

⏋

0 = Δct + ΔctNt + ( 1
γ

− 1
)
ctNt

ΔRt+1

Rt+1

0 = Δct [1 + Nt ] + ( 1
γ

− 1
)
ctNt

ΔRt+1

Rt+1

Algebraically ordering the terms, we have: 

. − Δct [1 + Nt ] = ( 1
γ

− 1
)
ctNt

ΔRt+1

Rt+1



200 4 RBC Model with Constant Labor

−Δct 
ct 

[1 + Nt ] 
Nt 

= ( 1 
γ 

− 1
)ΔRt+1 

Rt+1 

Δct 
ct 

= −( 1 
γ 

− 1
) Nt 
1 + Nt 

ΔRt+1 

Rt+1 
(4.65) 

From Eq. (4.65) it can be concluded that the impact of the next period’s 
interest rate on today’s consumption is governed by the consumption elasticity of 
substitution (. 1

γ
= σ ), as observed in the simplified case. 

4.6 Solution of Linear System 

In Chaps. 1 and 3 it was pointed out that in the existing literature, there are various 
methods for solving systems of linear equations. In Chap. 3, the Blanchard and Kahn 
(1980) method was illustrated, and given the nature of the Long and Plosser (1983) 
model, the solution could also be obtained analytically. In this chapter, the method of 
undetermined coefficients of Uhlig (1999) will be used in order to have an overview 
of the different solution methods. 

4.6.1 Method of Undetermined Coefficients 

The method of undetermined coefficients seeks that the control variables are a 
function of the state variables (.  ̂kt ) and the exogenous variable (.  ̂at ). That is, in the 
same way as the Blanchard and Kahn method, this method looks for the policy 
function and the state function. 

When analyzing whether each log-linear equation is found as a function of capital 
(.  ̂kt ) and productivity (.  ̂at ), the table shows (Table 4.5) that Eq. (4.2) (production 
function) and Eq. (4.3) (demand for capital considering the interest rate is raw) 
depend on these variables. Also, Eq. (4.5) describes productivity. 

By introducing the demand for capital in Euler’s equation, this equation would 
be a function of capital and productivity: 

. ̂ct = Et( ̂ct+1 − σλ3( ̂at+1 − ̂kt+1)) (4.66) 

On the other hand, the law of motion of capital contains the state variable and the 
shock: 

. ̂kt+1 = λ1 ̂kt + λ2 ̂at + (1 − λ1 − λ2) ̂ct (4.67) 

Therefore, if we find the .  ̂ct and . ̂kt+1 in terms of .( ̂kt , ̂at ), the system would be 
solved. To do this, under the method of undetermined coefficients, the following 
solution is proposed:
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. ̂ct = ηck
 ̂kt + ηca ̂at . (4.68)

 ̂kt+1 = ηkk
 ̂kt + ηka ̂at (4.69) 

In this context, the problem lies in finding the values of the coefficients: . ηck , . ηca , 
. ηkk , . ηka . To this end, the analysis will be performed in five steps: 

(1) Euler’s equation. By substituting the proposed solution in Euler’s equation 
(4.66), an expression for the coefficients . ηca and . ηck: 

.ηca = ηka(σλ3 + ηck) − φσλ3

1 − φ
→ ηca = f (ηka, ηck). (4.70) 

ηck = 
ηkkσλ3 

1 − ηkk 
→ ηck = f (ηkk) (4.71) 

(2) Equation of capital. By substituting the proposed solution in the equation of 
movement of capital (4.67), an expression for the coefficients is obtained . ηkk

and . ηka : 

.ηkk = λ1 + (1 − λ1 − λ2)ηck → ηkk = f (ηck). (4.72) 

ηka = λ2 + (1 − λ1 − λ2)ηca → ηka = f (ηca) (4.73) 

(3) First coefficient. To find . ηck , we choose (4.71) and (4.72): 
. ηck = f (ηkk) :

.ηck = ηkkσλ3

1 − ηkk

(4.74) 

. ηkk = f (ηck) :

.ηkk = λ1 + (1 − λ1 − λ2)ηck (4.75) 

(4) Finding . ηck . Equation (4.75) is replaced in (4.74), from which we obtain: 

.Q2η
2
ck + Q1ηck + Q0 = 0 (4.76) 

where, first of all, the two roots of this equation represent the two values that 
. ηck can take. Second, the value of this coefficient allows us to obtain the value 
of the remaining three and, finally, the values of . Qi are: 

.Q2 = 1 − λ1 − λ2

Q1 = λ1 − 1 + σλ3(1 − λ1 − λ2)

Q0 = λ1σλ3
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Solving Eq. (4.76) yields the two values of . ηck: 

. ηck1 =
−Q1 +

/
Q2

1 − 4Q2Q0

2Q2

ηck2 =
−Q1 −

/
Q2

1 − 4Q2Q0

2Q2

The sign of . ηck that must be chosen is positive because this allows . ηkk to be 
less than one, which indicates that the capital equation is stable (not explosive). 
To do this, the sign of each . Qi is evaluated: 

• .Q2 < 0 (porque .λ1 > 1 y .λ2 > 0) 
• . Q0 > 0
• .Q1 > 0 (.Q1 = λ1 − 1 + Q2Q0/λ1) 

From the above, it is shown that .ηck2 has a positive sign; therefore, this root is 
chosen. This allows us to obtain the two coefficients . ηck and . ηkk: 

.ηck =
−Q1 −

/
Q2

1 − 4Q2Q0

2Q2
. (4.77) 

ηkk = λ1 + (1 − λ1 − λ2)ηck (4.78) 

(5) Remaining coefficients. To find the two remaining coefficients . ηca and . ηka , we  
choose Eqs. (4.70) and (4.73): 

. ηka = λ2 + (1 − λ1 − λ2)ηca → ηka = f (ηca)

ηca = ηka(σλ3 + ηck) − φσλ3

1 − φ
→ ηca = f (ηka, ηck)

. ηka and . ηca : 

. ηca = −ηckλ2 + σλ3(φ − λ2)

φ − 1 + (1 − λ1 − λ2)(ηck + σλ3)

ηka = λ2 + (1 − λ1 − λ2)ηca

With the parameters calibrated for the base model, it is obtained that: . ηck =
0.3253, .ηca = 0.2643, .ηkk = 0.9841, and .ηka = 0.0551. Finally, the solution of the 
model for each of the endogenous variables are: 

. Solution for consumption:

 ̂ct = ηck
 ̂kt + ηca ̂at . (4.79)
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Solution for capital:

 ̂kt+1 = ηkk
 ̂kt + ηka ̂at . (4.80) 

Solution for the product:

 ̂yt = (1 − α) ̂kt + α ̂at . (4.81) 

Investment solution:

 ̂yt = 
css 
yss

 ̂ct + 
iss 
yss

 ̂it

 ̂it = 
yss 
iss

(
 ̂yt − 

css 
yss

 ̂ct

)

Replacing (4.79) and (4.81):

 ̂it = 
yss 
iss 

(1 − α − 
css 
yss 

ηck) ̂kt + 

yss 
iss 

(α − 
css 
yss 

ηca) ̂at . (4.82) 

Solution (net interest rate):

 ̂rt = α( ̂at − ̂kt ). (4.83) 

Solution (gross interest rate):

 ̂Rt = α 
rss 
Rss 

( ̂at − ̂kt ) (4.84) 

4.6.2 Analysis of Elasticities 

The coefficients of the solution of each one of the variables represent elasticities. 
This is because the variables are expressed in logarithms. For example, in the case 
of consumption we have: 

.  ̂ct = ηck
 ̂kt + ηca ̂at

Given that . ̂ct = ln( ct

css
) and similarly for the other variables, we have: 

. ln(
ct

css

) = ηckln(
kt

kss

) + ηcaln(
at

ass

)

ln(ct ) − ln(css) = ηck(ln(kt ) − ln(kss)) + ηca(ln(at ) − ln(ass))

ln(ct ) = −[ln(css) + ln(kss) + ln(ass)] + ηckln(kt ) + ηcaln(at )

Taking differential with respect to capital (. kt ):
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Table 4.6 Coefficients (elasticities) of the linear model solution 

Elasticity Expression Value 

Elasticity of consumption to capital: . ηck

. ηck = −Q1−
/

Q2
1−4Q2Q0

2Q2

0.3253 

Elasticity of consumption to productivity: .ηca .ηca = −ηckλ2+σλ3(φ−λ2)
φ−1+(1−λ1−λ2)(ηck+σλ3)

0.2643 

Elasticity of .t + 1 capital to the t capital: .ηkk .ηkk = λ1 + (1 − λ1 − λ2)ηck 0.9841 

Elasticity of tomorrow’s capital to productivity: .ηka .ηka = λ2 + (1 − λ1 − λ2)ηca 0.0551 

Note: The expression of the elasticities and their values are in “Campbell_Lfijo.m” (Sect. 4.2) 

. Δln(ct ) = ηckΔln(kt )

Δct

ct

= ηck

Δkt

kt

Δct

ct

Δkt

kt

= ηck

Elasticityct ,kt
= ηck (4.85) 

As can be seen in Eq. (4.85), .ηck reflects the elasticity of consumption to a 
change in capital. In particular, . ηck measures the effect of capital (“. kt”) on current 
consumption (“. ct”), keeping productivity constant (“. at” ); that is, if capital increases 
1%, consumption increases by . ηck%. In this way all the coefficients of the solution 
of the log-linear system are read. Table 4.6 summarizes the elasticities. 

In the analysis of elasticities, two parameters are important: the elasticity of 
intertemporal substitution of consumption . σ and the persistence of the shock . φ. 
To see how these parameters influence the elasticities, we are going to review each 
of the elasticities. 

Reviewing . λ1, . λ2, and . λ3

. λ1 = (1 − δ) + δ(1 − α)
yss

iss

= (1 − δ) + δ(1 − α)

⎛
1

δ
k−α
ss

⎞

= (1 − δ) + (1 − α)
rss

1 − α

= (1 − δ) + (
1

β
− (1 − δ))

= 1

β

λ1 = F(β) (4.86)
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. λ2 = δα
yss

iss

= δα

⎛
1

δ
k−α
ss

⎞

= α
rss

1 − α

= α

1 − α
(
1

β
− (1 − δ))

λ2 = F(α, β, δ) (4.87) 

. λ3 = α
rss

Rss

= α

1
β

− (1 − δ)

1
β

= α(1 − β(1 − δ)

λ3 = F(α, β, δ) (4.88) 

Reviewing . Q0, . Q1, and . Q2

. Q2 = 1 − λ1 − λ2

= 1 − (
1

β
) − α

1 − α
(
1

β
− (1 − δ))

= −
⎾ 1

β
+ αδ − 1

1 − α

⏋

Q2 = F(α, β, δ) (4.89) 

. Q1 = λ1 − 1 + σλ3(1 − λ1 − λ2)

= λ1◟◝◜◞
F(β)

−1 + σ λ3(1 − λ1 − λ2)◟ ◝◜ ◞
F(α,β,δ)

Q1 = F(σ (+)α, β, δ) (4.90) 

. Q0 = λ1σλ3

= λ1◟◝◜◞
F(β)

σ λ3◟◝◜◞
F(α,β,δ)

Q0 = F(σ (+)α, β, δ) (4.91)
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What Parameters Do the Elasticities Depend on (. ηck and . ηkk)? 
Since . Q2 is negative, the component inside the radical is positive. In that case, . σ , 
which positively affects . Q0 and . Q1, has a positive impact on . ηck . On the other hand, 
. Q1, which is outside the radical, also transfers the positive effect of . σ on . ηck . It is  
worth mentioning that . ηck does not depend on the persistence of the shock (. φ): 

.ηck =
−Q1 −

/
Q2

1 − 4Q2Q0

2Q2
= F(σ (+)α, β, δ) (4.92) 

From the above, the following observation is concluded: 

Observation 1 . ηck increases as the EIS (. σ ) increases. 
On the other hand, when analyzing the coefficient . ηkk , the following is obtained: 

. ηkk = λ1 + (1 − λ1 − λ2)ηck

= λ1◟◝◜◞
F(β)

+ (1 − λ1 − λ2)◟ ◝◜ ◞
=−δ

css
iss

ηck◟◝◜◞
F(σ (+)α,β,δ)

= λ1◟◝◜◞
F(β)

−δ
css

iss
ηck◟◝◜◞

F(σ (+)α,β,δ)

= λ1◟◝◜◞
F(β)

− δ
css

iss◟◝◜◞
F(α,β,δ)

ηck◟◝◜◞
F(σ (+)α,β,δ)

ηkk = F(σ (−)α, β, δ) (4.93) 

From Eq. (4.93) the following observations are derived: 

Observation 2 . ηck and . ηkk do not depend on . φ. 

Observation 3 . ηkk decreases as the EIS (. σ ) increases. 

What Parameters Do the Elasticities (. ηca and . ηka) Depend on? 

.ηca = −ηckλ2 + σλ3(φ − λ2)

φ − 1 + (1 − λ1 − λ2)(ηck + σλ3)
= F(φ, σ, α, β, δ) (4.94) 

.ηka = λ2 + (1 − λ1 − λ2)ηca = F(φ, σ, α, β, δ) (4.95) 

From expression (4.95) it can be seen that . ηca has a nonlinear relationship with 
. φ and . σ . Similarly, it happens for .ηka (Fig. 4.2). From the above, the following 
observations are derived: 

Observation 4 .ηca increases as . φ increases for low values of . σ (.σ ≤ 1), but 
decreases for high values (.σ > 1).
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Fig. 4.2 Elasticities (coefficients of the solution) Note: It is worth mentioning that these graphics 
are obtained from the code “Campbell_Lfijo_Sim_Parametros.m” 

Table 4.7 Special cases 

Case Value of . σ Utility function Elasticity Time series 

Case 1 .σ = 0 There is no intertemporal 
substitution effect 

.ηkk = 1 .ln(ct ) is a random walk, and  
.ln(kt ) and .ln(kt ) cointegrate 
with . ln(ct )

Case 2 .σ = 1 Logarithmic utility function: 
. u(ct ) = ln(ct )

The substitution effect and the 
income effect cancel 

Case 3 .σ = ∞ Linear utility function: 
. u(ct ) = ct

.ηkk = 0, 

. ηka = φ

. kt behaves like AR(1), while . ct

and . yt behave like ARMA(1,1) 

Observation 5 . ηkk and . ηka decrease as the EIS (. σ ) increases. 

Table 4.7 mentions three cases of special interest. 

4.7 Representation of Time Series 

Because we have the solution of the model, that is, each endogenous variable as 
a function of the state variable (capital) and the exogenous variable (productivity), 
also considering that productivity behaves as an AR(1) process, then the time series 
representation can be found ARMA(p,q) for each variable.
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4.7.1 Capital Time Series 

From the solution of the model, in particular, from the equation that describes the 
behavior of capital in .t + 1 as a function of capital in t and productivity, we have 
the following: 

.  ̂kt+1 = ηkk
 ̂kt + ηka ̂at

where the coefficients . ηkk and . ηka have been previously found. From this equation, 
we can find the autoregressive form of capital (. ̂kt+1): 

. (1 − ηkkL) ̂kt+1 = ηka ̂at

 ̂kt+1 = ηka

1 − ηkkL
 ̂at . (4.96) 

Also,  ̂at = φ ̂at−1 + ϵt 

whereas ̂at can be expressed as: 

at = ϵt 
1 − φL 

. (4.97) 

Then you have to:

 ̂kt+1 = ηka 
(1 − ηkkL)

ϵt 
(1 − φL) 

(4.98) 

The above expression shows that capital behaves like an AR(2): two real roots 
(. φ and . ηkk) and less than 1 (.kt+1 is stable). The AR(2) expression for capital is: 

.  ̂kt+1 = ηka

(1 − ηkkL)

ϵt

(1 − φL)

(1 − ηkkL)(1 − φL) ̂kt+1 = ηkaϵt

(1 − ηkkL − φL + ηkkφL2) ̂kt+1 = ηkaϵt

 ̂kt+1 − ηkk
 ̂kt − φ ̂kt + ηkkφ ̂kt−1 = ηkaϵt

 ̂kt+1 = (φ + ηkk) ̂kt − ηkkφ ̂kt−1 + ηkaϵt (4.99) 

4.7.2 Production Time Series 

In the same way as in the case of capital, to find the time series expression of the 
product, we start from the solution of the model: 

. ̂yt = α ̂at + (1 − α) ̂kt (4.100)
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To find the time series model of the product (. yt ), the expression for productivity 
(as a function of the error) and the expression of capital (as a function of 
productivity). The latter corresponds to Eq. (4.97): 

.  ̂yt = α ̂at + (1 − α) ̂kt

 ̂yt = α
et

1 − φL
+ (1 − α)

ηka

(1 − ηkkL)
 ̂at−1

 ̂yt = α
et

1 − φL
+ (1 − α)

ηka

(1 − ηkkL)

et−1

(1 − φL)

 ̂yt = α
et

1 − φL
+ (1 − α)

ηkaL

(1 − ηkkL)

et

(1 − φL)
(4.101) 

Equation (4.101) suggests that the product behaves like ARMA(2,1): 

.  ̂yt =
⎾
α + [(1 − α)ηka − αηkk]L

(1 − ηkkL)(1 − φL)

⏋
ϵt (4.102)

(1 − ηkkL)(1 − φL) ̂yt = ⎾
α + [(1 − α)ηka − αηkk]L

⏋
ϵt

(1 − ηkkL − φL + ηkkφL2) ̂yt = αϵt + [(1 − α)ηka − αηkk]ϵt−1

 ̂yt − ηkk ̂yt−1 − φ ̂yt−1 + ηkkφ ̂yt−2 = αϵt + [(1 − α)ηka − αηkk]ϵt−1

 ̂yt = (ηkk + φ) ̂yt−1 − ηkkφ ̂yt−2◟ ◝◜ ◞
AR(2)

+ αϵt + [(1 − α)ηka − αηkk]ϵt−1◟ ◝◜ ◞
MA(1)

4.7.3 Consumption Time Series 

From the model solution: 

.  ̂ct = ηck
 ̂kt + ηca ̂at

Consumption behaves like a ARMA(2,1): 

. ̂ct =
⎾
ηca + (ηckηka − ηcaηkk)L

(1 − ηkkL)(1 − φL)

⏋
ϵt (4.103) 

4.7.4 Time Series of Gross Real Interest Rate 

From the model solution: 

. ̂Rt+1 = λ3( ̂at+1 − ̂kt+1)
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The interest rate behaves as an ARMA(2,1): 

. ̂Rt+1 = λ3

⎾
(1 − ηka − ηkkL)

(1 − ηkkL)(1 − φL)

⏋
ϵt (4.104) 

4.7.5 Inversion Time Series 

From the solution for the inversion (Eq. 4.82): 

.  ̂it = (1 − α − css

yss

ηck)

◟ ◝◜ ◞
ηik

 ̂kt + (α − css

yss

ηca)

◟ ◝◜ ◞
ηia

 ̂at

 ̂it = ηik
 ̂kt + ηia ̂at

 ̂it = ηik

ηka

(1 − ηkkL)

ϵt−1

(1 − φL)
+ ηia

ϵt

1 − φL

 ̂it =
⎾
ηik

ηkaL

(1 − ηkkL)
+ ηia

⏋
ϵt

1 − φL

 ̂it =
⎾
ηikηkaL + ηia(1 − ηkkL)

(1 − ηkkL)

⏋
ϵt

1 − φL

 ̂it =
⎾
ηia + (ηikηka − ηiaηkk)L

(1 − ηkkL)

⏋
ϵt

1 − φL

Therefore, the inversion behaves like an ARMA(2,1): 

. ̂it =
⎾
ηia + (ηikηka − ηiaηkk)L

(1 − ηkkL)(1 − φL)

⏋
ϵt (4.105) 

4.8 Impulse-Response Functions 

The construction of the impulse-response function of the endogenous variables 
requires two stages. In the first, the capital autoregressive form AR(2) is transformed 
to its moving average version MA(. ∞). In the second, the impact, in each period, of 
a temporary shock (of a single period) in each endogenous variable is quantified. 

First Stage The MA(. ∞) form of capital is obtained: 

. ̂kt+1 = (φ + ηkk◟ ◝◜ ◞
φ1

) ̂kt + −ηkkφ◟ ◝◜ ◞
φ2

 ̂kt−1 + ηkaϵt

 ̂kt+1 = φ1 ̂kt−1 + φ2 ̂kt + ηkaϵt
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(1 − φ1L − φ2L
2) ̂kt+1 = ηkaϵt 

Calculating the roots of AR(2): 

. 1 − φ1L − φ2L
2 = 0

In factors: 

. (L − y1)(L − y2) = 0

Factoring . y1 from the first factor and . y2 from the second: 

. y1

⎛
1

y1
L − 1

⎞
y2

⎛
1

y2
L − 1

⎞
= 0

The expression reduces to: 

. 

⎛
1

y1◟◝◜◞
θ1

L − 1

⎞⎛
1

y2◟◝◜◞
θ2

L − 1

⎞
= 0

Multiplying by (-) both terms: 

. (1 − θ1L)(1 − θ2L) = 0

So, equivalence of roots: 

. (L − y1)(L − y2) = (1 − θ1L)(1 − θ2L) = 0

where: 

• . θ1 = 1
y1

• . θ2 = 1
y2

Using the equivalence of roots of AR(2): 

.(L − y1)(L − y2) ̂kt+1 = ηkaϵt

(1 − θ1L)(1 − θ2L) ̂kt+1 = ηkaϵt

 ̂kt+1 = 1

(1 − θ1L)(1 − θ2L)◟ ◝◜ ◞
Ψ (L)

ηkaϵt
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where: 

. Ψ (L) = 1 + ψ1L + ψ2L
2 + ψ3L

3 + ... + ψkL
k + ...

ψk = =
k⎲

j=0

θ
j

1 θ
k−j

2

MA(. ∞) version of capital: 

. ̂kt+1 = (1 + ψ1L + ψ2L
2 + ψ3L

3 + ...)ηkaϵt (4.106) 

With this expression, we calculate the impulse-response function. The extended 
version of Eq. (4.106) is as follows: 

.  ̂kt+1 = (1 + ψ1L + ψ2L
2 + ψ3L

3 + ...)ηkaϵt

 ̂kt+1 = ηkaϵt + (ψ1ηka)ϵt−1 + (ψ2ηka)ϵt−2 + (ψ3ηka)ϵt−3 + ... (4.107) 

Second Stage In this stage, the impulse-response function of capital in the face 
of a shock of productivity is calculated. For the calculation of the capital impulse-
response function, it is considered that the impulse or shock . ϵt takes place in a single 
period (period one) and that it takes the value of a standard deviation . σϵ , which is 
assumed to be equal to one; that is, at .t = 1, .ϵ1 = σϵ = 1. The error (. ϵt ) takes 
the value of zero during the periods before the shock and after the shock. Table 4.8 
shows the construction of the capital impulse-response function. 

At .t = 0 all variables are in their steady state. The capital at .t = 1, which is 
determined at .t = 0, is also in a steady state, so much so that the law of movement 
of capital is fulfilled: .k1 = (1 − δ)k0 + i0, where .k1 = k0 = kss . The  shock of 
productivity occurs in the period .t = 1, which produces the following effects: 

First Effect (on Firms) An increase in productivity produces an increase in the 
production function for each level of capital. Capital becomes more productive at 

Table 4.8 Construction of the capital impulse-response function 

t ϵt Version MA(∞) of ̂kt+1 IRF of ̂kt+1 

0 ϵ0 = 0  ̂k1 = ηka ϵ0◟◝◜◞
=0 

+(ψ1ηka) ϵ−1◟◝◜◞
=0 

+ . . .  ̂k1 = ηkaϵ0 

1 ϵ1 = 1  ̂k2 = ηka ϵ1◟◝◜◞
=1 

+(ψ1ηka) ϵ0◟◝◜◞
=0 

+ . . .  ̂k2 = ηkaϵ1 

2 ϵ2 = 0  ̂k3 = ηka ϵ2◟◝◜◞
=0 

+(ψ1ηka) ϵ1◟◝◜◞
=1 

+(ψ2ηka) ϵ0◟◝◜◞
=0 

+ . . .  ̂k3 = ψ1ηkaϵ1 

3 ϵ3 = 0  ̂k4 = ηka ϵ3◟◝◜◞
=0 

+(ψ1ηka) ϵ2◟◝◜◞
=0 

+(ψ2ηka) ϵ1◟◝◜◞
=1 

+(ψ3ηka) ϵ0◟◝◜◞
=0 

+ . . .  ̂k4 = ψ2ηkaϵ1 

4 ϵ4 = 0 . . .  ̂k5 = ψ3ηkaϵ1 
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Fig. 4.3 Effect on the 
production function 
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Fig. 4.4 Effect on capital 
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.t = 1; that is, with the same capital more can be produced. Therefore, the demand 
for it increases (Fig. 4.3). 

Second Effect (on Firms) The increase in capital demand allows the interest rate 
at .t = 1 to increase: .↑ rt (r0 −→ r1), r1 > r0. This is because the supply of 
capital at .t = 1 remains constant and is not affected by the shock of productivity 
(Fig. 4.4). 

Third Effect (on Households) The increase in the real interest rate produces an 
income effect on consumption: 

. ↑ rt (r1 > r0) −→ r1k1 > r0k0 −→↑ c1

Fourth Effect (on Households) The increase in the interest rate encourages 
saving, which in a closed economy is equal to investment. So, the investment goes 
from . i0 to . i1 (.i1 > i0). The impact of a greater investment is observed in the increase 
in the supply of capital in the following period (.t = 2): 

.k2 = (1 − δ)k1 + i1
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So: 

. i1 > i0 −→ k2 > k1

Fifth Effect (on Firms and Households) The impact of the productivity shock is 
persistent; that is to say, its effects are positive, although they decrease over time. 
At .t = 2, the production function increases, which causes the demand for capital to 
also increase, but to a lesser extent than that observed at .t = 1. This produces that 
the real interest rate at .t = 2 is lower than at .t = 1 .(r2 < r1); however, it is still 
greater than the value at .t = 0. 

Then, given that the individual compares his situation in each period with respect 
to .t = 0 (steady state), then this higher interest rate (.r2 > r0) produces two effects 
on consumption: 

. r2 > r0 : substitution effect −→↓ c1 ↑ c2

. r2 > r0 : income effect −→ r2k2 > r1k1 −→↑ c2

Therefore, the final effect of the interest rate on consumption, for small . σ , is  
(Fig. 4.5): 

. EI > |ES| −→↑ c1 ↑ c2

Table 4.9 shows the values of the impulse-response function of the endogenous 
variables of the model. To correctly read these values, remember that these functions 
correspond to log-linear variables, which, for example, for the product are expressed 
as follows: . ̂yt = ln(yt ) − ln(yss) or in its reduced form . ̂yt = ln

⎾ yt

yss

⏋
. 

In line with the above, according to Table 4.9 the value of the (log-linear) product 
at .t = 0 is equal to zero. That is, . ̂y0 = ln

⎾ y0
yss

⏋ = 0. The only solution for this 

expression is that . y0
yss

= 1, which leads to .y0 = yss . This means that when the 

Fig. 4.5 Effect on the supply 
and demand of capital 
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Table 4.9 Values of the impulse-response function (log-linear variables) 

t . ̂yt . ̂kt+1 . ̂ct . ̂it . ̂Rt .  ̂at

0 0 0 0 0 0 0 

1 0.667 0.05512 0.26429 2.20468 0.02636 1 

2 0.652 0.10660 0.26901 2.11441 0.02359 0.95 

3 0.63747 0.15464 0.27321 2.02834 0.02098 0.9025 

4 0.62337 0.19943 0.27691 1.94626 0.01852 0.85738 

. . . . . . . 

Note: Because the shock occurs in the first period (.t = 1), the value of the variables at . t = 0
is zero. It is worth mentioning that these values are obtained from the code “Campbell_Lfijo.m” 
(Sect. 4.4) 

log-linear variable .  ̂yt is at zero, this means that the level variable . yt is in its steady 
state. 

On the other hand, at .t = 1 the value of the product (log-linear) is equal to 0.667, 
in which the following is true: . ̂y1 = 0.667 = ln

⎾ y1
yss

⏋
. Solving the second equality 

we have that . y1
yss

= e0.667 ≈ 1 + 0.667. Therefore, . y1
yss

= 1 + 0.667, which finally 
leads to .y1 = (1 + 0.667)yss : 

. At t = 1 ⍿→  ̂y1 = 0.667◟ ◝◜ ◞
log-lineal variable

⍿→ y1 = (1 + 0.667)yss◟ ◝◜ ◞
variable in level

Consequently, the value (0.667) of the impulse-response function at .t = 1 means 
that the output variable in levels (. y1) is 66.7% above its steady-state level (. yss). 

In Fig. 4.6 and Table 4.9 the following can be observed: 

1. At .t = 0 (before shock) all variables remain in their steady state. Therefore, the 
log-linear variables at .t = 0 are equal to zero (. ̂xss = ln

(
xss

xss

) = ln(1) = 0). 
2. In the period of the shock (.t = 1), . ϵ1 takes the value of its standard deviation, 

in this case, equal to 1. 
3. The first effect of the shock of productivity is an increase in the production 

function, which increases the marginal productivity of capital .PMgkt , that is, 
the demand for capital in “t” (. Dk). 

4. The increase in capital demand increases today’s interest rate (.  ̂Rt ). This is 
because the supply of capital is perfectly inelastic (vertical) because it is fixed 
in the previous period .  ̂kt . 

5. .↑  ̂Rt → produces an income effect (IE): .↑ ( ̂Rt
 ̂kt ). 

6. The income effect increases the . ct and . it . 
7. .↑ it expands .kt+1 (capital supply of “t+1”). 
8. The above produces a drop in the interest rate at “t+1” (.↓ rt+1), but it is still 

above its steady state; in other words, it is higher than the interest rate before 
the shock .  ̂R0, which encourages the household to shift consumption from today 
“t” to tomorrowl̃ullaby “.t + 1.” That is, there is a substitution effect that is 
governed by the elasticity of substitution of consumption. In order to see this
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Fig. 4.6 Impulse-response function of log-linear macroeconomic variables Note: These impulse-
response functions correspond to the log-linear variables, that is to say, to .  ̂yt , .  ̂kt , .  ̂ct , .  ̂it , .  ̂rt y .  ̂at . It is  
worth mentioning that these graphics are obtained from the code “Campbell_Lfijo.m” (Sect. 4.4) 

relationship, let us review the Euler log-linear equation: 

.  ̂ct = Et

⎾
 ̂ct+1 − 1

γ
 ̂Rt+1

⏋

Here it can be seen that if the interest rate of .t + 1 increases by 1%, 
then consumption today “t” is reduced by . 1

γ
(elasticity of substitution of 

consumption). All this is the substitution effect produced by the interest rate. 
9. .↓  ̂Rt+1 (but above the steady state) produces two effects: substitution effect 

(SE) and income effect (IE). 
10. Substitution effect (of the interest rate): 

.  ̂Rt+1 >  ̂Rt →↓  ̂ct

11. Income effect (of the interest rate): 

. ̂Rt+1 >  ̂Rt →↑  ̂ct+1
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Fig. 4.7 Impulse-response function of macroeconomic variables in levels Note: These impulse-
response functions correspond to the variables in levels, that is to say, a . yt , . kt , . ct , . it , . Rt , and . at . It  
is worth mentioning that this graph is obtained from the code “Campbell_Lfijo.m” (Sect. 4.5) 

Some ideas can be concluded from Fig. 4.7. The first is that capital is larger 
in units than any other variable. For example, the steady-state value of capital is 
23.88 units, which is greatly larger than the other variables (the steady-state value 
of output is 2.87 units). To understand why the stock of capital in steady state is 
large, it is necessary to review the parameters on which it depends: 

. kss =
⎾ 1

β
− (1 − δ)

1 − α

⏋− 1
α

Applying the sign of the exponent, we have: 

. kss =
⎾

1 − α

1
β

− (1 − δ)

⏋ 1
α

So, . kss is a function of . α, . β, and . δ. First, the exponent . 1
α
is greater than one 

because . α is less than one (.= 0.667). The smaller . α is, the larger the exponent 
and the larger the numerator which will increase the . kss . Second, an increase in the 
depreciation rate reduces . kss , which makes sense since capital is consumed at higher
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depreciation. For example, if capital is fully depreciated (.δ = 1), then .kss = 0.1880. 
Finally, a higher discount rate increases . kss . 

The second conclusion is that the investment is very small compared to the 
capital. This is because in a steady-state investment . iss is equal to a proportion of 
capital . δkss . Furthermore, . δ is equal to 2.5%; that is, the investment in steady state 
(.= 0.597) is equal to 2.5% of the capital. A third conclusion is that the values of 
the impulse-response function of the log-linear variables comply with the following 
expression: 

.  ̂yt = css

yss

 ̂ct + iss

yss

 ̂it

Then a relationship between the levels of the variables can be obtained (in the 
impulse-response function of the variables in levels): 

.  ̂yt = css

yss

 ̂ct + iss

yss

 ̂it

ln

⎛
yt

yss

⎞
= css

yss

ln

⎛
ct

css

⎞
+ iss

yss

ln

⎛
it

iss

⎞

ln(yt ) = (ln(yt ) − css

yss

ln(css) − iss

yss

ln(iss)) + css

yss

ln(ct ) +
iss

yss

ln(it ) (4.108) 

An important conclusion can be drawn from Fig. 4.8 (graph on the right): in the 
face of a shock of productivity, investment reacts strongly, outperforming output and 
consumption. Moreover, the investment increases a little over 200% of its steady-
state value. In addition, the variables take more than 100 periods (quarters) to return 
to their steady state because the shock has a high persistence (.φ = 0.95). 

4.9 Simulation of the Endogenous Variables 

For the simulation of capital, we will use its autoregressive representation AR(2): 

.  ̂kt+1 = φ1 ̂kt + φ2 ̂kt−1 + ηkaϵt

We will assume that the variable starts at its steady state: . ̂k0 = 0. Also, it is 
assumed that the variable in previous periods has been kept in steady state, so: .  ̂k−1 =
0 (Table 4.10). 

For the simulation of the macroeconomic variables such as output, consumption, 
and investment, we first need the simulated series of productivity .  ̂at and capital
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Fig. 4.8 Impulse-response function (comparison of variables log-linear vs. in levels) Note: It is 
worth mentioning that this graph is obtained from the code“Campbell_Lfijo.m” (Sect. 4.5) 

Table 4.10 Log-linear 
capital simulation 

t .ϵt AR(2) representation of . kt+1

0 .ϵ0 = 0 (steady state) .  ̂k1 = φ1 ̂k0 + φ2 ̂k−1 + ηkaϵ0

1 .ϵ1 = random value .  ̂k2 = φ1 ̂k1 + φ2 ̂k0 + ηkaϵ1

2 .ϵ2 = random value .  ̂k3 = φ1 ̂k2 + φ2 ̂k1 + ηkaϵ2

3 .ϵ3 = random value .  ̂k4 = φ1 ̂k3 + φ2 ̂k2 + ηkaϵ3

4 .ϵ4 = random value .  ̂k5 = φ1 ̂k4 + φ2 ̂k3 + ηkaϵ4

.  ̂kt , which are displayed in Table 4.11. For the latter, the solution of the log-linear 
equation system is used: 

.  ̂at = φ ̂at−1 + ϵ

 ̂kt+1 = φ1 ̂kt + φ2 ̂kt−1 + ηkaϵt

For the simulation of the other macroeconomic variables (.  ̂yt , .  ̂ct , .  ̂it , and .  ̂Rt ), the 
following solution is used: 

. ̂yt = α ̂at + (1 − α ̂kt )

 ̂ct = ηck
 ̂kt + ηca ̂at
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Table 4.11 Simulation of productivity and capital (log-linear) 

t .ϵt . ̂at .  ̂kt+1

0 .ϵ0 = 0 . ̂a0 = 0 .  ̂k1 = 0

0 .ϵ1 = random value of N(0,1) . ̂a1 = 0.1832 .  ̂k2 = 0.0101

0 .ϵ2 = random value of N(0,1) . ̂a2 = −0.8557 .  ̂k3 = −0.0372

0 .ϵ3 = random value of N(0,1) . ̂a3 = 0.1363 .  ̂k4 = −0.0291

0 .ϵ4 = random value of N(0,1) . ̂a4 = 0.4366 .  ̂k5 = −0.0046

.· .· .· . ·

.· .· .· . ·

Table 4.12 Simulation of log-linear macroeconomic variables 

t . ̂yt . ̂ct . ̂it .  ̂Rt

0 .y0 = αa0 + (1 − αk0) .c0 = ηckk0 + ηcaa0 .i0 = ηikk0 + ηiaa0 . R0 = λ3(a0 − k0)

1 .y1 = αa1 + (1 − αk1) .c1 = ηckk1 + ηcaa1 .i1 = ηikk1 + ηiaa1 . R1 = λ3(a1 − k1)

2 .y2 = αa2 + (1 − αk2) .c2 = ηckk2 + ηcaa2 .i2 = ηikk2 + ηiaa2 . R2 = λ3(a2 − k2)

3 .y3 = αa3 + (1 − αk3) .c3 = ηckk3 + ηcaa3 .i3 = ηikk3 + ηiaa3 . R3 = λ3(a3 − k3)

4 .y4 = αa4 + (1 − αk4) .c4 = ηckk4 + ηcaa4 .i4 = ηikk4 + ηiaa4 . R4 = λ3(a4 − k4)

. . . . . 

. . . . .

 ̂it = 
yss 
iss 

(1 − α − 
css 
yss 

ηck) ̂kt + 
yss 
iss 

(α − 
css 
yss 

ηca) ̂at

 ̂Rt = λ3( ̂at − ̂kt ) 

where: .ηik = yss

iss
(1 − α − css

yss
ηck) y . ηia = yss

iss
(α − css

yss
ηca)

The simulation of the variables can take negative values because they are 
expressed in log deviations from their steady state (.ln

(
xt

xss

)
). The negative value 

of the log-linear variable means that the variable in levels is below its steady state 
(Table 4.12). Also, the log-linear simulated variable is expected to have negative 
values because its mean is equal to zero. However, the simulated variable in levels 
has only positive values (Fig. 4.9). 

4.10 Cyclic Component of Simulated Variables 

To find the cyclical component of the log-linear variables, the Hodrick-Prescott 
filter (HP filter) is applied. This filter allows the series to be separated into two 
components: the trend component and the cyclical component. Figure 4.10 shows 
the cyclical and trend component for each simulated variable.
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Fig. 4.9 Simulation of log-linear macroeconomic variables Note: Capital behaves like AR(2), 
while output, consumption, investment, and the real interest rate behave like ARMA(2,1). 
Furthermore, productivity follows an AR(1) process. This graph is obtained from the code 
“Campbell_Lfijo.m” (Sect. 4.6) 

What we are interested in evaluating from the model are the moments of 
the cyclical component of each simulated variable, that is, the variance, the 
autocorrelation and the correlation with other variables. 

4.11 Computation of Theoretical Moments 

When simulating the model in Matlab, what is obtained are the theoretical moments 
for the log-linear variables. What is needed, however, is to return to level variables 
because the empirical moments correspond to level variables. To calculate the 
theoretical moments of the variables in levels, the relationship between the log-
linear variable and the variable in levels is used: 

. ̂xt = ln

⎛
xt

xss

⎞
(4.109) 

Mean The mean of the log-linear variable is zero. After the algebraic artifices, 
relation (4.110) is concluded, which indicates that the mean of the logarithm of the 
variable “x” is equal to the logarithm of the variable in a steady state:
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Fig. 4.10 Application of the HP filter to the simulated variables Note: Since the calibrated 
parameters correspond to quarterly data, then each period in this figure is understood as a quarter. 
This suggests that the HP filter smoothing parameter corresponding to quarterly data (.λ = 1600) 
should be used. This graph is obtained from the code “Campbell_Lfijo.m” (Sect. 4.7) 

.  ̂xt = ln

⎛
xt

xss

⎞

E ̂xt = Eln

⎛
xt

xss

⎞

μ ̂xt = E(ln(xt ) − ln(xss))

μ ̂xt = E(ln(xt )) − ln(xss)

μ ̂xt = μln(xt ) − ln(xss)

0 = μln(xt ) − ln(xss)

μln(xt ) = ln(xss) (4.110) 

Variance The variance of the log-linear variable is equal to the variance of the 
logarithm of the variable in levels (see Eq. 4.111). By default, the standard deviation 
of both variables is the same:
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. V ar( ̂xt ) = V ar

⎛
ln

⎛
xt

xss

⎞⎞

By property : V ar(ax + b) = a2V ar(x)

V ar( ̂xt ) = V ar
(
ln(xt ) − ln(xss)

)

V ar( ̂xt ) = V ar
(
ln(xt )

)

σ 2
 ̂xt

= σ 2
ln(xt )

(4.111) 

Correlation The correlation between two log-linear variables is equal to the 
correlation between the logarithm of the said variables in levels: 

. corr( ̂x, ̂y) =
∑N

i=1( ̂xi − μ ̂xi
)( ̂yi − μ ̂yi

)

σ ̂xσ ̂y

Pero : μ ̂xi
= 0 y μ ̂xi

= 0

corr( ̂x, ̂y) =
∑N

i=1( ̂xi)( ̂yi)

σ ̂xσ ̂y

=
∑N

i=1(ln
xi

xss
)(ln

yi

yss
)

σ ̂xσ ̂y

=
∑N

i=1(ln(xi) − lnxss)(ln(yi) − lnyss)

σ ̂xσ ̂y

=
∑N

i=1(ln(xi) − μln(xt ))(ln(yi) − μln(yt ))

σln(xt )σln(yt )

corr( ̂x, ̂y) = corr(ln(xt ), ln(yt )) (4.112) 

From the above, it is concluded that the second moments of the log-linear 
variables are exactly equal to the second moments of the natural logarithm of the 
variables in levels. Therefore, we can conclude that the second moments of the 
cyclical component of the (simulated) log-linear variables are identical to those 
of the cyclical component of the logarithm of the variables in levels. Then, it 
is enough to compare the moments (of the cyclical component) obtained by the 
model (simulation) with the corresponding ones obtained from the data (variables 
in logarithms). 

To make the comparison, the following is done: first, the study period of the 
macroeconomic variables is set (for example, 1980.Q1 to 2016.Q3). This period is 
made up of 147 quarters. Second, 500 simulations are performed considering that 
each variable has a period of 147 quarters. Third, for each simulation, the HP filter 
is applied and the cyclic component is abstracted. Then, the mean, variance, first-
order autocorrelation, and cyclical component correlation are calculated for each 
simulation. Fifth, a distribution is constructed for the mean, variance, first-order
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Fig. 4.11 Distributions of the standard deviation of the theoretical model Note: These distribu-
tions are obtained by simulating the variables 100 times considering a period of 150 quarters. 
The value taken from each distribution is the average value. This graph is obtained from the code 
“Campbell_Lfijo_Sim_Variables.m” (Sect. 4.7) 

autocorrelation, and correlation. The mean value of each distribution is chosen, and 
that value represents the value of each second theoretical moment. Finally, these 
values are compared with the data (Fig. 4.11). 

4.12 Comparison of the Theoretical Model with the 
Empirical Data 

Some conclusions can be drawn from Table 4.13. The first is that the data suggest 
that the volatility of investment is greater than output and consumption, so much 
so that the standard deviation of investment is 4.8 times the volatility of output and 
6.4 times that of consumption. However, the theoretical model does not capture all 
of these relationships found in the data. In the first place, although it maintains that 
the volatility of investment is greater than that of consumption, it overestimates the 
magnitude (the volatility of investment is 8.2 times that of consumption). Second, 
the volatility for the three variables (product, consumption, and investment) is well 
below what is observed in the data. On the other hand, a benefit of the model is that
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Table 4.13 Comparison of the cyclical behavior of the theoretical model with the empirical data 

US empirical data Theoretical model 

Variable DesEst (%) 
Corr. with 
product (t) DesEst (%) 

Corr. with 
product (t) 

Product 1.72 1 0.85 1 

(0.093) 

Consumption 1.27 0.83 0.34 0.9874 

(0.0382) 

Investment 8.24 0.91 2.82 0.9972 

(0.3065) 

Note: The empirical values have been taken from Cooley and Prescott (1995), which have been 
calculated under the sample period from 1954.I to 1991.III. On the other hand, the theoretical 
values have been obtained from a simulation of 100 times considering a period of 150 quarters. 
The values shown in the theoretical model are the average values of each distribution. These values 
are obtained from the code “Campbell_Lfijo_Sim_Variables.m” (Sect. 4.8) 

it captures the correct direction in terms of volatility (. γ ): . γinvestment > γproduct >

γ textconsumption. 
A second conclusion is that the temporal correlation of output with consumption 

and investment is overvalued by the model. However, this is much closer to the 
product-investment correlation than the one corresponding to consumption. 

4.13 Summary 

In this chapter, we have raised the simplifying assumptions about preferences 
and technology to study an RBC model with constant work. In this context, our 
objective has been to verify that a model of this nature can replicate the most 
important stylized facts of the goods market, that is, the properties of consumption 
. Ct , investment . It , and GDP . Yt . 

We begin, as usual, by characterizing the behavior of households, firms, and the 
competitive equilibrium in the goods market. We proceed to calibrate the model, 
having to make a decision regarding the value that the elasticity of intertemporal 
substitution of consumption takes. 

We find the steady state of the model and proceed to log-linearize it. We 
concentrate an important part of this section discussing a fundamental dynamic 
mechanism in RBC models: the income effect and the substitution effect of the 
interest rate on aggregate consumption. These effects are reflected (in our model) 
in a single parameter, . θ , the intertemporal elasticity of consumption, which is a 
very important mechanism to induce persistence in consumption when the economy 
experiences a shock. 

With the log-linearized system, we proceed to solve it with the method of the 
undetermined coefficients of Uhlig. Additionally, we note that log-linearizing the
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system allows us to interpret the coefficients of each equation as the elasticity of the 
control variables with respect to the state variables. 

Once the model is solved, we proceed to analyze the time series representations 
of the control and state variables of the model, together with the impulse response 
functions of each variable of the model when it experiences a shock of productivity. 
The immediate effect on output, investment, and productivity is an increase in each 
variable, which then decreases monotonically to the steady state; this is because 
the shock is stationary. On the other hand, capital and consumption have an FIR in 
the form of a “hump,” reaching its maximum value after 10–20 periods and then 
declining monotonically. 

The following sections proceed to simulate the endogenous variables of the 
model, extract their cyclical component, and calculate the theoretical moments of 
the cyclical component of the simulated series to compare it with its empirical 
counterpart. By performing this exercise, we can extract two stylized facts: first, 
the model manages to qualitatively replicate the magnitude of the volatilities, with 
investment being more volatile than output and consumption less volatile than 
both. Second, the model predicts that all variables move procyclically with output, 
which we also observe in the data. However, the model overestimates the degree of 
procyclicality of investment and output, while underestimating the volatilities of all 
the variables. 

We conclude that although the model qualitatively reflects some relevant features 
of the goods market, quantitatively there is still much room for improvement. In the 
next chapter, we introduce hours worked as a household decision variable and a firm 
input, with which we are equipped to analyze equilibrium in the labor market. 

4.14 Codes 

The solution of the model as well as the impulse-response functions and the 
simulation of the variables have been developed directly in Matlab (by building 
several m-file) and also through Dynare (by building a mod-file). The result of both 
paths is the same, but the advantage of directly building an m-file is that many details 
can be made explicit in the solution and simulation of the model, which is already 
programmed in Dynare (Table 4.14).
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Table 4.14 Codes in Matlab and Dynare 

Codes Description 

Matlab 

Campbell_Lfijo.m This m-file computes the steady state and solution 
coefficients derived from the method of 
undetermined coefficients. In addition, it calculates 
the impulse-response function and performs a 
simulation of the variables. Finally, apply the HP 
filter to obtain the trend and cycle of each 
simulated variable 

Campbell_Lfijo_Sim_Parametros.m This m-file simulates the values of the elasticities 
(coefficients of the solution) as a function of 
persistence (. φ) and the EIS of consumption (. σ ) 

Campbell_Lfixed_Sim_Variables.m This m-file simulates 100 times the variables (form 
ARMA(p,q)) for 150 periods. It is worth 
mentioning that both parameters can be changed by 
the user to perform different simulations 

Dynare 

Campbell_Lfijo_Dynare_nolinear_log.mod This mod file contains the nonlinear model with 
variables in logarithms and is the one used by 
Dynare to solve the model 

Campbell_Lfijo_Dynare_linear_log.mod This mod file contains the linear model with 
logarithmic variables and is what Dynare uses to 
solve the model. It is worth mentioning that both 
mod files provide the same result in terms of policy 
and state functions



Chapter 5 
RBC Model with Variable Labor Supply 

5.1 Introduction 

This chapter has two objectives: the first is to extend the model described in Chap. 4 
by considering variable labor supply. This extension allows us to understand the 
labor market’s role in economic cycles. The second objective is to compare the 
performance of the model of Long and Plosser (1983), developed in Chap. 3, with 
the two models of Campbell (1994): the model with fixed labor supply, developed 
in Chap. 4, and the model with variable labor supply, developed in this chapter. 
An advantage of the model in this chapter is that under the assumption of labor 
substitution elasticity equal to one and full depreciation, the model of Long and 
Plosser (1983) can be obtained; that is, this last model is a particular case of the 
more general model described in this chapter. 

With these goals in mind, this chapter is split into two sections. In the first, the 
elements of the model are described; that is, the behavior of households and firms, 
the market equilibrium, the shock of productivity, and the system of equations that 
summarizes the model are also specified. Additionally, we show the values that are 
assigned to the parameters (calibration), the calculation of the steady state, and the 
log-linearization of the system of equations of the model. Finally, this log-linear 
system is solved using the method of undetermined coefficients, as explained in 
Chap. 4. 

In the second section, we analyze the model solution. This analysis includes 
the sensitivity of the coefficients of the solution to different values of the deep 
parameters of the model. This sensitive-parameter task aims to evaluate how the 
model solution responds when the parameters change. One conclusion of this task 
is that the solution coefficients associated with the stock of capital are insensitive to 
the persistence parameter of productivity shock . φ. Moreover, the impulse-response 
function is calculated before a shock in productivity. Finally, two analyses are 
carried out: the first evaluates the need for the shock of productivity to be significant 
so that the RBC model can replicate the business cycle data, and the second 
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evaluates the importance of the elasticity of labor supply to improve the ability of 
the model to replicate the data. 

5.2 Model Elements 

5.2.1 Model Construction 

5.2.1.1 Households 

In this model, it is assumed that identical households with infinite life populate the 
economy. These households obtain welfare from consuming goods (. ct ) and leisure 
hours (. lt ). These preferences are reflected in the following utility function: 

. u(ct , ht ) = ln(ct ) + θ
(1 − ht )

1−γn

1 − γn

,

where . θ represents the consumer’s valuation of leisure in his/her utility function and 
. γn represents the inverse of the labor substitution elasticity, which also represents, 
as will be seen later, the inverse of the elasticity of labor supply (Frisch elasticity). 
In addition, the total number of hours available to the household is normalized to 
one such that the time allocation is consistent with the following constraint: 

. lt + ht = 1,

where . ht are hours dedicated to work and . lt are hours dedicated to leisure. Since 
households have rational expectations and are optimizers, they maximize their 
discounted expected utility function represented by 

. Max
{ct ,ht ,kt+1}∞t=0

E0

∞⎲

t=0

βt

⎾
ln(ct ) + θ

(1 − ht )
1−γn

1 − γn

⏋
. (5.1) 

Households must choose the optimal time paths of . ct , . ht , and .kt+1. Additionally, 
the budget constraint of a household is defined by the following expression: 

.ct + it = wtht + rt kt , (5.2) 

where 

• . it is the investment used by the household to accumulate a stock of capital goods 
that, in turn, will be rented to firms. 

• . wt represents the real wages. 
• . rt is the capital rental rate paid by firms.
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Furthermore, households are supposed to own capital goods in the economy, so 
they must invest (. it ) to offer capital at “t+1.” The equation for movement of capital is 

.kt+1 = (1 − δ)kt + it (5.3) 

Household Optimization Problem 
The household optimization problem is summarized in Eq. (5.1) subject to the 
budget constraint, Eq. (5.2), and the law of motion of capital, Eq. (5.3) : 

. Max
{ct ,ht ,kt+1}∞t=0

E0

∞⎲

t=0

βt

⎾
ln(ct ) + θ

(1 − ht )
1−γn

1 − γn

⏋

ct + it = wtht + rt kt

kt+1 = (1 − δ)kt + it

Lagrange Function and First-Order Conditions 
Considering the two constraints, it can be concluded that both could become a single 
constraint. To do this, investment . it is cleared from the capital equation of motion 
and introduced into the budget constraint. Thus, the following unique constraint is 
obtained: 

.ct + kt+1 = wtht + (rt + (1 − δ))kt (5.4) 

Given this unique constraint and objective function, the Lagrange function is 
defined as follows: 

. L = E0

⌠ ∞⎲

t=0

βt
⎾
u(ct , ht ) + λt (wtht + rt kt − ct − kt+1 + (1 − δ)kt )

⏋⎫

The first-order conditions are the following: 

.
∂L
∂ct

= 0 =⇒ 1

ct

+ λt (−1) = 0 (5.5) 

.
∂L
∂ht

= 0 =⇒ −θ

(1 − ht )γn
+ λt (wt ) = 0 (5.6) 

.
∂L

∂kt+1
= 0 =⇒ Et

⎾
λt (−1) + βλt+1(rt+1 + (1 − δ))

⏋ = 0 (5.7) 

Intratemporal Condition This is represented by the labor supply, which is obtained 
from Eqs. (5.5) and (5.6): 

.θ(1 − ht )
−γn = wt

ct

(5.8)
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Intertemporal Condition This is represented by Euler’s equation, which indicates 
the optimal consumption path. This is obtained from (5.5) and (5.7) as follows: 

.
1

ct

= βEt

⎾
1

ct+1
[rt+1 + (1 − δ)]

⏋
(5.9) 

Equations (5.8) and (5.9) represent the two main behavior equations of the 
households. One of these equations is labor supply, which is influenced by the 
parameter . γn. The inverse of this parameter is known in the literature as the Frisch 
elasticity of labor supply, as detailed below. 

Frisch Elasticity of Labor Supply (FELS) This is the percentage change in labor 
supply given a percentage change in the real wage holding the marginal utility 
of consumption constant. In addition, the FELS measures the substitution effect 
that a change in the real wage generates in the labor supply. In other words, it 
does not consider the income effect derived from intratemporal substitution between 
consumption and leisure. The calculation of the FELS involves three steps, which 
are described below: 

Step 1. The total differentiation of labor supply (5.8) is calculated using Eq. (5.10): 

.θ(1 − ht )
−γn = wt

ct

Applying : Full differentiation

θ(−γn)(1 − ht )
−γn−1(−Δht) = ctΔwt − wtΔct

c2t

Ordering the terms :
θ(1 − ht )

−γn
γn

(1 − ht )
Δht = Δwt

ct

− wt

ct

Δct

ct

For the labor supply : θ(1 − ht )
−γn = wt

ct

wt

ct

γn

(1 − ht )
Δht = Δwt

ct

− wt

ct

Δct

ct

γn

Δht

(1 − ht )
=

Δwt

ct
− wt

ct

Δct

ct

wt

ct

γn

Δht

(1 − ht )
= Δwt

wt

− Δct

ct

γn

ht

ht

Δht

(1 − ht )
= Δwt

wt

⎾
1 − Δct/ct

Δwt/wt

⏋

γn

ht

1 − ht

Δht

ht

= Δwt

wt

⎾
1 − Δct/ct

Δwt/wt

⏋
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Δht/ht 
Δwt/wt 

= 
1 

γn

⎾
1 − ht 

ht

⏋⎾
1 − 

Δct/ct 
Δwt/wt

⏋

ehw 
t = 

1 

γn

⎾
1 − ht 

ht

⏋
[1 − ecw 

t ], (5.10) 

where .ehw
t represents the elasticity of the labor supply with respect to the real 

wage (. Δht/ht

Δwt /wt
); on the other hand, .ecw

t is the elasticity of consumption with 

respect to the real wage (. Δct /ct

Δwt /wt
). 

Step 2. According to the definition of the “Frisch elasticity,” the marginal utility of 
consumption remains constant, which indicates a level of fixed consumption that 
is invariant to changes in the real wage and, therefore .ecw

t would equal zero. 
Step 3. Finally, the FELS is represented by the following expression: 

.ehw
t = 1

γn

⎾
1 − ht

ht

⏋
(5.11) 

As we can observe, FELS (. ehw
t ) depends inversely on the . γn. Therefore, . γn is 

considered the inverse of Frisch elasticity (FELS). 
In the RBC model, a higher Frisch elasticity (low . γn) further amplifies the 

productivity shock: a larger labor supply elasticity increases labor and hence 
production in t . 

Intertemporal elasticity of labor substitution The marginal rate of substitution 
(.T MgS1,2) indicates the amount of good 1 that one is willing to give up if good 
2 is increased by one unit, keeping the utility level constant: 

. T MgS1,2 = ∂x1

∂x2
= −UMg2

UMg1

Additionally, the elasticity of substitution (.ES1,2) measures the ease of substitut-
ing one good with another. It also measures the curvature of the indifference curve 
and, therefore, the substitutability between goods: 

. ES1,2 = ∂ln(x1/x2)

∂ln(T MgS1,2)

It is also worth mentioning that elasticity of substitution is observed in two 
dimensions: intratemporal (between consumption and leisure) and intertemporal 
(between current and future consumption) (see Table 5.1). 

By applying the intertemporal case for labor supply, the intertemporal substitu-
tion elasticity of labor (.ht , ht+1) is obtained: 

• .T MgSIh
t+1,t = −Et

⎾
1
β

⎛
1−ht

1−ht+1

⎞−γn
⏋
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Table 5.1 Elasticity of 
substitution 

Intratemporal (.ct , lt ) Intertemporal (.ct , ct+1) 

.T MgSIct ,lt = − UMgl

UMgc
. T MgSIc

t+1,t = −Et

⎾
UMgct

βUMgct+1

⏋

.ESIct ,lt = ∂ln(c1/lt )
∂ln(T MgSIct ,lt )

. ESIc
t+1,t = ∂ln(ct+1/ct )

∂ln(T MgSIc
t+1,t )

• . ESIh
t+1,t = − 1

γn
Et

⎾
1−ht+1
ht+1

⏋

According to the expression of .ESIh
t+1,t , parameter . γn can be considered as the 

inverse of the intertemporal elasticity of labor substitution. In this scenario, Frisch 
elasticity and the .ESIh

t+1,t are similar. 

5.2.1.2 Firms 

In this model, it is assumed that firms operate in a context of perfect competition, 
both in the market for goods and for factors of production. In this scenario, 
the representative firm maximizes its profit function, subject to its technology 
(production function). The firm’s optimization problem is described as follows: 

. Max
{kt ,ht }∞t=0

Πt = yt − [wtht + rt kt ]

Subject to the production function or available technology 

.yt = atk
α
t h1−α

t (5.12) 

The production function can be introduced into the profit function . πt , which 
allows the optimization problem to be reduced to an unconstrained one: 

. Max
{kt ,ht }∞t=0

Πt = atk
α
t h1−α

t − [wtht + rt kt ] (5.13) 

Directly deriving the objective function, Eq. (5.13), with respect to capital . kt and 
labor . ht , we obtain 

. 
∂Πt

∂kt

= 0 =⇒ atαkα−1
t h1−α

t − rt = 0

α
atk

α
t h1−α

t

kt

= rt

Capital demand :
α

yt

kt

= rt (5.14)
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. 
∂Πt

∂ht

= 0 =⇒ at (1 − α)kα
t h−α

t − wt = 0

(1 − α)
atk

α
t h1−α

t

ht

= wt

Labor demand :
(1 − α)

yt

ht

= wt (5.15) 

5.2.1.3 Market Equilibrium and Definition of Shock 

To complete the model, it is necessary to add two equations. The first is the 
equilibrium in the goods market, described by the following expression: 

.yt = ct + it (5.16) 

The second equation describes the behavior of “productivity,” which behaves like 
an AR(1): 

.ln(at ) = φln(at−1) + ϵt , ϵt ∼ N(0, σ 2
ϵ ) (5.17) 

Where . ϵ is called “productivity shock.” 

5.2.1.4 System of Principal Equations 

Table 5.2 shows the equations that describe the optimal behavior of both households 
and firms. This table also shows the equations of market equilibrium and productiv-
ity behavior. This set of equations forms a system that represents the RBC model 
with variable labor supply, which is in line with Campbell (1994). 

5.2.2 Calibration 

The values of the parameters correspond to the calibration of Campbell (1994), 
except for the value of . θ , which was obtained from Prescott (1986). Table 5.3 shows 
the values associated with the parameters.
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Table 5.2 System of 
principal nonlinear equations 

Equations Description 

. 1
ct

= βEt

⎾
1

ct+1
[rt+1 + (1 − δ)]

⏋
Euler’s equation 

.rt = α
yt

kt
Capital demand 

.θ(1 − ht )
−γn = wt

ct
Labor supply 

.ht = (1 − α)
yt

wt
Labor demand 

.yt = at k
α
t h1−α

t Production function 

.yt = ct + it Goods market equilibrium 

.kt+1 = (1 − δ)kt + it Law of motion of capital 

.lnat = φlnat−1 + ϵt Productivity shock 

Table 5.3 Calibration 

Parameter Observation 

.α = 0.333 Share of capital in national income 

.γn = 0.25 Inverse Frisch elasticity (value to simulate) 

.δ = 0.025 Corresponds to a 10% annual depreciation 

.θ = ϵ
1−ϵ

= 2 . ϵ Is productive time oriented to nonmarket activities 

.ρ = 0.95 Productivity is stationary 

.β = 0.984 Discount factor 

.σ = 0.01 Standard deviation of the shock of productivity 

5.2.3 Stationary State 

The stationary state is known as long-run equilibrium (where .Δxt = 0 for all 
variables in the model), and the productivity shock (. εt ) takes its average value (. = 0). 
Furthermore, given the equation of motion of productivity, the steady-state value of 
productivity is one (.a = 1). Likewise, expectations disappear; therefore, it is known 
as a non-stochastic solution. It is worth mentioning that finding the steady state 
is the previous step before the log-linearization procedure. In Table 5.4, the  main  
equations of the model are presented in their steady-state version. 

From Eq. 8 of Table 5.3, the unique value that solves the expression . lnass =
φlnass is .ass = 1. Similarly, from Eq. 2, we obtain the interest rate in the steady 
state: 

.rss = 1

β
− (1 − δ) (5.18) 

From Eq. 7, the investment/capital ratio in steady state is obtained: 

.
iss

kss

= δ (5.19)
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Table 5.4 System of 
principal nonlinear equations 
in steady state 

Equations Description 

[1] rss = α yss 
kss 

Capital demand 

[2] 1 
css 

= β
⎾

1 
css 

[rss + (1 − δ)]
⏋

Euler’s equation 

[3] θ(1 − hss)
−γn = wss 

css 
Labor supply 

[4] hss = (1 − α) yss 
wss 

Labor demand 

[5] yss = assk
α 
ssh

1−α 
ss Production function 

[6] yss = css + iss Goods market equilibrium 

[7] kss = (1 − δ)kss + iss Law of motion of capital 

[8] lnass = φlnass + ϵmean value Shock of productivity 

From Eq. 1, which describes the demand for capital, the steady-state output/cap-
ital ratio is obtained as follows: 

.
yss

kss

= rss

α
(5.20) 

From Eq. 5, after considering that .ass = 1, we obtain 

.
yss

kss

=
⎾
hss

kss

⏋1−α

(5.21) 

Because in Eq. (5.20), the value of the ratio .yss/kss was found, then 

.
hss

kss

=
⎾
rss

α

⏋ 1
1−α

(5.22) 

The elements of Eq. 6 can be divided by the steady-state value of capital (. kss) as  
follows: 

.
yss

kss

= css

kss

+ iss

kss

(5.23) 

From Eq. (5.19), it is known that the ratio .iss/kss is equal to . δ. Furthermore, 
using Eq. 5.21, the ratio .yss/kss is equal to . rss

α
. Under these values, Eq. (5.23) can 

be described as follows: 

.
rss

α
= css

kss

+ δ (5.24) 

This result allows us to find the ratio .css/kss : 

.
css

kss

= rss

α
− δ (5.25)
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On the other hand, by dividing the two sides of the labor demand equation [Eq. 
4] by the value of capital in a steady state, we have 

.
hss

kss

= (1 − α)
yss

wsskss

(5.26) 

The real wage in steady state .wss is cleared from this equation: 

.wss = (1 − α)

yss

kss

hss

kss

(5.27) 

Furthermore, from Eq. (5.22), it is known that the ratio .hss/kss is a constant and 

is equal to .
⎾

Rss

α

⏋ 1
1−α . Likewise, from Eq. 5.20, we have that the ratio .yss/kss is equal 

to . 
rss
α
. These two values allow us to obtain the value of the real wage in steady-state 

. wss : 

. wss = (1 − α)

rss
α

⎾
rss
α

⏋ 1
1−α

(5.28)

wss = (1 − α)

⎾
rss

α

⏋ −α
1−α

Finally, in the labor supply [Eq. 3], work in steady state (. hss) and consumption 
(. css) are multiplied and divided by . kss : 

.θ(1 − kss

hss

kss

)−γn = wss

kss
css

kss

(5.29) 

From this expression, the values of . wss , . 
css

kss
, and .hss

kss
are determined. For 

simplicity, it is considered that the ratio . css

kss
is equal to . η1 and that .wss

css
kss

equals . η2. 

Consequently, we have 

.θ(1 − η1kss)
−γn = η2

kss

(5.30) 

This equation is nonlinear in steady-state capital (. kss). If the value of capital 
that solves this equation is found, then all the values of the variables in the steady 
state will be found because these variables depend on capital. It is worth mentioning 
that the nonlinearity of this equation is due to the parameter . γn (inverse of Frisch 
elasticity). If the value of this parameter is equal to one, then the nonlinearity 
disappears, and the value of . kss is equal to . η2

θ+η1η2
. It is worth mentioning that the 

fact that . γn is equal to one means that the work in the utility function is expressed 
as the .ln(1 − ht ).
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Alternatively, Eq. (5.29) can be expressed nonlinearly at work. This option is 
better because the steady-state value of work is known to be between zero and one, 
that is, .hss ∈ [0, 1]. This is important because numerical optimization techniques 
(approximations) require an initial point. Therefore, Eq. 5.29 is expressed as 
follows: 

.θ(1 − hss)
−γn = wss

hss
kss

hss

css

kss

(5.31) 

Simplifying this expression, we have 

. θ(1 − hss)
−γn = wss

hss
kss

hss

css

kss

θ
css

kss

kss

hss

hss = wss(1 − hss)
γn

Rearranging the terms :
θ

css

kss◟◝◜◞
=γ1

hss = wss

hss

kss◟ ◝◜ ◞
γ2

(1 − hss)
γn

γ1hss = γ2(1 − hss)
γn (5.32) 

Equation (5.32) can be solved using numerical methods. To do this, a function 
called “trabajo_ss.m” has been built, which solves Eq. (5.32) and, therefore, pro-
vides a value of . hss . Given this value, the steady-state values of other variables can 
be obtained. For instance, from Eq. (5.22), we obtain steady-state capital . kss : 

. 
hss

kss

=
⎾
rss

α

⏋ 1
1−α

kss = hss

⎾
rss

α

⏋ −1
1−α

(5.33) 

With the value of . kss , the production . yss is obtained from Eq. (5.20): 

. 
yss

kss

= rss

α

yss = kss

rss

α
(5.34) 

Similarly, when considering the value of . kss in Eq. (5.19), the value of the 
investment in steady state . iss is obtained:
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Table 5.5 Steady State Steady state (recursive form) 

. rss = 1
β

− (1 − δ)

. ass = 1

. wss = (1 − α)

⎾
rss
α

⏋ −α
1−α

. γ1hss = γ2(1 − hss)
γn

. kss = hss

⎾
rss
α

⏋ −1
1−α

. yss = kss
rss
α

. iss = δkss

. css = yss − iss

. 
iss

kss

= δ

iss = δkss (5.35) 

The steady-state consumption . css can be obtained from Eq. (5.23) because the 
product and investment (both in the steady state) are known: 

. 
yss

kss

= css

kss

+ iss

kss

css = yss − iss (5.36) 

Table 5.5 indicates the expression of the steady state of each variable of the 
model. 

5.2.4 Log-Linearization 

In the same way, as in the previous chapters, the model will be log-linearized 
following the technique of Uhlig (1995). First, variable .  ̂xt is defined as the difference 
between the logarithm of variable “x” and the logarithm of its steady state “. xss” as  
follows: 

.  ̂xt = lnxt − lnxss

This expression can be rearranged in such a way that variable x is a function of its 
steady-state . xss and variable .  ̂xt : 

.xt = xsse
 ̂xt (5.37)
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Then, the expression for “. xt” is substituted into all the nonlinear model equa-
tions. Second, Expression (5.37) requires that . e ̂xt to be approximated by a linear 
function; otherwise, the system of equations would still retain its nonlinear nature. 
Given this, . e ̂xt is approximated using the first-order Taylor expansion, where the 
reference point for the approximation is the steady state. By applying the Taylor 
expansion, . e ̂xt can be expressed as 

.e ̂xt ≈ 1 + ̂xt (5.38) 

Considering Properties (5.37) and (5.38), we proceed to log-linearize the system 
described in Table 5.3: 

Capital demand To find the log-linear capital demand, we must first replace each 
variable . xt by its expression .xsse

 ̂xt , where .  ̂xt is the variable x in the percentage 
deviation of .lnxt with respect to its steady state (second line). After performing 
certain algebraic operations, line 4 is reached, where the first-order approximation 
(.ex ≈ 1 + x) is applied, and line 5 is obtained. Finally, Eq. (5.39) is the log-linear 
equation for capital demand: 

. kt = α
yt

rt
Line 1

ksse
 ̂kt = α

ysse
 ̂yt

rsse ̂rt
Line 2

e
 ̂kt = e ̂yt

e ̂rt
Line 3

e
 ̂kt = e ̂yt− ̂rt Line 4

1 + ̂kt = 1 +  ̂yt − ̂rt Line 5

 ̂kt =  ̂yt − ̂rt (5.39) 

Euler’s equation To find the log-linear Euler’s equation, we first make a change 
of variable (.zt+1 = rt+1 + (1 − δ)), which is observed in the second line of 
Eq. (5.40). This is because to simplify the log-linear transformation of an equation, it 
is preferable that all variables are in multiplicative form. Second, each variable . xt is 
replaced by its expression .xsse

 ̂xt , where .  ̂xt is variable x in percentage deviation from 
.lnxt with respect to its steady state (third line of Eq. (5.40)). After performing some 
algebraic operations, line 5 is reached, where first-order approximations (.e ̂x ≈ 1+ ̂x) 
and line 6 are obtained. Finally, after eliminating the constant (number one), we 
arrive at line 7: 

.
1

ct

= βEt

⎾
1

ct+1
[Rt+1 + (1 − δ)]

⏋
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1 

ct 
= βEt

⎾
1 

ct+1 
[zt+1]

⏋

1 

csse ̂ct 
= βEt

⎾
1 

csse ̂ct+1
[zsse

 ̂zt+1 ]
⏋

1 

e ̂ct 
= Et

⎾
1 

e ̂ct+1
[e ̂zt+1 ]

⏋

e− ̂ct = Et

⎾
e ̂zt+1− ̂ct+1

⏋

1 − ̂ct = Et [1 + ̂zt+1 − ̂ct+1] 
− ̂ct = Et [ ̂zt+1 − ̂ct+1] (5.40) 

To characterize Euler’s log-linear equation, one must find . ̂zt+1 as a function of 
the interest rate in log deviations from its steady-state (. ̂rt+1).To do so, we must first 
consider this relationship in the steady state: 

. Zss = rss + (1 − δ) =◟◝◜◞
by the equation (5.18) 

1 

β 
(5.41) 

The relationship between . ̂zt+1 and . ̂rt+1 is expressed in Eq. (5.42): 

. zt+1 = rt+1 + (1 − δ)

Zsse
 ̂zt+1 = rsse

 ̂rt+1 + (1 − δ)

Zss(1 + ̂zt+1) = rss(1 + ̂rt+1) + (1 − δ)

Zss + Zss ̂zt+1 = rss + rss ̂rt+1 + (1 − δ) (5.42) 

When considering the steady-state relationship of Eq. (5.41) in Eq. (5.42), we  
have 

. Zss ̂zt+1 = rss ̂rt+1

1

β
 ̂zt+1 = rss ̂rt+1

 ̂zt+1 = βrss ̂rt+1 (5.43) 

Then, substituting Eq. (5.43) into Eq. (5.40) yields Euler’s log-linear equation: 

. − ̂ct = Et [ ̂zt+1 − ̂ct+1]
− ̂ct = Et [βrss ̂rt+1 − ̂ct+1] (5.44)
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Labor supply To obtain the log-linear equation of labor supply, like Euler’s 
equation, a change of variable is made so that all the terms of the equation are 
multiplied. In this sense, .1−ht is replaced by . hht (line two of Eq. (5.45)). Similarly, 
as in the previous equations, each variable . xt is replaced by its expression . xsse

 ̂xt

(third line of Eq. (5.45)) and the first-order approximation (.ex ≈ 1 +  ̂x) (seventh 
line of Eq. (5.45)): 

. θ(1 − ht )
−γn = wt

ct

θ(hht )
−γn = wt

ct

θ(hhsse
 ̂hht )−γn = wsse

 ̂wt

hsse ̂ct

θhh
−γn
ss e−γn

 ̂hht = wsse
 ̂wt

hsse ̂ct

e−γn
 ̂hht = e ̂wt

e ̂ct

e−γn
 ̂hht = e ̂wt− ̂ct

1 − γn
 ̂hht = 1 +  ̂wt − ̂ct

−γn
 ̂hht =  ̂wt − ̂ct (5.45) 

To find the log-linear equation of labor supply, it is necessary to find the log-
linear version of the change of variable .hht = 1 − ht : 

. hht = 1 − ht

hhsse
 ̂hht = 1 − hsse

 ̂ht

hhss(1 +  ̂hht ) = 1 − hss(1 + ̂ht )

hhss + hhss
 ̂hht = 1 − hss − hss

 ̂ht

hhss
 ̂hht = −hss

 ̂ht

 ̂hht = − hss

hhss

 ̂ht

 ̂hht = − hss

1 − hss

 ̂ht (5.46) 

Substituting Eq. (5.46) into Eq. (5.45), we obtain the log-linear equation of labor 
supply (Eq. (5.47)): 

. − γn
 ̂hht =  ̂wt − ̂ct
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−γn

⎾
− 

hss 
1 − hss

 ̂ht

⏋
=  ̂wt − ̂ct 

γn 
hss 

1 − hss

 ̂ht =  ̂wt − ̂ct (5.47) 

Labor demand The log-linear equation of labor demand is described by Eq. (5.48). 
To do this, in the same way as in the previous equations, each variable . xt was 
replaced by its expression .xsse

 ̂xt (second line of Eq. (5.48)), and the first-order 
approximation was applied (.ex ≈ 1 + x) (fifth line of Eq. (5.48)): 

. ht = (1 − α)
yt

wt

hsse
 ̂ht = (1 − α)

ysse
 ̂yt

wsse ̂wt

e
 ̂ht = e ̂yt

e ̂wt

e
 ̂ht = e ̂yt− ̂wt

1 + ̂ht = 1 +  ̂yt −  ̂wt

 ̂ht =  ̂yt −  ̂wt (5.48) 

Production function The log-linear production function equation is described by 
Eq. (5.49). To do this, each variable . xt has been replaced by its expression . xsse

 ̂xt

(second line of Eq. (5.49)), and the first-order approximation (.ex ≈ 1 + x) (sixth 
line of Eq. (5.49)): 

. yt = atk
α
t h1−α

t

ysse
 ̂yt = asse

 ̂at [ksse
 ̂kt ]α[hsse

 ̂ht ]1−α

ysse
 ̂yt = asse

 ̂at [kα
sse

α ̂kt ][h1−α
ss e(1−α) ̂ht ]

e ̂yt = e ̂at [eα ̂kt ][e(1−α) ̂ht ]
e ̂yt = e ̂at+α ̂kt+(1−α) ̂ht

1 +  ̂yt = 1 + ̂at + α ̂kt + (1 − α) ̂ht

 ̂yt =  ̂at + α ̂kt + (1 − α) ̂ht (5.49) 

Goods market equilibrium As in the previous equations, to obtain the equilibrium 
condition in the log-linear goods market, each variable . xt must be replaced by its 
expression .xsse

 ̂xt (second line of Eq. (5.50)), and the first-order approximation must 
be applied (.ex ≈ 1 + x) (third line of Eq. (5.50)):
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. yt = ct + it

ysse
 ̂yt = csse

 ̂ct + isse
 ̂it

yss(1 +  ̂yt ) = css(1 + ̂ct ) + iss(1 + ̂it )

yss + yss ̂yt = css + css ̂ct + iss + iss ̂it
yss ̂yt = css ̂ct + iss ̂it

 ̂yt = css

yss

 ̂ct + iss

yss

 ̂it (5.50) 

Law of motion of capital The log-linear law of motion of capital is expressed 
in Eq. (5.51). Similar to the previous equations, the transformation of the initial 
variable . kt by its equivalent in log deviations (line 2 of Eq. (5.51)) is used. Next, 
we calculate the first-order Taylor approximation of that transformation (line 5 of 
Eq. (5.51)): 

. kt+1 = (1 − δ)kt + it

ksse
 ̂kt+1 = (1 − δ)ksse

 ̂kt + isse
 ̂it

e
 ̂kt+1 = (1 − δ)e

 ̂kt + iss

kss

e
 ̂it

e
 ̂kt+1 = (1 − δ)e

 ̂kt + δe
 ̂it

1 + ̂kt+1 = (1 − δ)(1 + ̂kt ) + δ(1 + ̂it )

1 + ̂kt+1 = (1 − δ) + (1 − δ) ̂kt + δ + δ ̂it
 ̂kt+1 = (1 − δ) ̂kt + δ ̂it (5.51) 

Productivity shock Strictly speaking, productivity shock is represented by the 
variable . ϵt , which has a normal distribution with zero mean and constant variance. 
Thus, Eq. (5.52) represents the log-linear equation for productivity (not for shock): 

. lnat = φlnat−1 + ϵt

lnasse
 ̂at = φlnasse

 ̂at−1 + ϵt

lnass + ̂at = φlnass + φ ̂at−1 + ϵt

 ̂at = φ ̂at−1 + ϵt (5.52) 

Table 5.6 summarizes the system of log-linear equations that describe the model.
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Table 5.6 Log-linear system 
of equations 

Log-linear equations Description 

.− ̂ct = Et [βrss ̂rt+1 − ̂ct+1] Euler’s equation 

. ̂kt =  ̂yt − ̂rt Capital demand 

.γn
hss

1−hss

 ̂ht =  ̂wt − ̂ct Labor supply 

. ̂ht =  ̂yt −  ̂wt Labor demand 

. ̂yt =  ̂at + α ̂kt + (1 − α) ̂ht Production function 

. ̂yt = css

yss
 ̂ct + iss

yss

 ̂it Goods market equilibrium 

. ̂kt+1 = (1 − δ) ̂kt + δ ̂it Law of movement of capital 

. ̂at = φ ̂at−1 + ϵt Productivity shock 

5.2.5 Solution of the Linear System 

5.2.5.1 Method of Undetermined Coefficients 

In the general equilibrium modeling literature, the methods to find the solution have 
focused on solving a system of linear (or log-linear) equations. As in the previous 
chapters, this chapter applies the method of undetermined coefficients. The solution 
is to place the endogenous variables as functions of the state variables and shock. 
For instance, for capital, production, and consumption, we have 

. ̂kt+1 = ηkk
 ̂kt + ηka ̂at . (5.53)

 ̂yt = ηyk
 ̂kt + ηya ̂at . (5.54)

 ̂ct = ηck
 ̂kt + ηca ̂at . (5.55) 

It is worth mentioning that because the system of equations has been log-
linearized (see Table 5.4), the variables are expressed as log deviations from their 
steady state, that is, . ̂xt = lnxt − lnxss . Furthermore, the coefficients of the solution 
(e.g., Eqs. (5.53), (5.54), and (5.55)) express elasticity. This elasticity is illustrated as 
follows: considering Eq. (5.53), if today’s capital increases by 1%, then tomorrow’s 
capital increases by . ηkk %. This is observed in the following expression: 

. ̂kt+1 = ηkk
 ̂kt + ηka ̂at

Differentiating :
Δ ̂kt+1 = ηkkΔ ̂kt + ηkaΔ ̂at

Assuming :  ̂at remains constant

Δ ̂kt+1 = ηkkΔ ̂kt + 0

Δ[lnkt+1 − lnkss] = ηkkΔ[lnkt − lnkss]
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Δ[lnkt+1] −  0 = ηkkΔ[lnkt ] −  0 
Δkt+1 

kt+1 
= ηkk 

Δkt 
kt 

Δkt+1 
kt+1 

Δkt 
kt 

= ηkk 

Ekt+1,kt = ηkk (5.56) 

The Expression (5.56) clearly indicates that .ηkk represents the elasticity of 
tomorrow’s capital to today’s capital, holding everything else constant. Therefore, 
a 1% increase in today’s capital increases by . ηkk% tomorrow’s capital, keeping 
everything else constant. Thus, each coefficient of the model solution is interpreted 
in that way. It is worth mentioning that, regardless of the solution method of the 
model, the solution is always described by Eqs. (5.53), (5.54), and (5.55) and the 
other equations of the endogenous variables that maintain the same shape. The 
method of undetermined coefficients involves finding the values of the coefficients 
of the solution as a function of the parameters. When these coefficients are found, 
the solution is well defined. 

Before applying the undetermined coefficients method, the system of equations 
must be reduced as much as possible. In this eight-equation model, the ideal 
approach would be to reduce the system to three or four equations. This is the next 
step that we execute. 

[A] Size reduction of system I The system of eight equations described in 
Table 5.4 can be reduced to five equations. The procedure is as follows: 

• First, eliminate the real wage . wt through equilibrium in the labor market. 
• Second, eliminate investment .  ̂it . 
• Third, replace the law of motion of capital in goods market equilibrium. 
• Finally, eliminate the real interest rate .  ̂rt by introducing the demand for capital 

into the Euler equation. 

Eliminating the real wage . wt The real wage is solved from labor demand. 

. Labor demand :
 ̂ht =  ̂yt −  ̂wt

 ̂wt =  ̂yt − ̂ht (5.57) 

Equation (5.57) is introduced into the labor supply, which is described by the 
following equation: 

.γn

hss

1 − hss

 ̂ht =  ̂wt − ̂ct (5.58)
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Equating the labor supply with labor demand in real wages, we have 

. γn

⎾
hss

1 − hss

⏋

◟ ◝◜ ◞
=m1

 ̂ht =  ̂yt − ̂ht − ̂ct

m1 ̂ht =  ̂yt − ̂ht − ̂ct

(1 + m1) ̂ht =  ̂yt − ̂ct (5.59) 

Eliminating investment . it Investment is cleared from the law of movement of 
capital and replaced in the equilibrium of the goods market. 

. Law of movement of capital :
 ̂kt+1 = (1 − δ) ̂kt + δ ̂it

δ ̂it =  ̂kt+1 − (1 − δ) ̂kt

 ̂it = 1

δ
[ ̂kt+1 − (1 − δ) ̂kt ]. (5.60) 

Equilibrium in goods market :
 ̂yt = 

css 
yss

 ̂ct + 
iss 
yss

 ̂it◟◝◜◞
Eq. (5.60)

 ̂yt = 
css 
yss

 ̂ct + 
iss 
yss

⎾
1 

δ
[ ̂kt+1 − (1 − δ) ̂kt ]

⏋
(5.61) 

Eliminating the real interest rate . rt From capital demand, the interest rate is solved 
and replaced in the Euler equation. 

. Capital Demand :
 ̂kt =  ̂yt − ̂rt
 ̂rt =  ̂yt − ̂kt . (5.62) 

Euler equation : 
− ̂ct = Et [βrss ̂rt+1 − ̂ct+1]

 ̂ct = Et [ ̂ct+1 − βrss  ̂rt+1◟◝◜◞
Eq. (5.62) 

]

 ̂ct = Et [ ̂ct+1 − βrss[ ̂yt+1 − ̂kt+1]] (5.63) 

With these reductions, the system would be composed of five equations: 

.(1 + m1) ̂ht =  ̂yt − ̂ct . (5.64)
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 ̂yt = 
css 
yss

 ̂ct + 
iss 
yss

⎾
1 

δ
[ ̂kt+1 − (1 − δ) ̂kt ]

⏋
. (5.65)

 ̂ct = Et [ ̂ct+1 − βrss[ ̂yt+1 − ̂kt+1]]. (5.66) 

Production function :
 ̂yt =  ̂at + α ̂kt + (1 − α) ̂ht . (5.67) 

Productivity Shock :
 ̂at = φ ̂at−1 + ϵt (5.68) 

[B] Size reduction of system II The system can be further reduced. From 
Eq. (5.64), labor .  ̂ht is solved and introduced in Eq. (5.67) (production function). 

. Balance in the labor market :
(1 + m1) ̂ht =  ̂yt − ̂ct

 ̂ht =
⎾

1

1 + m1

⏋
[ ̂yt − ̂ct ]. (5.69) 

Production function :
 ̂yt =  ̂at + α ̂kt + (1 − α)  ̂ht◟◝◜◞

Ecu. (5.69)

 ̂yt =  ̂at + α ̂kt + (1 − α)

⎾
1 

1 + m1

⏋
[ ̂yt − ̂ct ]

⎾
1 − 

1 − α 
1 + m1

⏋
 ̂yt =  ̂at + α ̂kt −

⎾
1 − α 
1 + m1

⏋
 ̂ct

⎾
m1 + α 
1 + m1

⏋
 ̂yt =  ̂at + α ̂kt −

⎾
1 − α 
1 + m1

⏋
 ̂ct (5.70) 

With these additional reductions, the system is composed of four equations: 

.

⎾
m1 + α

1 + m1

⏋
 ̂yt =  ̂at + α ̂kt −

⎾
1 − α

1 + m1

⏋
 ̂ct . (5.71)

 ̂yt = 
css 
yss

 ̂ct + 
iss 
yss

⎾
1 

δ 
[ ̂kt+1 − (1 − δ) ̂kt ]

⏋
. (5.72)

 ̂ct = Et [ ̂ct+1 − βrss[ ̂yt+1 − ̂kt+1]]. (5.73) 

Productivity shock :
 ̂at = φ ̂at−1 + ϵt (5.74)
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[C] Size reduction of system III The previous system of four equations can still 
be reduced by eliminating one additional equation. To do so, product .  ̂yt is cleared 
from Eq. (5.71) and replaced in Eqs. (5.72) and (5.73): 

. 

⎾
m1 + α

1 + m1

⏋
 ̂yt =  ̂at + α ̂kt −

⎾
1 − α

1 + m1

⏋
 ̂ct

 ̂yt =
⎾
1 + m1

m1 + α

⏋⎾
 ̂at + α ̂kt −

⎾
1 − α

1 + m1

⏋
 ̂ct

⏋
(5.75) 

Equation (5.75) is replaced in the Eq. (5.71): 

.  ̂yt = css

yss

 ̂ct + iss

yss

⎾
1

δ
[ ̂kt+1 − (1 − δ) ̂kt ]

⏋

⎾
1 + m1

m1 + α

⏋⎾
 ̂at + α ̂kt −

⎾
1 − α

1 + m1

⏋
 ̂ct

⏋
= css

yss

 ̂ct + iss

yss

⎾
1

δ
[ ̂kt+1 − (1 − δ) ̂kt ]

⏋

⎾
1 + m1

m1 + α

⏋
 ̂at + α

⎾
1 + m1

m1 + α

⏋
 ̂kt −

⎾
1 − α

m1 + α

⏋
 ̂ct = css

yss

 ̂ct + iss

yssδ
 ̂kt+1 − iss(1 − δ)

yssδ
 ̂kt

⎾
1 + m1

m1 + α

⏋

◟ ◝◜ ◞
m2

 ̂at + ̂kt

⎾
α(1 + m1)

m1 + α
+ iss(1 − δ)

yssδ

⏋

◟ ◝◜ ◞
m3

=  ̂ct

⎾
css

yss

+ 1 − α

m1 + α

⏋

◟ ◝◜ ◞
m4

+ iss

yssδ◟◝◜◞
m5

 ̂kt+1

m2 ̂at + m3 ̂kt = m4 ̂ct + m5 ̂kt+1

m4 ̂ct = m2 ̂at + m3 ̂kt − m5 ̂kt+1 (5.76) 

Similarly, Eq. (5.75) is introduced into Eq. (5.72): 

.  ̂ct = Et [ ̂ct+1 − βrss[ ̂yt+1 − ̂kt+1]]

 ̂ct = Et

⎾
 ̂ct+1 − βrss

⎾⎾
1 + m1

m1 + α

⏋⎾
 ̂at+1 + α ̂kt+1 −

⎾
1 − α

1 + m1

⏋
 ̂ct+1

⏋
− ̂kt+1

⏋⏋

 ̂ct = Et

⎾
 ̂ct+1 − βrss

⎾
1 + m1

m1 + α

⏋⎾
 ̂at+1 + α ̂kt+1 −

⎾
1 − α

1 + m1

⏋
 ̂ct+1

⏋
− βrss ̂kt+1

⏋

 ̂ct = Et

⎾⎛
1 + βrss

1 − α

m1 + α

⎞
 ̂ct+1 − βrss

1 + m1

m1 + α
 ̂at+1 +

⎛
βrss − βrss

1 + m1

m1 + α

⎞
 ̂kt+1

 ̂ct = Et

⎾ ⎛
1 + βrss

1 − α

m1 + α

⎞

◟ ◝◜ ◞
n1

 ̂ct+1 − βrss
1 + m1

m1 + α◟ ◝◜ ◞
n2

 ̂at+1 +
⎛

βrss − βrss
1 + m1

m1 + α
α

⎞

◟ ◝◜ ◞
n3

 ̂kt+1

 ̂ct = Et [n1 ̂ct+1 − n2 ̂at+1 + n3 ̂kt+1] (5.77) 

After the last reduction, the system of equations is represented by the following 
three equations:
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.m4 ̂ct = m2 ̂at + m3 ̂kt − m5 ̂kt+1. (5.78)

 ̂ct = Et [n1 ̂ct+1 − n2 ̂at+1 + n3 ̂kt+1]. (5.79)

 ̂at = φ ̂at−1 + ϵt (5.80) 

[D] Application of the undetermined coefficients method The system of equa-
tions represented by equations (5.78), (5.79), and (5.80) has three variables: . ct , .kt+1, 
and . at . One of these variables is exogenous (. at ), while the other two are endogenous 
(. ct and .kt+1). We then propose that endogenous variables have linear solutions in 
the state variable . kt and the exogenous variable . at : 

. ̂kt+1 = ηkk
 ̂kt + ηka ̂at . (5.81)

 ̂ct = ηck
 ̂kt + ηca ̂at (5.82) 

Substituting this solution in Eq. (5.78), we have  

. m4 ̂ct = m2 ̂at + m3 ̂kt − m5 ̂kt+1

m4(ηck
 ̂kt + ηca ̂at ) = m2 ̂at + m3 ̂kt − m5(ηkk

 ̂kt + ηka ̂at )

(m4ηck) ̂kt + (m4ηca) ̂at = (m2 − m5ηka) ̂at + (m3 − m5ηkk) ̂kt (5.83) 

Equating the coefficients of each variable on the right-hand side with its 
corresponding variable on the left-hand side, we have 

. Capital ratios :
m4ηck = m3 − m5ηkk. (5.84) 

Coefficients of the productivity : 
m4ηca = m2 − m5ηka (5.85) 

Substituting the solution to Eq. (5.79) results in 

. ̂ct = Et [n1 ̂ct+1 − n2 ̂at+1 + n3 ̂kt+1]
ηck

 ̂kt + ηca ̂at = Et [n1(ηck
 ̂kt+1 + ηca ̂at+1) − n2 ̂at+1 +

n3(ηkk
 ̂kt + ηka ̂at )]

(ηck − n3ηkk) ̂kt + (ηca − n3ηka) ̂at = Et [n1ηck
 ̂kt+1 + (n1ηca − n2) ̂at+1]

Considering that :  ̂at = φ ̂at−1 + ϵt

(ηck − n3ηkk) ̂kt + (ηca − n3ηka) ̂at = Et [n1ηck
 ̂kt+1 + (n1ηca − n2)(φ ̂at + ϵt+1)]

= Et [n1ηck
 ̂kt+1] + (n1ηca − n2)Et [φ ̂at + ϵt+1]
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= Et [n1ηck
 ̂kt+1] + (n1ηca − n2)[φEt ̂at + Etϵt+1◟ ◝◜ ◞

=0 

] 

Replacing : the solution of ̂kt+1 

= Et [n1ηck(ηkk
 ̂kt + ηka ̂at )] +  (n1ηca − n2)φ ̂at 

= Et [n1ηckηkk
 ̂kt + n1ηckηka ̂at ] +  (n1ηca − n2)φ ̂at 

= (n1ηckηkk) ̂kt + (n1ηckηka + (n1ηca − n2)φ) ̂at 

(ηck − n3ηkk) ̂kt + (ηca − n3ηka) ̂at = (n1ηckηkk) ̂kt + (n1ηckηka + 

(n1ηca − n2)φ) ̂at (5.86) 

From Eq. (5.86), the coefficients for each variable are equalized. For capital, we 
have 

. ηck − n3ηkk = n1ηckηkk

ηkk = ηck

n3 + n1ηck

(5.87) 

In the case of productivity, equating the coefficients, we have 

. ηca − n3ηka = n1ηckηka + (n1ηca − n2)φ

(1 − φn1)ηca = ηka(n1ηck + n3) − φn2 (5.88) 

The method of undetermined coefficients consists of finding the values of the 
coefficients as a function of the model parameters. In this case, there are four 
“unknown” coefficients, (. ηck , . ηca , . ηkk , and . ηka). These four “new” variables require 
four equations, which are as follows: 

. Eq. (5.84) : 
m4ηck = m3 − m5ηkk 

Eq. (5.85) : 
m4ηca = m2 − m5ηka 

Eq. (5.87) : 
ηkk = ηck 

n3 + n1ηck 

Eq. (5.88) : 
(1 − φn1)ηca = ηka(n1ηck + n3) − φn2 

[D1] Consumption and capital policy functions To solve the system of 
Eqs. (5.84), (5.85), (5.87), and (5.88), where the variables are the coefficients
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of the consumption policy function and state function, it is required to reduce the 
number of equations. First, Eq. (5.84) is solved for . ηck and replaced in Eq. (5.87) to 
determine the value of . ηkk . 

.From the equation (5.84) : 
m4ηck = m3 − m5ηkk 

ηck = 
1 

m4 
(m3 − m5ηkk). (5.89) 

From the equation (5.87) : 
ηkk = 

ηck 
n3 + n1ηck 

n3ηkk + n1ηckηkk = ηck 

n3ηkk = ηck◟◝◜◞
Ecu. (5.89) 

(1 − n1ηkk) 

n3ηkk = 
1 

m4 
(m3 − m5ηkk)(1 − n1ηkk) 

m4n3ηkk = (m3 − m5ηkk)(1 − n1ηkk) 

m4n3ηkk = m3 − m3n1ηkk − m5ηkk + m5n1η
2 
kk 

m5n1◟ ◝◜ ◞
=a 

η2 kk + −(m3n1 + m5 + m4n3)◟ ◝◜ ◞
=b 

ηkk + m3◟◝◜◞
=c 

= 0. (5.90) 

aη2 kk + bηkk + c = 0 (5.91) 

Equation (5.91) has two solutions: 

. ηkk1,2 = −b ± √
b2 − 4ac

2a

Because capital is required to be stationary, then .ηkk must be less than one in 
absolute value, that is, .ηkk ∈ (−1.1) (Table 5.7). 

The chosen value of . ηkk was .ηkk2 = 0.9326. Given the value of . ηkk , then . ηck can 
be obtained from Eq. (5.84): 

.ηck = 1

m4
(m3 − m5ηkk) (5.92) 

Table 5.7 Value of .ηkk1,2 .θ .β .δ .γn .α .ηkk1 . ηkk2

2 0.984 0.025 0.25 0.333 1.0897 0.9326
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To determine the value of the coefficient . ηka , . ηca is cleared from Eq. (5.85) and 
replaced in Eq. (5.88). 

.From the equation (5.85) : 
m4ηca = m2 − m5ηka. 

ηca = 
1 

m4 
(m2 − m5ηka) (5.93) 

From the equation (5.88) : 
(1 − φn1) ηca◟◝◜◞

Ecu. (5.93) 

= ηka(n1ηck + n3) − φn2 

(1 − φn1)

⎛
1 

m4

⎛
m2 − m5ηka

⎞⎞
= ηka(n1ηck + n3) − φn2 

m2 

m4 
(1 − φn1) − 

m5 

m4 
(1 − φn1)ηka = ηka(n1ηck + n3) − φn2 

−ηka

⎾
m5 

m4 
(1 − φn1) + n1ηck + n3

⏋
= −φn2 − 

m2 

m4 
(1 − φn1) 

ηka

⎾
m5 

m4 
(1 − φn1) + n1ηck + n3

⏋
= φn2 + 

m2 

m4 
(1 − φn1) 

ηka =
φn2 + m2 

m4 
(1 − φn1) 

m5 
m4 

(1 − φn1) + n1ηck + n3 
(5.94) 

Finally, . ηca is obtained from Eq. (5.85): 

. m4ηca = m2 − m5ηka

ηca = 1

m4
(m2 − m5ηka) (5.95) 

So far, we have found the values of the coefficients . ηck , . ηca , . ηkk , and . ηka , which 
allow defining the consumption solution and of capital, that is, the consumption 
policy function and the state function of the model:1 

. ̂kt+1 = ηkk◟◝◜◞
0.9326

 ̂kt + ηka◟◝◜◞
0.1618

 ̂at . (5.96)

 ̂ct = ηck◟◝◜◞
0.5205

 ̂kt + ηca◟◝◜◞
0.4945

 ̂at (5.97)

1 The values of these coefficients and the solution of the other endogenous variables are found in 
Campbell_Lvariable.m. 
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[D2] Policy function of the other variables The product policy function is 
obtained by substituting the consumption solution in Eq. (5.71). 

.From the equation (5.71) :
⎾
m1 + α 
1 + m1

⏋
 ̂yt =  ̂at + α ̂kt −

⎾
1 − α 
1 + m1

⏋
 ̂ct 

The solution of ̂ct is replaced :
⎾
m1 + α 
1 + m1

⏋
 ̂yt =  ̂at + α ̂kt −

⎾
1 − α 
1 + m1

⏋
(ηck

 ̂kt + ηca ̂at )

⎾
m1 + α 
1 + m1

⏋
 ̂yt =

⎛
1 − 

1 − α 
1 + m1 

ηca

⎞
 ̂at +

⎛
α − 

1 − α 
1 + m1 

ηck

⎞
 ̂kt

 ̂yt =
⎾
1 + m1 

m1 + α

⏋⎛
1 − 

1 − α 
1 + m1 

ηca

⎞

◟ ◝◜ ◞
ηya

 ̂at +

⎾
1 + m1 

m1 + α

⏋⎛
α − 

1 − α 
1 + m1 

ηck

⎞

◟ ◝◜ ◞
ηyk

 ̂kt

 ̂yt = ηya ̂at + ηyk
 ̂kt (5.98) 

On the other hand, the labor policy function is obtained by substituting the 
consumption and output solution in Eq. (5.64): 

.From the equation (5.71) : 
(1 + m1) ̂ht =  ̂yt − ̂ct 

Replacing : the solution of ̂ct and ̂yt 

(1 + m1) ̂ht = (ηya ̂at + ηyk
 ̂kt ) − (ηca ̂at + ηck

 ̂kt ) 

(1 + m1) ̂ht = (ηya − ηca) ̂at + (ηyk − ηck) ̂kt

 ̂ht =
⎛

ηya − ηca 
1 + m1

⎞
 ̂at +

⎛
ηyk − ηck 
1 + m1

⎞
 ̂kt

 ̂ht = ηha ̂at + ηhk
 ̂kt (5.99) 

Furthermore, the real wage is obtained by substituting the product and labor 
solution in labor demand (Eq. (5.57)). 

. c(5.57) :
 ̂wt =  ̂yt − ̂ht
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Replacing : the solution of ̂yt and ̂ht

 ̂wt = (ηya ̂at + ηyk
 ̂kt ) − (ηha ̂at + ηhk

 ̂kt )

 ̂wt = (ηya − ηha) ̂at + (ηyk − ηhk) ̂kt

 ̂wt = ηwa ̂at + ηwk
 ̂kt (5.100) 

Investment is obtained by substituting the product and consumption solution in 
the goods market equilibrium equation: 

.  ̂yt = css

yss

 ̂ct + iss

yss

 ̂it

 ̂it = yss

iss

⎛
 ̂yt − css

yss

 ̂ct

⎞

Replacing : the solution of ̂yt and ̂ct

 ̂it = yss

iss
((ηya ̂at + ηyk

 ̂kt ) − css

yss

(ηca ̂at + ηck
 ̂kt ))

 ̂it = yss

iss

⎛⎛
ηyk − css

yss

ηck

⎞
 ̂kt +

⎛
ηya − css

yss

ηca

⎞
 ̂at

⎞

 ̂it = yss

iss

⎛
ηyk − css

yss

ηck

⎞
 ̂kt + yss

iss

⎛
ηya − css

yss

ηca

⎞
 ̂at

 ̂it = ηik
 ̂kt + ηia ̂at (5.101) 

Finally, the real interest rate is obtained by substituting the product and capital 
solution in the demand for capital. 

.From the equation (5.62) :
 ̂rt =  ̂yt − ̂kt 

Replacing : the solution of ̂yt

 ̂rt = (ηya ̂at + ηyk
 ̂kt ) − ̂kt )

 ̂rt = (ηyk − 1) ̂kt + ηya ̂at

 ̂rt = ηrk
 ̂kt + ηra ̂at (5.102) 

Table 5.8 mentions the solution (policy and state functions) of the log-linear 
system of equations.
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Table 5.8 Policy and state functions 

Solution Coefficients 

. ̂kt = ηkk
 ̂kt + ηka ̂at .ηkk1,2 = −b±

√
b2−4ac
2a . ηka = φn2+ m2

m4
(1−φn1)

m5
m4

(1−φn1)+n1ηck+n3

. ̂ct = ηck
 ̂kt + ηca ̂at .ηck = 1

m4
(m3 − m5ηkk) . ηca = 1

m4
(m2 − m5ηka)

. ̂yt = ηyk
 ̂kt + ηya ̂at .ηyk =

⎾
1+m1
m1+α

⏋
(α − 1−α

1+m1
ηck) . ηya =

⎾
1+m1
m1+α

⏋
(1 − 1−α

1+m1
ηca)

. ̂ht = ηhk
 ̂kt + ηha ̂at .ηhk =

⎛
ηyk−ηck

1+m1

⎞
. ηha =

⎛
ηya−ηca

1+m1

⎞

. ̂wt = ηwk
 ̂kt + ηwa ̂at .ηwk = ηyk − ηhk . ηwa = ηya − ηha

. ̂it = ηik
 ̂kt + ηia ̂at .ηik = yss

iss
(ηyk − css

yss
ηck) . ηia = yss

iss
(ηya − css

yss
ηca)

. ̂rt = ηrk
 ̂kt + ηra ̂at .ηrk = ηyk − 1 . ηra = ηya

Table 5.9 Policy and state functions (from Dynare) 

cc ii yy kk hh rr ww aa 

Constant −0.1718 −1.5471 0.0535 2.1418 −0.9890 −3.1879 0.6376 0 

kk(. −1) 0.5205 −1.6972 0.0730 0.9326 −0.3898 −0.9270 0.4628 0 

aa(. −1) 0.4698 6.1500 1.6159 0.1538 0.9983 1.6159 0.6176 0.95 

e 0.4945 6.4737 1.7009 0.1618 1.0508 1.7009 0.6501 1 

Note: The results are taken from “Campbell_Lvariable_Dynare_nolineal_log5.mod” 

5.2.5.2 Solution Obtained from Dynare 

The nonlinear system of equations described in Table 5.2 has been placed in the 
.mod file “Campbell_Lvariable_Dynare_nolinear_log5.” This file, which contains 
the model, has two characteristics that are worth commenting on: the first is that 
the variables are in logarithms. The objective of this is that when Dynare linearizes 
the system, the variable appears in log deviations; that is, . ̂xt = lnxt − lnxss . It  
is worth mentioning that under this variable type, Dynare will display the solution 
(state and policy function) and the impulse-response function in terms of .  ̂xt . The  
second feature is that the model written to this file is nonlinear and Dynare has 
been asked to linearize the system via the “order. = 1” command in “stoch_simul.” 
Table 5.9 shows the solution of the model as it is provided by Dynare on the Matlab 
screen. 

To correctly read Table 5.9, the following considerations must be taken into 
account. First, each column represents the policy function of the header variable. For 
example, the second column is the consumption policy function, the third column 
is the investment policy function, and so on. Note that the fourth column is the 
equation of state. 

Second, the endogenous variables in the header of Table 5.9 are expressed in 
logarithms. For example, the consumption cc is equal to .ln ct , and in the same way
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Table 5.10 Policy and state functions (xx = logx) 

.ln(ct ) .ln(it ) .ln(yt ) .ln(kt+1) .ln(ht ) .ln(rt ) .ln(wt ) . ln(at )

constant . −0.1718 . −1.5471 0.0535 2.1418 . −0.9890 . −3.1879 0.6376 0 

. ̂kt 0.5205 . −1.6972 0.0730 0.9326 . −0.3898 . −0.9270 0.4628 0 

. ̂at−1 0.4698 6.1500 1.6159 0.1538 0.9983 1.6159 0.6176 0.95 

.et 0.4945 6.4737 1.7009 0.1618 1.0508 1.7009 0.6501 1 

Note: The results have been obtained from “Campbell_Lvariable_nonlinear_log5.mod” 

for the product, .yy = ln yt . In the case of capital “kk,” this is equal to the logarithm 
of the capital at “t+1”; that is, .kk = ln kt+1. This is because in the .mod file the 
capital in “t” has been written as .kk(−1); otherwise, Dynare would understand that 
this variable is a control variable when in fact it is a state variable. 

Third, the “constant” in the second row of Table 5.9 represents the logarithm of 
each of the variables at a steady state. For example, in the consumption equation, 
we have .−0.1718 = lncss , which in turn allows us to find the steady state of the 
variable in levels: .css = e−0.1718 = 0.8421. Fourth, in the first column of the same 
table is the state variable and the exogenous variable. The variable .kk(−1) is equal 
to . ̂kt = lnkt −lnkss ; furthermore, .aa(−1) =  ̂at−1 = lnat−1−lnass and e represents 
the shock of productivity . ϵt . With all these considerations, Table 5.9 is reexpressed, 
whose results are shown in Table 5.10. 

Table 5.10 describes the solution of the log-linear system. The equations are read 
as follows. For example, in the case of consumption, we have 

.ln(ct ) = −0.1718 + 0.5205 ̂kt + 0.4698 ̂at−1 + 0.4945et (5.103) 

It can also be expressed like this: 

. ln(ct ) = −0.1718 + 0.5205 ̂kt + 0.4698 ̂at−1 + 0.4945et

ln(ct ) = −0.1718 + 0.5205 ̂kt + 0.4945

⎛
0.4698

0.4945
 ̂at−1 + et

⎞

ln(ct ) = −0.1718 + 0.5205 ̂kt + 0.4945(0.95 ̂at−1 + et )

ln(ct ) = −0.1718 + 0.5205 ̂kt + 0.4945( ̂at )

ln(ct ) = −0.1718 + 0.5205 ̂kt + 0.4945 ̂at

ln(ct ) = −0.1718 + 0.5205 ̂kt + 0.4945 ̂at (5.104) 

The constant .−0.1718 represents the logarithm of the steady-state consumption 
.ln(css). Considering the latter in Eq. (5.104), we have  

.ln(ct ) = −0.1718 + 0.5205 ̂kt + 0.4945 ̂at

ln(ct ) = ln(css) + 0.5205 ̂kt + 0.4945 ̂at
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ln(ct ) − ln(css) = 0.5205 ̂kt + 0.4945 ̂at

 ̂ct = 0.5205 ̂kt + 0.4945 ̂at (5.105) 

The coefficients 0.5205 and 0.4945 represent the elasticity of consumption to 
capital and productivity, respectively. That is, a 1 percent increase in capital causes 
consumption to increase by 0.5205 percent. 

5.3 Model Solution Analysis 

5.3.1 Analysis of the Coefficients of the Solution 

In the analysis of the coefficients of the solution, it is useful to consider that in 
the generic solution of the model, the state variable .  ̂kt represents the state of the 
economy in “t,” while the variable .  ̂at represents the transitory shock (.φ < 1) to  
which the economy could be subjected at “t.” 

.  ̂xt = ηxk
 ̂kt◟◝◜◞

State of the economy

+ηxa  ̂at◟◝◜◞
Transitory shock

5.3.1.1 Effects of δ 

The depreciation rate . δ has an important role in the behavior of the coefficients of 
the model solution (policy and state functions). For example, the investment-equity 
elasticity . ηik changes from negative to positive as . δ increases. The different values 
of .δ ∈ [0, 1] represent different cases. The extreme case is when . δ is equal to 
one, which corresponds to one of the assumptions of the Long and Plosser (1983) 
model. This assumption indicates that capital fully depreciates in the same period, 
causing the capital stock to become a flow sustained solely by investment. The latter 
is observed from the law of movement of capital . ̂kt+1 = (1 − δ) ̂kt + δ ̂it , which 
under .δ = 1 becomes . ̂kt+1 = ̂it . 

[A] Effects on Capital 
1. The persistence of capital; that is, its stable coefficient (less than 1) . ηkk2

decreases as the depreciation rate increases (see Fig. 5.1). By increasing the rate 
of depreciation, the stock of the next period will be less. The extreme case is 
exemplified by the model of Long and Plosser (1983), in which .δ = 1; in this  
case, the stock of capital is made up of the flow of investment goods, no capital 
is accumulated from the previous period, and, therefore, the capital is less. All of 
this results in capital being very poorly autocorrelated, which can be seen in the 
decreasing value of .ηkk2 as . δ becomes stronger. Given that capital accumulation 
has a transversal role in the optimal response of the representative agent in all
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Fig. 5.1 Effects of . δ on capital ratios. (Note: All the graphs in the “Analysis of the solution 
coefficients” section are obtained from the m. −file “Sensitivity_parameters.m”) 

endogenous variables, then the impact of depreciation will be extended in the 
decision rule (policy functions) of all variables. 

2. The elasticity of capital to productivity .ηka becomes stronger as the rate of 
depreciation increases (see Fig. 5.1). To understand this elasticity, it is important 
to analyze the law of movement of capital: . ̂kt+1 = (1 − δ) ̂kt + δ ̂it . This  
equation suggests that tomorrow’s capital is affected by today’s stock of capital 
and by investment: each weighted by (.1− δ) and . δ. Between these two variables, 
investment is the one that reacts to a shock of productivity in “t”: an increase in .  ̂at

raises investment .  ̂it , whose elasticity is greater than one (see Fig. 5.2). Therefore, 
an increase in productivity raises capital by “t+1” through investment; that is, 
the . ηka is positive. On the other hand, an increase in depreciation strengthens the 
impact of investment on capital at “t+1” (. ̂kt+1 = (1− δ) ̂kt + δ ̂it ), which suggests 
that . ηka gets stronger as . δ increases. 

[B] Effects on Consumption and Investment 
1. The elasticity of consumption to capital . ηck decreases as the depreciation rate 

increases (see Fig. 5.2). In the context of a low depreciation rate, .ηck is high 
because the agent responds by reducing its investment (. ηik negative), thus leaving 
resources for consumption; that is, the representative agent finds it optimal to 
reduce his/her investment and increase his/her consumption when depreciation 
is low. However, as . δ increases, . ηck weakens because the representative agent 
is willing to allocate more resources to investment because capital depreciates 
rapidly.
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Fig. 5.2 Effects of . δ on the coefficients of consumption and investment 

2. The elasticity of investment to capital . ηik changes from negative to positive 
as the depreciation rate increases (see Fig. 5.2). If the depreciation is small, 
then not much investment is needed to significantly increase the capital, so the 
representative agent finds it optimal to reduce his/her investment in the face of an 
increase in the stock of capital in “t,” which is reflected in a negative elasticity. 
However, as . δ increases, more investment is required to replace depreciated 
capital and increase the stock of capital, which is reflected in a strengthening 
of said elasticity . ηik . Moreover, this elasticity, which is negative for low levels of 
depreciation, becomes positive from approximately .δ = 0.5. 

3. The elasticity of consumption to productivity .ηca becomes stronger as the 
depreciation rate increases (see Fig. 5.2). On the other hand, it is observed that 
the elasticity of investment with respect to productivity .ηia weakens as the 
depreciation rate increases (see Fig. 5.2). For small levels of the depreciation rate, 
the representative agent’s response to a transitory shock .  ̂at is to respond strongly 
in saving (investment) and let consumption react weakly. This is reflected in 
the high values of . ηia and low values of . ηca for small values of . δ. This makes 
sense with the theory of the consumer that indicates that the agent prefers to 
smooth consumption before transient shocks. On the other hand, it is observed 
that a higher depreciation rate encourages the representative agent to allocate the 
wealth effect, produced by the productivity shock, to increase consumption and 
reduce investment. This is reflected in the strengthening of . ηca and the weakening 
of . ηia . It is worth mentioning that . ηia has more volatility than . ηca . For values of 
.δ ∈ [0.025− 1], . ηia takes values from .[6.47− 1]; instead, . ηca has more bounded 
values .[0.49 − 1] for the same range of values of . δ.
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[C] Effects on the Product and the Interest Rate 
1. The elasticity of output against capital . ηyk becomes stronger as the depreciation 

rate increases (see Fig. 5.3). An increase in capital, if we keep labor fixed, 
increases output through the production function (. ̂yt =  ̂at +α ̂kt +(1− alpha) ̂ht ) 
regardless of the value of . δ; which is reflected in the positive sign of . ηyk . 
In addition, a higher rate of depreciation reduces the stock of capital and, 
therefore, increases the marginal productivity of capital (due to its decreasing 
nature in physical capital), which is reflected in the increase in the product-capital 
elasticity . ηyk as . δ grows (and capital decreases). 

2. The elasticity of output to productivity .ηya weakens as the depreciation rate 
increases (see Fig. 5.3). The shock of productivity increases output through the 
production function, which is reflected in the positive sign of . ηya . However, this 
elasticity decreases as . δ increases because the increase in depreciation reduces 
the stock of capital, which partially mitigates the effect of productivity. Then, 
the shock of productivity will have less effect on output as the stock of capital is 
reduced or, equivalently, as . δ is increased. 

3. The elasticity of the interest rate to capital . ηrk is negative for any value of the 
depreciation rate and decreases as . δ increases (see Fig. 5.3). The sign of this 
elasticity reflects the demand for capital (negative slope with respect to capital), 
and the values of this elasticity reflect the equilibrium of the capital market. 
The correct way to read the values of .ηrk is as follows: for low values of . δ, 
an increase in the supply of capital (vertical) produces a reduction in the interest 
rate (provided that keep the demand for capital unchanged). In this scenario, 
the magnitude of the supply expansion (small or significant) does not matter; in 

Fig. 5.3 Effects of . δ on the product and interest rate coefficients
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any case, the interest rate will always be reduced. The latter indicates that the 
interest rate elasticity – capital .ηrk has a negative sign. On the other hand, if 
the rate of depreciation is small, then the expansion of the capital supply will 
be significant, so it will induce a significant reduction in the interest rate, and 
this will be reflected in an interest rate elasticity: big capital. However, if the 
depreciation rate is very high, then the expansion of the capital supply will be 
small, and, therefore, the interest rate will fall little. This analysis is reflected in 
the decreasing behavior of . ηrk before increases of . δ. 

4. The elasticity of the interest rate to productivity . ηra weakens as the depreciation 
rate increases (see Fig. 5.3). In this case, the shock of productivity affects the 
demand for capital (but not the supply of capital). An increase in productivity 
encourages the demand for capital and, therefore, increases the real interest rate; 
that is, the elasticity of the interest rate to productivity . ηra is positive as shown in 
Fig. 5.3 regardless of the value of . δ. However, the magnitude of this elasticity 
depends on the value of . δ. When the depreciation rate increases, it reduces 
the stock of capital by “t,” which reduces production in that same period and, 
therefore, causes the demand for capital to contract (. ̂rt =  ̂yt − ̂kt ), which partially 
mitigates the productivity effect. Therefore, the value of . ηra , although it remains 
positive, decreases as . δ increases. 

[D] Effects on Labor and Wages 
1. The elasticity of labor to capital .ηhk is negative and converges to zero as the 

depreciation rate increases (see Fig. 5.4). The sign of this elasticity is obtained 
from the following analysis: an increase in capital produces an income effect 
(which is reflected in the budgetary restriction of the household). Said income 
effect allows the household to increase its leisure consumption and, thus, reduce 
its labor supply. As a result, it is observed that an increase in capital entails a 
reduction in labor via the wealth effect. This inverse relationship is observed in 
the sign of . ηhk . On the other hand, if the depreciation rate increases, then the 
capital stock will be smaller and, therefore, the wealth effect will be smaller. 
Given a weakened wealth effect, then leisure expands but to a lesser extent, and 
labor supply shrinks to a lesser extent. The extreme case occurs when the wealth 
effect is zero because the depreciation is total (.δ = 1), which means that leisure 
and work do not react. This is observed in the behavior of . ηhk . 

2. The elasticity of real wages to capital .ηwk decreases as the depreciation rate 
increases (see Fig. 5.4). This observation merits two comments: first, an increase 
in capital increases output and thus expands labor demand (. ̂ht =  ̂yt −  ̂wt ). Under 
an invariant labor supply, the increase in the demand for labor raises the real 
wage. Then, it can be deduced that an increase in capital induces an increase 
in real wages; that is, the real wage-capital elasticity .ηwk is positive, as can be 
seen in Fig. 5.4. Second, the depreciation rate influences the stock of capital and, 
consequently, the real wage-capital elasticity . ηwk . The increase in capital with 
a higher . δ will induce that increase to be smaller and, then, the demand will 
expand, but to a lesser extent. As a result, the real wage increases but is not as
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Fig. 5.4 Effects of . δ on the labor and salary coefficients 

strong as before, which suggests that the real wage-capital elasticity .ηwk remains 
positive, but smaller. 

3. The elasticity of the real wage to productivity .ηwa becomes stronger as the 
depreciation rate increases (see Fig. 5.4). Furthermore, the elasticity of labor 
against productivity .ηha is positive and converges to zero as the depreciation 
rate increases (see Fig. 5.4). Productivity shock directly affects labor demand and 
indirectly labor supply. For a given level of depreciation, it is observed that the 
shock of productivity increases the demand for labor, and through the increase 
in consumption, the supply of labor contracts. The result is that equilibrium 
labor and real wages increase. In this scenario, an increase in depreciation will 
induce higher consumption because investment is reduced by the increase in 
depreciation. This additional increase in consumption reduces the labor supply, 
increases the real wage a little more, and reduces labor. In this new equilibrium, 
the real wage is higher, and the work is greater than the initial one, but to a lesser 
extent. In other words, the wage-productivity elasticity has increased, but the 
labor-productivity elasticity has decreased with a higher depreciation rate. 

5.3.1.2 Effects of γn 

The Frisch elasticity of labor supply (.1/γn), also known as the intertemporal 
elasticity of labor substitution, plays an important role in the transmission of the 
shock of productivity. As can be seen in Fig. 5.5, the more elastic supply is, then the 
productivity shock that expands labor demand affects labor to a greater extent and
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Fig. 5.5 Elasticity of labor supply 

to a lesser extent labor: real wage (see Fig. 5.5, graph on the right). This is important 
because it allows obtaining greater volatility of work compared to salary, which is 
supported by the data. 

This section analyzes the importance of . γn in the behavior of the coefficients 
of the policy and state functions. It is worth mentioning that to read the graphs 
correctly, it is considered that as the horizontal axis approaches zero, the Frisch 
elasticity increases. 

[A] Effects on Work and Salary 
1. The elasticity of labor to capital .ηhk is negative and increases as labor supply 

becomes more elastic (see Fig. 5.6). Furthermore, the elasticity of real wages to 
capital .ηhk is positive and increases as labor supply becomes more elastic (see 
Fig. 5.6). As mentioned in previous paragraphs, an increase in capital produces a 
wealth effect, through an increase in household income, which makes it possible 
to increase leisure consumption and, as a consequence, reduce labor supply. This 
reduction, considering that the demand for labor does not move, produces a rise 
in the real wage and a reduction in employment. Both effects are reflected in 
the negative sign of .ηhk and in the positive sign of . ηwk . In the event that the 
labor supply is more elastic, then the same increase in capital generates the new 
equilibrium reflects a greater increase in real wages and a greater reduction in 
employment; that is, .ηwk and .ηwk become stronger as elasticity increases. This 
is because the consumer is more willing to substitute work today for tomorrow. 
This arrangement causes tomorrow’s leisure to be traded off for more today’s 
leisure and, therefore, a greater reduction in hours worked today (see Fig. 5.5, 
the graph on the left). 

2. The elasticity of labor with respect to productivity .ηha is positive and increases 
as labor supply becomes more elastic (see Fig. 5.6). In addition, the elasticity of 
real wages with respect to productivity .ηha is positive and decreases as labor 
supply becomes more elastic (see Fig. 5.6). A temporary increase in productivity 
directly affects labor demand upward. This expansion is reflected in an increase
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Fig. 5.6 Effects of . γn on the labor and salary coefficients 

in real wages and employment, which justifies the positive sign of .ηha and . ηwa . 
However, the elasticity of labor supply controls the magnitude of . ηha and . ηwa . In  
the scenario where the labor supply is very elastic, an increase in productivity will 
produce that, in the new equilibrium, labor reacts more strongly than wages. This 
is because households are much more willing to sacrifice leisure today if its price 
increases (.↑  ̂wt ); therefore, under high elasticity, the household strongly reduces 
its leisure and strongly increases its number of hours worked (see Fig. 5.5, the  
graph on the right). 

[B] Effects on Consumption and Investment 
1. The elasticity of consumption to capital . ηck is positive and weakens as labor 

supply becomes more elastic (see Fig. 5.7). An increase in the stock of capital 
in the economy causes households to increase their income by renting capital 
(. ̂rt ̂kt ); on the other hand, the supply of goods is increased by means of the 
production function. This increase in income leads the household to increase 
consumption, which is observed in the positive sign of . ηck . Also, the magnitude 
of . ηck is affected by the elasticity of labor supply. The increase in capital induces 
the household to reduce its level of hours worked, which negatively affects 
income. This effect partially mitigates the initial effect of the capital increase. 
The stronger the elasticity of labor supply, the stronger will be the reduction in 
income on the labor side and, therefore, will mitigate the initial increase in capital 
to a greater extent. The result will be that the consumption-capital elasticity will 
be lower as . γn is stronger, as can be seen in Fig. 5.7.
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Fig. 5.7 Effects of . γn on the coefficients of consumption and investment 

2. The elasticity of investment to capital . ηik is negative and becomes stronger as 
labor supply becomes more elastic (see Fig. 5.7). In the law of movement of 
capital, there are two control variables: . ̂kt+1 and .  ̂it . Usually, in the optimization, 
one of these two variables is eliminated since they depend on each other. The law 
of motion of capital is usually written as . ̂kt+1 = (1 − δ) ̂kt + δ ̂it ; however, this 
equation can be rewritten as follows: .δ ̂it =  ̂kt+1−(1−δ) ̂kt . Under this last form, 
it is observed that an increase in the stock of capital .  ̂kt encourages the household 
to reduce its investment. The greater the elasticity of labor supply, an increase 
in the stock of capital today increases the stock of tomorrow to a lesser extent, 
which is observed in the behavior of . ηkk . This effect encourages investment to 
weaken; thus, as . γn decreases, . ηik becomes stronger. 

3. The productivity elasticities of consumption . ηca and investment . ηia are positive 
and become stronger as labor supply becomes more elastic (see Fig. 5.7). A shock 
of productivity generates a wealth effect, which is oriented toward consumption 
and savings. As mentioned in the analysis of . δ, the representative household finds 
it optimal to smooth its consumption in the face of transitory shocks and transfer 
a large part of its effect to savings (investment). This household behavior causes 
consumption and investment to increase, but the latter in greater proportion. This 
is reflected in the positive sign of .ηca and . ηia and that . ηia is greater than . ηca

for all values of . γn (as well as for the values of . δ). It is worth mentioning that 
the magnitude of both elasticities is moderated by the elasticity of labor supply 
(.1/γn). When said elasticity is greater, then the household reduces strongly its 
leisure today (i.e., more labor) for greater leisure tomorrow in the face of a shock 
of productivity. This increase in hours worked induces the household to have
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Fig. 5.8 Effects of . γn on the product and interest rate coefficients 

more resources, which are directed to consumption and investment. In the event 
that the elasticity of labor supply is small, the hours worked will also increase but 
to a lesser extent, which allows the expansion of consumption and investment to 
a lesser extent than in the case of a supply elasticity major work. 

[C] Effects on Output and the Interest Rate 
1. The elasticity of output with respect to capital .ηyk is positive and decreases as 

labor supply becomes more elastic (see Fig. 5.8). An increase in capital, via the 
production function, raises output by “t,” which is reflected by the positive sign 
of . ηyk . On the other hand, the increase in capital raises the income of households, 
who, feeling more “rich,” decide to increase their leisure consumption and reduce 
their labor supply. This contraction of the labor supply induces a negative effect 
on the production function, partially mitigating the positive effect of the increase 
in capital. The magnitude of this negative effect depends on the elasticity of labor 
supply. If the supply of labor were more elastic, then the equilibrium work would 
be much less, and, therefore, the negative effect on production would be larger 
and would more strongly mitigate the initial positive effect of capital. All this is 
reflected in the fact that .ηyk would be smaller as the elasticity of labor supply 
was greater. 

2. The elasticity of the interest rate with respect to capital .ηrk is negative and 
increases as labor supply becomes more elastic (see Fig. 5.8). An increase in the 
stock of capital by “t” means that the supply of capital expands. In this scenario, 
and under invariant capital demand, the equilibrium interest rate contracts. This 
behavior is reflected in the negative sign of . ηrk . A second effect of this increase
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in the stock of capital is on the demand for capital, which expands by increasing 
output: capital increases, so it increases output and thus raises the demand for 
capital. This last movement partially mitigates the initial reduction in the interest 
rate. One of the parameters that controls the expansion of capital demand is the 
elasticity of labor supply (.1/γn). From the previous paragraph, it is known that 
.ηyk is smaller as .1/γn increases. Then, if the elasticity of labor supply is large, 
the movement in capital demand will be small because .ηyk is small, and, as a 
consequence, the mitigating effect on the reduction in the rate of interest will be 
small. All this indicates that as the elasticity of labor supply is strong, then . ηrk

will also be strong, as can be seen in Fig. 5.8. 
3. The elasticity of output with respect to productivity . ηya is positive and increases 

as labor supply becomes more elastic (see Fig. 5.8). An increase in productivity 
parallelly expands the log-linear production function, which suggests the positive 
sign of . ηya . There is an additional effect when considering the elasticity of labor 
supply . γn. When the labor supply is more elastic, then the equilibrium number of 
hours worked is greater than in the case where said supply has less elasticity. This 
larger increase in labor positively influences the product and thus strengthens . ηya . 

4. The elasticity of the interest rate with respect to productivity . ηra is positive and 
increases as labor supply becomes more elastic (see Fig. 5.8). The positive sign is 
due to the fact that an increase in productivity stimulates the demand for capital 
goods, which under a perfectly inelastic supply of capital pushes the real interest 
rate up. On the other hand, the magnitude of . ηra is influenced by . γn. Under the 
scenario of a very elastic labor supply, the demand for capital will undergo an 
additional expansion due to the effect of the increase in labor in the production 
function. Since . γn controls this increase in work, then the higher . γn, the  more  
hours worked, and, therefore, the positive effect on the demand for capital will be 
greater. This additional movement in the demand for capital further strengthens 
the increase in the interest rate. Consequently, the higher . γn, the higher . ηra , as  
shown in Fig. 5.8. 

[D] Effects on Capital 
1. The elasticity of capital at “t+1” with respect to capital at “t” .ηkk is positive 

and decreases as the elasticity of labor supply increases (see Fig. 5.9). From the 
equation of motion of capital (. ̂kt+1 = (1− δ) ̂kt + δ ̂it ), it follows that an increase 
in capital of today can influence capital of tomorrow in two ways: first, directly 
.(1−δ) ̂kt and, second, indirectly through investment . δ ̂it . The effect of this second 
element on the capital of tomorrow is conditioned to the value of the elasticity of 
labor supply. As is known from Fig. 5.7, . ηik is negative and gets stronger as . 1/γn

increases. In this scenario, it can be seen that with an increase in the stock of 
capital, the effect of the investment on . ̂kt+1 partially mitigates the positive effect 
of .  ̂kt . Based on all of the above, as .1/γn gets stronger, . ηkk gets weaker. 

2. The elasticity of capital at “t+1” with respect to productivity at “t” .ηka is 
positive and strengthens as the elasticity of labor supply increases ( see Fig. 5.9). 
Productivity shock has a positive impact on investment, as shown in Fig. 5.7, 
which in turn influences . ̂kt+1 through the equation of movement of capital.
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Fig. 5.9 Effects of . γn on capital coefficients 

Figure 5.7 suggests that .ηia gets stronger as the elasticity of labor supply 
increases. Since the investment directly affects tomorrow’s capital, then the same 
behavior of . ηia carries over to . ηka . 

5.3.1.3 Effects of φ 

The persistence of the productivity shock . φ is important in the temporary survival 
of the effects of the initial shock. Given the nature of productivity, which behaves 
like an AR(1): . ̂at = φ ̂at−1 + ϵt , high persistence allows .  ̂at remains above its steady 
state longer, if the shock is positive, which affects the economy longer. There are two 
extreme cases: on the one hand, persistence equal to zero, which indicates that the 
shock only lives for one period; on the other hand, persistence equal to one, which 
indicates that the shock is permanent; that is, the effect of the shock is maintained in 
all periods. In this section, the effects of persistence on the elasticities of the solution 
are analyzed considering that the shock is temporary, that is, that .φ ∈ [0, 1[. 

One of the first conclusions that emerges from Figs. 5.10, 5.11, 5.12, and 5.13 is 
that persistence does not affect the elasticities associated with the stock of capital 
.  ̂kt . For example, . ηkk , . ηck , and . ηik remain invariant across values of . φ. This is  
because persistence only affects the behavior of productivity, and, therefore, it is 
expected that this parameter influences the coefficients of the solution associated 
with productivity .  ̂at . For example, . ηka , . ηca , and . ηia show sensitivity to different 
persistence values.
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Fig. 5.10 Effects of . φ on capital coefficients 

Fig. 5.11 Effects of . φ on the consumption and investment coefficients 

[A] Effects on capital 
1. The elasticity of capital at “t+1” with respect to productivity . ηka is positive and 

decreases as productivity persistence increases (see Fig. 5.10). A shock of pro-
ductivity, then, positively influences . ̂kt+1 through investment. Since productivity 
shock produces a wealth effect, the representative household decides to increase
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Fig. 5.12 Effects of . φ on the product and interest rate coefficients 

Fig. 5.13 Effects of . φ on the labor and salary coefficients 

consumption and investment, which increases tomorrow’s capital. That is why 
the sign of . ηka is positive. On the other hand, the household feels that the shock 
is more “permanent” as persistence approaches one and consequently decides to 
increase its consumption more than its investment, which is observed in Fig. 5.11.
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This smaller and smaller increase in investment as persistence strengthens causes 
tomorrow’s capital to increase, but under the same pattern, that is, less and less 
as persistence increases. This behavior is observed in . ηka . 

[B] Effects on Consumption and Investment 
1. The elasticity of consumption with respect to productivity .ηca is positive 

and increases as the persistence of productivity increases (see Fig. 5.11). On 
the contrary, the elasticity of investment with respect to productivity .ηia is 
decreasing, although positive as .ηca (Fig. 5.11). The shock of productivity 
produces a wealth effect in the household. This effect is due to the fact that the 
demand for capital and the demand for labor increase, and, since the household 
receives income from both factors, then its income level rises. This higher income 
is destined for consumption and investment, which increase. That is why the 
elasticities .ηca and .ηia have the same positive sign. Also, the magnitude of 
those is influenced by the value of . φ. As  . φ approaches one, the household 
perceives that the shock of productivity is more “permanent”; that is, its effects 
are maintained over time. In this scenario, the household finds it optimal to direct 
more resources to consumption than to investment because its income pattern has 
changed almost permanently. Therefore, the elasticity of consumption is high 
when the persistence of the shock is high, while the elasticity of investment is 
low in this same scenario. In the event that persistence tends to zero, that is, if the 
shock lasts only one period and its effects are “temporary,” then the household 
will find it optimal to direct resources to savings (investment) in order to smooth 
consumption. Therefore, in this scenario, it is observed that the elasticity of 
consumption is low, while the elasticity of investment is high. 

[C] Effects on the Product and Interest Rate 
1. The elasticity of output with respect to productivity . ηya is positive and decreases 

as productivity persistence increases (see Fig. 5.12). The shock of productivity 
affects production directly by .  ̂at and indirectly by labor .  ̂ht . This is observed in the 
functional form of the production: . ̂yt =  ̂at +α ̂kt +(1−α) ̂ht . To understand how . φ

influences . ηya , it is necessary to analyze how the work responds to this parameter. 
It is known, according to Fig. 5.13, that a greater persistence of the shock of 
productivity induces the household to increase their leisure and reduce work 
because they feel that productivity has permanent effects. So, as . φ increases, the 
household increases its work in the face of a productivity shock, but to a lesser 
extent. Therefore, as persistence increases, the product increases, but to a lesser 
extent because work also increases to a lesser extent. 

2. The elasticity of the interest rate with respect to productivity . ηya is positive and 
decreases as productivity persistence increases (see Fig. 5.12). The productivity 
shock raises the demand for capital and, under an inelastic supply of capital, 
increases the equilibrium interest rate. Since capital demand . ̂rt =  ̂yt − ̂kt depends 
on output, then the pattern of output movement in the face of productivity 
shock is fully transferred to the behavior of demand. For example, the previous 
paragraph indicates that .ηya is decreasing as the persistence of productivity 
increases. This behavior is transferred to the demand for capital which, together
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with the supply of capital, allows the interest rate-productivity elasticity to also 
decrease in . φ. 

[D] Effects on Work and Salary 
1. The elasticity of labor with respect to productivity is positive and decreases as 

the persistence of productivity increases (Fig. 5.13). In addition, the elasticity of 
salary with respect to productivity is positive and strengthens as the persistence 
of productivity increases (see Fig. 5.13). Productivity shock has two effects on 
the labor market: the first is directly on demand, which expands, and the second 
goes indirectly on the supply by means of the increase of consumption. On the 
one hand, demand expands, and, on the other hand, supply contracts. 

5.3.2 Impulse-Response Functions 

The impulse-response function is the reaction of the endogenous variables to a 
shock. This reaction has a magnitude and a lifetime. It is worth mentioning that 
each element of the impulse-response function represents an equilibrium and, 
therefore, an optimal response of the representative agent. In this section, the shock 
is considered to be productivity (Fig. 5.14). 

Fig. 5.14 Campbell (1994) with variable work: productivity shock. (Note: This graph is obtained 
from the m. −file “Analisis_sensibilidad_irf.m”)
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5.3.2.1 How Does the Economy React to a Shock of Productivity? 

• The productivity shock occurs at t = 0 and in this period ϵ0 takes the value of its 
standard deviation σ = 0.763. This leads to increased productivity (↑  ̂at ). 

• The increase in productivity has two effects: the first is the increase in the 
production function ↑  ̂yt = ↑  ̂at + α ̂kt + (1 − α) ̂ht and, the second, the increase 
in demand in the factor market (of capital and labor). 

• In the case of the labor market, the increase in demand raises the real wage and 
the number of hours of work in equilibrium. It should be noted that as supply is 
more elastic (↓ γn), the impact of the demand movement is greater. 

• In the capital goods market, it is observed that the increase in demand is 
completely transferred to supply. This is because supply is perfectly inelastic 
(invariant with the interest rate). In addition, this increase in demand raises the 
interest rate. 

• The higher salary (↑ wt ) and the increase in the interest rate (↑ rt ) increase the 
household’s income, which leads to increased consumption and investment. 

5.3.3 Comparison of the Theoretical Model with the Data 

5.3.3.1 Does the Shock Need to be Significant for the Model to Replicate 
the Data? 

The answer to this question a priori is yes. The RBC model generally requires the 
magnitude of the productivity shock to be significant (around 0.7%). However, this 
dependence is reduced when the variable use of capital is considered. As King 
and Rebelo (1999) point out, an RBC model with capital utilization requires a 
productivity shock of approximately 0.1% to get close to the data. In the following 
paragraphs, it is described how the magnitude of the shock has implications on 
the ability of the model to approach the data. In principle, with a shock of 0.4%, 
the model is very far from the data, while with a shock of 0.7%, the model 
behaves better, although with certain deficiencies. In addition, it is observed that 
the correlation of the production with the model’s variables and the first-order 
autocorrelation does not depend on the magnitude of the shock. 

Table 5.11 shows three statistics (standard deviation, correlation, and first-order 
autocorrelation) of the cyclical component of the data and of the model for each 
variable. The model statistics have been calculated assuming four values of the 
productivity shock (. σ ). The idea behind this is to assess whether the model needs a 
“significant” shock to replicate the data. With this in mind, we proceed to describe 
the conclusions that emerge from this table. 

[A] Standard deviation First of all, it is observed that as the shock is stronger 
(from .σ = 0.004 to .0.015), the standard deviation of the variables increases. For 
example, the standard deviation of consumption for .σ = 0.004 is equal to 0.31%,



276 5 RBC Model with Variable Labor Supply

Table 5.11 Comparison of the cyclical behavior of the theoretical model with the empirical data 

Variable (. xt ) Standard deviation (%) Corr(.PBIt , . xt ) Autocorrelation 

Data Model Data Model Data Model 

.σ = 0.004 0.007 0.01 0.015 0.004 al 0.015 0.004 al 0.015 

Consumption 1.35 0.31 0.54 0.77 1.16 0.88 0.8851 0.80 0.8191 

Investment 5.30 3.37 5.9 8.42 12.64 0.80 0.9856 0.87 0.7013 

Product 1.81 0.89 1.56 2.22 3.33 1 1 0.84 0.7162 

Capital 0.29 0.51 0.73 1.09 0.3915 0.9572 

Labor 1.79 0.55 0.96 1.37 2.06 0.88 0.9736 0.88 0.6995 

Interest rate 0.30 0.9 1.58 2.26 3.39 -0.35 0.9477 0.60 0.7006 

Real wage 0.68 0.38 0.66 0.94 1.41 0.12 0.9423 0.66 0.7826 

Nota: The empirical values have been taken from King and Rebelo (1999) and all the 
variables are in natural logarithms, except the interest rate. The theoretical values have 
been obtained from a single simulation. These values are obtained from the file “Camp-
bell_Lvariable_nonlinear_log7.mod” 

while for .σ = 0.015, it is equal to 1.16%. Second, under a small magnitude of 
the productivity shock, the model falls far short of what is observed in the data. For 
.σ = 0.004, the standard deviation of consumption is 0.31%, while the data indicates 
that said statistic is equal to 1.27%. Similarly, for investment, the model falls short 
of what is found in the data (3.37% in the model vs. 5.30% in the data). This same 
behavior is observed in all variables. 

Third, the value of .σ = 0.007 has been used by Prescott (1986), a similar value 
(.σ = 0.00712) by Hansen (1985) and by King and Rebelo (1999) (.σ = 0.0072). 
Under this magnitude of the shock, the model gets better at approaching the data 
(compared to .σ = 0.004). For example, the standard deviation of the investment 
provided by the model is 5.9%, which is closer to the data (5.30%). The same is 
observed for the product and the real wage. However, the results of the model for 
consumption, labor, and the interest rate are still far from what was observed. For 
example, the standard deviation of consumption goes from 0.31% to 0.54% when 
the shock increases from 0.004 to 0.007, but it is still below the empirical value 
of 1.35%. The same is observed for work, the model indicates that the standard 
deviation is 0.96%, while the data suggests that said statistic is equal to 1.79%. 
Regarding the interest rate, the model strongly overestimates the statistic (1.58% 
vs 0.30%). Fourth, the value of .σ = 0.01 is considered by Campbell (1994). 
Under this value, the model overestimates the statistic in four variables: investment, 
product, interest rate, and real wage. For example, the investment deviation reaches 
8.42%, far exceeding what was observed (5.30%). However, it is observed that in 
consumption and work the model is closer to the data, but still below. For example, 
the standard deviation of consumption increases from 0.54% to 0.77% when the 
shock goes from 0.007 to 0.010, but it is even lower than what was observed 
(1.35%). 

Fifth, it is observed that for higher productivity shock (.σ = 0.015), the model 
results largely overestimate what is found in the data, except for consumption. For
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example, in the case of investment, the data indicates that its standard deviation is 
5.30%, while the model indicates that it is 12.64%. In the same way for the product, 
since the model suggests that the standard deviation is almost twice that found in 
the data (3.33% vs. 1.72%). Only in consumption, the model is closer to the data 
(1.16% in the model vs. 1.35% in the data). Finally, it is important to mention that 
the impact of the shock on productivity is subject to the values of the parameter of 
the model. 

[B] Correlation with GDP First of all, the correlation of the product with the 
other variables does not depend on the magnitude of the shock of productivity; 
therefore, the differences that could be found between what is observed and what 
is inferred by the model does not correspond to the magnitude of the shock but 
to the parameterization of the model and the underlying assumptions. Secondly, 
from Table 5.11, it can be seen that the correlation provided by the model is greater 
in all the variables with respect to what is suggested by the data. For example, the 
correlation of output with consumption in the data is 0.88, while the model indicates 
that it is equal to 0.8851. Similarly for investment, it is 0.80 in the data vs. 0.9856 
in the model. This overestimation of the model is observed in the correlation of the 
product with all the variables. 

Third, the data indicate that the interest rate is countercyclical (.corr(yt , rt ) < 0); 
however, the model infers that the interest rate is highly procyclical (. corr(yt , rt ) =
0.9477). Fourth, the data suggest that the real wage has a very small correlation with 
output, although the model suggests that this statistic is very close to one. These two 
weaknesses of the model in replicating the data are generally transversal to RBC 
models and represent two main criticisms of this school. 

[C] First-order autocorrelation First, first-order autocorrelation, like the corre-
lation of the product with the model variables, does not depend on the magnitude 
of the productivity shock. Second, the model underestimates the autocorrelation of 
the product (0.7013 vs. 0.87). This represents one of the main criticisms of the 
RBC model and has been emphasized by several authors, including Cogley and 
Nason (1995). Third, the model overestimates the real wage autocorrelation and 
underestimates the work autocorrelation. 

5.3.3.2 Does the Labor Supply Need to Be Very Elastic for the Model to 
Replicate the Data? 

The answer to this question is yes. The RBC model needs a strong transmission 
mechanism that transfers the effects of the shock to the endogenous variables. In this 
context, the elasticity of labor supply is positioned as one of the main transmission 
mechanisms. As can be seen in Tables 5.12 and 5.13, the higher the elasticity of 
labor supply, the effects of the initial shock are amplified, which influences on the 
statistics of the model. These statistics are closer to what is observed in the data 
as labor supply is more elastic. The dependence of the RBC model on the elasticity



278 5 RBC Model with Variable Labor Supply

Table 5.12 Comparison of the cyclical behavior of the theoretical model with the empirical data 

Variable (. xt ) Standard deviation (%) 

Data Model 

Frisch elasticity(.1/γn)= 0.2 1 2 5 

Consumption 1.35 0.63 0.7 0.74 0.78 

Investment 5.30 6.21 7.25 7.84 8.59 

Product 1.81 1.69 1.94 2.08 2.26 

Capital 0.54 0.63 0.68 0.74 

Work 1.79 0.57 0.95 1.17 1.44 

Interest rate 0.30 1.72 1.98 2.12 2.3 

Real salary 0.68 1.14 1.04 0.99 0.92 

Note: The empirical values have been taken from King and Rebelo (1999) and all the 
variables are in natural logarithms, except the interest rate. While the theoretical values have 
been obtained from a single simulation, these values are obtained from the file “Camp-
bell_Lvariable_nonlinear_log8.mod” 

Table 5.13 Comparison of the cyclical behavior of the theoretical model with the empirical data 

Variable (. xt ) Corr(.GDPt , . xt ) Autocorrelation 

Datos Modelo Datos Modelo 

.1/γn= 0.2 1 2 5 0.2 1 2 5 

Consumption 0.88 0.9079 0.897 0.8909 0.8834 0.8 0.8093 0.8142 0.8167 0.8197 

Investment 0.8 0.9856 0.9856 0.9856 0.9856 0.87 0.7063 0.704 0.7027 0.7009 

Product 1 1 1 1 1 0.84 0.7211 0.7189 0.7176 0.7158 

Capital 0.3905 0.3911 0.3913 0.3916 0.9585 0.9579 0.9575 0.9571 

Work 0.88 0.973 0.9733 0.9734 0.9736 0.88 0.7045 0.7023 0.7009 0.6991 

Interest rate −0.35 0.9494 0.9485 0.948 0.9476 0.6 0.7054 0.7033 0.702 0.7002 

Real salary 0.12 0.9933 0.9776 0.9627 0.9351 0.66 0.7388 0.7553 0.7678 0.7874 

Note: The empirical values have been taken from King and Rebelo (1999) and all the 
variables are in natural logarithms, except the interest rate. The theoretical values have 
been obtained from a single simulation. These values are obtained from the file “Camp-
bell_Lvariable_nonlinear_log8.mod” 

of labor supply was harshly criticized because microeconomic studies indicated that 
said elasticity is small, which contrasted with what was assumed by the RBC school. 
However, this criticism was countered by Hansen (1985), who developed an RBC 
model free from the dependence on a strong elasticity of labor supply. This last 
model will be studied in detail in the next chapter. 

Table 5.12 shows how the standard deviation of each of the variables changes 
with four Frisch elasticity values, assuming a shock of 0.01. In addition, the statistic 
obtained from the model is compared with what is observed in the data. The 
behavior of the standard deviation is described below. 

[A] Standard deviation In the first place, it is observed that as labor demand 
becomes more elastic, the standard deviation of all variables increases, with the 
exception of real wages, which decreases. Second, the standard deviation of labor
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and real wages produced by the model gets closer to the data as the elasticity of 
labor supply increases. For example, the standard deviation of labor goes from 
0.57% to 1.44% when the elasticity increases from 0.2 to 5. However, in the case 
of investment, the model overestimates its standard deviation for all values of said 
elasticity. The same occurs for the interest rate, where the lowest elasticity value in 
the table (.γn = 0.2) produces a standard deviation of 1.72%, which is well above 
the observed value (0.30% ). 

Two additional statistics are described in Table 5.13: the correlation of the 
product with the model variables and the first-order autocorrelation. Both statistics 
are important in the behavior of business cycles. Likewise, the calculations derived 
from the model are compared with the empirical evidence. The objective of this 
is to evaluate if the greater elasticity of the labor supply strengthens the capacity 
of the model to replicate the data. The correlation and autocorrelation presented in 
Table 5.13 are described below. 

[B] Correlation with GDP In the first place, the correlation of the product with 
each one of the variables of the model is higher than that observed in the data. 
Second, this correlation is closer to the empirical evidence as labor supply is more 
elastic (.↑ 1/γn). For example, the data suggest that the correlation of the product 
with consumption is equal to 0.88, while the model infers that this correlation goes 
from 0.9097 (with .1/γn = 0.2) to 0.8834 (with .1/γn = 5). 

As a third point, the correlation of output with investment, obtained from the 
model, is not affected by the elasticity of labor supply. As can be seen in Table 5.13, 
the correlation of output with investment is 0.9856 for any value of .1/γn, which 
is above the value observed in the data (0.8). Fourth, the elasticity of labor supply 
has little influence on the correlation between output and labor. This is observed in 
the fact that as the elasticity increases, this correlation only changes in the fourth 
decimal place (from 0.9730 to 0.9736). 

Fifth, the model vastly overestimates the correlation of output with the interest 
rate and with the real wage. Regarding the interest rate, it is observed that the 
model infers that said correlation is always positive and close to 1, that is, highly 
procyclical. However, the data suggest that the interest rate is countercyclical. 
Regarding the correlation of the product with the real wage, the model captures 
the qualitative behavior, but not the quantitative one. The data suggest that this 
correlation is low (0.12); however, the model (for the four values of .1/γn) gives  
correlations greater than 0.9. It is worth mentioning that the elasticity of the labor 
supply helps to reduce this correlation, but not enough. For example, for a high 
elasticity (.1/γn = 5), the correlation is 0.9351, which is clearly higher than the 
observed (0.12). 

[C] First-order autocorrelation First, a lower elasticity of labor supply helps the 
model to obtain an autocorrelation of consumption closer to what is observed. For 
example, for a Frisch elasticity of 0.2, the consumption autocorrelation derived from 
the model is 0.8093, a figure very close to the observed figure (0.8). Second, the 
autocorrelation of investment inferred by the model is lower than what was observed 
(0.84). In addition, the change in the elasticity of labor supply has a marginal impact
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on this statistic. For example, said statistic goes from 0.7063 to 0.7009, when the 
elasticity increases from 0.2 to 5. Moreover, a greater elasticity of labor supply 
causes said autocorrelation to decrease and move further away from the data. 

Third, the autocorrelation of the real wage is the one that most react to changes 
in the elasticity of labor supply. For example, when the elasticity is reduced from 
5 to 0.2, said autocorrelation goes from 0.7874 to 0.7388. However, this last value 
still remains above what was observed (0.66). 

5.4 Summary 

In this chapter, we have introduced hours worked as an input to the production 
function and a household decision variable. The result of this exercise is that we are 
equipped to study the goods and labor markets simultaneously and to ask whether 
our RBC model can better replicate the stylized facts on the goods market that 
we discussed in the previous chapter, as well as replicate the facts stylized values 
associated with wages and hours worked during the business cycle. 

As the student should already know, we proceed to present the behavior of 
households, firms, and the conditions of equilibrium in the market of goods and 
factors. Since we first introduce the decision to work, we take a closer look at the 
Frisch elasticity of labor supply and the intertemporal labor substitution elasticity. 
Both will play an important role as transmission mechanisms in our model. 

Then, we proceed to calibrate the model parameters, adding only the Frisch 
elasticity value as an additional parameter to calibrate. We proceed to find the steady 
state and log-linearize the model around it. Finally, we solve the linear system with 
the method of undetermined coefficients and illustrate how we can obtain such a 
solution with Dynare. 

With our model resolved, we proceed to extensively illustrate how the elasticity 
parameters of the control variables with respect to the state variables depend on 
the Frisch elasticity, the depreciation value, and the persistence of the shock of 
productivity. A central result of this section is that the persistence value of the shock 
will not affect the coefficients associated with capital. 

Next, we study the impulse response functions of our fictitious economy when 
hit by a shock of productivity. The pattern of responses in the goods market remains 
similar to that studied in the previous chapter; however, now the labor market shows 
that the wage FIR is hump shaped and employment has an immediate peak and then 
falls monotonously. 

Finally, we compare the theoretical model with the data. We illustrate that to 
even come close to replicating the stylized facts of interest, we need the productivity 
shock to have a significant and persistent value, in addition to requiring a relatively 
high value of the intertemporal elasticity of labor. If we calibrate the model with 
these characteristics, we obtain the following: (i) all variables in our model are 
procyclical, while wages are a-cyclical in the data; (ii) the standard deviations have 
the correct order in the goods market (investment is more volatile than output and
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consumption is less volatile than output), but we significantly overpredict interest 
rate volatility relative to of what is in the data. We also reasonably replicate the 
volatility in labor and real wages found in the data. 

After reading this chapter, the student may feel (healthy) skepticism about 
the scientific value of RBC models: do capitalist economies exhibit such large 
quarter-to-quarter fluctuations in productivity as these kinds of models suggest? It 
is precisely in the face of this skepticism that the literature has developed models 
with a richer variety of shocks, one of which we turn to examine in the next chapter. 
There we will show how we can reconcile an RBC model that replicates the data 
with moderate values of the shock of productivity. 

5.5 Codes 

Table 5.14 describes the Matlab and Dynare codes used in this chapter.
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Appendix 

See Figs. 5.15, 5.16, 5.17, 5.18, 5.19, 5.20. 

Fig. 5.15 Elasticity of substitution of consumption (. 1/γ ) 

Fig. 5.16 Size (. σϵ ) of productivity shock
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Fig. 5.17 Persistence (. φ) of productivity shock 

Fig. 5.18 Labor supply elasticity (.1/γn)



Appendix 285

Fig. 5.19 Depreciation rate (. δ) 

Fig. 5.20 Comparison between the model of Long and Plosser (1983) and Campbell (1994) with 
variable work



Chapter 6 
RBC Model with Shock to Investment 
and Variable Use of Capital 

6.1 Introduction 

This chapter analyzes the effects of an investment shock on the endogenous 
variables, in contrast with the productivity shock analyzed in previous chapters. 
In the literature, productivity shocks have been widely questioned. One of its main 
criticisms is that the magnitude and persistence considered in the RBC model exceed 
those observed in the data. Furthermore, RBC models assume that a recession occurs 
when productivity is negative, that is, when there is a technological reversal, which 
is not plausible based on empirical evidence. 

Unlike previous chapters, this chapter is based on Keynes’s perspective on the 
sources of business cycles. In particular, Keynes argues that investment is one of the 
determinants of business cycles. Therefore, in this chapter, we analyze the effect 
of the shock on investment in the context of the postulates of the RBC school. 
To this end, the model developed in this chapter follows Greenwood et al. (1988), 
who postulate the following: an increase in investment efficiency (. ϵt ) increases the 
formation of new capital (.kt+1) and encourages greater use of the capital that is 
already available (. kt ), which accelerates its depreciation (. δt ) (Table 6.1). 

This chapter analyzes the effect of an investment shock in two frameworks: in 
a standard RBC model based on Campbell (1994) and in a model that considers 
the variable use of capital based on Greenwood et al. (1988). When a shock is 
incorporated into the marginal efficiency of investment in a standard RBC model, 
the transmission mechanism is the intertemporal substitution of leisure, which 
produces countercyclical consumption, which is inconsistent with the empirical 
evidence. However, by incorporating this shock into a standard RBC model that 
considers the “variable utilization rate of capital,” the model is consistent with 
the empirical evidence in producing a procyclical consumption. In this case, the 
transmission mechanism is the “variable capital utilization rate.” 
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Table 6.1 Shock to investment vs. shock to productivity 

Standard RBC model Kydland 
and Prescott (1982), Long and 
Plosser (1983), Campbell (1994) 

A shock of productivity increases production and, 
therefore, consumption and investment. It follows that 
“investment reacts to production.” This suggests that the 
shocks must first affect production 

Model of Greenwood et al. (1988) A shock to the marginal efficiency of investment increases 
tomorrow’s capital (kt+1). The latter raises output by t + 1 
(yt+1). So, in this model,“output reacts to investment.” 
This suggests that shocks must first affect investment 

6.2 Standard RBC Model and the Investment Shock 

The standard RBC model, such as Long and Plosser (1983) and Campbell (1994), 
usually considers that productivity shock is the main variable that produces business 
cycles. In this model, the main transmission mechanism is the intertemporal 
substitution elasticity of leisure in addition to the capital accumulation mechanism. 
If, in this model, a shock to investment (demand shock) is evaluated instead of 
a shock to productivity (supply shock), then the model has problems replicating 
what is observed in the data. Specifically, the model suggests that consumption 
decreases while investment increases, generating a negative correlation between 
these two variables. Furthermore, the model suggests a negative correlation between 
the output and consumption. These two results are clearly opposite to those observed 
in the data. In this section, we analyze the model of Campbell (1994) developed in 
Chap. 5 with a new element: the economy is now subject to an investment shock. 

The investment shock is observed in the law of movement of capital: 

.kt+1 = (1 − δ)kt + (1 + ϵt )it (6.1) 

The idea behind this shock is that the investment is thus more efficient; that is, 
if with an investment unit, without a shock, a unit of capital was produced in “t+1,” 
now with the shock, that same investment unit produces (1+. ϵt ) capital units at “t+1.” 
For instance, assuming that the shock equals one (.ϵt = 1), one unit of investment 
produces two units of new capital. In contrast, when the shock is absent, the same 
investment unit produces only one unit of new capital. One of the first effects of this 
shock is that it increases the stock of capital by “t+1”; that is, the supply of capital 
expands by “t+1.” 

Given that investment, . it , is an element of the household’s budget constraint, 
replacing its expression derived from the law of movement of capital allows a shock 
to investment to influence budget constraints. Furthermore, this constraint plays a 
role in the optimization in such a way that Euler’s equation is also affected by the 
investment shock: 

.
1

ct (1 + ϵt )
= βEt

⎾
1

ct+1

⎾
rt+1 + (1 − δ)

(1 + ϵt+1)

⏋⏋
(6.2)
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Equation (6.2) shows the Euler equation, modified by an investment shock. Inter-
estingly, investment shock . ϵt strengthens the intertemporal elasticity of substitution 
of consumption because it multiplies the interest rate. This strengthening encourages 
households to reduce their current consumption (.↓ ct ) and increase their future 
consumption (.↑ ct+1). 

In addition, since the productivity shock is eliminated to study only the effect of 
an investment shock, the production function becomes 

. Standard model : yt = atk
α
t h1−α

t

Modified model : yt = kα
t h1−α

t (6.3) 

Similarly, the productivity equation .lnat = φlnat−1 + ϵt is eliminated and 
replaced by the investment shock equation: 

.lnϵt = φlnϵt−1 + vt (6.4) 

6.2.1 System of Principal Equations 

Table 6.2 lists the nonlinear equations of Campbell (1994) model, considering an 
investment shock. As mentioned, the law of movement of capital, Euler equation, 
production function, and productivity equation have all been modified to account 
for the investment shock. The remaining equations are obtained conventionally, as 
detailed in Chap. 5. 

Table 6.2 System of principal nonlinear equations (Campbell 1994 model with investment shock) 

Equations Description 

rt = α yt 
kt 

Capital demand 

1 
ct (1+ϵt ) = βEt

⎾
1 

ct+1
[rt+1 + (1−δ) 

(1+ϵt+1)
]
⏋ Euler’s equation 

θ(1 − ht )
−γn = wt 

ct 
Labor supply 

ht = (1 − α) yt 
wt 

Labor demand 

yt = kα 
t h

1−α 
t Production function 

yt = ct + it Goods market equilibrium 

kt+1 = (1 − δ)kt + (1 + ϵt )it Law of movement of capital 

lnϵt = φlnϵt−1 + vt Shock to investment
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6.2.2 Model Solution 

The model represented by the system of equations described in Table 6.2 is written 
in Dynare to determine the policy and state function (solution). In addition, we use 
Dynare to compute the theoretical moments (standard deviation, correlation, and 
autocorrelation) of the cyclical components of the variables. To do this, we write the 
statement “stoch_simul(order = 1, hp_filter=1600).” This statement tells Dynare to 
linearize the model, whose variables have been written in logarithms. Specifically, 
when Dynare linearizes the model, it makes a change of variable as follows: 

.  ̂xt = lnxt − lnxss

That is, Dynare log-linearizes the model. Additionally, the “hp_filter=1600” 
option tells Dynare to apply the HP filter to find the cyclical component 
of each variable. This model is written in the following .mod file “Camp-
bell_Lvariable_nonlinear_log5_inv.mod.” Furthermore, the calibration is similar 
to the model described in Chap. 5. 

Table 6.3 shows the solution of the standard RBC model with an investment 
shock. The policy function for consumption is as follows: 

.ln(ct ) = 0.1742◟ ◝◜ ◞
lncss

+0.5205 ̂kt − 0.2401 ̂ϵt−1 − 0.2528vt . (6.5) 

ln(ct ) = lncss + 0.5205 ̂kt − 0.2528

⎛−0.2401 

−0.2528
 ̂ϵt−1 + vt

⎞

ln(ct ) = lncss + 0.5205 ̂kt − 0.2528(0.95 ̂ϵt−1 + vt ) 

ln(ct ) = lncss + 0.5205 ̂kt − 0.2528 ̂ϵt 

ln(ct ) − lncss = 0.5205 ̂kt − 0.2528 ̂ϵt

 ̂ct = 0.5205 ̂kt − 0.2528 ̂ϵt (6.6) 

Equation (6.6) suggests that consumption responds in the opposite direction to 
the shock and indicates that if the shock to investment is increased by 1% above its 
steady state, consumption is reduced by 0.2528%. When analyzing how investment 

Table 6.3 Policy and state function 

.ln(ct ) .ln(it ) .ln(yt ) .ln(kt+1) .ln(ht ) .ln(rt ) .ln(wt ) . ln(ϵt )

Constant 0.1742 . −1.2011 0.3996 3.1810 . −0.9890 . −3.8810 0.9836 0 

. ̂kt 0.5205 . −1.6972 0.0730 0.9326 . −0.3898 . −0.9270 0.4628 0 

. ̂ϵt−1 . −0.2401 2.6000 0.3329 0.0769 0.4991 0.3329 . −0.1662 0.95 

.vt . −0.2528 2.7368 0.3505 0.0809 0.5254 0.3505 . −0.1750 1 

Note: The results have been obtained from “Campbell_Lvariable_Dynare_nolinear_log5_inv.mod”
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reacts to this shock, the policy function of this variable indicates that investment 
increases (see Eq. (6.7)). Moreover, a 1% increase in the shock to investment 
encourages the investment to increase by 2.7368%. This increase in investment is 
very strong compared to the reduction in consumption: 

. ln(it ) = −1.2011◟ ◝◜ ◞
lniss

−1.6972 ̂kt + 2.6 ̂ϵt−1 + 2.7368vt

ln(it ) − lniss = −1.6972 ̂kt + 2.7368

⎛
2.7368

2.6
 ̂ϵt−1 + vt

⎞

 ̂it = −1.6972 ̂kt + 2.7368(0.95 ̂ϵt−1 + vt )

 ̂it = −1.6972 ̂kt + 2.7368 ̂ϵt (6.7) 

From the consumption and investment policy functions, we can infer that both 
variables move in opposite directions in the event of an investment shock, generating 
a negative correlation, which is contrary to the empirical evidence. This is one of 
the main shortcomings of the standard RBC model when introducing investment 
shocks. 

Another shortcoming of the model, related to the previous one, is that the 
consumption moves countercyclically. Looking at the policy function of production, 
this variable increases when the economy experiences a shock to investment. 
Therefore, under this shock, we have that at period ‘t , investment and production 
increase while consumption decreases. 

This behavior leads to a negative correlation between output and consumption, 
which is not supported by empirical evidence. We then calculate the impulse-
response function to evaluate the dynamic effects of the investment shock. The 
following section details the behavior of endogenous variables in the face of this 
shock. 

6.2.3 Impulse-Response Functions 

The continuous-line graphs in Fig. 6.1 show the dynamic response of each variable 
in the model to a shock to investment. The effects of this shock are described below: 

First, the shock to investment strengthens the intertemporal substitution of 
consumption (SIC) and leads the representative household to reduce its current 
consumption and increase its future consumption. This effect can be clearly 
observed in Euler’s equation (Eq. (6.8)): 

.
1

ct (1 + ϵt )
= βEt

⎾
1

ct+1

⎾
rt+1 + (1 − δ)

(1 + ϵt+1)

⏋⏋
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1 

ct 
= βEt

⎾
1 

ct+1 
(1 + ϵt )◟ ◝◜ ◞

strengthens SIC

⎾
rt+1 + 

(1 − δ) 
(1 + ϵt+1)◟ ◝◜ ◞
SIC

⏋⏋
(6.8) 

Second, given the reduction in current consumption and the fact that production 
does not move (at least in this step), the goods market equilibrium condition requires 
investment increases: .yt =↓ ct + ↑it . 

The third effect is that both the shock to investment and the increase in the level 
of investment encourage the creation of new capital .kt+1. This is observed in the 
law of the movement of capital: 

. kt+1 = (1 − δ)kt + (1 + ϵt )it

↑kt+1 =◟◝◜◞
←

(1 − δ)kt + (1 + ↑ϵt )↑it (6.9) 

Fourth, the reduction in consumption implies a negative wealth effect on labor 
supply and encourages households to increase the number of hours worked. 
Therefore, the labor supply expands (shifts down). This first effect on the labor 
market, in which labor demand has not yet moved, leads to a decrease in the 
equilibrium wage and an increase in work. 

Fifth, an increase in hours worked encourages greater production (. ↑ yt =
kα
t h1−α

t ) by firms. This leads to an increase in the marginal productivity of each 
factor (.↑ PMght and .↑ PMgkt ); therefore, firms increase their demand for each 
production factor. 

Finally, an increase or shift to the right of .PMgkt raises the current interest rate 
since the supply of capital is fixed. On the other hand, the increase in labor demand 
adds an additional positive effect on labor (.↑ ht ) and increases real wage (.↑ wt ), 
which partially offsets the initial wage reduction. In the net, work increases and real 
wages decrease. 

Consequently, a shock to investment at “t” decreases consumption and the real 
wage and increases production, capital at “t+1,” employment, and the interest rate 
increase in the same period. Given that the shock loses strength in the following 
periods but remains above the steady state, consumption progressively recovers as 
the interest rate declines. This behavior of the variables is similar to that observed 
in the previously analyzed policy and state functions. 

At this point, it is worth asking whether the standard RBC model could improve 
(obtain an increase in consumption instead of a reduction) if the elasticity of 
intertemporal labor substitution is greater, that is, if the labor supply is more elastic. 
With this idea in mind, Fig. 6.1 shows the impulse-response function of the standard 
RBC model with two different labor supply elasticities. Although the model has a 
high Frisch elasticity (EF . = 4), the model still maintains a drop in consumption in 
the face of a shock on investment. 

In addition, we can observe that the reduction in consumption is very similar in 
both cases, which indicates that although the usual transmission mechanism of the
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Fig. 6.1 Campbell (1994) model with investment shock. Note: “EF” stands for Frisch elasticity 
(.1/γn) or also known as the intertemporal labor substitution elasticity. This figure is obtained from 
the file “Campbell_Lvariable_nonlinear_log5_inv.mod” 

RBC model (intertemporal elasticity of labor) is strengthened, the model continues 
to show the same weakness (reduction in consumption). Moreover, it is important to 
mention that these results are obtained by comparing an economy with excessively 
high elasticity (EF . = 4) in contrast to a very small elasticity (EF . = 0.1). For 
intermediate values, there are probably no additional effects on consumption, which 
is at negative levels (below the steady state). 

The second question is whether the elasticity of intertemporal substitution of 
consumption (EISC) can help improve the model. Figure 6.2 illustrates the effects 
of a model with low and high EISC. Before analyzing this figure, it is necessary to 
make some remarks about the utility function so that the EISC remains explicit 
in the model. Given that the Campbell (1994) model assumes that elasticity is 
equal to one and, therefore, the utility function is logarithmic in consumption, it 
is necessary to modify the utility function (more general version) to consider this 
parameter explicitly. Equation (6.10) shows the Campbell (1994) utility function, 
whereas Eq. (6.11) shows a general utility function: 

.Campbell’s utility function : u(ct , ht ) = ln(ct ) + θ
(1 − ht )

1−γn

1 − γn

. (6.10) 

General utility function : u(ct , ht ) = 
c

1−γ 
t 

1 − γ 
+ θ 

(1 − ht )
1−γn 

1 − γn 
, (6.11)
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Fig. 6.2 Campbell (1994) model with investment shock. Note: “EISC” stands for elasticity of 
intertemporal substitution of consumption (.1/γ ). This figure is obtained from the file “Camp-
bell_Lvariable_nonlinear_log5_inv.mod” 

where the parameter . γ represents the inverse of the intertemporal elasticity of 
consumption. Under the utility function described in Eq. (6.11), the following Euler 
equation is obtained: 

.
1

c
γ
t (1 + ϵt )

= βEt

⎾
1

c
γ

t+1

⎾
rt+1 + (1 − δ)

(1 + ϵt+1)

⏋⏋
(6.12) 

In Eq. (6.12), we can see how parameter . γ controls the elasticity of intertemporal 
substitution of consumption. This is best observed in the log-linear version of this 
equation: 

. ̂ct = Et

⎾
 ̂ct+1 − 1

γ
(A ̂rt+1 − 1

2
(B ̂ϵt+1 − ̂ϵt ))

⏋
(6.13) 

. A = 2rss

2rss + (1 − δ)
∧ B = 1 − δ

2rss + (1 − δ)

Equation (6.13) shows that an increase in the EISC (.1/γ ) encourages the 
household to reduce its current consumption for future consumption. Moreover, 
it is also observed that said elasticity strengthens or amplifies the effect of the 
shock to investment, which causes consumption to be further reduced. As mentioned 
before, the question in this scenario is whether the standard RBC model improves



6.2 Standard RBC Model and the Investment Shock 295

its capacity when a lower EISC is considered so that its effects are not greatly 
amplified. A priori, it is observed that regardless of the EISC’s value, the shock 
to investment has a negative effect on consumption. The only thing that a lower 
magnitude of EISC can do is reduce the effect of the shock, but it does not cause 
consumption to increase. Therefore, since the EISC controls for the substitution 
effect, which will always be negative for consumption, what is required for 
consumption to increase in the face of the shock to investment is a significant income 
effect that completely cancels out this substitution effect, and it is precisely this that 
is absent in the standard RBC model. 

In line with the above, Fig. 6.2 suggests that a lower EISC in the artificial 
economy reduces the amplification of the shock to investment. This is observed in 
the fact that the impulse-response function of all variables has a smaller magnitude 
and returns more quickly to the steady state when the EISC is low. For example, 
the product reacts three times less in a low EISC model (=0.1) than in a high EISC 
economy (=1). Likewise, with a low EISC (=0.1), consumption is not reduced as 
much; however, at equilibrium, it is still below its steady state. 

In conclusion, the standard RBC model provides contradictory results to the data 
when a shock is introduced into the investment. These results hold even when the 
transmission mechanism via the elasticity of substitution of labor supply increases 
or when the elasticity of substitution of consumption is reduced. What is missing 
to improve the model is perhaps a different transmission mechanism and/or a 
significant income effect, although Barro and King (1984) suggest that the latter 
is not sufficient. 

6.2.4 Comparison of the Model with the Data 

This section presents the statistics generated by the model to confirm what was 
found in the model solution and the impulse-response functions. These statistics 
are compared to the data to assess the extent to which the model is realistic. Table 
6.11 contains three statistics: standard deviation, correlation of GDP with the other 
macroeconomic variables, and correlation of consumption with the other variables 
of the model. From this table, the following conclusions can be drawn. First, the 
correlation between GDP and consumption is positive in the data. However, this 
model suggests a negative correlation. 

Second, the model predicts that the correlation of GDP with real wages is 
negative; however, the data indicate that it is positive. This suggests that the model 
lacks some variables that allow the real wage to move procyclically. Although the 
productivity shock in the standard RBC model does not capture the quantitative 
behavior of the real wage, it does capture its qualitative behavior. In other words, 
the model under a productivity shock implies that the real wage is procyclical but 
with a value of 0.9423, which is much higher than the observed value (0.12). 

Third, the model indicates that the correlations between consumption and 
investment, product, and labor are negative. That is, consumption moves in the
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opposite direction to these variables, which contrasts with empirical evidence, which 
indicates that these variables move in the same direction. 

Fourth, the model produces a standard deviation well below that found in the 
data, except for the interest rate. This suggests that the model requires another 
transmission mechanism that amplifies the shock to investment more strongly. This 
flaw in the model is observed even with a high persistence of the shock (.φ = 0.95) 
and a significant value of this shock (.σv = 0.1). Under these same parameters, 
the shock of productivity in the model of Campbell (1994), described in Chap. 5, 
produces a better model performance. For instance, in the case of consumption, a 
standard deviation of 0.77% is obtained in contrast to 0.37% for the model with a 
shock on investment. The same is observed for the output because the model with a 
shock of productivity obtains a value of 2.22% for the standard deviation compared 
to the poor performance of the model with an investment shock (0.46%). 

All of this confirms what was discussed in the previous sections: the stan-
dard RBC model has trouble approaching the data when considering a shock to 
investment. This is in line with Barro and King (1984), who indicated that in the 
neoclassical model, a movement in investment demand produces an increase in 
the interest rate and output but reduces consumption. This behavior does not fit 
the typical patterns observed in the data. In this scenario, the following question 
arises: what elements should be considered within the standard RBC model so that 
it replicates the data in the event of a shock to investment? In 1988, Greenwood et al. 
(1988) proposed modifications to the standard RBC model, which made it possible 
to overcome these weaknesses (Table 6.4). 

Table 6.4 Comparison of the cyclical behavior of the theoretical model with the empirical data 

Data Model 

Variable (. xt ) Des. Est. (%) Corr (PBI, . xt ) Des. Est. (%) Corr (PBI, . xt ) Corr (. ct , . xt ) 

Consumption 1.35 0.88 0.37 . −0.82 1.00 

Investment 5.30 0.80 3.57 0.97 . −0.93 

Product 1.81 1.00 0.46 1.00 . −0.83 

Capital 0.36 0.42 0.16 

Labor 1.79 0.88 0.69 0.97 . −0.94 

Interest rate 0.30 . −0.35 0.54 0.75 . −0.99 

Real salary 0.68 0.12 0.27 . −0.75 0.99 

Note: The empirical values were taken from King and Rebelo (1999), and all the variables are in 
natural logarithms, except the interest rate. The theoretical values were obtained from a single sim-
ulation. These values were obtained from the file “Campbell_Lvariable_nolineal_log5_inv.mod”
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6.3 Extended RBC Model: Inclusion of Shock to Investment 
and Variable Use of Capital 

6.3.1 Model Elements 

This section closely follows the model proposed by Greenwood et al. (1988). It 
is worth mentioning that in the original article by these authors, the model is 
presented from the point of view of the central planner. However, in this chapter, 
the decentralized version is developed, whose results are similar because of the 
competitive context in which the model is developed. 

On the other hand, the economy in this model is populated by households that 
live an infinite life and by firms. Both agents develop in a competitive environment 
in both the goods and factor markets. Likewise, it is assumed that this economy is 
closed without government presence. 

Additionally, this model has three distinctive features with respect to the models 
studied in previous chapters. First, the utility function eliminates the income effect 
on labor supply. Second, the firm does not demand capital goods as in the standard 
RBC models but instead demands “capital services,” which represents the producer 
of the number of hours that capital is used times the number of capital goods. For 
example, in the previous RBC models, it is considered that the firm demands 100 
computers (capital goods). However, in this model, not only the above is considered 
but also the utilization rate of this capital, which, for example, can be 3 hours a day. 
Considering both elements, the “capital service” demanded is 300 (.100 × 3). 

Third, it is assumed that the greater use of capital induces it to depreciate 
faster. Finally, the shock to investment makes the investment more productive in 
the generation of new capital goods. This effect is observed in the law of the motion 
of capital. 

Figure 6.3 outlines the relationships between the agents: first, households offer 
working hours and capital services; second, firms demand both services in the factor 
market. Finally, the economy is subject to a shock to investment, which initially 
affects the behavior of households and, hence, firms. 

6.3.1.1 Households 

[A] Utility Function The utility function of Greenwood et al. (1988) is as follows: 

.U(ct , lt ) = U(ct − G(lt )), (6.14) 

with the following characteristics 

.U̇ > 0 .Ü < 0 .Ġ > 0 .G̈ > 0
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Fig. 6.3 Scheme of the Greenwood et al. (1988) model 

In this utility function, we can calculate the marginal utility of consumption (. U1) 
and the marginal utility of labor (. U2), which are expressed as follows: 

.U1 = ∂U

∂ct

= ∂U(ct − G(lt ))

∂ct

= U̇ ·
⎛

∂(ct − G(lt ))

∂ct

⎞
= U̇ . (6.15) 

U2 = 
∂U 

∂lt 
= 

∂U(ct − G(lt )) 
∂lt 

= U̇ ·
⎛

∂(ct − G(lt )) 
∂lt

⎞
= −U̇ Ġ (6.16) 

Likewise, the expression of the marginal rate of substitution between consump-
tion and work, which (strictly should be leisure) is represented by 

.T MgSct ,lt = −U2

U1
= −−U̇Ġ

U̇
= Ġ (6.17) 

This expression is the main feature of the utility function proposed by Greenwood 
et al. (1988): the .T MgSct ,lt only depends on labor . lt and does not depend on 
consumption . ct . As will be seen later, this is important in the optimization of 
the household because it allows obtaining a labor supply without the presence of 
consumption . ct , that is, without the income effect. In other words, the effect of the 
intertemporal substitution of consumption on . lt is eliminated, and “. lt is determined 
independently of the intertemporal consumption/saving choice.” In addition, this last 
characteristic is important because it emphasizes the “transmission mechanism” of 
the shock to investment in this model. 

Equation (6.18) is the functional form of the utility function of Greenwood et al. 
(1988), which is given by 

.U(ct , lt ) = 1

1 − γ

⎾⎛
ct − l1+θ

t

1 + θ

⎞1−γ

− 1

⏋
, (6.18)
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where the marginal rate of marginal substitution between consumption and labor 
.T MgSct ,lt is expressed as follows: 

.T MgSct ,lt = lθt (6.19) 

The expression for the .T MgSct ,lt derived from the utility function of Greenwood 
et al. (1988) is different from that of the usual RBC models. For example, Campbell 
(1994) assumes a utility function of the following form: 

.U(ct , lt ) = u(ct ) + u(lt ) = lnct + θ
(1 − lt )

1−γn

1 − γn

(6.20) 

Calculating .T MgSct ,lt from this utility function, we have 

.T MgSct ,lt = −U2

U1
= −−(1 − lt )

−γn

c−1
t

= ct (1 − lt )
−γn (6.21) 

It is clearly observed that the .T MgSct ,lt of this utility function depends on labor 
and consumption. Therefore, the wealth effect on labor supply is maintained. 

[B] Law of Capital Movement In this model, as previously mentioned, the 
household not only offers capital goods “kt” but also the intensity of use of that 
capital “ ht ,” which together represent capital services (ktht ). Likewise, capital 
evolves according to the law of motion: 

.kt+1 = (1 − δ(ht ))kt + (1 + ϵt )it (6.22) 

From Eq. (6.22), three observations emerge: the first is that Eq. (6.20) can be 
seen as a function of production of “new capital’ ’ (kt+1), which has as “inputs” the  
investment (it ) and the stock of capital (kt ). 

The second is that the marginal efficiency of the investment is defined by 

.
∂kt+1

∂it
= 1 + ϵt (6.23) 

This equation indicates that if there is no shock (ϵt = 0), one unit of it becomes 
one unit of kt+1. But if ϵt > 0, then one unit of it becomes more productive 
(efficient) because it produces (1 + ϵt ) units of kt+1. 

The third observation is that δ(ht ) represents the endogenous depreciation, 
which expresses that greater use of capital (kt ) causes a greater depreciation due to 
[1] greater deterioration with use and [2] less time for maintenance. The functional 
form of depreciation considered in the model is as follows: 

.δ(ht ) = hω
t

ω
(6.24)
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Fig. 6.4 Variable depreciation: dependent on the use of capital 

This function has three characteristics. First, it has a positive slope (δ̇ >  0), which 
reflects that greater capital use implies greater depreciation of the stock of capital. 
Second, the second derivative of this function is also positive, δ̈ >  0, which suggests 
that acceleration in the use (or intensive use) of capital induces the stock of capital 
to depreciate rapidly. 

Third, the value of ω must be positive and greater than one so that it satisfies the 
two aforementioned properties (δ̇ = hω−1 

t > 0 and δ̈ = (ω − 1)hω−2 
t > 0). Figure 

6.4 shows the depreciation rate δ for three values of ω. Importantly, for values of ω 
less than or equal to one, the function δ does not meet the aforementioned properties. 

In this model, a value of ω (=1.42) is chosen that allows obtaining a steady-
state value of depreciation of 0.1 (δss = 0.1). In addition, since by definition δ 
must be less than or equal to one, the value of ht is limited to values less than 1.3 
approximately. 

In conclusion, the capital equation of motion is of vital importance in the model 
because it includes the push mechanism “shock to the marginal efficiency of 
investment (ϵt )” and the propagation mechanism “the variable use of capital (ht ).” 

[C] Budget Constraint The representative household allocates resources for the 
acquisition of consumer goods (ct ) and investment goods (it ). Their income is 
derived from the real salary (wt ), obtained by offering work, and from rental 
income (rk 

t ) from capital services (ktht ). The equality between income and expenses 
represents the budget constraint, which is described by Eq. (6.25): 

.ct + it = wt lt + rt (ktht ) (6.25)
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[D] The Optimization Problem The household seeks to maximize its discounted 
expected utility function U(ct , lt ), where ct is the consumption of the only good pro-
duced in the economy and lt is labor. In this model, unlike the standard RBC model, 
the household also decides on the optimal capital variable utilization rate ht that 
it will offer in the capital goods market. This is because the variable ht influences 
the household’s income (ktht ) and affects the consumption-investment decisions of 
the household. Therefore, there are four control variables: consumption ct , work  
lt , capital utilization rate ht , and new capital kt+1. With these considerations, the 
household optimization problem is described as follows: 

. Max
{ct ,lt ,ht ,kt+1}∞t=0

E0

∞⎲
t=0

βtU(ct , lt )

Subject to the budget constraint and the law of movement of capital 

.ct + it = wt lt + rt (ktht ). (6.26) 

kt+1 = (1 − δ(ht ))kt + (1 + ϵt )it , (6.27) 

where 

. δ(ht ) = hω
t

ω
and U(ct , lt ) = 1

1 − γ

⎾⎛
ct − l1+θ

t

1 + θ

⎞1−γ

− 1

⏋

These two constraints (Eqs. (6.26) and (6.27)) can be summarized as one by 
replacing the value of the investment from the law of movement of capital in the 
budget constraint. Thus, the only restriction is as follows: 

. ct + kt+1

1 + ϵt

− (1 − δ(ht ))
kt

1 + ϵt◟ ◝◜ ◞
expensest

= wt lt + rt (ktht )◟ ◝◜ ◞
incomet

(6.28) 

With the objective function and the only restriction (Eq. (6.28)), the Lagrange 
function is built as 

. L = E0

∞⎲
t=0

βt

⎾
U(ct , lt ) + λt [incomet − expensest ]

⏋

First-Order Conditions We then proceed to calculate the derivatives of the 
Lagrange function with respect to each of the control variables (ct , lt , ht , and kt+1). 

Derivative with respect to consumption: 

.
∂L
∂ct

= 0
ent.−→ U1 + λt [−1] = 0

ent.−→ U1 = λt (6.29)
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where U1 =
⎛

ct − l
1+θ 
t 

1+θ

⎞−γ 
. Therefore 

.U1 =
⎛

ct − l1+θ
t

1 + θ

⎞−γ

= λt (6.30) 

Derivative with respect to labor: 

.
∂L
∂lt

= 0
ent.−→ U2 + λt [wt ] = 0

ent.−→ U2 = −λtwt (6.31) 

where U2 =
⎛

ct − l
1+θ 
t 

1+θ

⎞−γ 
(−lθ 

t ). Therefore 

.U2 =
⎛

ct − l1+θ
t

1 + θ

⎞−γ

(−lθt ) = −λtwt (6.32) 

From Eqs. (6.30) and (6.32), we obtain labor supply: 

.
U2

U1
= −wt . (6.33)

⎛
ct − l

1+θ 
t 

1+θ

⎞−γ 
(−lθ 

t )⎛
ct − l

1+θ 
t 

1+θ

⎞−γ = −wt 

lθ 
t = wt (6.34) 

This labor supply is particular: it does not have an income effect; that is, 
consumption does not appear in the labor supply function. This is because of 
the shape of the utility function from which it follows that the marginal rate of 
substitution between consumption and labor depends only on labor. 
Derivative with respect to capital utilization: 

.
∂L
∂ht

= 0
then−→ λt

⎾
rt kt − δ̇(ht )kt

1 + ϵt

⏋
= 0 (6.35) 

Because λt is equal to the marginal utility of consumption (∂U(ct , lt )/∂ct ), 
which is positive, the only way for Eq. (6.35) to be fulfilled is for the expression 
between square brackets to be zero. Therefore, we have the following:
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. rt kt = δ̇(ht )kt

1 + ϵt◟ ◝◜ ◞
Supply of the (variable)

capital utilization

(6.36) 

Derivative with respect to the new capital: 

. 
∂L

∂kt+1
= 0

ent.−→ λt

⎾
− 1

1 + ϵt

⏋
+ Etβλt+1

⎾
rt+1ht+1 + 1 − δ(ht+1)

1 + ϵt+1

⏋
= 0

(6.37) 
From the above, the optimality condition of the investment is obtained: 

. λt

⎾
1

1 + ϵt

⏋
= Etβλt+1

⎾
rt+1ht+1 + 1 − δ(ht+1)

1 + ϵt+1

⏋

⎛
ct − l1+θ

t

1 + θ

⎞−γ ⎾
1

1 + ϵt

⏋
=

βEt

⎛
ct+1 − l1+θ

t+1

1 + θ

⎞−γ ⎾
rt+1ht+1 + 1 − δ(ht+1)

1 + ϵt+1

⏋
(6.38) 

6.3.1.2 Firms 

On the side of the firms, they seek to maximize their profit function (. πt ) in each 
period subject to their production function, as shown in the following expression: 

. Max
{lt ,ht }∞t=0

πt = yt − [wt lt + rt (ktht )]

Subject to the production function 

.yt = F(ktht , lt ) (6.39) 

By inserting the production function into the profit function and differentiating 
it with respect to the control variables, the following first-order conditions are 
obtained: 

.
∂πt

∂lt
= 0

then−→ F2 − wt = 0
then−→ F2 = wt◟ ◝◜ ◞

Labor demand

(6.40) 

.
∂πt

∂ht

= 0
then−→ F1kt − Rk

t kt = 0
then−→ F1 = Rk

t◟ ◝◜ ◞
Demand for capital services

(6.41)
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Considering that the production function has the following specifications: 

.F(ktht , lt ) = (htkt )
αl1−α

t (6.42) 

Both demands would be expressed as follows: 

.Labor demand : (1 − α)
yt

lt
= wt . (6.43) 

Demand for capital services : α 
yt 

htkt 
= rt (6.44) 

6.3.1.3 Market Equilibrium and Definition of Shock 

To complete the model, it is necessary to add two equations. The first equation refers 
to equilibrium in the goods market, which is expressed as follows: 

.yt = ct + it (6.45) 

The second equation describes the behavior of the shock to investment, which 
behaves like an AR(1): 

.ϵt = ρϵt−1 + νt , νt ∼ N(0, σ 2
ν ) (6.46) 

Where . νt is properly the shock to the investment. 

6.3.1.4 System of Principal Equations 

Table 6.12 shows the equations that describe the optimal behavior of households and 
firms; likewise, it indicates the equations of market equilibrium and the behavior of 
the shock to investment. All these equations form a system that represents the RBC 
model proposed by Greenwood et al. (1988). 

6.3.1.5 Calibration 

The values associated with the parameters of this model are obtained as follows. To 
calculate the value of . α, we use the annual average of the share of capital in national 
income between 1948 and 1985. Furthermore, the intertemporal elasticity of labor 
substitution .1/θ is between 0.3 and 2.2 (Macurdy, 1981; Heckman and Macurdy, 
1980). The initially chosen value is 1.7, which allows us to obtain a value of .θ = 0.6. 
However, it is worth conducting a sensitivity analysis for this parameter (Table 6.5). 

Two values are proposed for the inverse of the elasticity of intertemporal 
substitution of consumption (EISC): .γ = 1 and .γ = 2. The simulation of the
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Table 6.5 System of principal nonlinear equations 

Equations Description 

. 

⎛
ct − l1+θ

t

1+θ

⎞−γ ⎾
1

1+ϵt

⏋
= βEt

⎛
ct+1 − l1+θ

t+1
1+θ

⎞−γ ⎾
rt+1ht+1 + 1−δt+1

1+ϵt+1

⏋
Euler’s equation 

.rt = hω−1
t

1+ϵt

Capital services 
offering 

.rt = α
yt

ht kt
Demand for capital 
services 

.lθt = wt Labor supply 

.wt = (1 − α)
yt

lt
Labor demand 

.yt = (ht kt )
αl1−α

t Production function 

.yt = ct + it Goods market 
equilibrium 

.kt+1 = (1 − δt )kt + (1 + ϵt )it Law of movement of 
capital 

.δt = hω
t

ω
Variable depreciation 
rate 

.ϵt = φϵt−1 + νt Shock to investment 

Table 6.6 Calibration 

Parameter Amount Observation 

.β 0.96 Discount factor 

.α 0.29 Share of capital in national income (annual average between 
1950–1985) 

.θ 0.6 Inverse of the elasticity of labor supply (Frisch elasticity of 1.7) 

.γ 1–2 Relative coefficient of risk aversion or inverse of the EISC 

.ω 1.42 Elasticity of depreciation concerning the utilization rate (so that 
.δss = 0.1) 

.σ 0.05–0.0515 Standard deviation of shock to investment . ϵt

.λ 0.47–0.51 First-order autocorrelation coefficient of shock (persistence) 

model considers both values to compare the effects of the shock on investment in an 
economy with a high EISC (.1/γ = 1), in contrast to an economy with a low EISC 
(.1/γ = 1/2). 

Moreover, the elasticity of depreciation for the utilization rate, . ω, is calibrated 
such that the steady-state depreciation rate equals 0.1. Likewise, the two parameters 
of the behavior of the investment shock, the magnitude of the shock (.σ : standard 
deviation) and the persistence of the shock (.φ : autocorrelation of first order), 
are calibrated to reproduce the standard deviation and first-order serial correlation 
observed in the GDP data. So, for . γ = 1, we have .σ = 0.05 and .φ = 0.47, and for 
. γ = 2, we have .σ = 0.0515 and .φ = 0.51. Table 6.6 shows the values associated 
with each parameter.
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6.3.1.6 Stationary State 

In Table 6.7, the equations of the model are written in their steady-state representa-
tions. 

[A] Reducing the Number of Equations (I) First, in Eq. 10 of Table 6.7, it is  
considered that in the steady state, the shock takes the value of its mean (.νss = 0 ). 
Therefore, the equation is as follows: 

. ϵss = φϵss + νss◟◝◜◞
=0

From this expression, it follows that the only value of . ϵss that solves this equation 
is zero. Therefore, .ϵss = 0. 

Second, from Euler’s equation (Eq. 1) in Table 6.7, we obtain the following: 

. 

⎛
css − l1+θ

ss

1 + θ

⎞−γ ⎾
1

1 + ϵss

⏋
= βEt

⎛
css − l1+θ

ss

1 + θ

⎞−γ ⎾
rsshss + 1 − δss

1 + ϵss

⏋

1 = β

⎾
rsshss + 1 − δss

1 + ϵss◟◝◜◞
=0

⏋

1

β
= rsshss + 1 − δss (6.47) 

Table 6.7 System of principal nonlinear equations 

Equations Description 

1.

⎛
css − l

1+θ 
ss 

1+θ

⎞−γ ⎾
1 

1+ϵss

⏋
= βEt

⎛
css − l

1+θ 
ss 

1+θ

⎞−γ ⎾
rsshss + 1−δss 

1+ϵss

⏋
Euler’s equation 

2. rss = hω−1 
ss 

1+ϵss 
Capital services 
offering 

3. rss = α yss 
hsskss 

Demand for capital 
services 

4. lθ 
ss = wss Labor supply 

5. wss = (1 − α) yss 
lss 

Labor demand 

6. yss = (hsskss )
α l1−α 

ss Production function 

7. yss = css + iss Goods market 
equilibrium 

8. kss = (1 − δss)kss + (1 + ϵss)iss Law of movement of 
capital 

9. δss = hω 
ss 
ω 

Variable depreciation 
rate 

10. ϵss = φϵss + νss Shock to investment
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Third, considering that .ϵss = 0, the supply of capital services would be as 
follows: 

. rss = hω−1
ss

1 + ϵss◟◝◜◞
=0

rss = hω−1
ss (6.48) 

Fourth, the law of movement of capital would be expressed as follows: 

. kss = (1 − δss)kss + (1 + ϵss◟◝◜◞
=0

)iss

δsskss = iss (6.49) 

[B] Reducing the Number of Equations (II) Given that the value of .rss is a 
function of .hss (Eq. (6.48)) and that, in the same way, .δss depends on .hss (Eq. 9 
from Table 6.7). Then, substituting both expressions in Eq. (6.47), the value of . hss

is obtained based on the model parameters: 

. 
1

β
= rsshss + 1 − δss

1

β
= hω−1

ss hss + 1 − hω
ss

ω

1

β
− 1 = hω

ss − hω
ss

ω

1

β
− 1 = hω

ss

(
1 − 1

ω

)

hss =
⎛ 1

β
− 1

1 − 1
ω

⎞ 1
ω

(6.50) 

Using the value of . hss , it is possible to obtain the values of . rss and . δss . Thus far, 
we have the steady-state values of the following variables:

ϵss = 0 hss =
⎛

1 
β −1 

1− 1 
ω

⎞ 1 
ω 

rss = hω−1 
ss δss = hω 

ss 
ω 

[C] Reducing the Number of Equations (III) To obtain the steady-state values of 
the other variables, we work with ratios. Given that we have the steady-state value 
of the interest rate, it is useful to start with an equation that contains it, such as the
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demand for capital services. 

. rss = α
yss

hsskss

Replacing the production function :

rss = α
(hsskss)

αl1−α
ss

hsskss

rss = α

⎛
hsskss

lss

⎞α−1

⎛
rss

α

⎞ 1
α−1 = hsskss

lss

kss

lss
=

⎛
rss

α

⎞ 1
α−1 1

hss

(6.51) 

Equation (6.51) provides a value for the ratio .kss/ lss . Therefore, it is useful to 
determine the ratios of the other variables based on this . kss/ lss . First, from the law  
of movement of capital (Eq. (6.49)), we obtain .iss/ lss : 

. δsskss = iss

Replace the expression of δss :
hω

ss

ω
kss = iss

iss

lss
= hω

ss

ω

⎾
kss

lss

⏋
(6.52) 

Second, from the production function, we obtain the ratio .yss/ lss : 

. yss = (hsskss)
αl1−α

ss

yss

lss
= (hsskss)

αl−α
ss

yss

lss
=

⎛
kss

lss
hss

⎞α

(6.53) 

Third, in goods market equilibrium, the ratio .css/ lss is obtained: 

.yss = css + iss

yss

lss
= css

lss
+ iss

lss
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css 
lss 

= 
yss 
lss 

− 
iss 
lss 

(6.54) 

Fourth, the value of .wss is obtained from the labor demand: 

. wss = (1 − α)
yss

lss

wss = (1 − α)
(hsskss)

αl1−α
ss

lss

wss = (1 − α)

⎛
hsskss

lss

⎞α

(6.55) 

Given that the values of .kss/ lss (Eq. (6.51)) and the value of .hss are known, the 
real wage in the steady state is defined by Eq. (6.55). Finally, the value of . lss is 
obtained from labor supply: 

. lθss = wss

lss = (wss)
1/θ (6.56) 

Working on Eq. (6.56), we have  

. lss = ( wss◟◝◜◞
Eq. (6.55) 

)1/θ 

lss =
⎛

(1 − α)

⎛
hsskss 

lss

⎞α⎞1/θ 

lss =
⎛

(1 − α)

⎛
hss 

kss 
lss◟◝◜◞

Eq. (6.51)

⎞α⎞1/θ 

lss =
⎛

(1 − α)

⎛
hss

⎛
rss 
α

⎞ 1 
α−1 1 

hss

⎞α⎞1/θ 

lss =
⎛

(1 − α)

⎛
rss 
α

⎞ α 
α−1

⎞1/θ 
(6.57) 

Given that we have the value of . lss , from the previous equations, we can find 
capital, investment, product, consumption, and real wages (see Eqs. (6.51)–(6.55)). 
Table 6.8 shows the expression for the steady state of each variable in the model.
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Table 6.8 Steady state Steady state (recursive form)

ϵss = 0 

hss =
⎛

1 
β −1 

1− 1 
ω

⎞ 1 
ω 

rss = hω−1 
ss 

δss = hω 
ss 
ω 

lss =
⎛

(1 − α)

⎛
rss 
α

⎞ α 
α−1

⎞1/θ 

kss = lss
⎛

rss 
α

⎞ 1 
α−1 

1 
hss 

iss = hω 
ss 
ω kss 

yss = (hsskss)
α l1−α 

ss 

css = yss − iss 

wss = (1 − α) yss 
lss 

6.3.1.7 Model Solution 

Table 6.12 contains ten equations and ten variables of the model. This system of 
equations is nonlinear. This system can be linearized or log-linearized by Dynare. 
To log-linearize the system, each variable x should be written in Dynare as .exp(xx), 
where .xx = lnxt . For example, the supply of capital services is written in Dynare 
as follows: 

. Capital services supply : “in model”

rt = hω−1
t

1 + ϵt

Capital services supply : “in Dynare”

exp(rr) = exp(hh)ω−1

1 + exp(ϵϵ)

By implementing this change of variable, Dynare will linearize the model and 
obtain a variable in log-deviations from its steady state as follows: .  ̂xt = xxt−xxss =
lnxt − lnxss . Dynare uses the variable .  ̂xt to calculate the steady state, policy and 
state functions, impulse response function, and theoretical moments. 

Tables 6.12 and 6.7 show the model’s solution (policy and state function) for the 
two sets of parameter values. 

The first table corresponds to the model with .γ = 1, .φ = 0.47, and . σv =
0.05, whereas the second considers .γ = 2, .φ = 0.51, and .σv = 0.0515. It is  
worth mentioning that the important difference between both exercises is the EISC
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(. γ ) because the values of persistence (. φ) and shock (. σv) are very similar between 
exercises. Therefore, the differences between the coefficients in the solution of each 
endogenous variable respond primarily to . γ . 

[A] Model 1 (.γ = 1) Table 6.9 shows that the consumption policy function is 
expressed as 

.lnct = −0.7612 + 0.3788 ̂kt − 0.007 ̂et−1 − 0.0148νt . (6.58) 

lnct = lnccc + 0.3788 ̂kt − 0.0148

⎛
0.007 

0.0148
 ̂et−1 + νt

⎞
. (6.59) 

lnct − lnccc = 0.3788 ̂kt − 0.0148(0.47 ̂et−1 + νt ). (6.60)

 ̂ct = 0.3788 ̂kt − 0.0148 ̂et (6.61) 

In the consumption policy function, Eq. (6.61), it is observed that the shock to 
investment .  ̂et negatively affects consumption during the same period. This indicates 
that, under a high elasticity of intertemporal substitution of consumption, this 
variable does not react positively to a shock to investment. By contrast, the policy 
functions of all other variables, except the interest rate, react positively to the shock 
to investment, which is consistent with the data. It is worth mentioning that although 
consumption is reduced, it does so to a lesser extent compared to the model of 
Campbell (1994). For example, Campbell (1994) model indicates that the elasticity 
of the consumption shock to investment is . −0.25, in contrast to this model of 
. −0.014. 

[B] Model 2 (.γ = 2) Table 6.10 shows the policy and state functions of the model 
under the assumption of .γ = 2. This lower elasticity allows consumption to react 
positively to the shock to investment (elasticity .ct -. et is equal to 0.0775) and makes 
it possible for the correlation between consumption and investment to be positive 
and procyclical consumption. Similarly, as in the model with .γ = 1, the responses 
of the other variables have the directions (signs) observed in the data. 

6.3.2 Solution Analysis 

6.3.2.1 Impulse-Response Functions 

Next, the response of the endogenous variables in t to a shock to investment in the 
same period is analyzed. 

[A] First Effect First, the shock materializes in period t . Before this period, the 
variables were at a steady state. For example, shock takes the value of its mean 
(.νt−1 = 0), whereas consumption takes the value of zero (. ̂ct = 0). Recall that .  ̂ct

is the deviation of the logarithm of the variable with respect to the logarithm of its
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steady state, . ̂ct = lnct − lncss . Therefore, . ̂ct = 0 implies that .ct = css ; that is, the 
variable is in its steady state. 

Second, an increase in the shock to investment materializes in period t , which 
means that . νt takes the value of its standard deviation (. σv) and, thus, it takes . ϵt (↑)

out of the steady state. This shock has three initial effects: the first is on the Euler 
equation, the second is on the law of capital movement, and the third is on the supply 
of capital services. 

Euler’s Equation The investment shock influences the intertemporal substitution 
of consumption. An increase in the shock to investment .↑ ϵt encourages the rep-
resentative household to substitute its current consumption for future consumption, 
which is reflected in .↓ ct and .↑ ct+1: 

. 

⎛
ct − l1+θ

t

1 + θ

⎞−γ ⎾
1

1 + ↑ ϵt

⏋
= βEt

⎛
ct+1 − l1+θ

t+1

1 + θ

⎞−γ ⎾
rt+1ht+1 + 1 − δt+1

1 + ϵt+1

⏋

(6.62) 

Law of Motion of Capital An increase in the shock to investment .↑ ϵt encourages 
the production of new capital at “t+1” to increase: 

. ↑ kt+1 =◟◝◜◞
←

(1 − δt )kt + (1+ ↑ ϵt )it (6.63) 

Supply of Capital Services This equation is important in this model. Unlike the 
standard RBC model, such as that of Campbell (1994), in which there is no 
difference between the supply of capital and the supply of capital services (both 
are perfectly inelastic), in the model of Greenwood et al. (1988), both supplies are 
different. First, the capital supply . kt is perfectly inelastic, as in Campbell (1994) 
model, because it represents the economy’s stock of capital and is a determined 
variable in t . Second, the supply of capital services .htkt has a positive slope (with 
respect to the interest rate) because an increase in investment encourages households 
to offer greater use of capital .↑ ht . This is most clearly observed in the supply of 
capital services: 

. rt = hω−1
t

1 + ϵt

(1 + ↑ ϵt )rt =◟◝◜◞
→

↑hω−1
t (6.64) 

Thus, a positive investment shock moves the supply of capital services to the 
right side, that is, a supply expansion (see Fig. 6.5). 

[B] Second Effect First, since consumption reduces at “t” and investment is now 
more productive, the representative household increases investment . ↑ it . This  
increase has an additional positive effect on the supply of capital goods at “t+1.”
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Fig. 6.5 Effects of the investment shock in the capital services market 

It should be noted that the reduction in consumption does not have an impact on 
labor supply, as in the model of Campbell (1994). This is because the utility function 
considered in Greenwood et al. (1988) eliminates the presence of consumption in 
the labor supply. As mentioned before, the form of this utility function eliminates 
the wealth effect on labor supply. The effect of this assumption is that it prevents the 
real wage from falling. 

Second, an increase in the use of capital affects labor demand because both 
factors are complementary. Unlike the demand for capital services, in which a 
movement of . ht implies a movement on the same curve of the demand for capital 
(not a shift), in the case of labor demand, a movement of . ht shifts that demand.1 

Therefore, a greater use of capital implies an expansion of labor demand, which, in 
equilibrium, leads to an increase in hours worked .↑ lt and real wages .↑ wt (see Fig. 
6.6). 

Third, greater utilization of capital stock produces greater depreciation, which 
negatively affects the accumulation of capital in the following period. Then, it is 
observed that 

. ↑ ϵt →↑ ht →↑ δt →↓ ht+1

This can be seen in the law of movement of capital: 

. ↓ kt+1 =◟◝◜◞
←

(1− ↑ δt )kt + (1 + ϵt )it (6.65)

1 It should be mentioned that these movements are different in the case of a shock of productivity 
. at . In it, both demands (labor and capital) expand because . at does not affect the slope of said 
curves. 



316 6 RBC Model with Shock to Investment and Variable Use of Capital

Fig. 6.6 Effects of the investment shock in the supply of capital and the labor market 

Therefore, an increase in the shock to productivity has three effects on .kt+1: 

. ↑ ϵt → ↑ kt+1. (6.66) 

↑ ϵt → ↑  it →↑ kt+1. (6.67) 

↑ ϵt → ↑  ht →↑ δt →↓ kt+1 (6.68) 

Fourth, the reduction in the interest rate by “t” .(↓ rt ), the increase in capital 
services .(↑ htkt ), and the increase in labor income .(↑ wt lt ) together produce a 
positive income effect on the budget constraint of the representative household. 
These higher incomes increase the consumption .(↑ ct ). 

Finally, in period .t + 1, the effects of the shock are maintained owing to its 
persistence but with less magnitude. In this period, the interest rate .rt+1 falls but to 
a lesser extent than in “t.” This reduction in the interest rate produces a substitution 
effect on current consumption: the household, faced with a reduction in the interest 
rate by “t+1,” reduces its consumption by “t” (.↓ ct ) and increments its consumption 
by “t+1” (.↓ ct+1). This is because the “gain (.rt+1)” from parting with a consumption 
unit in “t” has decreased. 

[C] Summary of Effects First, as previously mentioned, the shock to investment 
has three effects on the stock of capital at “t+1 .” The first two increment it (. ↑ ϵt

and .↑ it ) and the third decrement it (.↑ δt ). On the net, the stock of capital at “t+1” 
increases. 

Second, because there is no income effect on labor supply, real wages and hours 
worked are higher in equilibrium after the shock to investment. Third, in the capital 
services market, only supply expands because of the shock to investment, leading 
to higher utilization of capital. In this market, demand does not shift at “t”; it moves



6.3 Extended RBC Model: Inclusion of Shock to Investment and Variable Use. . . 317

only along the curve. In equilibrium, the real interest rate decreases, and capital 
utilization increases. 

Fourth, investment shock has three effects on current consumption. The first 
effect is obtained directly from Euler’s equation: the shock to investment reduces 
current consumption (.↓ ct ). This effect can be understood as an “intratemporal 
substitution effect.” The second is obtained through the “wealth effect”: income 
from labor and capital services increases, making the household richer. This wealth 
effect leads to an increase in current consumption (.↑ ct ). Finally, in period “t+1,” the 
interest rate remains below the steady state, which, through the substitution effect, 
encourages an increase in consumption in “t” (.↑ ct ). This can be understood as the 
“intertemporal substitution effect.” 

[D] Impulse-Response Function Figure 6.7 shows the impulse-response function 
of the model of Greenwood et al. (1988) for two scenarios. The main difference 
between the two scenarios is the elasticity of intertemporal substitution of con-
sumption (EISC = .1/γ ). These two scenarios also consider different persistence 
and magnitude of the shock. However, these differences are marginal. The main 
conclusion of the comparison of these two scenarios is that the lower elasticity 
of substitution moderates the reduction in consumption in the face of a shock to 
investment (intratemporal substitution effect). This allows the income effect and 
intertemporal substitution effect (for a reduction of .rt+1) to exceed the reduction in 
consumption. In the net, consumption increases when EISC is lower. 

Fig. 6.7 Greenwood et al. (1988)-shock to investment. Remark: This figure comes from the mod 
file “modelo_ghh_log1.mod”
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Fig. 6.8 Variable utilization model (Greenwood et al., 1988) vs. fixed use model (Campbell, 
1994). Note: The Greenwood et al. (1988) model considers .γ = 2, .φ = 0.51, and .σv = 0.515. 
In addition, the Campbell (1994) model maintains the same calibration so that both models are 
comparable. This graph corresponds to an investment shock. The figure is obtained from the file 
“Campbell_vs_GHH.m” 

On the other hand, when consumption increases in the current period, investment 
increases but to a lesser extent. This moderate increase in investment has effects on 
the stock of capital at “t+1,” which is smaller than that in the higher EISC case. 
Finally, the other variables were not affected by the EISC. 

[E] Comparison of Models Figure 6.8 shows the comparison between the model 
of Campbell (1994), which considers the use of fixed capital, and the model of 
Greenwood et al. (1988), which considers the use of variable capital. Both models 
maintain the same calibration and are subject to an investment shock. The main 
differences are as follows: 

First, the production in the Campbell (1994) model is slightly larger than that in 
Greenwood et al. (1988) model. This is because, in the first model, the increase in 
labor is almost three times that in the second. However, this lack of labor response 
in the second model is offset by an increase in capital use. 

Second, consumption in the model of Campbell (1994) shrinks, in contrast to the 
increase in this variable in the model of Greenwood et al. (1988). In both models, 
the shock to investment has three effects on current consumption. The first is the 
intratemporal substitution that allows an increase in consumption, similar in both 
models. The second is the wealth effect, which also increases current consumption, 
similar to both models. The third is the intertemporal substitution effect, which 
differs for each model. In Campbell (1994), the increase in demand for capital,
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under a perfectly inelastic supply, increases the real interest rate, which remains 
above the steady state in period “t+1.” 

This increase in the interest rate at “t+1” induces the household to reduce its 
consumption in “t.” Therefore, the intertemporal substitution effect in Campbell 
(1994) model reduces consumption. In contrast, in the model of Greenwood et al. 
(1988), the curve that expands is not the demand for capital but the supply of 
services of capital, which in equilibrium produces an interest rate level below 
the steady state. This level, but to a lesser extent, is maintained in period “t+1,” 
which induces the household to increase its consumption in “t.” Consequently, the 
intertemporal substitution effect in the model of Greenwood et al. (1988) increases 
the consumption. 

Third, investment increases in both models, although to a lesser extent in the 
model by Greenwood et al. (1988). This lower volatility responds to the fact that 
resources are allocated to an increase in consumption, leaving fewer resources for 
investment. This differs from Campbell (1994) model, in which consumption is 
reduced by an increase in the interest rate, which makes investment more attractive. 
This reduction in consumption encourages a shift of resources toward investment. A 
direct effect of lower investment is lower capital accumulation, as seen in the capital 
impulse-response function. 

Fourth, similarities and differences are observed in the labor market between the 
model of Campbell (1994) and the model of Greenwood et al. (1988). The main 
similarity is that the number of hours worked increases in both models, although to 
a lesser extent in the model by Greenwood et al. (1988) because the labor supply is 
not subject to the wealth effect (. ct is not present in said offer). The main difference 
is that the real wage increases in the model of Greenwood et al. (1988) but is reduced 
in the model of Campbell (1994). The reduction in real wages in Campbell (1994) 
model is due to the fact that the labor supply expands due to the present wealth 
effect (given that consumption contracts, the household then decides to work more). 
This curve movement is absent in the model proposed by Greenwood et al. (1988). 

6.3.2.2 Comparison of the Theoretical Model with the Data 

To calculate empirical statistics, Greenwood et al. (1988) use annual data from 1948 
to 1985. In addition, the extraction process of the cyclical component, both in the 
data and in the model, is by means of a “linear quadratic trend.” This is an important 
difference from the usual method of separating the trend from RBC models, which 
use the Hodrick-Prescott filter. 

Table 6.11 shows each model variable’s empirical and theoretical moments. 
Given that in previous sections, the policy function and the impulse-response 
function of two models (.γ = 1 vs. .γ = 2) have been considered, this section 
shows the moments obtained from each of these models. It is worth mentioning that 
the theoretical moments derived from the model are obtained from a simulation and 
without applying any filter. Therefore, the standard deviations are not comparable 
to the data, but the correlation and autocorrelation are.
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Table 6.11 Comparison of the cyclical behavior of the theoretical model with the empirical data 

Data Model 

Model 1 (.γ = 1) Model 2 (.γ = 2) 

Variable (. xt ) (1).a (2). b (3).c .(1)a .(2)b .(3)c (4).d .(1)a .(2)b .(3)c . (4)d

Consumption 2.20 0.74 0.72 1.27 0.51 0.97 1.00 1.21 0.80 0.95 1.00 

Investment 10.50 0.68 0.25 8.27 0.86 0.44 . −0.01 6.46 0.90 0.50 0.46 

Commodity 3.50 1.00 0.66 1.96 1.00 0.66 0.51 1.96 1.00 0.66 0.80 

Stock 3.38 0.71 0.98 0.97 3.20 0.65 0.99 0.97 

Labor 2.10 0.81 0.39 1.22 1.00 0.66 0.51 1.23 1.00 0.66 0.80 

Usage rate 3.36 0.55 0.48 . −0.44 3.42 0.61 0.53 0.01 

Real salary 
interest rate 

1.80 . −1.00 0.66 . −0.51 1.80 . −1.00 0.66 . −0.80 

Real salary 2.20 0.82 0.77 0.73 1.00 0.66 0.51 0.74 1.00 0.66 0.80 

Depreciation 4.77 0.55 0.48 . −0.44 4.86 0.61 0.53 0.01 

Remark: Empirical values were taken from Greenwood et al. (1988), who considered the 
variables in logarithms and extracted the trend through a linear-quadratic time trend. The 
theoretical values were obtained from a single simulation, and no filter was applied to obtain the 
cyclical component of the variables. These values are obtained from the “model_ghh_log1.mod” 
file 

a (1) . = Standard deviation (%) 
b (2) . = Correlation with the product 
c (3) . = First order autocorrelation 
d (4) . = Correlation with consumption 

The main conclusion that emerges from Table 6.11 is that the model with . γ = 2
(lower EISC) allows us to obtain two stylized facts that the standard RBC model 
could not: the first is that the correlation of consumption with investment is positive, 
and the second is that consumption is procyclical. The second conclusion is that, in 
general, the moments inferred by the model were close to those observed in the 
data. Finally, all these values are obtained considering the persistence of the shock 
to investment (.φ = 0.51) compared with the standard RBC models (.φ = 0.9). 

6.4 Summary 

This chapter presents an RBC model that incorporates two main features: (i) a shock 
to the marginal efficiency of investment and (ii) the possibility that capital is used 
in a variable way; that is, there is idle capital in the economy.
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The motivation to study such a model serves several purposes. First, we show 
how RBC models can consider shocks that do not have their origin in technological 
disturbances. Second, including a shock to investment can reduce the necessary 
magnitude of the shocks to technology to explain the stylized facts present in 
the aggregate fluctuations. Finally, it is possible to argue that adding a shock 
to the marginal efficiency of capital rescues an important part of the spirit of 
Keynes’s General Theory and the role played by investment shocks in explaining 
macroeconomic fluctuations. 

We start by studying a standard RBC model in which we include a shock to 
investment but assume that capital is fully utilized over the business cycle. After 
solving the model, we show that the empirical implication of the model is that 
consumption is countercyclical, whereas it is procyclical in the data. This result 
is invariant to increasing labor or consumption substitution elasticities in the base 
model. The rest of the theoretical moments behave in a similar way to the model 
with the variable labor reviewed in previous chapters. 

We then incorporate a new transmission mechanism into the standard RBC 
model: we allow firms to use a variable fraction of their capital; that is, they have 
idle capital. Including such a mechanism seems natural, given that capital is never 
fully utilized during the business cycle. 

By incorporating this mechanism into the model, we achieve the following: (i) 
the countercyclical behavior in consumption disappears, with which we are able to 
qualitatively replicate all the patterns of comovements in the data that the model 
with variable work had, and (ii) we managed to reduce the magnitude of the shock 
to the technology needed to replicate the stylized facts of interest, which has been 
commonly pointed out as a deficiency in RBC models. 

As we wrap up our review of RBC models in the chapters of this book, we 
should note that substantive progress has been made in bringing the stylized facts 
of economic fluctuations closer to those predicted by RBC models. However, two 
stylized facts that we have continually failed to approximate are the countercyclical 
behavior of the interest rate and the acyclical behavior of wages relative to output. 
Additionally, the models studied have all been “real,” in the sense that the effects 
of nominal variables such as inflation, money, and the nominal interest rate have 
not been studied. In the next volume, we review these issues in the framework of 
neo-Keynesian models. 

6.5 Codes 

Table 6.12 lists the MATLAB and Dynare codes used in this chapter.
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Table 6.12 Codes in Matlab and Dynare 

Codes Description 

Matlab 

grafica_depreciacion.m This m-file plots depreciation as a function of 
capital utilization and three values of . ω

Campbell_vs_GHH.m Plot the impulse-response function of the 
model of Campbell (1994) vs. Greenwood et al. 
(1988). Both models have the same calibration 
proposed by Greenwood et al. (1988) 

Dynare 

modelo_ghh_log1.mod It replicates the model of Greenwood et al. 
(1988). Furthermore, it simulates the model for 
two scenarios: E1 (.γ = 1, .φ = 0.47, 
.σv = 0.05) and E2 (.γ = 2, .φ = 0.51, 
.σv = 0.0515) 

modelo_ghh_log2.mod It is the same model as 
“model_ghh_log1.mod,” but with some 
parameters to reproduce an RBC model with 
fixed usage 

Campbell_Lvariable_nolineal_log5_inv.mod It is the same 
“Campbell_Lvariable_nonlinear_log5.mod” 
mod from Chap. 5, with the only difference 
being that it has shock on investment when 
compared to Greenwood et al. (1988) model



Chapter 7 
Small Open Economy RBC 

7.1 Introduction 

This chapter delves into the small open economy RBC model, which is a natural 
extension of the baseline RBC model that incorporates international trade and cross-
border financial flows. The growing pace of globalization and economic integration 
has increased the importance of studying this setup, as it provides insights into 
the behavior of macroeconomic aggregates in response to external shocks and the 
propagation of international disturbances. 

The small open economy RBC model is based on the pioneering work of 
Mendoza (1991). One of the model’s main features is its access to international 
financial markets, allowing domestic agents to separate their savings and investment 
decisions. This modification enables the model to capture the implications of inter-
national capital flows on the economy’s aggregate demand, capital accumulation, 
and welfare. We also consider alternative specifications presented in the literature, 
aiming to establish a unique steady state. These alternatives are mostly summarized 
in Schmitt-Grohe and Uribe (2003). Another key feature of the small open economy 
RBC model is the assumption that the economy is “small” in the sense that the size 
of the economy is approximated to zero. This assumption implies that domestic 
shocks do not affect the rest of the world, and therefore, domestic agents take 
international prices as given. 

Furthermore, we explore the model’s predictions regarding the dynamics of 
the economy at business cycle frequencies and compare them with the data. We 
investigate some of the most frequently used mechanisms to improve the model’s fit 
and offer intuitive explanations for them. In summary, this chapter aims to provide 
a comprehensive understanding of the small open economy RBC model and its 
relevance in the domain of international macroeconomic dynamics. Through this 
analysis, our goal is to enhance our comprehension of the factors influencing the 
fluctuations of macroeconomic aggregates and the channels through which they 
operate. 
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7.2 Empirics 

In this section, we extend the characterization of business cycles discussed in 
Chap. 1 to a broader set of countries. Our analysis focuses on the cyclical behavior 
of key variables in international commerce and finance, including output (Y ), total 
private consumption (C), investment (I ), public consumption (G), exports (X), 
imports (M), the trade balance (.T B = X − M), and the current account (CA), 
all measured in per capita terms. 

One of the main sources of stylized facts about business cycles is the work 
of Uribe and Schmitt-Grohé (2017). Using the World Bank’s World Development 
Indicators (WDI) database, these authors characterized business cycles around the 
world over the 1960–2010 period. Their analysis focused on three key criteria: 
variability, direction, and persistence of the aggregated variables mentioned above. 
To filter the cyclical component of each series, the authors considered quadratic 
detrending, HP filtering, and first differences. 

Their findings are summarized in Table 7.1, which presents ten stylized facts 
characterizing business cycles around the world. We build on this work and update 
the analysis by examining real business cycles around the world over the period 
1990–2020, following the methodology proposed by Uribe and Schmitt-Grohé 
(2017) to calculate the statistics and document the treatment of the data in detail. 

As in previous chapters, we focus on certain moments in the data, including 
the standard deviation related to variability, the cross-correlation with cyclical 
component of the GDP per capita related to co-movement with the business cycle, 
and the first-order correlation that provides information on persistence. We also 
characterize business cycles of countries exhibiting different levels of wealth. We 
classify countries into these groups using their PPP-converted GDP per capita in US 
dollars of 2005, and we also categorize them by size using their total population. 

To begin, we define the variables used in the analysis and describe in detail the 
treatment of the variables for analysis through econometric tools. We then present 
the results using three different filters for the data: (1) Hodrick-Prescott, (2) log-
quadratic detrending, and (3) first differences. Finally, we arrive to ten stylized 
facts characterizing business cycles around the world using updated data, which 
are similar to those documented by Uribe and Schmitt-Grohé (2017). 

7.2.1 Construction of the Macroeconomic Series 

In order to characterize the business cycles of various countries, it is necessary 
to obtain macroeconomic time series data. The selected variables are listed in 
Table 7.2. 

The data used in this chapter is from World Bank’s World Development 
Indicators (WDI) database. After obtaining the dataset, we remove the countries 
that do not report continuous data for every aggregate variable across the period of



Ta
bl
e 
7.
1 

St
yl
iz
ed
 f
ac
ts
 o
f 
gl
ob

al
 m

ac
ro
ec
on

om
ic
 fl
uc
tu
at
io
ns
 

St
yl
iz
ed
 f
ac
t

D
es
cr
ip
tio

n 

H
ig
h 
ou

tp
ut
 v
ol
at
ili
ty

T
he
 c
ro
ss
-c
ou
nt
ry
 a
ve
ra
ge
 s
ta
nd
ar
d 
de
vi
at
io
n 
of
 o
ut
pu
t i
s 
tw
ic
e 
as
 la
rg
e 
as
 it
s 
U
S 
co
un
te
rp
ar
t. 
T
hi
s 
im

pl
ie
s 
th
at
 b
us
in
es
s 

cy
cl
es
 a
ro
un

d 
th
e 
w
or
ld
 a
re
 g
en
er
al
ly
 m

or
e 
vo
la
til
e 
th
an
 th

os
e 
in
 th

e 
U
ni
te
d 
St
at
es
 

E
xc
es
s 
co
ns
um

pt
io
n 
vo
la
til
ity

T
he
 a
ve
ra
ge
 a
cr
os
s 
co
un
tr
ie
s 
of
 p
ri
va
te
 c
on
su
m
pt
io
n 
in
cl
ud
in
g 
du
ra
bl
es
 is
 m

or
e 
vo
la
til
e 
th
an
 o
ut
pu
t. 
T
hi
s 
su
gg
es
ts
 th

at
 

ho
us
eh
ol
ds
 te
nd
 to

 s
m
oo
th
 th

ei
r 
co
ns
um

pt
io
n 
le
ss
 th

an
 fi
rm

s 
ad
ju
st
 th

ei
r 
pr
od
uc
tio

n 
in
 r
es
po
ns
e 
to
 m

ac
ro
ec
on
om

ic
 s
ho
ck
s 

G
lo
ba
l r
an
ki
ng

 o
f 
vo
la
til
iti
es

T
he
 r
an
ki
ng
 o
f 
cr
os
s-
co
un
tr
y 
av
er
ag
e 
st
an
da
rd
 d
ev
ia
tio

ns
 f
ro
m
 to

p 
to
 b
ot
to
m
 is
 im

po
rt
s,
 in
ve
st
m
en
t, 
ex
po
rt
s,
 g
ov
er
nm

en
t 

sp
en
di
ng
, c
on
su
m
pt
io
n,
 a
nd
 o
ut
pu
t. 
T
hi
s 
ra
nk
in
g 
re
fle
ct
s 
th
e 
re
la
tiv

e 
im

po
rt
an
ce
 o
f 
di
ff
er
en
t c
om

po
ne
nt
s 
of
 a
gg
re
ga
te
 

de
m
an
d 
in
 d
ri
vi
ng
 b
us
in
es
s 
cy
cl
es
 a
cr
os
s 
co
un
tr
ie
s 

Pr
oc
yc
lic
al
ity

 o
f 
th
e 
co
m
po
ne
nt
s 
of
 

ag
gr
eg
at
e 
de
m
an
d 

O
n 
av
er
ag
e,
 c
on

su
m
pt
io
n,
 in
ve
st
m
en
t, 
ex
po

rt
s,
 a
nd

 im
po

rt
s 
ar
e 
al
l p

os
iti
ve
ly
 c
or
re
la
te
d 
w
ith

 o
ut
pu

t. 
T
hi
s 
in
di
ca
te
s 
th
at
 th

e 
co
m
po

ne
nt
s 
of
 a
gg

re
ga
te
 d
em

an
d 
te
nd

 to
 m

ov
e 
to
ge
th
er
 w
ith

 o
ve
ra
ll 
ec
on

om
ic
 a
ct
iv
ity

 

C
ou

nt
er
cy
cl
ic
al
ity

 o
f 
th
e 
tr
ad
e 

ba
la
nc
e 
an
d 
th
e 
cu
rr
en
t a
cc
ou
nt
 

O
n 
av
er
ag
e 
ac
ro
ss
 c
ou
nt
ri
es
, t
he
 tr
ad
e 
ba
la
nc
e,
 th

e 
tr
ad
e 
ba
la
nc
e 
to
 o
ut
pu
t r
at
io
, t
he
 c
ur
re
nt
 a
cc
ou
nt
, a
nd
 th

e 
cu
rr
en
t a
cc
ou
nt
 

to
 o
ut
pu

t r
at
io
 a
re
 a
ll 
ne
ga
tiv

el
y 
co
rr
el
at
ed
 w
ith

 o
ut
pu

t. 
T
hi
s 
im

pl
ie
s 
th
at
 c
ou

nt
ri
es
 te
nd

 to
 r
un

 tr
ad
e 
su
rp
lu
se
s 
w
he
n 
th
ei
r 

ec
on

om
ie
s 
ar
e 
w
ea
k 
an
d 
de
fic

its
 w
he
n 
th
ey
 a
re
 s
tr
on

g 

A
cy
cl
ic
al
ity

 o
f 
th
e 
sh
ar
e 
of
 

go
ve
rn
m
en
t c
on
su
m
pt
io
n 
in
 G
D
P 

O
n 
av
er
ag
e 
ac
ro
ss
 c
ou
nt
ri
es
, t
he
 s
ha
re
 o
f 
go
ve
rn
m
en
t c
on
su
m
pt
io
n 
in
 o
ut
pu
t i
s 
ro
ug
hl
y 
un
co
rr
el
at
ed
 w
ith

 o
ut
pu
t. 
T
hi
s 

su
gg
es
ts
 th

at
 c
ha
ng
es
 in

 g
ov
er
nm

en
t s
pe
nd
in
g 
do
 n
ot
 p
la
y 
a 
m
aj
or
 r
ol
e 
in
 d
ri
vi
ng
 b
us
in
es
s 
cy
cl
es
 a
cr
os
s 
co
un
tr
ie
s 

Pe
rs
is
te
nc
e

T
he
 c
om

po
ne
nt
s 
of
 a
gg
re
ga
te
 s
up
pl
y 
(o
ut
pu
t a
nd
 im

po
rt
s)
 a
nd
 a
gg
re
ga
te
 d
em

an
d 
(c
on
su
m
pt
io
n,
 g
ov
er
nm

en
t s
pe
nd
in
g,
 

in
ve
st
m
en
t, 
an
d 
ex
po

rt
s)
 a
re
 a
ll 
po

si
tiv

el
y 
se
ri
al
ly
 c
or
re
la
te
d.
 T
hi
s 
m
ea
ns
 th

at
 d
ev
ia
tio

ns
 f
ro
m
 tr
en
d 
te
nd

 to
 p
er
si
st
 o
ve
r 
tim

e 
in
 a
ll 
m
aj
or
 c
om

po
ne
nt
s 
of
 th

e 
ec
on
om

y 

E
xc
es
s 
vo
la
til
ity

 o
f 
po

or
 a
nd

 
em

er
gi
ng

 c
ou

nt
ri
es
 

B
us
in
es
s 
cy
cl
es
 in

 r
ic
h 
co
un

tr
ie
s 
ar
e 
ab
ou

t h
al
f 
as
 v
ol
at
ile

 a
s 
bu
si
ne
ss
 c
yc
le
s 
in
 e
m
er
gi
ng

 o
r 
po

or
 c
ou

nt
ri
es
. T

hi
s 
su
gg

es
ts
 

th
at
 e
co
no

m
ic
 d
ev
el
op

m
en
t a
nd

 fi
na
nc
ia
l i
nt
eg
ra
tio

n 
pl
ay
 im

po
rt
an
t r
ol
es
 in

 d
et
er
m
in
in
g 
th
e 
le
ve
l o

f 
m
ac
ro
ec
on

om
ic
 

vo
la
til
ity

 a
cr
os
s 
co
un

tr
ie
s 

L
es
s 
co
ns
um

pt
io
n 
sm

oo
th
in
g 
in
 

po
or
 a
nd
 e
m
er
gi
ng
 c
ou
nt
ri
es
 

T
he
 r
el
at
iv
e 
co
ns
um

pt
io
n 
vo
la
til
ity

 is
 h
ig
he
r 
in
 p
oo

r 
an
d 
em

er
gi
ng

 c
ou

nt
ri
es
 th

an
 in

 r
ic
h 
co
un

tr
ie
s.
 T
hi
s 
im

pl
ie
s 
th
at
 

ho
us
eh
ol
ds
 in

 th
es
e 
co
un
tr
ie
s 
te
nd
 to

 a
dj
us
t t
he
ir
 c
on
su
m
pt
io
n 
m
or
e 
in
 r
es
po
ns
e 
to
 in

co
m
e 
sh
oc
ks
 

T
he
 c
ou

nt
er
cy
cl
ic
al
ity

 o
f 

go
ve
rn
m
en
t s
pe
nd
in
g 
in
cr
ea
se
s 

w
ith

 in
co
m
e 

T
he
 s
ha
re
 o
f 
go
ve
rn
m
en
t c
on
su
m
pt
io
n 
is
 c
ou
nt
er
cy
cl
ic
al
 in

 r
ic
h 
co
un
tr
ie
s 
bu
t a
cy
cl
ic
al
 in

 e
m
er
gi
ng
 a
nd
 p
oo
r 
co
un
tr
ie
s.
 T
hi
s 

su
gg
es
ts
 th

at
 th

e 
ro
le
 o
f 
go
ve
rn
m
en
t i
n 
st
ab
ili
zi
ng
 th

e 
ec
on
om

y 
m
ay
 d
ep
en
d 
on
 th

e 
le
ve
l o

f 
ec
on
om

ic
 d
ev
el
op
m
en
t a
nd
 th

e 
st
ru
ct
ur
e 
of
 th

e 
pu
bl
ic
 s
ec
to
r 

N
ot
e:
 T
hi
s 
ta
bl
e 
pr
es
en
ts
 th

e 
st
yl
iz
ed
 f
ac
ts
 id

en
tifi

ed
 b
y 
U
ri
be
 a
nd

 S
ch
m
itt
-G

ro
hé
 (
20
17
) 
on
 g
lo
ba
l m

ac
ro
ec
on

om
ic
 fl
uc
tu
at
io
ns
. T

he
se
 f
ac
ts
 h
av
e 
be
en
 d
is
til
le
d 
fr
om

 
ex
te
ns
iv
e 
em

pi
ri
ca
l a
na
ly
si
s 
of
 c
ro
ss
-c
ou
nt
ry
 d
at
a,
 a
nd
 th

ey
 p
ro
vi
de
 im

po
rt
an
t i
ns
ig
ht
s 
in
to
 th

e 
ke
y 
fe
at
ur
es
 o
f 
bu
si
ne
ss
 c
yc
le
s 
ar
ou
nd
 th

e 
w
or
ld



326 7 Small Open Economy RBC

Table 7.2 Variables included 
in the study 

Variable Description 

.Yt GDP per capita 

.Ct Consumption per capita 

.It Investment per capita 

.Gt Government spending per capita 

.Xt Exports per capita 

.Mt Imports per capita 

.T Bt Trade balance per capita 

.CAt Current account per capita 

analysis (1990–2020). The Python code for this algorithm is available in the codes 
document of this book. 

For the variables . Yt , . Ct , . It , . Gt , . Xt , and . Mt , we transform the data to natural 
logarithms. Since logarithms can only transform positive values, this procedure is 
applied only to the positive-valued variables. For the ratios of interest, i.e., the ratio 
of government spending to GDP, the ratio of trade balance to GDP, and the ratio of 
current account to GDP, we do not transform the data to logarithms as deviations 
already reflect percentage variations. 

In macroeconomics, logarithmic transformations of variables are employed to 
facilitate their interpretation. Specifically, deviations of data in logarithms can be 
approximated as percentage changes, thereby providing an intuitive and meaningful 
way to study real-time series. The rationale for interpreting deviations in variables 
in logarithmic form as percentage changes is explained in the following chart: 

Approximation of the subtraction of logarithms 
Let X be the percentage change between A and B, where B is different from 
zero: 

. (A − B)/B = Δ%x

A/B − 1 = Δ%x

A/B = 1 + Δ%x (7.1) 

Now, we take logarithms for both sides of Eq. (7.1) and get 

. ln(A/B) = ln(1 + Δ%x)

ln(A) − ln(B) = ln(1 + Δ%x) (7.2) 

The left side of Eq. (7.2) can be approximated using the Taylor approximation, 
which consists of approximating the function .f (x) around a fixed point a, as  
follows: 

(continued)
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. f (x) ≈ f (a) + f '(a)

1! (x − a) + f ''(a)

2! (x − a)2 + f '''(a)

3! (x − a)3 + ...

Let .f (Δ%x) = ln(1 + Δ%x) and .a = 0 the fixed point. Using the Taylor 
approximation 

. ln(1 + Δ%x) ≈ ln(1) + Δ%x − (Δ%x)2

2
+ (Δ%x)3

3
+ ...

For small values of .Δ%x, the terms at the right-hand side of .Δ%x are very 
close to zero; therefore, the Taylor expansion stays as a first-order Taylor 
approximation: 

.ln(1 + Δ%x) ≈ Δ%x (7.3) 

Finally, using the result on Eq. (7.3), we observe that the subtraction of the 
logarithm of two values is approximately the percentage variation: 

. ln(A) − ln(B) ≈ Δ%x

The analysis of business cycles extends beyond aggregate variables to include 
ratios, such as the trade balance to GDP ratio .(tb/y). However, treating ratios as 
aggregate variables can be misleading, and it is crucial to understand the nature 
of the variables involved. To interpret deviations of an aggregated variable as a 
percentage variation, it is necessary to transform the data into logarithms. Yet, if the 
variable is defined as a ratio, the deviation already reflects a percentage variation. 
Therefore, there is no need to transform the data to logarithms for the ratios of 
interest, which include the government spending to GDP ratio, the trade balance to 
GDP ratio, and the current account to GDP ratio: 

• Ratio of government spending to GDP 
• Ratio of trade balance to GDP 
• Ratio of current account to GDP 

Finally, there are still aggregate variables, like the trade balance (.T Bt ) and 
the current account (.CAt ), which fluctuate between positive and negative values 
throughout the analysis period. In such cases, it is not possible to interpret 
percentage variation using logarithmic transformation. To address this issue, Uribe 
and Schmitt-Grohé (2017) propose an alternative approach for aggregate variables 
with negative values, which involves scaling the variables by the trend component 
of the GDP series.



328 7 Small Open Economy RBC

Consider a time series denoted by . yt . To analyze fluctuations in the business 
cycle, we decompose . yt into a trend component, . ys

t , and a cyclical component, . yc
t , 

as follows: 

.yt = ys
t + yc

t (7.4) 

The trend component . ys can be estimated using a filter, such as a linear-quadratic 
filter or a Hodrick-Prescott filter, while the cyclical component . yc represents 
the deviations from the trend. The way of calculating both trend and cyclical 
components of a series is explained in the next section. In our case, we scale the 
variable in the following manner: 

.yt = Yt

eys
t

(7.5) 

By doing so, deviations from the trend are measured as a percentage of the trend 
of GDP. Note that . ys is obtained by detrending a logarithmic series, and therefore, 
it represents the trend component of the series of GDP per capita in logarithms. 
The exponential function is used to recover the series in levels. Dividing the trade 
balance .T Bt by . eys

yields the ratio that measures the percentage deviations of the 
trade balance from the trend GDP in levels. This approach is applied to the trade 
balance and the current account. 

Once all the variables are appropriately converted or scaled, they are filtered to 
extract the cyclical component. The final database comprises the following variables 
for each country in the sample during the period 1990–2020, with the notation 
presented below. 

7.2.2 Detrending Techniques for Extraction of the Cyclical 
Component 

To extract the cyclical component from macroeconomic time series, it is necessary 
to first obtain the trend component. The method used to detrend the series can have a 
significant impact on the estimated cyclical component. In this section, we describe 
three different methods for detrending: log-quadratic detrending, Hodrick-Prescott 
(HP) filtering, and first differences.
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Variable Description Unit 

.yt GDP per capita Logs 

.ct Consumption per capita Logs 

.it Investment per capita Logs 

.gt Government spending per capita Logs 

.xt Exports per capita Logs 

.mt Imports per capita Logs 

.g/y Ratio of government spending to GDP Levels 

.tb/yt Ratio of trade balance to GDP Levels 

.ca/yt Ratio of current account to GDP Levels 

.tbt Trade balance Scaled 

.cat Current account Scaled 

7.2.2.1 Log-Quadratic Detrending 

We begin with log-quadratic detrending, which is used by Uribe and Schmitt-Grohé 
(2017). To illustrate this method, we use Canadian data and run the following 
regression for .yt = ln(GDPt) on a trend t and the square of the trend . t2: 

. yt = α + β1t + β2t
2 + ϵt

where . ϵt is the perturbation term and .α, β1, and . β2 are the parameters to estimate. 
The independent variable t represents the year, which is in the interval [1961– 

2021]. It is important to note that the units of the independent variable can affect 
the estimation results. Using years for t instead of a sequential index can prevent a 
strong correlation between the regressors t and . t2. 

After running the regression, we obtain the estimated parameters .  ̂α, .  ̂β1, and .  ̂β2. 
The trend component of the series . yt is given by the fitted values: 

. ̂y s
t =  ̂α +  ̂β1t +  ̂β2t

2 (7.6) 

The cyclical component is given by the estimated errors: 

.  ̂y c
t = yt −  ̂y s

t

The trend component of the series . yt is the vector .  ̂y s
t , and the cyclical component 

is .  ̂y c
t . Intuitively, business cycles are deviations from the trend component of the 

series. Figure 7.1 shows the detrended series of . yt . 
We follow the same procedure for variables . ct and . it . Figure 7.2 shows the 

cyclical components of each variable. The method applied to the Canadian data 
captures some of the key moments of the Canadian economy over the last decades.
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Fig. 7.1 Canada GDP per capita (in logs) and trend component (1961–2021). The trend compo-
nent has been obtained by log-quadratic detrending the variable 

1970 1980 1990 2000 2010 2020
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Fig. 7.2 Canada GDP per capita (in logs), consumption and investment (1961–2021)
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[Obs1] Despite the global inflation problems, Canada grew considerably during the 
1970s, benefiting from the increased oil prices, particularly in the Alberta region. 

[Obs2] In the early 1980s, the Canadian economy, as well as other G7 countries, 
experience a marked slowdown, which is attributed to a weak fiscal position and the 
increase in global interest rates to combat inflation. 

[Obs3] In the early 1990s, Canada experienced a recession, lasting until 1992. The 
downturn in global demand for Canadian exports and a decline in commodity prices 
deeply affected the economy. 

[Obs4] Finally, the COVID-19 pandemic is captured at the end of the sample, 
reflecting the downturn experienced due to the severe lockdown and sanitary 
measures implemented. 

In the same way, Fig. 7.3 compares the cyclical components of the ratio trade 
balance to GDP and the ratio current account to output. 

Thus far, we have shown how to apply log-quadratic detrending. The next task 
is to proceed with the remaining countries in the sample. There are in total 76 
countries, each country with 11 variables properly transformed and scaled. The 
quadratic detrending has to be applied to each variable for every country on the 

Fig. 7.3 Canada GDP per capita (in logs), trade balance to GDP ratio, and current account to 
output ratio (1961–2021)
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Table 7.3 Log-quadratic detrending (1990–2020) 

Statistic All countries Poor Emerging Rich Small Medium Large 

Standard deviations 

.σy 4.26 3.96 4.81 3.23 4.65 3.92 3.74 

.σc/σy 1.36 1.59 1.34 1.26 1.42 1.32 1.22 

.σg/σy 2.46 4.08 2.5 1.53 2.36 2.55 2.59 

.σi/σy 4 6.05 3.77 3.44 4.11 4.27 3.2 

.σx/σy 3.74 5.97 3.6 2.88 3.13 4.23 4.66 

.σm/σy 3.6 5.69 3.46 2.8 2.98 4.08 4.51 

.σtb/y 3.45 4.02 3.82 2.35 4.25 2.92 2.09 

.σca/y 3.31 3.81 3.45 2.74 3.97 2.87 2.14 

Correlations with y 
y 1 1 1 1 1 1 1 

c 0.62 0.42 0.63 0.69 0.59 0.63 0.69 

.g/y −0.27 −0.24 −0.17 −0.5 −0.32 −0.23 −0.21 

i 0.65 0.42 0.65 0.76 0.58 0.75 0.66 

x 0.36 0.44 0.35 0.35 0.43 0.32 0.22 

m 0.51 0.39 0.52 0.55 0.49 0.57 0.46 

.tb/y −0.24 −0.09 −0.29 −0.22 −0.13 −0.35 −0.36 

tb −0.26 −0.21 −0.32 −0.17 −0.16 −0.38 −0.36 

.ca/y −0.27 −0.13 −0.33 −0.2 −0.2 −0.36 −0.31 

ca −0.29 −0.2 −0.36 −0.19 −0.22 −0.39 −0.31 

Serial correlations 

y 0.55 0.54 0.55 0.55 0.56 0.54 0.54 

c 0.51 0.47 0.52 0.5 0.52 0.49 0.51 

g 0.61 0.48 0.62 0.66 0.59 0.61 0.68 

i 0.51 0.44 0.52 0.53 0.48 0.54 0.54 

x 0.5 0.52 0.51 0.46 0.46 0.51 0.58 

m 0.45 0.51 0.45 0.42 0.43 0.47 0.49 

.tb/y 0.48 0.41 0.49 0.5 0.46 0.51 0.5 

.ca/y 0.45 0.35 0.46 0.48 0.39 0.51 0.53 

sample. Due to the complexity of database management, the code was written in R, 
a powerful programming language to deal with large databases. 

Our results are presented in Table 7.3. We confirm several of the stylized facts 
reported by Uribe and Schmitt-Grohé (2017) with subtle variations on the ranking of 
volatility across variables. The procyclicality of the aggregate demand components 
and the countercyclicality of the trade balance and current account prevail. Also, 
emerging and poor countries exhibit higher business cycle volatility and less 
consumption smoothing than rich countries. Finally, we confirm the relationship 
between the countercyclicality of government expenditure and income.
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Table 7.4 HP filtering (1990–2020) 

Statistics All countries Poor Emerging Rich Small Medium Large 

Standard deviations 

.σy 3 2.73 3.3 2.5 3.29 2.74 2.59 

.σc/σy 1.47 1.83 1.48 1.26 1.52 1.45 1.36 

.σg/σy 2.58 4.67 2.64 1.34 2.4 2.79 2.7 

.σi/σy 4.33 6.56 4.14 3.57 4.61 4.44 3.29 

.σx/σy 3.94 6.58 3.76 2.95 3.32 4.48 4.79 

.σm/σy 3.88 6.01 3.79 2.95 3.28 4.37 4.73 

.σtb/y 2.79 3.2 3.11 1.89 3.46 2.29 1.75 

.σca/y 2.7 3.18 2.81 2.22 3.3 2.3 1.69 

Correlations with y 
y 1 1 1 1 1 1 1 

c 0.62 0.37 0.64 0.7 0.59 0.61 0.72 

.g/y −0.33 −0.14 −0.24 −0.62 −0.39 −0.27 −0.25 

i 0.62 0.37 0.62 0.74 0.55 0.67 0.71 

x 0.36 0.36 0.29 0.51 0.46 0.29 0.2 

m 0.49 0.32 0.47 0.64 0.49 0.51 0.48 

.tb/y −0.21 −0.02 −0.28 −0.17 −0.1 −0.27 −0.41 

tb −0.23 −0.1 −0.31 −0.13 −0.12 −0.29 −0.42 

.ca/y −0.23 −0.06 −0.33 −0.13 −0.16 −0.27 −0.4 

ca −0.25 −0.11 −0.35 −0.12 −0.18 −0.29 −0.4 

Serial correlations 

y 0.39 0.34 0.4 0.38 0.39 0.34 0.46 

c 0.33 0.3 0.34 0.32 0.34 0.29 0.37 

g 0.45 0.32 0.46 0.51 0.42 0.46 0.52 

i 0.34 0.21 0.35 0.4 0.32 0.36 0.38 

x 0.3 0.33 0.3 0.28 0.27 0.31 0.38 

m 0.28 0.31 0.27 0.28 0.25 0.29 0.35 

.tb/y 0.33 0.24 0.34 0.35 0.3 0.35 0.35 

.ca/y 0.29 0.17 0.3 0.32 0.23 0.34 0.34 

Now, we consider the HP filter detrending method. The results are shown in 
Table 7.4. All stylized facts prevail. The main difference between the business-
cycle facts derived from quadratic detrending and HP filtering is that under the 
latter detrending method all standard deviations fall by about a third. For example, 
the average standard deviation of output falls from 6.2 percent under quadratic 
detrending to 3.8 percent under HP filtering. In all other respects, the log-quadratic 
and HP filters produce very similar business-cycle facts. 

Finally, we present the results of detrending extracting the first differences from 
the series. Table 7.5 show the results, which confirm the findings under the previous
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Table 7.5 First differences (1990–2020) 

Statistics All countries Poor Emerging Rich Small Medium Large 

Standard deviations 

.σΔy 3.37 3.39 3.6 2.86 3.69 3.17 2.77 

.σΔc/σΔy 1.51 1.76 1.55 1.3 1.56 1.48 1.42 

.σΔg/σΔy 1.51 1.76 1.55 1.3 1.56 1.48 1.42 

.σΔi/σΔy 4.44 6.67 4.37 3.4 4.88 4.25 3.48 

.σΔx/σΔy 4.1 5.99 4.08 3.15 3.63 4.38 4.96 

.σΔm/σΔy 4.11 5.34 4.27 3.12 3.64 4.38 4.97 

.σtb/y 3.45 4.02 3.82 2.35 4.25 2.92 2.09 

.σca/y 3.31 3.81 3.45 2.74 3.97 2.87 2.14 

Correlations with y 
.Δy 1 1 1 1 1 1 1 

.Δc 0.61 0.39 0.62 0.69 0.57 0.64 0.67 

.g/y −0.27 −0.24 −0.17 −0.5 −0.32 −0.23 −0.21 

.Δi 0.59 0.39 0.59 0.68 0.52 0.64 0.67 

.Δx 0.41 0.32 0.34 0.62 0.54 0.35 0.18 

.Δm 0.5 0.33 0.47 0.67 0.52 0.51 0.44 

.tb/y −0.24 −0.09 −0.29 −0.22 −0.13 −0.35 −0.36 

.ca/y −0.27 −0.13 −0.33 −0.2 −0.2 −0.36 −0.31 

Serial correlations 

.Δy 0.21 0.14 0.23 0.2 0.2 0.18 0.28 

.Δc 0.05 −0.08 0.04 0.13 0.06 0.02 0.06 

.Δg 0.11 −0.1 0.09 0.24 0.07 0.11 0.2 

.Δi 0.01 −0.17 0.01 0.1 −0.04 0.04 0.07 

.Δx 0.01 −0.01 0 0.04 −0.02 0.04 0.04 

.Δm −0.03 −0.05 −0.04 0.02 −0.06 0 0.02 

.tb/y 0.48 0.41 0.49 0.5 0.46 0.51 0.5 

.ca/y 0.45 0.35 0.46 0.48 0.39 0.51 0.53 

two methods. Following Uribe and Schmitt-Grohé (2017), we also calculate the 
cyclical stylized facts classifying the countries by income and size. After confirming 
these stylized facts, we study our baseline model and contrast its results with our 
findings in the data. 

7.3 Model Elements 

The open economy presents two fundamental differences from the closed economy 
case. Firstly, agents can borrow and lend resources from abroad. Consequently, a 
country is not constrained by its own output level and can utilize foreign resources 
to finance its growth during a period of high investment opportunities or elevated
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international demand. Furthermore, domestic agents can benefit from investment 
opportunities abroad, which can improve the return or risk profile of their portfolios. 
These aggregate flows are reflected in the balance of payments. 

Secondly, even if a country exhibits balanced trade and does not consume or 
invest more than it produces, it can still gain by specializing in the production 
of a particular good and trading it for others in the international markets. This 
chapter and the following one will introduce these features into our model from 
the perspective of a small open economy. 

A small open economy is one in which domestic agents’ actions do not affect 
international prices. For example, if domestic agents increase their savings, the 
international interest rate will remain unaffected. Although only a few economies 
should be considered as large economies where domestic dynamics affect world 
prices, this assumption should be kept in mind when studying long-run dynamics 
since small economies can become large in the long horizon. 

This chapter focuses on the dynamics of an economy where only one good exists, 
leaving the case of differentiated goods for the next chapter. Here, we examine the 
dynamics of an economy when domestic agents can use foreign resources to borrow 
and lend. Although this book focuses on DSGE models, it is useful to begin with 
the two-period case to gain insights into the dynamics at infinite horizons. 

7.3.1 Two-Period Small Open Economy Model 

Assuming an economy consisting of households that aim to maximize their lifetime 
utility, we have the following utility function: 

.U0 = u(c1) + βu(c2), 0 < β < 1 (7.7) 

Here, . ct represents the real consumption in period t , and . β denotes the time 
preference parameter that measures the impatience of agents. The utility function 
satisfies the standard assumptions: .u'(·) > 0 and .u''(·) < 0. Moreover, we assume 
that 

. lim
c→0

u'(·) = ∞. (7.8) 

To simplify the analysis, we assume an endowment economy where households 
receive . y1 and . y2 units of the consumption good in periods 1 and 2, respectively. 
This information is known to agents in the first period, and we assume that they 
have perfect foresight and do not face any uncertainty. This simplification enables 
us to focus on the forces that determine the equilibrium in a clearer manner. 

Since households receive fixed endowments . y1 and . y2, the agent is constrained to 
consume exactly the amount of those endowments each period. This implies that the 
level of consumption equals the level of endowment: .ci = yi,∀i=1,2. However, the 
agent can allocate his or her resources intertemporally by bringing resources from 
the future to the present or carrying resources from the present to the future.
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If the agent brings resources from the future to the present, it implies that the 
endowment at period “t = 1” is not sufficient to optimize the level of consumption at 
the current period . c1. Conversely, if the agent carries resources from the present to 
the future, it means that the endowment at period “t = 2” is not sufficient to optimize 
the level of consumption at the following period . c2. 

Agents can make this intertemporal decision by changing their stock of financial 
assets (. at ), which pay an interest rate denoted by r . Therefore, the period budget 
constraints of the representative household are given by 

. a1 − a0 = y1 − c1 + ra0

a2 − a1 = y2 − c2 + ra1.

The idea of introducing financial assets in the budget constraint is devolved in 
detail later on this chapter. Since we consider the two-period deterministic case, we 
set .a2 = 0, which implies that households have no liabilities or assets at the end of 
the two periods. Moreover, we assume households start with zero assets (.a0 = 0). 
Therefore, they can only use the resources they receive from their endowments in 
periods 1 and 2. 

By replacing these assumptions in the period budget constraints, we can obtain 
the intertemporal budget constraint: 

.c1 + c2

1 + r
= y1 + y2

1 + r
. (7.9) 

By allowing the agent to bring resources to the present or carry resources from the 
present to the future, the agent can achieve higher utility. To show this, Fig. 7.4 plots 
the intertemporal budget constraint given in Eq. (7.9) on the indifference curves 
map. 

The left graph of Fig. 7.4 illustrates the case where the use of financial assets 
allows the agent to achieve the optimal path of consumption .{c∗

1} when .y1 < c1. 

Fig. 7.4 Map of indifference curves
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Similarly, the right graph of Fig. 7.4 shows that the agent can attain the optimal level 
of consumption at period “t = 2” due to the use of financial assets when .y2 < c2. 
The only scenario in which the use of financial assets does not increase utility is 
when the endowments are exactly equal to the optimal level of consumption in both 
periods. 

Maximizing the lifetime utility in Eq. (7.7) subject to the intertemporal budget 
constraint in Eq. (7.9) by choosing the consumption path of c yields 

.u'(c1) = β(1 + r)u'(c2). (7.10) 

The equilibrium condition in Eq. (7.10) indicates that the consumption pattern 
depends on the relationship between the subjective discount factor . β and the 
international interest rate r . When domestic agents are relatively more impatient 
(.β < 1/(1+ r)), they consume more in period 1 than in period 2. In contrast, when 
domestic agents are relatively patient (.β > 1/(1+r)), they consume more in period 
2 than in period 1. Thus, we obtain our first result: assuming equal endowments 
in periods 1 and 2, an economy with relatively impatient households will consume 
more in period 1 by running a current account deficit. In contrast, an economy with 
relatively patient households will consume more in period 2 by saving through a 
current account surplus in period 1. 

In the event that .β = 1/(1+ r), we arrive at the  special case where .c1 = c2 = c̄. 
Substituting this condition into the intertemporal budget constraint, we obtain 

.c̄ = (1 + r)y1 + y2

2 + r
(7.11) 

With this solution for consumption, we can determine the other variables in the 
model. By aggregating across agents, such that .Ct = ⎰ 1

0 ct (i)di, .Yt = ⎰ 1
0 yt (i), and 

.Bt = ⎰ 1
0 at (i), we can calculate the amount the economy borrows from or lends 

to the foreign economy. Specifically, we obtain the following expressions for the 
current account balances: 

. CA1 = B1 − B0 = Y1 − C1 = Y1 − (1 + r)Y1 + Y2

2 + r

CA2 = B2 − B1 = Y2 − (1 + r)Y1 + Y2

2 + r
+ r

⎛

Y1 − (1 + r)Y1 + Y2

2 + r

⎞

Further substitutions lead to 

.CA1 = Y1 − Y2

2 + r
. (7.12) 

CA2 = (1 + r) 
Y2 − Y1 
2 + r 

+ r 
Y1 − Y2 
2 + r 

= −
⎛

Y1 − Y2 
2 + r

⎞

. (7.13)
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We can draw two conclusions from this result in the special case of the two-period 
endowment model. First, the current account responds to the pattern of endowment 
income and consumption smoothing, which depends on the relative impatience 
of domestic agents compared to the foreign interest rate. Specifically, when the 
endowment in the first period is higher than the endowment in the second period, 
agents save part of their income for the future to smooth consumption over their 
lifetime. Conversely, if income is higher in the second period, agents draw resources 
from period 2 to period 1, leading to a current account deficit in period 1. 

Next, we examine the response of the economy to transitory and permanent 
changes in income. By increasing the endowment in period 2 by . Δ, we obtain the 
following expressions for the change in the current account balances: 

. ΔCA1 = Δ

2 + r

ΔCA2 = − Δ

2 + r
.

Thus, a positive transitory income shock in the first period leads to an increase 
in consumption in both periods as agents smooth consumption over their lifetime. 
However, a permanent shock has no effect on the current account, as there is no 
need to shift resources intertemporally. In this case, . Y1 and . Y2 increase in the same 
magnitude of the shock; therefore, .Y1−Y2 = Δ does not change after the permanent 
income shock. 

In summary, the two-period endowment model highlights that the current account 
is sensitive to the profile of endowment income and the consumption-smoothing 
behavior of agents. Transitory income shocks lead to a shift in consumption in both 
periods, while permanent shocks have no effect on the current account. 

The two-period endowment model can be extended to an infinite horizon 
while maintaining the perfect foresight assumption. The representative household’s 
lifetime discounted utility is given by 

. U0 =
∞
⎲

t=0

βtu(ct ), 0 < β < 1,

where . ct represents the real consumption in period t . The time preference parameter 
is denoted by . β and utility is characterized by the properties .u'(·) > 0, .u''(·) > 0, 
and .limc→0 u'(·) = ∞. 

In each period, agents receive an endowment . yt and can save in an asset that 
yields a return of .1+ rt units of the consumption good in period .t + 1 (.rt > 0). The 
representative household’s maximization problem is given by 

. max{bt+1,ct }

∞
⎲

t=0

βtu(ct )

s.t. ct + at+1 = yt + at (1 + rt ), given b0, {yt }∞t=0.
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The solution to the representative household’s problem yields . u'(ct ) = β(1 +
rt )u

'(ct+1). When .β = 1
1+r

, the representative household consumes a constant 
amount in every period, .ct = c̄. 

The steady state for net foreign assets, . ̄a, can be obtained assuming convergence 
in the endowment process and a zero current account in the steady state. By 
substituting the solution for . ct in the budget constraint and iterating forward 

. at (1 + rt ) = c̄ − yt + at+1

= c̄ + c̄

1 + r
− yt − yt+1

1 + r
+ at+2

= c̄ + c̄

1 + r
+ c̄

(1 + r)2
− yt − yt+1

1 + r
− yt+2

(1 + r)2
+ at+3

= . . .

Iterating forward, we obtain the following expression for .a0(1 + rt ): 

. a0(1 + rt ) = c̄

∞
⎲

t=0

1

(1 + r)t
−

∞
⎲

t=0

yt

(1 + r)t

a0(1 + rt ) = c̄
1 + r

r
−

∞
⎲

t=0

yt

(1 + r)t

a0(1 + rt ) = c̄
1

1 − β
−

∞
⎲

t=0

yt

(1 + r)t

Now, let . W be the household’s total wealth, represented by the net present value of 
the stream of all the endowments plus the payment received by the initial position 
. a0. Recalling that .β = 1

1+r
, we arrive to  

. a0(1 + rt ) = 1

1 − β
c̄ −

∞
⎲

t=0

βtyt

1

1 − β
c̄ = a0(1 + rt ) +

∞
⎲

t=0

βtyt

c̄ = (1 − β)W

The steady-state value for . b̄ is given by 

.ā(1 + r) = c̄ − ȳ + b̄
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where . ȳ is the value to which the endowment process converges. Solving for . b̄ and 
taking the solution for . ̄c yields 

. ̄a = c̄ − ȳ

r
= − ȳ − (1 − β)W

r
= βW − ȳ

r

Hence, the initial net foreign assets of the economy will determine the steady 
state. In summary, we find that the steady state of the model is dependent on the 
initial conditions. 

7.3.2 Introducing Stochasticity into the Infinite Horizon Model 

In this section, we incorporate stochasticity into the infinite horizon model. In this 
special case, the two primary equations of the model are as follows: 

.u'(ct ) = u'(ct+1). (7.14) 

at (1 + rt ) = at+1 + ct − yt (7.15) 

We log-linearize around the non-stochastic steady state and obtain 

.ĉt = ĉt+1 (7.16) 

and 

.C̄ĉt + W̄ât+1 = (1 + r)W̄ât + W̄ŵt (7.17) 

where . C̄ and . W̄ are the steady state of consumption and wealth, respectively. 
Solving for .ât+1 and . ̂ct , we obtain that both follow unit root processes. This 

result is intuitive, given the consumption smoothing motive and the models reviewed 
in this chapter. The consumption smoothing motive suggests that agents react to 
transitory shocks by permanently changing their consumption. In the two-period 
model, consumption increased or decreased in both periods. In the infinite horizon 
non-stochastic model, long-run equilibrium values were a function of initial wealth. 
In the stochastic case, households react to shocks by saving or borrowing, affecting 
their initial wealth and, consequently, their long-run equilibrium. 

The stochasticity in the model presents a problem, as the steady state becomes 
dependent on initial conditions after every shock, rendering several theoretical 
moments indeterminate.1 To address this issue, the literature has proposed various 
simple mechanisms to induce stationarity of the equilibrium dynamics, including

1 This limits our capacity to contrast the model predictions with the data. Moreover, it creates 
problems regarding how to present impulse-response functions. 



7.4 Building the Model 341

introducing a variable time-preference term. Schmitt-Grohe and Uribe (2003) 
present a comprehensive review of these methods.2 

7.4 Building the Model 

This section presents the main components of the model. As in previous chapters, 
productivity shocks serve as the primary driver of the economy, while the intertem-
poral elasticity of substitution of leisure and the dynamics of capital accumulation 
serve as the primary transmission mechanisms. When modeling an open economy, 
it is important to consider not only the allocation of factors but also their ownership. 
Although both the international financial market and the goods market will be open 
to foreign trade, domestic agents will retain ownership of labor and physical capital. 
These assumptions reflect the segmentation of these markets. Abstraction from 
international migration flows appears to be a natural choice for labor in an open 
economy model.3 For physical capital, market segmentation will be critical. 

Since the model considers only one type of good, Mendoza (1991) relates the 
productivity shock to a shock in terms of trade.4 The productivity shock reflects that 
domestic households can produce more goods with the same amount of capital and 
labor for a period. This triggers an increase in capital through more investment, as in 
the closed economy case. Unlike the closed economy case, however, agents can use 
international financial markets to borrow resources from abroad to finance higher 
investment, which should break the link between aggregate savings and investment. 
This hypothesis was studied in the seminal work of Feldstein and Horioka (1980), 
who argued that if economies are financially integrated, the aggregate savings and 
investment of an individual country should exhibit a low correlation. However, the 
authors found a high positive correlation between savings and investment rates, 
a prominent puzzle in international macroeconomics. Limiting the ownership of 
capital to domestic agents allows us to link the discount factor or interest rate faced 
by domestic agents with the marginal return of investing in physical capital, which 
can help the model match the Feldstein-Horioka findings. 

The dynamics of the labor market are slightly more complex. The shock 
creates substitution and income effects. On one hand, higher productivity increases 
compensation for each hour worked, which in turn increases the incentives to work 
because it is possible to transform an hour of work into more goods. On the other 
hand, agents experience a positive wealth effect, which affects their willingness to

2 Alternatively, it is possible to solve the model using global solution methods and induce 
stationarity by introducing an occasional binding constraint. For a discussion, see Mendoza (1991). 
3 For an open economy RBCmodel incorporating migration and remittances flows, see Mandelman 
and Zlate (2012). 
4 In Chap. 8, we investigate how these two shocks create distinct dynamics within a framework 
comprising three productive sectors. 
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sacrifice leisure. In this context, as in the closed economy model, the elasticity of 
substitution between consumption and leisure becomes crucial for the results. The 
assumption of segmented international labor markets is also key, as only the workers 
of the small country experience this productivity shock. To reduce the impact of 
wealth effects on the supply of labor and wage procyclicality, we follow Greenwood 
et al. (1988) by using a specific utility function that addresses this dimension. 

When formulating an open economy model, it is important to consider several 
aspects that differentiate it from the closed economy models developed in the 
previous chapters. Firstly, in closed economy models, the economy’s resources 
available for each period are limited by the output of that period (. yt ). This means 
that the economy is constrained by its own production, and the allocation of 
consumption (. ct ) or investment (. it ) is strictly regulated by the level of output of 
that period. However, when we “open” the economy, the representative agent can 
interact with the external sector. Hence, domestic agents can borrow resources from 
foreign markets and allocate them to consumption or investment. They can also save 
resources by utilizing international financial markets. In this case, the repayment 
earned in period .t + 1 will depend on the interest rate of the current period (. rf

t ). 
Households have two different types of assets at their disposal in the open econ-

omy model: capital (. kt ) and financial real assets (. at ) in the form of noncontingent 
bonds. The inclusion of the stock of bonds adds an additional control variable to the 
households’ problem. Similar to previous models, households choose consumption 
(. ct ) and investment (. it ). In addition, they also decide on how much to borrow or 
lend in international financial markets (Table 7.6). 

To express the change in the stock of net foreign assets, we subtract the current 
stock from the stock of net foreign assets in the next period .at+1. This can be 
represented by the following equation: 

. Flow of foreign assets at period t : Δat+1 = at+1 − at

If .Δat+1 > 0, households accumulate new foreign assets by lending to the rest of 
the world. If .Δat+1 < 0, the agent decreases their foreign assets by borrowing from 
the rest of the world. If .Δat+1 = 0, households maintain their net foreign assets 
position. 

As a result, households’ budget constraint in an open economy incorporates . at as 
domestic households interact with the rest of the world. This budget constraint can 
be expressed as 

Table 7.6 Net financial assets 

Stock Description 

.at > 0 In aggregate, the economy has a net positive position with respect to the rest of the 
world. The foreign assets are greater than the foreign liabilities 

.at = 0 In aggregate, the economy has a positive position with respect to the rest of the world. 
The foreign assets equal the foreign liabilities 

.at < 0 In aggregate, the economy has a net negative position with respect to the rest of the 
world. The foreign assets are fewer than the foreign liabilities
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.ct + it + at+1 = yt +
⎛

1 + r
f

t−1

⎞

at (7.18) 

The left-hand side of Eq. (7.18) shows the allocation of resources by agents. They 
can either consume . ct , invest in physical capital . it , or hold foreign assets .at+1. The  
right-hand side contains the sources of income of the domestic agents, which are 
the output . yt and the foreign assets from the previous period, including any interest 
paid or received (.rf

t−1at ). 

7.4.1 Households 

[A] Preferences The economy consists of infinite-lived households who derive 
utility from consumption (. ct ) and disutility from labor (. ht ). The functional form 
of the utility function is given by (Greenwood et al. 1988): 

.U(ct , ht ) = (ct − hω
t

ω
)1−γ − 1

1 − γ
(7.19) 

This functional form of the utility function was also used in Chap. 6 to eliminate 
the income effect, which is the effect of the intertemporal substitution of consump-
tion on labor. This assumption helps the model replicate the behavior of wages, 
which exhibit weak procyclicality. 

[B] Law of movement of capital We assume that only domestic households own 
physical capital in the economy. Hence, they have to invest it to supply capital in 
period “t+1.” The law of motion of capital is given by 

.kt+1 = (1 − δ)kt + it (7.20) 

Here, δ ∈ [0, 1) represents the capital depreciation rate. 
[C] Budget constraint The representative household allocates resources to con-
sumption (ct ), investment in physical capital (it ), accumulation of foreign assets 
at+1, and paying the adjustment cost of physical capital Φ(kt+1 − kt ). Households’ 
income is derived from the real salary (wt ) obtained by offering labor, rental income 
(rk 

t ) of the physical capital they own, and financial return on their foreign assets 

(r f 
t−1). These terms form the budget constraint: 

.ct + it + at+1 + Φ(kt+1 − kt ) ≤ wt lt + rt kt +
⎛

1 + r
f

t−1

⎞

at (7.21) 

Here, the function Φ(·) has the following form:
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.Φ(kt+1 − kt ) = φ

2
(kt+1 − kt )

2 (7.22) 

The function Φ satisfies the following conditions: Φ(0) = Φ '(0) = 0. The 
parameter φ measures the cost of adjusting the level of capital stock in one unit and 
will be instrumental in characterizing the dynamics of investment in the business 
cycle. The quadratic term suggests that the more abrupt the change in the stock 
of capital, the higher the costs. Evaluating the first and second derivatives of the 
function yields 

.Φ ' = φ(kt+1 − kt ). (7.23) 

Φ '' = φ (7.24) 

[D] Closing the model To induce stationarity, we assume that the interest rate is 
elastic to the level of net foreign assets, following Schmitt-Grohe and Uribe (2003). 
That is, as at falls below its long-run level ā, the risk premium component of the 
interest rate increases. We can express this relationship as follows: 

.r
f
t = r∗(exp(εn

t )) + rpt (7.25) 

where εn 
t represents the transitory deviations of the international interest rate and 

rpt is the risk premium, defined as follows: 

.rpt = χ(exp (−at − d̄) − 1), (7.26) 

where χ >  0 and d̄ is the exogenous level of steady-state debt.5 

[E] The optimization problem The households’ problem consists of maximizing 
the expected discounted utility stream by choosing optimal sequences of consump-
tion (ct ), labor supply (ht ), capital stock (kt+1), and noncontingent one-period real 
bonds (at+1): 

. Max{ct ,ht ,at+1,kt+1}
E0

⎾ ∞
⎲

k=0

βt

⎛

(ct − hω
t

ω
)1−γ − 1

1 − γ

⎞⏋

subject to the sequence of budget constraints and the law of motion of capital 

.ct + it + at+1 + Φ (kt+1 − kt ) = wtht + rk
t kt + (1 + r

f

t−1)at + Γt , ∀t . (7.27) 

kt+1 = (1 − δ)kt + it , (7.28)

5 For simplicity, we assume that households take the interest rate, rf , as given. Relaxing this 
assumption does not alter the main results of the model. 
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and the no-Ponzi condition 

. lim
j→∞ Et

at+j

Π
j

s=1(1 + rs)
≥ 0.

where the time discount factor β ∈ [0, 1] and Γt represents the profits from 
production firms. 

We can summarize the first two constraints by replacing the value of investment 
from the law of motion of capital into the budget constraint. Also, we can replace 
the expression for the function Φ from Eq. (7.22). Then, we can rewrite the budget 
constraint as follows: 

. ct + kt+1 − (1 − δ)kt + φ

2
(kt+1 − kt )

2 + at+1 = wtht + rk
t kt + (1 + r

f

t−1)at + Γt .

The Lagrangian then is defined by the following expression: 

. L = E0

⌠ ∞
⎲

t=0

βt

⎾

(ct − hω
t

ω
)1−γ − 1

1 − γ
+

+ λt

⎛

wtht + rk
t kt + (1 + r

f

t−1)at + Γt − ct − kt+1 + (1 − δ)kt − φ

2
(kt+1 − kt )

2 − at+1

⎞⏋⎫

The optimality conditions of the households’ problem are given by 

.{ct } :
⎛

ct − hω
t

ω

⎞−γ

= λt (7.29) 

.{ht } :
⎛

ct − hω
t

ω

⎞−γ

hω−1
t = λt (wt ) (7.30) 

.{kt+1} : λt (1+φ(kt+1−kt )) = βEt

⎾

λt+1(r
k
t+1+1−δ+φ(kt+2−kt+1))

⏋

(7.31) 

.{at+1} : λt = Et

⎾

βλt+1(1 + r
f
t )

⏋

(7.32) 

. {λt } : ct +kt+1−(1−δ)kt + φ

2
(kt+1−kt )

2+at+1 = wtht +rk
t kt +(1+r

f

t−1)at +Γt

The intratemporal condition, which represents labor supply, is obtained by 
substituting λt from Eq. (7.29) into Eq. (7.30): 

.hω−1
t = wt (7.33) 

The intertemporal condition, which indicates the optimal consumption path given 
the interest rate, is represented by the Euler equation and is obtained from Eq. (7.29) 
and (7.32):
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.

⎛

ct − hω
t

ω

⎞−γ

= βEt

⎾

(1 + r
f
t )

⎛

ct+1 − hω
t+1

ω

⎞−γ
⏋

(7.34) 

The physical capital supply is obtained by combining Eqs. (7.29) and (7.31), which 
yields 

.Uct (1 + φ(kt+1 − kt )) = βEt

⎾

Uct+1

⎛

rk
t+1 + 1 − δ + φ (kt+2 − kt+1)

⎞⏋

(7.35) 

Here, Uct = ∂U(ct ,ht ) 
∂ct 

=
⎛

ct − h
ω 
t 
ω

⎞−γ 
. 

Equation (7.35) determines the investment decisions of agents. The intertemporal 
decision takes into account the presence of adjustment costs to investment, which 
results in a relative price between consumption and investment goods that is no 
longer unity. A higher value of φ leads to agents placing more emphasis on 
smoothing the dynamics of capital. 

7.4.2 Firms 

We assume perfect competition in both goods and factor markets. Firms demand 
capital and labor and treat the final good price, wage, and rental rate of capital as 
exogenous. The representative firm maximizes profits as follows: 

. Max{kt ,ht }
Γt = yt − wtht − rk

t kt

The production function is given by 

.yt = exp(εe
t )k

α
t h1−α

t (7.36) 

where .exp(εe
t ) is an exogenous and stochastic productivity shock. The first-order 

conditions are 

. {ht } : (1 − α) exp(εe
t )k

α
t h−α

t = wt

{kt } : α exp(εe
t )k

α−1
t h1−α

t = rk
t

The labor demand and capital demand equations are 

.α
yt

ht

= wt (Labor demand). (7.37) 

(1 − α) 
yt 
kt 

= rk 
t (Capital demand) (7.38)
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7.4.3 The External Sector 

In an open economy, it is necessary to keep track of the international financial 
position through the balance of payments, which tracks the international transac-
tions made by the residents of the country. In our model, the balance of payments 
should give us the identity between the current account and the combined capital 
and financial accounts. Specifically, we define 

. cat = yt − Φ(kt+1 − kt ) − ct − it + r
f

t−1at

= tbt + r
f

t−1at (7.39) 

where we define the trade balance . tbt as the output minus the net capital adjustment 
costs minus domestic absorption. Using this definition, we can derive from the 
households’ budget constraint: 

.cat = at+1 − at (7.40) 

This equation tells us that the change in the financial and capital account should 
yield the total change in net foreign assets. Furthermore, these identities allow us 
to define the trade balance. Resources flowing out of the economy are exports (. xt ), 
while resources flowing into the economy are imports (. mt ). At the end of each 
period, the net flow of resources is the difference between exports and imports (. xt −
mt ) or the trade balance . tbt . 

To write down the model, the external sector is represented by the ratios of 
current account to output and trade balance to output. Therefore, we can define 
the following variables based on the definitions provided in Eqs. (7.39) and (7.40): 

.
cat

yt

= at+1 − at

yt

. (7.41) 

tbt 
yt 

= 
cat − r f 

t−1at 

yt 
(7.42) 

Define . st as the savings of the economy at period “t,” which is the sum of the 
current account and the investment: 

. st = cat + it

7.4.4 Market Equilibrium and Shock Definition 

In this model, aggregate savings will define the change in the net asset position of 
residents and the balance of payments. Any goods not consumed or invested will be
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traded to foreign economies. As a result, the market-clearing condition for domestic 
goods can be expressed as follows: 

.ct + it + tbt + φ

2
(kt+1 − kt )

2 = yt (7.43) 

Again, to work with the ratio .tbt /yt , divide  (7.43) by . yt and it obtains 

.
ct + it

yt

+ tbt

yt

+ 1

yt

φ

2
(kt+1 − kt )

2 = 1 (7.44) 

Since the economy is subject to shocks, we aim to describe the dynamics of the 
small open economy after productivity shocks, assuming they behave as an AR(1) 
process: 

.εe
t = ρeε

e
t−1 + ve

t , ve
t ∼ N(0, σ 2

ϵe ) (7.45) 

Here, . ve
t is referred to as the total factor productivity shock. 

Furthermore, we are interested in assessing the impact of international financial 
shocks on the small open economy, particularly a shock to the foreign interest rate. 
We assume that the behavior of the foreign interest rate also follows an AR(1) 
process: 

.εn
t = ρnε

n
t−1 + vn

t , vn
t ∼ N(0, σ 2

ϵn) (7.46) 

Here, . vn
t is referred to as the foreign interest rate shock. 

7.4.5 System of Main Equations 

Table 7.7 displays the primary equations describing the optimal behaviors of 
households and firms. It also indicates the market-clearing conditions, total factor 
productivity behavior, and the definitions of the external interest rate and risk 
premium level. This set of equations forms a system representing the small open 
economy RBC model with variable labor, in line with Mendoza (1991). 

7.5 Parametrization 

Parametrization corresponds to the values in Mendoza (1991). Table 7.8 shows the 
values associated with the model parameters.
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Table 7.7 Nonlinear system of equations on the model 

Equations 

[1] Euler equation for consumption 

(ct − h
ω 
t 
ω )

−γ = E[β(1 + r f 
t )(ct+1 − h

ω 
t+1 
ω )−γ ] 

[2] Euler equation for investment 

Uct (1 + φ(kt+1 − kt )) = βEtUct+1

⎾(

rk 
t+1 + 1 − δ + φ (kt+2 − kt+1)

)⏋

[3] Labor supply 

hω−1 
t = wt 

[4] Law of motion for capital 

kt+1 = (1 − δ)kt + it 
[5] Labor demand 

(1 − α) yt 
ht 

= wt 

[6] Capital demand 

α yt 
kt 

= rk 
t 

[7] Production function 

yt = exp(εe 
t )k

α 
t h

1−α 
t 

[8] Ratio of current account to output 
cat 
yt 

= at+1−at 
yt 

[9] Ratio of trade balance to output 

tbt 
yt 

= cat−r f 
t−1at 

yt 

[10] Savings 

st = cat + it 
[11] Real interest rate 

r f 
t = r∗(exp(εn 

t )) + rpt 

[12] Risk premium level 

rpt = χ(e(−at−d̄) − 1) 
[13] Market clearing 

ct+it 
yt 

+ tbt 
yt 

+ 1 
yt 

φ 
2 (kt+1 − kt )

2 = 1 

[14] Productivity shock 

εe 
t = ρeε

e 
t−1 + ve 

t 

[15] External interest rate shock 

εn 
t = ρnε

n 
t−1 + vn 

t



350 7 Small Open Economy RBC

Table 7.8 Parametrization Parameter Definition 

.γ = 2 Risk aversion 

.ω = 1.455 Frisch elasticity 

.χ = 0.000742 Debt elasticity 

.α = 0.32 Capital share in income 

.φ = 0.028 Capital adjustment costs 

.r∗ = 0.04 External interest rate 

.δ = 0.1 Depreciation rate 

.ρ = 0.42 Shock persistence 

.d̄ = 0.7442 Average level of debt 

.ve = 0.01 Productivity shock 

7.6 Steady State 

Before log-linearization, it is necessary to determine the non-stochastic steady-state 
equilibrium of the model. In this equilibrium, all variables in the model remain 
constant (.Δxt = 0), and the productivity shock (. εe

t ) is eliminated. The steady 
state serves as a reference point for approximating the stochastic model using 
perturbation techniques. The equations representing the steady-state version of the 
model are listed in Table 7.9. Finding the steady state is a crucial step in the model’s 
analysis. 

• From the productivity shock in Eq. (7.45) 

. εe
ss = ρeε

e
ss

εe
ss = 0 (7.47) 

• From the external interest rate shock in Eq. (7.46) 

. εn
ss = ρeε

n
ss

εn
ss = 0 (7.48) 

• From the risk premium level definition in Eq. (7.26): 

. rpss = χ
⎛

e−ass−d̄ − 1
⎞

rpss = χ
⎛

ed̄−d̄ − 1
⎞

rpss = 0 (7.49) 

• From the real interest rate definition in Eqs. (7.25) and (7.49)
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Table 7.9 Steady state Steady state 

. εe
ss = 0

. εn
ss = 0

. β = 1/(1 + r∗)

. ass = −d̄

. rpss = 0

. r
f
ss = 1/β − 1

. rk
ss = 1/β − 1 + δ

. hss = ((1 − α)(
β−1−1+δ

α
)α/(α−1))1/(ω−1)

. kss = hss(
β−1−1+δ

α
)1/(α−1)

. yss = kα
ssh

1−α
ss

. wss = αyss/hss

. iss = δkss

. tbss = −assr
f
ss

. css = yss − iss − tbss

. cass = 0

. r
f
ss = r∗ + rpss

r
f
ss = r∗ + χ

⎛

e−ass−d̄ − 1
⎞

(7.50) 

• From the Euler equation for consumption in Eq. (7.34) and using Eq. (7.50) 

. 

⎛

css − hω
ss

ω

⎞−γ

= β(1 + r
f
ss)

⎛

css − hω
ss

ω

⎞−γ

1 = β(1 + r
f
ss)

1 = β
⎛

1 + r∗ + χ
⎛

e−ass−d̄ − 1
⎞⎞

(7.51) 

• We assume .1 = β(1 + r∗). Since .r∗ = 0.04, this yields the impatience discount 
factor to take the value .β = 0.962. From Eq. (7.51) 

.1 = β
⎛

1 + r∗ + χ
⎛

e−ass−d̄ − 1
⎞⎞

1 = β(1 + r∗) + β
⎛

χ
⎛

e−ass−d̄ − 1
⎞⎞

χ(e−ass−d̄ − 1) = 0

e−ass−d̄ = 1
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−ass = d̄ (7.52) 

• From the capital demand in Eq. (7.38) 

.α
yss

kss

= rk
ss (7.53) 

• From the production function in Eq. (7.36) 

. yss = exp(εe
ss)k

α
ssh

1−α
ss

yss = kα
ssh

1−α
ss (7.54) 

• From the optimality condition for investment in Eq. (7.31) 

. 1 + φ(kss − kss) = β
Ucss

Ucss

⎛

rk
ss + 1 − δ + φ (kss − kss)

⎞

1 + φ(0) = β
⎛

rk
ss + 1 − δ + φ(0

⎞

)

1 = β(rk
ss + 1 − δ) (7.55) 

• From Eqs. (7.53) and (7.55) 

.1 = β

⎛

α
yss

kss

+ 1 − δ

⎞

(7.56) 

• Using Eq. (7.54) in Eq. (7.56) 

. 1 = β

⎛

α
kα
ssh

1−α
ss

kt

+ 1 − δ

⎞

1 = β

⎛

α

⎛

hss

kss

⎞1−α

+ 1 − δ

⎞

kss

hss

=
⎛

β−1 − 1 + δ

α

⎞1/(α−1)

kss = hss

⎛

β−1 − 1 + δ

α

⎞1/(α−1)

(7.57) 

• From the labor demand in Eq. (7.37) 

.wss = (1 − α)
yss

hss
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wss = (1 − α) 
kα 
ssh

1−α 
ss 

hss 

wss = (1 − α)

⎛

kss 
hss

⎞α 

wss = (1 − α)

⎛

β−1 − 1 + δ 
α

⎞α/(α−1) 
(7.58) 

• From the labor supply in Eq. (7.30) and using Eq. (7.58) 

. hω−1
ss = wss

hss = w
1/(ω−1)
ss

hss =
⎛

(1 − α)

⎛

β−1 − 1 + δ

α

⎞α/(α−1)⎞1/(ω−1)

(7.59) 

• From the law of motion for capital in Eq. (7.28) 

. kss = (1 − δ)kss + iss

iss = δkss (7.60) 

• From the goods market equilibrium in Eq. (7.44), the current account definition 
in Eq. (7.41) and the trade balance definition in Eq. (7.42) 

.css = yss − iss + assr
f
ss . (7.61) 

tbss = −assr f 
ss . (7.62) 

cass = tbss + assr f 
ss = 0 (7.63) 

In Table 7.9, we present the steady-state values of the model variables. 

7.6.1 Model Solution 

Table 7.7 presents the 14 nonlinear equations and variables of the model, constitut-
ing a nonlinear system. To facilitate log-linearization, each variable is expressed 
in Dynare as .exp(xx), where .xx = ln xt . However, for ease of interpretation, 
the variables for capital rent (. rk

t ), real interest rate (. r
f
t ), risk premium (. rpt ), trade 

balance to output (. tbt ), foreign assets (. at ), and current account-output (. cat ) are  
denoted in Dynare as x. For example, the capital demand and current account to 
output ratio equations are represented in Dynare as
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Table 7.10 Policy and state functions 

.lnyt .lnct .lnkt+1 .lnit .lnht .lnwt . lnrk
t

Constant 0.396 0.111 1.223 −1.080 0.007 0.003 0.140 

rf(. −1) 0.000 −0.028 −0.005 −0.047 0.000 0.000 0.000 

a(. −1) 0.000 0.039 0.007 0.066 0.000 0.000 0.000 

e(. −1) 0.789 0.529 0.282 2.823 0.542 0.247 0.110 

n(. −1) 0.000 −0.006 −0.101 −1.006 0.000 0.000 0.000 

kk(. −1) 0.601 0.506 0.500 −3.997 0.413 0.188 −0.056 

.ee 1.877 1.260 0.672 6.721 1.290 0.587 0.263 

.er 0.000 −0.013 −0.239 −2.394 0.000 0.000 0.000 

.r
f
t .rpt .at+1 .tbt /yt .cat /yt .εe

t . εe
t

Constant 0.040 0.000 −0.744 0.020 0.000 0.000 0.000 

rf(. −1) 0.001 0.001 −0.697 0.032 −0.469 0.000 0.000 

a(. −1) −0.001 −0.001 0.974 −0.045 −0.018 0.000 0.000 

e(. −1) 0.000 0.000 −0.378 −0.270 −0.255 0.420 0.000 

n(. −1) 0.017 −0.000 0.348 0.234 0.234 0.000 0.420 

kk(. −1) −0.001 −0.001 1.685 1.122 1.134 0.000 0.000 

.ee 0.001 0.001 −0.901 −0.644 −0.606 1.000 0.000 

.er 0.039 −0.001 0.828 0.557 0.557 0.000 1.000 

. Capital demand : in model

rk
t = α

yt+1

kt

Capital demand : in Dynare

rk = α
exp(yy)

exp(kk(−1))

Current account to output ratio : in model

cat

yt

= at+1 − at

yt

Current account to output ratio : in Dynare

ca_y = (a − a(−1))/exp(yy) (7.64) 

Dynare performs linearization of variables expressed in logarithms and levels to 
obtain variables in log deviations and deviations from their steady state, respectively. 
Specifically, Dynare expresses the log-deviation variable as . ̂xt = ln xt − ln xss , 
where . xt is the variable in question and . xss is its steady-state value. Similarly, the 
deviation variable is expressed as .~xt = xt −xss . These variables are used by Dynare 
to calculate the steady state, policy and state functions, impulse-response functions, 
and theoretical moments. 

Table 7.10 shows the model solution (policy and state function)
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7.7 Impulse-Response Functions 

This section shows the optimal behavior of agents in response to an exogenous 
shock. In the model developed in this chapter, two shocks are present: the produc-
tivity shock (. ve

t ) and the external interest rate shock (. v
n
t ). 

7.7.1 Impulse-Response Functions to Total Factor Productivity 
Shock 

Here, we study the behavior of the economy predicted by the model in response to an 
exogenous productivity shock. Figure 7.5 illustrates the response of the endogenous 
variables to the shock occurring in period “t = 1.” 

Firstly, all variables are in their steady state before this period. For instance, the 
shock takes the value of its mean (.ve

0 = 0), and consumption is set to zero (. ̂c0 = 0). 
It’s important to note that .  ̂c0 represents the deviation of the natural logarithm of the 
variable from the natural logarithm of its steady state, where . ̂c0 = ln c0 − ln css . 

2 4 6 8 10  
0 

1 

2 

Output 

2 4 6 8 10  
0 

0.5 

1 

1.5 
Consumption 

2 4 6 8 10  
0 

0.2 

0.4 

0.6 

Capital 

2 4 6 8 10  

0 

2 

4 

6 

Investment 

2 4 6 8 10  
0 

0.5 

1 

1.5 
Labor 

2 4 6 8 10  
0 

0.2 

0.4 

0.6 

Real wage 

2 4 6 8 10  
0 

0.1 

0.2 

Capital rent 

2 4 6 8 10
-2

-1 

0 

1 
10-3 Real interest rate 

2 4 6 8 10
-2

-1 

0 

1 
10-3Risk premium 

2 4 6 8 10
-1 

0 

1 

2 

Foreign bonds 

2 4 6 8 10
-1 

0 

1 
Trade balance-Output 

2 4 6 8 10
-1 

0 

1 
Current account-Output 

2 4 6 8 10  
0 

0.5 

1 

Productivity shock 

Fig. 7.5 Effects of a productivity shock (.ve
t = 1.29)
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Therefore, when . ̂c0 = 0, it implies that .c0 = css , indicating that the variable is in its 
steady state. This applies to every variable. 

Period .t = 1 Now, an increase in the productivity shock in period “t = 1” means 
that . ve

1 takes the value of its standard deviation (.σε = 1.29), which takes .εe
1(↑) out 

of the steady state. This shock affects both firms’ and households’ decisions. 

Effects on firms The increase in productivity has a positive impact on output: 

.y1 = exp(ε1)k
α
1 h1−α

1 (7.65) 

The shock also positively affects the marginal product of both capital and labor, 
leading to an increase in the demand for both factors of production: 

. w1 = (1 − α)
y1

h1

rk
1 = α

y1

k1

Effects on households The representative household is indirectly impacted by 
the productivity shock through the factors market. In response to the change in 
conditions, the household adjusts its equilibrium labor and capital supply. The 
increase in labor demand responds to the increase in real wages, leading to more 
work in equilibrium. Since the utility function used in this model does not account 
for an income effect, labor supply is not reduced. Therefore, the substitution effect 
results in higher labor in equilibrium: 

. hω−1
1 =↑ w1

As the supply of capital in period “t = 1” is determined in period “t = 0,” capital 
remains at its steady state in period “t = 1,” despite the increase in . rk

1 . The increase in 
productivity generates an “income effect” as the economy can produce more goods 
at a lower real cost. Households allocate the higher production to consumption .  ̂c1, 
investment .  ̂i1, and savings in bonds .~at+1: 

. c1 + i1 + φ

2
(kt+1 − k1) + at+1 = ↑ w1h1 + ↑ rk

1k1 + (1 + r
f

t−1)a1

The determination of capital supply for period “t = 2” occurs in period “t = 1.” 
Consequently, households take into account the expected capital return rate in period 
“t = 2” to supply physical capital. Therefore, the persistence of the shock (. ρ) must  
be closely examined because it significantly impacts the expected future capital rate 
(. rk
2 ). A positive shock in productivity in period “t = 1” has a positive influence on the 

marginal product of capital in period “t = 2” due to the shock’s persistence. Thus, the 
more persistent the shocks, the greater the rewards of an additional unit of capital 
today, leading to households postponing consumption. This is determined by the
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Fig. 7.6 Impact response of trade balance to productivity shock . ve
t = 1.29

optimality condition for investment, as shown in the equation below: 

. Uc1(1 + φ(k2 − k1)) = βE1

⎾

Uc2

⎛

↑ rk
2 − δ + 1 + φ (k3 − k2)

⎞⏋

The parameter for capital adjustment costs, . φ, plays a crucial role in the 
households’ investment decision. If . φ is too high, allocating a unit to investment 
becomes more resource consuming. Even when the agent wants to take advantage 
of the persistence of the productivity shock, they also have to consider the price of 
investment. In this intertemporal decision, two forces are at play: (1) the expected 
rate of return of capital relative to the stochastic discount factor and (2) the capital 
smoothing motive, akin to the adjustment cost of investment. When the adjustment 
cost increases, the second force creates a smoother path for capital. When it is 
smaller, the rental rate of capital gets closer to the one-period bond rate, meaning a 
rapid adjustment for capital to its optimal level. 

To illustrate this point, Fig. 7.6 displays the impact of a productivity shock on 
the trade balance-output relationship for a range of values of the parameters . φ
and . ρ. The left panel of the figure presents the initial effect of the shock on the 
trade balance for values of .φ ∈ (0, 0.5) while holding the initial values of other 
parameters constant. Similarly, the right panel displays the initial response of the 
trade balance to the shock for values of .ρ ∈ (0, 1) while keeping . φ fixed. 

When we vary only the value of . φ, we find that the countercyclical behavior of 
the trade balance to output is achievable only for values of . φ less than approximately 
0.5. Moreover, for values of . φ above approximately 0.1, the response of the trade 
balance to changes in . φ is less sensitive. However, for values of . φ below 0.5, the 
initial response of the trade balance is very sensitive to changes in . φ. 

Similarly, when we change only the value of . ρ (with . φ fixed at 0.028), 
countercyclical behavior of the trade balance to output is achievable only for 
values of . ρ higher than approximately 0.3. Unlike the right panel of the figure, 
the sensitivity of the trade balance to changes in persistence is approximately equal 
at all levels.
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In this model, the parametrization of the persistence and capital adjustment cost 
parameters plays a crucial role in the investment dynamics. The model is calibrated 
with .ρ = 0.42 and .φ = 0.028. This ensures that households not only postpone 
consumption to invest but also take a negative financial position with respect to the 
world to finance investment. Even when output increases, these additional resources 
are not sufficient to finance the desired level of investment. Therefore, the economy 
issues bonds, reducing the stock of financial assets held until the following period 
(.at+1): 

. c1 + ↑ i1 + φ

2
(kt+1 − k1) + ↓ at+1 = ↑ y1 + (1 + r

f

t−1)a1

As households in the economy start issuing bonds to finance investment, both the 
current account and the trade balance account go into deficit. The stock of financial 
assets decreases since .at+1 becomes negative and . a1 remains constant because it was 
determined in the previous period. This is reflected in the current account equation: 

. ca = ↓ at+1 − a1 −→ Δat+1 < 0

The trade balance follows a similar dynamic. Since there is a negative variation 
in financial assets and both the real interest rate of the previous period and the stock 
of capital held until the current period remain constant, we have 

. tb = ↓ at+1 − a1 + (1 + r
f

t−1)a1

This model assumes an elastic debt interest rate. When the economy incurs 
debt through bond issuance, the risk premium imposed on the economy increases, 
leading to a corresponding rise in the interest rate faced by agents: 

. ↑ rp = χ(e−↓at+1−d̄ )

r
f

1 = r∗+ ↑ rp1

The change in the interest rate affects the intertemporal consumption decisions of 
agents. According to the Euler equation of consumption, an increase in the interest 
rate encourages households to delay consumption, aligning with the investment 
decisions of agents: 

. Uc1 = βEt

⎾

(1 + ↑ r
f
t )Uc2

⏋

Period .t = 2 We focus on the variables that are relevant for the dynamics of an 
open economy, namely, . yt , . ct , . it , .kt+1, .at+1, .tb − t , and . cat . 

In both the closed economy case and the path to equilibrium, there is noticeable 
persistence. This is influenced by two main factors: (1) the exogenous persistence
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of the assumed productivity shock (. ρ) and (2) the endogenous persistence channel, 
which operates through the capital accumulation of the economy. 

Throughout the path to equilibrium, output and consumption remain above their 
steady-state levels. The utility function exhibits a high elasticity of substitution 
between consumption and leisure. The increased productivity alters the relative 
price between consumption and leisure, prompting agents to increase consumption 
and reduce leisure. As productivity gradually returns to its steady state, households 
adjust by decreasing consumption and increasing leisure accordingly. 

After adapting to the “surprise” component of the shock in period “t = 0” through 
a significant surge in investment, the pace of capital adjustment slows from period 
“t = 1" onward. It is of interest to analyze what happens to investment and capital 
beyond period “t = 2.” Figure 7.5 illustrates that investment in period “t = 3,” denoted 
as . i3, falls below its stationary state level. This implies that desired capital decreases 
more rapidly than the depreciation rate, even after accounting for the adjustment 
costs that smooth the path of capital. Reduced investment results in an overall 
reduction in the economy’s absorption, leading to a positive trade balance and an 
increase in foreign bonds. With the interest rate being debt elastic, this variable 
declines, creating a sustained trajectory for consumption. The consumption above 
equilibrium, in conjunction with the reduced risk premium and interest rate, will 
gradually restore foreign bonds and all other variables back to their equilibrium 
levels. 

Figure 7.7 depicts the model’s dynamics under different adjustment cost sce-
narios, which encompass three scenarios: the first being the absence of capital 
adjustment costs (.φ = 0), the second representing the baseline value (.φ = 0.028), 
and the third indicating a higher capital adjustment cost value (.φ = 5). 

Table 7.11 offers a comprehensive view of the theoretical moments observed 
in these three models. It is worth noting that modest adjustment costs effectively 
discourage agents from making swift changes to the capital stock, resulting in 
a significant reduction in investment volatility. Another crucial aspect influenced 
by capital adjustment costs is the dynamics of the trade balance. In the baseline 
parametrization, capital adjustment costs contribute to a deceleration in the econ-
omy’s absorption, as investment experiences only a modest increase after the shock. 
This leads to a moderate trade deficit and some persistence in the behavior of the 
trade balance. In the case of high capital adjustment costs, the reaction of investment 
to the shock is minimal. Consequently, the economy manages to produce more with 
the same level of capital. Since the domestic economy doesn’t rely on importing 
factors to finance investment, the trade balance turns positive after the shock. This 
dynamic plays a crucial role in explaining a significant stylized fact observed in the 
data: the countercyclical behavior of the trade balance. 

Note that both labor and output have perfect correlation. The specification of 
GHH utility function eliminates the income effect from the labor supply. Therefore, 
in presence of the productivity shock, the new equilibrium in the labor market is 
determined by the shock though the demand for labor, because the labor supply 
curve does not change.
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Fig. 7.7 Effects of the shock to productivity. Capital adjustment costs (. φ) 

Table 7.11 Model generated moments for alternative model economies 

Model 1 (.φ = 0) Model 2 (.φ = 0.028) Model 3 (.φ = 5) 

Variable (. xt ) .σxt .ρyt ,xt .ρxt ,xt−1 .σxt .ρyt ,xt .ρxt ,xt−1 .σxt .ρyt ,xt . ρxt ,xt−1

yy 3.243 1.000 0.692 2.714 1.000 0.617 2.369 1.000 0.432 

cc 2.644 0.874 0.800 2.383 0.844 0.782 2.192 0.811 0.713 

ii 24.403 0.240 −0.283 7.959 0.669 0.069 0.439 0.437 0.950 

hh 2.229 1.000 0.692 1.865 1.000 0.617 1.628 1.000 0.432 

tb_y 5.476 0.019 −0.232 1.566 −0.044 0.509 1.415 0.666 0.642 

ca_y 5.301 0.024 −0.260 1.279 0.050 0.322 1.131 0.986 0.417 

Corr(s,ii) 0.316 0.711 0.356 

Next, we delve into the impact of the persistence of productivity shocks. 
Figure 7.8 displays the impulse-response functions for three different values of this 
parameter, enabling a comparison of the effects of the productivity shock between 
the baseline and the alternative cases. In these alternative parametrizations, . ρ is set 
to two distinct values: .0.05 and . 0.9. Table 7.12 shows the theoretical moment across 
the models with different values for . ρ. 

When the productivity shock is transitory (with a low persistence of .ρ = 0.05), 
the shock’s effects are short-lived. In this scenario, there isn’t much incentive for 
agents to invest in capital. However, the economy experiences increased output 
with the existing capital. This leads to a positive balance of trade and current 
account, resulting in an accumulation of foreign assets. Lower interest rates, which
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Fig. 7.8 Effects of the shock to productivity. Persistence of the shock (. ρ) 

Table 7.12 Moments generated across models 

Model 1 (.ρ = 0.05) Model 2 (.ρ = 0.42) Model 3 (.ρ = 0.9) 

Variable (. xt ) .σxt .ρyt ,xt .ρxt ,xt−1 .σxt .ρyt ,xt .ρxt ,xt−1 .σxt .ρyt ,xt . ρxt ,xt−1

yy 2.145 1.000 0.080 2.714 1.000 0.617 10.332 1.000 0.970 

cc 1.679 0.874 0.387 2.383 0.844 0.782 10.498 0.864 0.982 

ii 0.918 0.918 −0.097 7.959 0.669 0.069 25.496 0.470 0.486 

hh 1.474 1.000 0.080 1.865 1.000 0.617 7.101 1.000 0.970 

tb_y 1.036 0.778 0.384 1.566 −0.044 0.509 6.473 0.088 0.623 

ca_y 0.902 0.991 0.138 1.279 0.050 0.322 5.247 0.203 0.453 

Corr(s,ii) 0.908 0.711 0.472 

are associated with higher international assets, cause consumption to slowly move 
toward a steady state. 

In the case of a highly persistent productivity shock (.ρ = 0.9), there’s a strong 
incentive for capital accumulation due to the prolonged duration of the shock. 
However, capital adjustment costs slightly slow down the process. This results in 
a hump-shaped pattern of output, labor, and consumption. After reaching its peak, 
the dynamics become similar to the baseline case as the productivity shock wanes, 
investment declines, and the economy experiences a positive trade balance. The 
debt-elastic interest rate, aimed at inducing convergence to a unique steady state, 
will drive all variables back to this equilibrium.
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7.7.2 Impulse-Response Functions to External Interest Rate 
Shock 

In this section, we investigate the economy’s response to an increase in the external 
interest rate . r∗. Figure 7.9 depicts the reaction of the endogenous variables to 
this external interest rate shock, which occurs in period “t = 1.” As in the previous 
section, we examine how the variables behave in response to this exogenous shock. 

As in the case of the productivity shock, all variables are in their steady state 
before the period when the shock occurs. For instance, the shock takes the value of 
its mean (.ve

0 = 0), and consumption is at its steady state (. ̂c0 = 0). 

Period .t = 1 An increase in the interest rate in period “t = 1” means that . vn
1 takes 

the value of 1.29, which pushes .εn
1 (↑) out of the steady state. 

Effects on firms The shock to the external interest rate will not affect firm decisions 
on impact since agents cannot change the level of capital immediately. With the 
same level of capital and overall productivity of labor, output does not shift on 
impact. 

Effects on households The shock affects investment for the next period’s level of 
capital. The increased interest rates create a higher opportunity cost for investing 
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in physical capital, leading agents to reduce the amount of capital until the point 
at which the marginal return, taking adjustment costs into account, matches the 
international interest rate: 

. (1 + φ(k2 − k1)) = Et

⎾

rk
2 + 1 − δ + φ(k3 − k2)

⏋

1 + r
f

1

(1 + φ(k2 − k1)) = Et

⎾

MPk2 + 1 − δ + φ(k3 − k2)
⏋

1 + r
f

1

(1 + φ(k2 − k1))
◟ ◝◜ ◞

cost of capital

= Et

⎾

MPk2 + 1 − δ
⏋

1 + ↑ r
f

1
◟ ◝◜ ◞

flow of marginal productivity

+ Et [φ(k3 − k2)]

1 + ↑ r
f

1
◟ ◝◜ ◞

capital smoothing benefits

The overall decrease in absorption leads to an increase in foreign assets. As a 
result, the risk premium of the real interest rate decreases. However, the initial shock 
to the external interest rate pushes the real interest rate up by more than this decline. 
Overall, the real interest rate faced by domestic agents increases to a lesser extent 
than the shock initially caused: 

. ↑ Uc1 = βEt

⎾

(1 + ↑ r
f
t )Uc2

⏋

Period . t = 2

Effects on firms The interest rate increase leads households to reduce the level of 
capital and raise the rental rate. Since a smaller amount of capital was chosen in 
period “t = 1” to be available in period “t = 2,” there is less capital accessible to firms 
in this period, which in turn affects output: 

. ↑ rk
2 = α

y1

k1
= ↑ MPk2

With fewer available capital for production, the marginal productivity of labor 
declines, resulting in a decrease in the real wage: 

. ↓ w2 = (1 − α)
y2

h2
= ↓ MPl2

As previously mentioned, a salary reduction leads to a decrease in labor. In 
equilibrium, firms operate with less capital and less labor, consequently leading to 
a decrease in output: 

. ↓ yt = ↓ k2
α↓ h2

(1−α)

Effects on households The representative household is also affected by this shock 
through the Euler equation of consumption. An important feature of the model is
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that agents can easily substitute consumption with leisure. As the price of leisure 
falls and the price of present consumption increases, agents reduce consumption 
and increase leisure, thereby smoothing their utility across periods. 

The net effect of lower output, reduced consumption, and decreased capital 
results in a positive trade balance and an accumulation of foreign assets. In short, 
agents substitute domestic capital with foreign assets until their return rates equalize. 
On the path back to equilibrium, the foreign interest rate falls, and domestic agents 
gradually restore their level of physical capital. 

7.7.3 Comparison of the Model with the Data 

In this section, we compare the simulations conducted with the model to actual data. 
Following the approach of Mendoza (1991), we use Canadian data. We present 
the results from the baseline model, which assumes values for the parameters 
governing capital adjustment costs (. φ) and shock persistence (. ρ) of .0.028 and .0.42, 
respectively. Table 7.13 presents the results. 

The model exhibits several significant attributes. It successfully approximates 
the variability of economic variables, as indicated by their standard deviations. 
Additionally, it replicates a procyclical pattern in key economic factors such 
as consumption, savings, investment, employment, and productivity. Moreover, 
the model generates first-order autocorrelation coefficients for essential variables, 
including output, consumption, labor, and trade balance. 

The results also illustrate the presence of some anomalies. In particular, the 
variability of investment and output is underestimated. Also, the positive co-
movement between these two variables is larger in the data. The co-movement 
between labor and output is grossly underestimated. This is a feature of the model 
that generates a perfect correlation between these two variables. 

A notable characteristic of this model is its challenge in replicating the negative 
correlation between the current account and GDP observed in Canadian data. 

Table 7.13 Comparison of the cyclical behavior of the theoretic model with the empirical data 

Canadian data Model 

Variable (. xt ) .σxt .ρyt ,xt .ρxt ,xt−1 .σxt .ρyt ,xt . ρxt ,xt−1

Output (y) 4.223 1.000 0.849 2.714 1.000 0.617 

Consumption (c) 2.430 0.822 0.780 2.383 0.844 0.782 

Investment (i) 11.478 0.938 0.759 7.958 0.669 0.069 

Labor (h) 2.262 0.452 0.696 1.865 1.000 0.617 

Trade balance (tb_y) 1.748 . −0.215 0.797 1.566 . −0.044 0.509 

Current account (ca_y) 1.822 . −0.135 0.751 1.279 0.050 0.322 

Corr(savings,investment) 0.7758 0.7110
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A similar issue is also evident in the behavior of the trade balance. However, as 
previously discussed, through a meticulous parametrization of capital adjustment 
costs, the model manages to obtain a negative correlation between these variables, 
even though it may be relatively weak. 

Finally, the model demonstrates its capacity to explain the strong correlation 
observed in the data between investment and savings, a phenomenon previously 
explored by Feldstein and Horioka (1980). This correlation in the data is often 
linked to the concept of imperfect international markets and barriers to capital 
mobility. Within this model, the persistence of the productivity shock plays a crucial 
role in capturing this specific stylized fact. Permanent (nonstationary) shocks fail 
to generate positive saving responses, and highly transitory ones don’t lead to 
significant investment responses, underscoring the importance of shock persistence 
in modeling these dynamics. 

7.8 Summary 

This chapter develops the standard model of a small open economy and introduces 
capital adjustment costs as shown by Mendoza (1991). The moments generated 
by the model are consistent with two key empirical regularities typical of open 
economies: a strong positive correlation between savings and investment and the 
countercyclicality of the trade balance. 

In this economy, agents have access to international financial markets and can 
accumulate foreign financial assets. These assets either pay or charge a debt-elastic 
interest rate. This interest rate is determined by the external interest rate and the risk 
premium of the economy, which in turn depends on the deviation of debt from its 
long-run level. The use of a debt-elastic interest rate on debt induces stationarity in 
the model, following Schmitt-Grohe and Uribe (2003). Additionally, the economy 
is subject to shocks in productivity and the external interest rate. 

The instantaneous utility function is specified as a GHH function. As a result, 
the marginal rate of substitution depends solely on the levels of labor, but not on 
consumption. Therefore, labor supply depends only on the real wage. 

The persistence of the productivity shock is crucial in establishing a positive 
correlation between savings and investment. When the shock is not persistent 
enough, the investment necessary to equalize expected returns is not sufficient to 
generate a strong correlation between savings and investment. 

Furthermore, the introduction of capital adjustment costs discourages agents 
from making rapid changes in capital stock, leading to a significant reduction 
in investment volatility. This feature moderates the trade balance deficit because 
investment experiences only a modest increase after the productivity shock. The 
dynamics of the model are also analyzed with a shock to the external interest rate.
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7.9 Codes 

The solution of the model as well as the impulse-response functions have been 
developed directly in Matlab (by building several m-file) and also through Dynare 
(by building a mod-file). The result of both paths is the same, but the advantage of 
directly building an m-file is that many details can be made explicit in the solution 
and simulation of the model, which is already programmed in Dynare. In addition, 
both the R and Python scripts for working with the database have been uploaded to 
the webpage (Table 7.14). 

Table 7.14 Codes in Matlab and Dynare 

Codes Description 

Matlab 

Mendoza91.m This m-file plots the impulse-response functions of the model 
from alternative parametrizations of . φ and . ρ

Parameter_sensibility.m This m-file computes and plots the impact response of the trade 
balance to the productivity shock according different values of . φ
and . ρ

series_canada.m This m-file plots various series of aggregated variables of Canada 
for comparison 

Dynare 

Mendoza91_log.mod This mod file contains the nonlinear model with logarithmic 
variables and is what Dynare uses to solve the model. Also, it 
contains the IRF graphs for alternative parametrizations of . φ and 
. ρ

Mendoza91_log_loop.mod This mod file should be used along with the m-file Mendoza91.m 
to run models with different parametrizations



Chapter 8 
Nontradable Goods in a Small Open 
Economy RBC 

8.1 Introduction 

This chapter extends the groundwork laid by the small open economy RBC model 
introduced in Chap. 7. While the single-good small open economy RBC model by 
Mendoza (1991) provided valuable insights into various stylized data patterns, its 
limitations became apparent when addressing broader questions in international 
trade and finance. One such question revolves around the impact of terms of trade— 
a metric quantifying the ratio of a country’s export price index to its import price 
index—on business cycles. 

Incorporating relative prices provides a means to investigate the behavior of 
the real exchange rate, which reflects the relative price of domestic and foreign 
consumption baskets. A pivotal aspect in comprehending the dynamics of this 
relative price lies in distinguishing between tradable and nontradable goods. This 
differentiation holds significance because tradable goods (i.e., those that can be 
purchased far from their point of origin) maintain similar prices globally, while the 
prices of nontradable goods (i.e., those only accessible in proximity to their pro-
duction source) depend more on local market dynamics. Consequently, nontradable 
prices play a pivotal role in shaping the fluctuations of the real exchange rate. 

This leads us to a second crucial question: the procyclicality of the real exchange 
rate. Replicating this stylized fact with a productivity shock in the single-good 
small open economy model discussed in the preceding chapter presents a significant 
challenge. The reason for this challenge lies in the fact that productivity shocks 
drive output expansions alongside cheaper domestic goods, making it challenging to 
reproduce the observation that domestic prices, and consequently the real exchange 
rate, rise during economic expansions. 

This chapter is dedicated to studying the pivotal role played by terms of trade and 
their contribution to business cycle fluctuations. Our intent is to delve deeper into 
the fundamental determinants that drive the fluctuations observed in macroeconomic 
aggregates in small open economies under the presence of nontradables. Notably, 
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Mendoza (1995) was a pioneering study that quantitatively examined the potency 
of terms of trade shocks in steering business cycles through a dynamic stochastic 
model of a small open economy. Our approach closely aligns with this framework. 

8.2 Empirics 

In examining the empirical aspects of this chapter, we utilize data from 48 
emerging and low-income economies. The primary variables under consideration 
include output, consumption, investment, trade balance, terms of trade, and the real 
exchange rate. It is important to note that output, consumption, investment, and trade 
balance are measured in current dollars. Therefore, these variables are expressed 
in nominal terms, as opposed to the real (deflated) terms used for the variables 
discussed in earlier chapters. This approach is highly relevant as it streamlines the 
subsequent deflation of the variables and their presentation in units that align with 
our chosen framework. 

8.2.1 Construction of the Macroeconomic Series 

The model introduced in this chapter employs the methodology developed in 
Uribe and Schmitt-Grohé (2017) to incorporate variables sourced from the data, 
setting it apart from the preceding models. The previous models source all their 
variables from the data in real terms (constant local currency) since they articulate 
the variables within the model in relation to final goods, thus eliminating the 
need to introduce dedicated deflators. In contrast, the model adopted for this 
chapter constructs all variables in reference to units of importables. Consequently, 
it becomes essential to deflate all nominal-term variables, ensuring their alignment 
with units of import-related variables. 

To analyze business cycles across various countries, we collected time series 
data on the variables presented in Table 8.1. The data used in this chapter has 
been sourced from the World Bank’s World Development Indicators (WDI). After 
obtaining the dataset, we initiated a process to exclude countries that do not offer 
consistent data for each aggregate variable throughout the specified analysis period 

Table 8.1 Variables included 
in the study 

Variable Description 

.Yt GDP per capita 

.Ct Consumption per capita 

.It Investment per capita 

.T Bt Trade balance per capita 

.tott Terms of trade 

.RERt Real exchange rate
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(1980–2020). The Python code outlining this algorithm is available in the code 
documentation accompanying this book. As a result, the final sample size comprises 
48 countries. 

For maintaining consistency between the data and the units in the model, it 
is indispensable to adhere to the following criteria: key variables such as output, 
consumption, investment, and trade balance are expressed in current dollars, 
reflecting their nominal character. To convert these variables into units associated 
with importable goods, it is necessary to divide them by the import price index. For 
this purpose, a practical estimate for this index, as suggested by the WEO, is the 
import unit value, denominated in dollars and specifically employed for terms of 
trade calculations. 

Before proceeding further, it is crucial to formally define several important 
variables for the analysis. Firstly, we define the terms of trade, denoted as tot , 
which measures the relative price of exports in relation to imports. This variable 
is expressed as follows: 

. tott = px
t

pm
t

.

When calculating a specific country’s terms of trade, the World Development 
Indicators (WDI) utilize trade-weighted export and import unit value indices. The 
empirical quantification of the real exchange rate, denoted by .RERt , involves the 
bilateral US dollar real exchange rate, which is defined as 

. RERt = pt

ξtp
US
t

,

where . ξt represents the nominal exchange rate in dollars, indicating the domestic-
currency price of one US dollar. Additionally, .pUS

t signifies the US consumer price 
index, while . pt denotes the domestic consumer price index. The real exchange 
rate .RERt measures how expensive the foreign country is in relation to the local 
country: it indicates the relative price of a consumption basket in the local country 
in terms of consumption baskets in the foreign country. An increase in this indicator 
means that the country experiences a real appreciation. 

The data variables are denoted in current dollars as follows: output is represented 
by .p

y
t Yt , consumption by .pc

t Ct , investment by .pi
t It , and the trade balance by . px

t Xt−
pm

t Mt . To align them with import prices, they are divided by the import unit value, 
which serves as an approximation to the importables price index . pm

t . 

8.2.2 Business Cycle Properties 

Once the appropriate metrics have been established within the database, the 
subsequent phase entails the computation of statistical moments. Given our central
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emphasis on the influence of terms of trade on aggregate variables, our analysis 
proceeds to evaluate both the relative standard deviation and covariance of these 
variables vis-à-vis the terms of trade. 

To illustrate the potential influence of the terms of trade on aggregate variables, 
we conduct an analysis for Chile, a small open economy notably influenced by 
metal prices. In Fig. 8.1, we compare GDP and trade balance as a percentage of 
GDP cycles with the terms of trade cycle. The series has been detrended using a 
logarithmic quadratic detrending method. The results capture significant economic 
developments in Chile over the past few decades. 

[Obs1] The economic crisis that began in 1982, during Augusto Pinochet’s regime, 
is attributed to the rise in global interest rates and lower copper prices. By late 1983, 
unemployment had surged to over 30% of the labor force, and the proportion of the 
population living in absolute poverty had increased to around 55% from about 30% 
in 1981. The crisis also led to the collapse of several banks. 

[Obs2] The “second economic miracle” occurred between 1988 and 1998 as a 
result of the second wave of reforms initiated in 1985 and the return to democracy. 
This period came to an end with the Asian economic crises of 1998–1999.
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Table 8.2 Business cycle properties (1980–2020) 

.σx/σtot .ρxt,xt−1 .ρyt,xt . ρtot,xt

GDP (. yt ) 1.32 0.63 1 0.42 

Consumption (. ct ) 1.4 0.63 0.88 0.29 

Investment (. it ) 2.14 0.59 0.71 0.29 

Trade balance (. tbt ) 0.56 0.55 . −0.1 0.17 

Terms of trade (. tott ) 1 0.66 0.42 1 

Real exchange rate (.RERt ) 0.97 0.64 0.57 0.19 

Note: The countries considered in the database were Algeria, Bolivia, Botswana, Brazil, Cameroon, 
Central African Republic, Chile, China, Colombia, Comoros, Congo Rep., Costa Rica, Dominican 
Republic, Egypt, Arab Rep., El Salvador, Guatemala, Honduras, India, Kenya, Korea, Rep., 
Madagascar, Malaysia, Mauritania, Mauritius, Mexico, Morocco, Namibia, Pakistan, Paraguay, 
Peru, Rwanda, Senegal, South Africa, Sudan, Thailand, Tunisia, Turkey, and Zimbabwe. Statistics 
regarding RER, the countries considered, given the availability of the data, were Algeria, Bolivia, 
Brazil, Cameroon, Central African Republic, Chile, China, Colombia, Costa Rica, Dominican 
Republic, Malaysia, Mexico, Pakistan, Paraguay, South Africa, and Tunisia 

[Obs3] The “mineral super-cycle” took place between 2003 and 2012, witnessing a 
significant surge in commodity prices that drove several Latin-American economies 
into a phase of high growth rates and positive trade balances. This episode was 
briefly interrupted by the global financial crisis of 2008–2009, but capital flows 
quickly recovered. 

To examine the characteristics of business cycles related to the terms of trade in 
aggregate variables, we compute statistics for the detrended series to evaluate their 
volatility, persistence, and cyclicality. Table 8.2 provides the statistical data for 42 
countries, covering the period from 1980 to 2020. 

We can observe that the stylized facts reviewed in the previous chapter are also 
evident in Table 8.2, including the countercyclicality of the current account with 
respect to output, the procyclicality of consumption and investment, and the high 
volatility of investment. 

It is worth noting that terms of trade show a relatively weak correlation with 
macroeconomic aggregate variables. This observation aligns with the findings of 
Schmitt-Grohé and Uribe (2018), who utilized a structural vector autoregressive 
(SVAR) methodology to gauge the significance of terms of trade. Their research 
indicated that, on average, terms of trade shocks contribute to approximately 10% 
of the variability in output, consumption, investment, and the trade balance and 14% 
of the variability in the real exchange rate. These estimates were based on annual 
data from 38 emerging and impoverished countries, covering the period from 1980 
to 2011. 

Furthermore, Fernández et al. (2017) investigated the impact of disaggregated 
world prices on business cycles using an SVAR model. The model incorporates 
various world prices, including commodity prices such as agricultural, metal, and
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fuel prices, as well as the world interest rate. Their results indicate that world 
price shocks, on average, account for approximately 34% of the variance in output, 
21% in consumption and investment, and 15% in the trade balance to output ratio. 
Additionally, the study reveals that not all world prices affect all macroeconomic 
indicators uniformly, suggesting that a specific commodity price acts as the primary 
transmitter of world shocks to one macroeconomic indicator but not to others. These 
estimates were derived from annual data spanning 138 countries over the period 
from 1960 to 2015. 

8.3 Model Elements 

In this section, we discuss some key features of the model. First, we allow for three 
different consumption goods: (1) importables, (2) exportables, and (3) nontradables. 
Firms will produce importable and exportable goods, but exportable goods price 
(. px) will be affected by an exogenous shock, which constitutes a terms of trade 
shock. In this manner, it is possible to study the impact of terms of trade shocks 
in the economy. In particular, significant interest has been paid to the relationship 
between terms of trade and the trade balance. There are two effects that have been 
amply discussed in the literature: 

[A] The Harberger-Laursen-Metzler Effect 
The Harberger-Laursen-Metzler (HLM) effect posits that an exogenous adverse 
shock to the terms of trade of a small economy results in a decline in its 
current account balance. A reduction in the terms of trade leads to a decrease in 
“real income,” subsequently causing diminished savings when measured in terms 
of exportable goods. Assuming investment remains unchanged and there is no 
government deficit, the change in savings is identical to the change in the current 
account surplus. 

[B] The Obstfeld-Razin-Svensson Effect 
The Obstfeld-Razin-Svensson (ORS) effect challenges the HLM result and empha-
sizes the importance of the persistence of terms of trade shocks in the outcomes. 
Specifically, a temporary negative terms of trade shock, resulting in a decrease in 
real income and a change in the real interest rate, leads to reduced savings and a 
deteriorated trade balance. Furthermore, a decline in the real interest rate contributes 
to a worsening current account. In contrast, a permanent deterioration in terms of 
trade may either improve or worsen the real trade balance, depending on various 
factors, such as the impact on the real interest rate or the behavior of the discount 
factor, which is linked to the assumptions regarding the stationarity of equilibrium. 
Therefore, under the ORS effect, we can anticipate that the positive relationship 
between terms of trade and the trade balance diminishes as the persistence of terms 
of trade shocks increases.
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8.4 Building the Model 

This section presents the main components of the model, with particular emphasis 
on terms of trade shocks. A critical aspect of this model is the incorporation of 
nontradable goods. For these goods, the quantities used for consumption and invest-
ment must be sourced locally. Positive wealth effects, which promote increased 
consumption, tend to shift resources toward the nontradable sector. This shift is 
expected to manifest in the prices of nontradable goods, impacting the consumer 
price index (. pc). Consequently, the relative price of the domestic consumption 
basket is anticipated to rise in comparison to the foreign one, leading to an 
appreciation of the real exchange rate. This mechanism allows the model to align 
with the cyclical behavior of the real exchange rate, as the dynamics resulting from 
productivity shocks yield distinct empirical predictions. 

8.4.1 Households 

[A] Preferences The economy is composed of infinitely lived households deriving 
utility from consumption denoted as . ct and leisure represented by . lt . The immediate 
utility function employed in this chapter is as follows: 

. u(ct , lt ) = (ct l
ω
t )1−γ

1 − γ

where . ω is the labor supply elasticity and . γ is the intertemporal inverse elasticity of 
substitution in consumption. 

Aggregated consumption, denoted as ct , is an index composed of the consump-
tion of tradables, denoted as cT 

t , and nontradables, denoted as c
n 
t . This index is 

expressed in the form of a constant elasticity of substitution (CES) function: 

.ct =
⎾
(cT

t )−μ + (cn
t )−μ

⎤− 1
μ

(8.1) 

where 1/(1+μ) is the elasticity of substitution between tradables and nontradables. 
The consumption of tradable goods considers both exportable goods (cx) and 

importable goods (cm), which are expressed in a Cobb-Douglas form with unitary 
elasticity: 

.cT
t = (cx

t )a(cm
t )1−a (8.2) 

where a represents the share of expenditure in exportable goods (cx 
t ) in the total 

expenditure on tradable goods.
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Table 8.3 Supply of households to firms 

Variables Name Sector 

kf Capital for importable-producing firms Tradable sector 

kx Capital for exportable-producing firms 

hf Labor for importable-producing firms 

hx Labor for exportable-producing firms 

kn Capital for nontradable- producing firms Nontradable sector 

hn Labor for nontradable-producing firms 

[B] Production Factors The model outlines the involvement of households in 
two distinct sectors: the tradable sector and the nontradable sector. The tradable 
sector further encompasses two key industries: the exportables industry and the 
importables industry. Conversely, the nontradable sector is solely represented by the 
domestic industry, which is responsible for producing nontradables. In each sector, a 
continuum of representative firms operates with the goal of maximizing their profits. 
Households possess dedicated capital and workforce for each industry, ensuring that 
both capital and labor are exclusively directed to firms within the relevant sector. 
Table 8.3 illustrates the factors supplied by households across the economy. 

We also consider some specific simplifying assumptions. The model in Mendoza 
(1995) assumes an inelastic supply of labor for the tradable sector (hx and hm) and 
capital for the nontradable sector (kn). In essence, these variables remain constant 
over time, without any fluctuations, as they do not reflect decisions taken by agents. 
Since that model is solved in a centralized manner, there is no need to account 
for the equilibrium price of these factors. In our case, we solve the model in a 
decentralized manner. This assumption will not affect the main predictions of the 
model. Households will choose the levels allocated to firms for k f 

t , k
x 
t , and h

n 
t , 

while hf , hx , and kn remain unchanged. 
Capital is homogeneous in the tradable sector; therefore, kT 

t is defined as the sum 
of both stocks of capital for exportable- and importable-producing firms. Therefore, 
kT 
t , the level of capital stock in the tradables sector, follows: 

.kT
t = kx

t + km
t . (8.3) 

[C] Law of Motion for Capital It is assumed that only families in the home 
country own the capital within the economy. Domestic households invest in period t 
to supply capital in period t +1. Households choose how much capital is supplied to 
exportable- and importable-producing firms by choosing investment iT 

t . Since k
n is 

fixed over time, the level of investment in capital for nontradable-producing firms in 

should also be fixed. The laws of motion for capital in the tradable and nontradable 
sectors are 

.kT
t+1 = (1 − δ)kT

t + iTt . (8.4)
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kn = (1 − δ)kn + in (8.5) 

where δ ∈ [0, 1) represents the capital depreciation rate. Again, kn does not have 
the subscript t because it is inelastically supplied and therefore is time invariant. 

[D] Time and Budget Constraints Households are bound by a time constraint, 
with a fixed amount of available time, denoted as H , in each period t . The  
endowment of time, subtracted by the fixed hours supplied to the tradable sector, 
hx and hm, is allocated to labor hours hn 

t or to leisure lt . Consequently, the labor 
supplied to each industry conforms to the following equation: 

.lt + hn
t + hx + hm = H (8.6) 

In turn, the households’ budget constraint is given by 

.pc
t ct + in + kT

t+1 + (1 − δ)kT
t + Bt+1 + Φ(kT

t+1 − kT
t ) (8.7) 

= wth
n 
t + rk 

t k
T 
t + wx 

t h
x + wn 

t h
m + rkn 

t kn + (1 + r f 
t−1)Bt + Πx 

t + Πm 
t + Πn 

t 

where wth
n 
t represents the real wage income and rk 

t k
T 
t stands for the real capital 

rent received from the tradable sector (importables and exportable-producing firms). 
The payments received from the production factors with fixed supply are given by 
wx 

t h
x , wn 

t h
m, and rkn 

t kn. The payoffs from the bonds acquired in the previous period 

are represented by (1 + r f 
t−1)Bt . As usual, ct and iT 

t represent consumption and 
investment in the tradable sector, respectively. Finally, Φ(kT 

t+1 − kT 
t ) represents the 

capital adjustment costs. 

By consolidating all components into a single equation, we derive the expression 
for the household budget constraint. The variable iT 

t can be substituted using the 
capital law of motion from Eq. (8.4). 

[E] Closing the Model As in the previous chapter, to induce stationarity, we 
assume that the interest rate is elastic to the level of net foreign assets, following 
Schmitt-Grohe and Uribe (2003). That is, as Bt falls below its long-run level B̄, 
the risk premium component of the interest rate increases. We can express this 
relationship as follows: 

.r
f
t = r∗ + rpt (8.8) 

where rpt is the risk premium, defined as 

.rpt = χ(exp (B̄ − Bt) − 1),
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where χ >  0 and B̄ is the exogenous level of steady-state net foreign assets.1 

[F] Optimization Problem The objective of households is to maximize their 
expected discounted utility stream by determining the optimal trajectory for con-
sumption ct , leisure lt , capital in the tradable sector kT 

t , and noncontingent bonds 

Bt+1 which yield an interest rate of r f 
t in the subsequent period: 

. Max
{ct ,lt ,k

T
t+1,Bt+1}∞t=0

E0

⎾ ∞⎲
k=0

βt (ct l
ω
t )1−γ

1 − γ

⎤

subject to the time and private budget constraints from Eqs. (8.6) and (8.7). 
In order to streamline the problem, Eq. (8.6) can be employed within Eq. (8.7) to 

substitute hn 
t . Consequently, the corresponding Lagrangian takes the form: 

. L = E0

⌠ ∞⎲
t=0

βt

⎾
(ct l

ω
t )1−γ

1 − γ
+ λt

⎛
wt(H − lt − hx

t − hm
t ) + rk

t kt + wx
t hx

+ wn
t hm + rkn

t kn + (1 + r
f

t−1)Bt − pc
t ct − kT

t+1 + (1 − δ)kT
t

− Bt+1 − Φ(kT
t+1 − kT

t )

⎞⎤⎫

The first-order conditions (FOCs) for period “t” are  

. {ct } : (ct l
ω
t )−γ lωt = λtp

c
t

{lt } : (ct l
ω
t )−γ ctωlω−1

t = λtwt

{Bt+1} : λt = βEt

⎾
λt+1(1 + r

f
t )

⎤

{kT
t+1} : λt (1 + φ(kT

t+1 − kT
t )) = βEt

⎾
λt+1(r

k
t+1 + (1 − δ) + φ(kT

t+2 − kT
t+1))

⎤

From the FOCs of ct and Bt+1, the Euler equation for consumption is 
expressed as 

.
(ct l

ω
t )−γ lωt

pc
t

= βEt

⎾
(1 + r

f
t )

(ct+1l
ω
t+1)

−γ lωt+1

pc
t+1

⎤
(8.9) 

Similarly, from FOCs of lt and ct , we obtain the labor supply: 

.
ct

lt
= wt

pc
t

(8.10)

1 For simplicity, we assume that households take the interest rate, rf , as given. Relaxing this 
assumption does not alter the main results of the model. 
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Denote the marginal utility of consumption as Uct = (ct l
ω 
t )

−γ lω 
t 

pc 
t 

. Then, Uct is equal 

to λt from the FOC of ct . Therefore, from the FOCs of kT 
t+1 and Bt+1, we arrive to 

the optimality condition for investment: 

. λt (1 + φ(kT
t+1 − kT

t )) = βEt

⎾
λt+1(r

k
t+1 + (1 − δ) + φ(kT

t+2 − kT
t+1))

⎤

Uct

pc
t

(1 + φ(kT
t+1 − kT

t )) = βEt

⎾
Uct+1

pc
t+1

(rk
t+1 + (1 − δ) + φ(kT

t+2 − kT
t+1))

⎤

(8.11) 

[G] Expenditure Minimization Problems In order to derive the demand for 
nontradables in relation to tradables, we formulate the expenditure minimization 
problem. The objective of this problem is to minimize the expenditure on the 
consumption of goods cT 

t and cn 
t , subject to the definition of ct as specified in 

Eq. (8.1). Since the model is defined in units of importables, the relative prices of 
tradables and nontradables are pT 

t and p
n 
t : 

. Min
{cT

t ,cn
t }

pT
t cT

t + pn
t cn

t subject to ct =
⎾
(cT

t )−μ + (cn
t )−μ

⎤− 1
μ

The Lagrangian of the problem is as follows: 

. L = pT
t cT

t + pn
t cn

t + λ

⎛
ct −

⎾
(cT

t )−μ + (cn
t )−μ

⎤− 1
μ

⎞

The first-order conditions are 

. {cT
t } : pT

t = λ

⎛
1

μ

⎾
(cT

t )−μ + (cn
t )−μ

⎤− 1
μ

−1
(−μ)(cT

t )−μ−1
⎞

{cn
t } : pn

t = λ

⎛
1

μ

⎾
(cT

t )−μ + (cn
t )−μ

⎤− 1
μ

−1
(−μ)(cn

t )−μ−1
⎞

The way the optimization was stated allows the Lagrange multiplier to be 
interpreted as the price of ct . This implies that λ = pc 

t . Then, from the FOC of cT 
t 

.pT
t = pc

t

⎛⎾
(cT

t )−μ + (cn
t )−μ

⎤−1
μ

(1+μ)
(cT

t )−μ−1
⎞

pT
t = pc

t

⎛
ct

1+μ(cT
t )−μ−1

⎞
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pT 
t = pc 

t 
c
1+μ 
t 

(cT 
t )

1+μ 

ct 

cT 
t 

=
⎛

pT 
t 

pc 
t

⎞ 1 
1+μ 

(8.12) 

This problem is symmetric, so an analogous result is obtained when working 
with the FOC of cn 

t : 

.
ct

cn
t

=
⎛

pn
t

pc
t

⎞ 1
1+μ

(8.13) 

The same procedure is applied to obtain the relative demands for exportable (cx 
t ) 

and importable (cm 
t ) goods. In this case, the objective function is the expenditure 

on consumption of goods cx 
t and c

m 
t in units of importable goods subject to the 

definition of cT 
t , provided in Eq. (8.2). Since the model is defined in units of 

importables, the relative price of exportables is px 
t ; therefore, it reflects the terms of 

trade. The stochastic process for this price will be specified later on the chapter: 

. Min
{cx

t ,cm
t }

px
t cx

t + cm
t subject to cT

t = (cx
t )a(cm

t )1−a

The Lagrangian of the problem is as follows: 

. L = px
t cx

t + cm
t + λ

⎛
cT
t − (cx

t )a(cm
t )1−a

⎞

The first-order conditions are 

. {cx
t } : px

t = λ
⎛
a(cx

t )a−1(cm
t )1−a

⎞

{cm
t } : 1 = λ

(
(1 − a)(cx

t )a(cm
t )−a

)

The way the optimization was stated allows the Lagrange multiplier to be 
interpreted as the price of cT 

t . Then, from equation the FOC of cx 
t 

. px
t = pT

t

⎛
a(cx

t )a−1(cm
t )1−a

⎞

cT
t

cx
t

= 1

a

px
t

pT
t

(8.14) 

This problem is also symmetric; therefore, for cm 
t , we obtain 

.
cT
t

cm
t

= 1

1 − a

1

pT
t

(8.15)
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Table 8.4 Household equations 

Description 

1. Law of motion for capital: 

kT 
t+1 = (1 − δ)kT 

t + it 
2. Tradable capital: 

kT 
t = kx 

t + km 
t 

3. Time constraint: 

lt + hn 
t + hx + hm = H 

4. Real interest rate: 

r f 
t = r∗ + rpt 

5. Risk premium: 

rpt = χ(e  ̄B−Bt − 1) 
6. Euler equation for consumption: 

(ct l
ω 
t )

−γ lω 
t 

pc 
t 

= βEt

⎾
(1 + r f 

t ) 
(ct+1l

ω 
t+1)

−γ lω 
t+1 

pc 
t+1

⎤

7. Euler equation for investment: 

Uct 
pc 

t 
(1 + φ(kT 

t+1 − kT 
t )) = βEt

⎾
Uct+1 
pc 

t+1 
(rk 

t+1 + (1 − δ) + φ(kT 
t+2 − kT 

t+1))
⎤

8. Labor supply: 
ct 
lt 

= wt 
pc 

t 

9. Demand for cT 
t : 

ct 
cT 
t 

=
⎛

pT 
t 

pc 
t

⎞ 1 
1+μ 

10. Demand for cn 
t : 

ct 
cn 
t 

=
⎛

pN 
t 

pc 
t

⎞ 1 
1+μ 

11. Demand for cx 
t : 

cT 
t 

cx 
t 

= 1 
a 

px 
t 

pT 
t 

12. Demand for cm 
t : 

cT 
t 

cm 
t 

= 1 
1−a 

1 
pT 

t 

Table 8.4 summarizes the main equations that describe the household’s behavior 
represented by Eqs. (8.4), (8.6), (8.9), (8.10), (8.11), (8.12), (8.13), (8.14), and 
(8.15).
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8.4.2 Firms 

There are three types of firms in this economy: [A] exportable-, [B] importabl, and 
[C] nontradable-producing firms. Since households supply homogeneous capital for 
the tradable sector, the optimal allocation of capital across firms in this sector is 
determined by the equalization of the marginal products of . kx

t and . km
t . As shown  

below, the marginal productivity of capital is equal to the marginal cost of capital. 
Therefore, both exportable- and importable-producing firms will pay the same 
capital rental rate, denoted as . rk

t . 

[A] Exportable-Producing Firms These firms decide the level of labor . hx
t and 

capital . kx
t employed in the production process. The profits of the firm are given by 

. Πx
t = px

t QAx
t (k

x
t )1−αx

(hx
t )

αx − rk
t kx

t − wx
t hx

t

where . Ax
t is an exogenous and stochastic productivity shock, Q is a parameter that 

scales total factor productivity, and .0 < αx < 1. The labor and capital factor prices 
are . wx

t and . rk
t , respectively. The firms choose the levels of labor . hx

t and capital . kx
t

that maximize its profits. The first-order conditions are 

. 
∂Πx

t

∂hx
t

=⇒ αxpx
t QAx

t (k
x
t )1−αx

(hx
t )

αx−1 − wx
t = 0

αxpx
t QAx

t (k
x
t )1−αx

(hx
t )

αx−1 = wx
t

∂Πx
t

∂kx
t

=⇒ (1 − αx)px
t QAx

t (k
x
t )−αx

(hx
t )

αx − rk
t = 0

(1 − αx)px
t QAx

t (k
x
t )−αx

(hx
t )

αx = rk
t

[B] Importable-Producing Firms These firms decide the level of labor . hm
t and 

capital . km
t employed in the production process. The profits of the firms are given by 

.Πm
t = pm

t QAm
t (km

t )1−αx

(hm
t )α

m − rk
t km

t − wm
t hm

t (8.16) 

where . Am
t is an exogenous and stochastic productivity shock. The firms choose the 

level of labor . hm
t and capital . km

t that maximizes its profits. The first-order conditions 
are 

.
∂Πm

t

∂hm
t

=⇒ αmpm
t QAm

t (km
t )1−αm

(hm
t )α

m−1 − wm
t = 0

αmpm
t QAm

t (km
t )1−αm

(hm
t )α

m−1 = wm
t

∂Πm
t

∂km
t

=⇒ (1 − αm)pm
t QAm

t (km
t )−αm

(hm
t )α

m − rk
t = 0
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(1 − αm )pm 
t QAm 

t (k
m 
t )−αm 

(hm 
t )

αm = rk 
t (8.17) 

where we have used the assumption that .pm = 1, as we express all series in terms 
of importables. 

[C] Nontradable-Producing Firms These firms decide the level of labor . hn
t and 

capital . kn
t employed in the production process. The profits of the firm are given by 

. Πn
t = pn

t QAn
t (k

n
t )1−αn

(hn
t )

αn − wth
n
t − rkn

t kn
t

where . An
t is an exogenous and stochastic productivity shock. The firms choose 

the level of labor . hn
t and capital . kn

t that maximizes their profits. The first-order 
conditions are 

. 
∂Πn

t

∂hn
t

=⇒ αnpn
t QAn

t (k
n
t )1−αn

(hn
t )

αn−1 − wt = 0

αnpn
t QAn

t (k
n
t )1−αn

(hn)α
n−1 = wt

∂Πn
t

∂kn
t

=⇒ (1 − αn)pn
t QAn

t (k
n
t )−αn

(hn
t )

αn − rkn
t = 0

(1 − αn)pn
t QAn

t (k
n
t )−αn

(hn
t )

αn = rkn
t (8.18) 

Turning to market equilibrium, the labor market in the tradable sector and the 
capital market in the nontradable sector exhibit perfectly inelastic supply curves. 
Consequently, equilibrium prices in these markets are determined by the factor 
demands. We define the production functions of the firms as 

.yx
t = QAx

t (k
x
t )1−αx

(hx)α
x

. (8.19) 

ym 
t = QAm 

t (k
m 
t )1−αm 

(hm )α
m 
. (8.20) 

yn 
t = QAn 

t (k
n )1−αn 

(hn 
t )

αn 
(8.21) 

where . yx
t , . y

m
t , and . yn

t are the exportable, importable, and nontradable production, 
respectively. 

With the production technologies, we can express the factors’ demand as 

.αxpx
t

yx
t

hx
= wx

t . (8.22) 

(1 − αx ) 
px 

t y
x 
t 

kx 
t 

= rk 
t . (8.23) 

αm y
m 
t 

hm = wm 
t . (8.24)
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Table 8.5 Firms equations Description 

13. Exportables’ production function: 

yx 
t = QAx 

t (k
x 
t )

1−αx 
(hx )α

x 

14. Capital demand from exportable-producing firms: 

(1 − αx ) p
x 
t y

x 
t 

kx 
t 

= rk 
t 

15. Labor demand from exportable-producing firms: 

αx px 
t y

x 
t 

hx = wx 
t 

16. Importables’ production function: 

ym 
t = QAm 

t (k
m 
t )1−αm 

(hm )α
m 

17. Capital demand from importable-producing firms: 

(1 − αm ) y
m 
t 

km 
t 

= rk 
t 

18. Labor demand from importable-producing firms: 

αm ym 
t 

hm = wm 
t 

19. Nontradables’ production function: 

yn 
t = QAn 

t (k
n )1−αn 

(hn 
t )

αn 

20. Capital demand from nontradable-producing firms: 

(1 − αn ) p
n 
t y

n 
t 

kn = rkn 
t 

21. Labor demand from nontradable-producing firms: 

αn pn 
t y

n 
t 

hn 
t 

= wt 

(1 − αm ) 
ym 
t 

km 
t 

= rk 
t . (8.25) 

αn pn 
t 
yn 
t 

hn 
t 

= wt . (8.26) 

(1 − αn )pn 
t 
yt 
n 

kn 
= rkn 

t (8.27) 

Table 8.5 summarizes the Eqs. (8.19)–(8.27) from the firms’ problem. 

8.4.3 Market Clearing and Shock Definitions 

The resource constraint for the tradable sector, which includes the importable and 
exportables sectors, is expressed in units of importables:
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.px
t cx

t + cm
t + iTt + φ

2
(kT

t+1 − kT
t )2 + Bt+1 = px

t yx
t + ym

t + (1+ r
f

t−1)Bt (8.28) 

For the nontradable sector, the resource constraint is as follows: 

.cn
t + kn − (1 − δ)kn = yn

t (8.29) 

It is essential to construct a GDP measure that is comparable to conventional 
real GDP and consistent with the concept of aggregated Cobb-Douglas technology. 
In this case, the sectoral Cobb-Douglas production functions for tradables are 
constructed as follows: 

.yT
t = (yx

t )a(ym
t )1−a (8.30) 

And the aggregate Cobb-Douglas function is then defined as 

.yt = (yT
t )κ (yn

t )1−κ (8.31) 

where . κ represents the weight of tradables in the final goods production. 
In this economy, the shocks affecting the economy are the shock to terms of trade, 

. ϵ
p
t , and the shock to productivity in tradable sector, . ϵ

T
t . The stochastic processes are 

the following: 

. ln(px
t ) = ρ ln(px

t−1) + ϵ
p
t , ϵ

p
t ∼ N(0, σ 2

ϵ
p
t
). (8.32) 

ln(Ax 
t ) = ρ ln(Ax 

t−1) + ρT ϵ
p 
t + ϵT 

t , ϵT ∼ N(0, σ 2
ϵT 
t 
). (8.33) 

ln(Am 
t ) = ρ ln(Am 

t−1) + ρT ϵ
p 
t + ϵT 

t . (8.34) 

ln(An 
t ) = ρ ln(An 

t−1) + ρN (ρT ϵ
p 
t + ϵT 

t ) (8.35) 

The parameters . ρ, . ρT , and .ρN stand for the persistence of the shocks, the 
correlation between the terms of trade and productivity in the tradable sector, and 
the correlation between the productivity of the tradable sector and the nontradable 
sector, respectively. 

8.4.4 Expressing Variables at Import Prices 

Since the data moments were reported at import prices, all variables under analysis 
need to be expressed in the same unit of measure to maintain consistency with the 
data. In the model, both the investment in the tradable sector . iTt and the ratio of 
the trade balance to output . tbt

yt
are already measured at import prices. However, 

variables like consumption . ct and aggregated output . yt are measured in units of
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each variable (they are essentially composite or other variables). Therefore, it is 
necessary to construct both a relative price of consumption . pc

t and a relative price 
of aggregated output . py

t , to express these variables in units of import prices. 
For this purpose, we employ the same strategy, which involves formulating 

an expenditure minimization problem. This time, it pertains to exportables and 
importables in the context of tradables; therefore, the problem is 

. Min
{yx

t ,ym
t }

px
t yx

t + ym
t subject to (yx

t )a(ym
t )1−a = yT

t

The Lagrange of the problem is as follows: 

. L = px
t yx

t + ym
t + λ

⎛
yT
t − (yx

t )a(ym
t )1−a

⎞

The first-order conditions are 

. {yx
t } : px

t = λ
⎛
a(yx

t )a−1(ym
t )1−a

⎞

{ym
t } : 1 = λ

(
(1 − a)(yx

t )a(ym
t )−a

)

The way the optimization was stated allows the Lagrange multiplier to be interpreted 
as the price of . yT

t . This implies that .λ = pT
t . Then, from the FOC of . yx

t , it is  
elaborated: 

. px
t = apT

t (yx
t )a−1(ym

t )1−a

px
t = apT

t

yT
t

yx
t

(8.36) 

This problem is symmetric; therefore, working with equation the FOC of . ym
t

.1 = (1 − a)pT
t

yT
t

ym
t

(8.37) 

Up to this point, it is possible to find an expression for . pt . The definition of 
output from tradable sector is .yT

t = (yx
t )a(ym

t )1−a ; then, Eqs. (8.36) and (8.37) 
are replaced in this expression as follows: 

. yT
t =

⎛
ayT

t

pT
t

px
t

⎞a ⎛
(1 − a)yT

t pT
t

⎞1−a

yT
t = pT

t yT
t aa(px

t )a(1 − a)1−a

pT
t = a−a(px

t )a(1 − a)−(1−a). (8.38)
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Notice that . pT
t is expressed in terms of parameters and . px

t , which is useful for 
defining its steady-state value. 

It is also necessary to find the price of output at import prices. Here, the 
expenditure minimization problem is 

. Min
{yT

t ,yn
t }

pT
t yT

t + pn
t yn

t subject to yt = (yT
t )a(yn

t )1−a

The Lagrangian of the problem is as follows: 

. L = pT
t yT

t + pn
t yn

t + λ
⎛
yt − (yT

t )a(yn
t )1−a

⎞

The first-order conditions are 

. {yT
t } : pT

t = λ
⎛
a(yT

t )a−1(yn
t )1−a

⎞

{yn
t } : pn

t = λ
⎛
(1 − a)(yT

t )a(yn
t )−a

⎞

The way the optimization was stated allows the Lagrange multiplier to be 
interpreted as the price of . yt . This implies that .λ = p

y
t . From the FOC of . yT

t

. pT
t = ap

y
t

⎛
(yT

t )a(yn
t )1−a

yT
t

⎞

pT
t = ap

y
t

yt

yT
t

(8.39) 

This problem is symmetric; thus, a similar result is obtained when working with 
the FOC of . yn

t : 

.pn
t = (1 − a)p

y
t

yt

yn
t

(8.40) 

Output is defined as an aggregate production function, using a weighted geomet-
ric average of sectoral production functions. This implies .yt = (yT

t )κ (yn)
1−κ . In  

order to obtain the price level of output . yt in terms of import goods, we replace the 
Eqs. (8.39) and (8.40) as follows: 

.yt =
⎛

κyt

p
y
t

pT
t

⎞κ ⎛
(1 − κ)yt

p
y
t

pn
t

⎞1−κ

1 = p
y
t

⎛
κ

a−a(px
t )a(1 − a)−(1−a)

⎞κ ⎛
(1 − κ)

pn
t

⎞1−κ
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p y 
t =

⎛⎛
px 

t 
κa

⎞a ⎛
1 

κ(1 − a)

⎞1−a
⎞κ ⎛

pn 
t 

1 − κ

⎞1−κ 

To obtain the price of consumption in terms of import goods . pc
t , we need to use 

the demands of each type of consumption derived in the minimization problem in 
the section above; these are 

. 
ct

cT
t

=
⎛

pT
t

pc
t

⎞ 1
1+μ

ct

cn
t

=
⎛

pN
t

pc
t

⎞ 1
1+μ

cx
t

cT
t

= a
pT

t

px
t

cm
t

cT
t

= (1 − a)pT
t

Recall the definition from consumption .ct = ⎾
(cT

t )−μ + (cn
t )−μ

⎤− 1
μ . Then, it 

follows that 

. ct =
⎡
⎣

⎛
ct

⎛
pc

t

pT
t

⎞ 1
1+μ

⎞−μ

+
⎛

ct

⎛
pc

t

pn
t

⎞ 1
1+μ

⎞−μ
⎤
⎦

− 1
μ

ct = ct (p
c
t )

1
1+μ

⎡
⎣

⎛⎛
1

pT
t

⎞ 1
1+μ

⎞−μ

+
⎛⎛

1

pn
t

⎞ 1
1+μ

⎞−μ
⎤
⎦

− 1
μ

pc
t =

⎾⎛
a−a(1 − a)−(1−a)(px

t )a
⎞ μ

1+μ + (pn
t )

μ
1+μ

⎤ 1+μ
μ

(8.41) 

This expression for . pc
t represents the consumer price index (CPI) of the model. 

To ensure that the analysis of the model’s variables aligns with the data, we 
consider the aggregated variables of output and consumption at import prices. As 
a result, the deflators obtained in this section convert these variables from their unit 
of measurement to import prices. Consequently, we define output at import prices 
(.yimp

t ) and consumption at import prices (.cimp
t ) as follows: 

.y
imp
t = p

y
t yt . (8.42) 

c imp 
t = pc 

t ct (8.43)
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8.4.5 External Sector 

One of the objectives of the model is to study the relationship between terms of 
trade and international variables, such as trade balance and real exchange rate. The 
trade balance is defined as in the previous chapter: 

.(tb/y)t = Bt+1 − (1 + r
f

t−1)Bt

yt

; (8.44) 

The real exchange rate bears varying interpretations within equilibrium models. In 
particular, in three-good models, a more accurate measurement of the real exchange 
rate is achieved by employing the domestic relative price of aggregate consumption 
. pc

t –a metric which is a function of both . pn
t and . px

t . The real exchange rate indicates 
the relative price of the consumption basket in the home country in terms of the 
consumption basket in the foreign country: 

. RERt =
⎾⎛

a−a(1 − a)−(1−a)(px
t )a

⎞ μ
1+μ + (pn

t )
μ

1+μ

⎤ 1+μ
μ

Finally, the interest rate differential is measured as follows: 

. int_diff = pc
t

pc
t−1

(1 + r∗) − (1 + r∗)

Table 8.6 summarizes the main equations from the sections above. Together with 
Tables 8.4 and 8.5, it contains all the remaining equations needed to solve the model. 

8.4.6 Parametrization 

Parametrization corresponds to the values in Mendoza (1995). Table 8.7 shows the 
values associated with the model parameters. 

8.4.7 Steady State 

Calculating the steady state analytically presents a challenge due to the intricate 
nature of the involved nonlinear equations. 

First, the ratio of expenditure on nontradables to expenditure on tradables, . p
n
t cn

t

pT
t cT

t

, 

is established at 0.87. Furthermore, the allocation of time follows this distribution: 
10% is allocated to the tradable sector, with 5% allocated to each industry within it,
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Table 8.6 Rest of the model 

Description 

22. Resource constraint for the tradable sector: 

px 
t c

x 
t + cm 

t + iT 
t + φ 

2 (k
T 
t+1 − kT 

t )
2 + Bt+1 = px 

t y
x 
t + ym 

t + (1 + r f 
t−1)Bt 

23. Resource constraint for the nontradable sector: 

cn 
t + kn − (1 − δ)kn = yn 

t 

24. Tradable Cobb-Douglas production function: 

yT = (yx 
t )

a (ym 
t )1−a 

25. Aggregate Cobb-Douglas production function: 

yt = (yT 
t )

κ (yn 
t )

1−κ 

26. Terms of trade : 

ln(px 
t ) = ρ ln(px 

t−1) + ϵ
p 
t 

27. Exportables firms productivity: 

ln(Ax 
t ) = ρ ln(Ax 

t−1) + ρT 

28. Importables firms productivity: 

ln(Am 
t ) = ρ ln(Am 

t−1) + ρT ϵ
p 
t + ϵT 

t 

29. Nontradables firms productivity: 

ln(An 
t ) = ρ ln(An 

t−1) + ρN (ρT ϵ
p 
t + ϵT 

t ) 

30. Price index for aggregate Cobb-Douglas production function: 

p y 
t =

⎛⎛
px 

t 
κa

⎞a ⎛
1 

κ(1−a)

⎞1−a
⎞κ ⎛

pn 
t 

1−κ

⎞1−κ 

31. Output at import prices: 

y imp 
t = p y 

t yt 

32. Consumption at import prices: 

c imp 
t = pc 

t ct 

33. Ratio trade balance to output: 

(tb/y)t = Bt+1−(1+r f 
t−1)Bt 

yt 

34. Real exchange rate: 

RERt =
⎾(

a−a (1 − a)−(1−a) (px 
t )

a
) μ 
1+μ + (pn 

t ) 
μ 

1+μ

⎤ 1+μ 
μ 

35. Interest rate differential: 

int_diff = pc 
t 

pc 
t−1 

(1 + r∗) − (1 + r∗)
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Table 8.7 Parametrization 

Parameter Value Description 

H 100 Total time available for leisure or labor 

.exp_share .0.87 Ratio of expenditure on nontradables to expenditure on tradables 

Q 1 Scale parameter for total factor productivity 

.κ .0.5 Share of exportables in total tradable consumption 

.ρ .0.414 Shock persistence 

.ρT .0.165 Correlation between . px and . Ax ,. Am

.ρN .0.95 Correlation between . Ax ,. Am and . An

.r∗ .0.04 Steady-state foreign interest rate 

.αx .0.51 Labor share in income from exportables 

.αm .0.73 Labor share in income from importables 

.αn .0.56 Labor share in income from nontradables 

.δ .0.1 Depreciation rate uniform across sectors 

.φ .0.028 Capital adjustment costs 

.γ .1.5 Intertemporal inverse elasticity 

.μ .0.35 Elasticity of subs. between tradables and nontradables 

a .0.3 Share of expenditure in exportable goods 

.ω .2.08 Labor supply elasticity 

.σp .0.019 Terms of trade shock 

.σT .0.019 Productivity shock in the tradable sector 

and an additional 11,39% is allocated to the nontradable sector. As a result, the time-
invariant variables representing labor for exportables and importable-producing 
firms both assume a value of 5 (.hx = 5, hm = 5), while leisure during the steady-
state . lss is .78.61. Additionally, a value of 15 is imposed on the time-invariant capital 
in the nontradable sector . kn. 

From the time constraint, Eq. (8.6), the available time allocated in leisure in 
steady state is given by 

. lss = H − hn
ss − hx − hm

lss = 100 − 11.39 − 5 − 5

lss = 78.61 (8.45) 

From the definition of the risk premium, Eq. (8.9) 

. rpss = χ(eB̄−Bt − 1)

rpss = χ(eB̄−B̄ − 1)

rpss = 0 (8.46)
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From the definition of the real interest rate, given the value of . rpss

. r
f
ss = r∗ + rpss

r
f
ss = r∗ (8.47) 

From the Euler equation for consumption, we obtain 

. 
(css l

ω
ss)

−γ lωss

pc
ss

= β(1 + r
f
ss)

(css l
ω
ss)

−γ lωss

pc
ss

1 = β(1 + r
f
ss)

β = 1

1 + r
f
ss

β = 1

1 + r∗ (8.48) 

From the optimality condition for investment, we obtain 

. (1 + φ(kss − kss) = β
Ucss

Ucss

pc
ss

pc
ss

(rk
ss + (1 − δ) + φ(kss − kss))

1 = β(rk
ss + (1 − δ))

rk
ss = 1

β
− (1 − δ) (8.49) 

Using the capital demands from the firms of the tradable sector, Eqs. (8.23) and 
(8.25), and the fact that .kT

t = kx
t + km

t , we obtain . km
ss , . k

m
ss , and . kT

ss : 

.km
ss =

⎛
rk
ss

Q(1 − αm)

⎞−1/αm

hm
. (8.50) 

kx 
ss =

⎛
rk 
ss 

Q(1 − αx)

⎞−1/αx 

hx
. (8.51) 

kT 
ss = km 

ss + kx 
ss (8.52) 

From the production function for each sector in Eqs. (8.19), (8.20), and (8.21), 
we obtain the levels of . yx

ss , . y
m
ss , and . yn

ss : 

.yx
ss = Q(kx

ss)
1−αx

(hx)α
x

. (8.53) 

ym 
ss = Q(km 

ss)
1−αm 

(hm )α
m 
. (8.54) 

yn 
ss = Q(kn )1−αn 

(hn 
ss)

αn 
(8.55)
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The measure for domestic GDP, Eq. (8.31), defines the steady state of aggregated 
output: 

.yss =
⎛
(yx

ss)
a(ym

ss)
1−a

⎞κ

(yn
ss)

1−κ (8.56) 

From the law of motion for capital, Eq. (8.4), we obtain the level of . iTss : 

.iTss = kT
ss − (1 − δ)kT

ss = δkT
ss (8.57) 

From the market-clearing condition, Eq. (8.29), we obtain the level of . cn
ss : 

.cn
ss = yn

ss − δkn (8.58) 

The definition of the price of tradables, Eq. (8.38), obtained in the expenditure 
minimization problem defines the steady-state level of . pT

t : 

.pT
ss = a−a(1 − a)−(1−a) (8.59) 

From the relative demands for . cT
t and . cn

t , we divide the  terms in Eqs. (8.12) and 
(8.13) and arrive to 

. 

css

cT
ss

css

cn
ss

=

⎛
pT

ss

pc
ss

⎞ 1
1+μ

⎛
pN

ss

pc
ss

⎞ 1
1+μ

If we work with this equation further, we can obtain the expenditure share, 

defined as .
cT
ssp

T
ss

cn
ssp

n
ss
, and the level of . pn

ss : 

.pn
ss =

⎛
cT
ssp

T
ss

cn
ssp

n
ss

⎞(1+μ)/μ

pT
ss = (0.87)(1+μ)/μpT

ss (8.60) 

From the CPI definition, Eq. (8.41), the steady state level of . pc
t is: 

.pc
ss =

⎛
(pT

ss)
μ/(1+μ) + (pn

ss)
μ/(1+μ)

⎞(1+μ)/μ

(8.61) 

From the relative demand for . cm
t , Eq (8.15), we obtain the level of . cm

ss : 

.
1

pT
ss

cm
ss

cT
ss

= 1 − a

cm
ss = (1 − a)cT

ssp
T
ss

cn
ssp

n
ss

cn
ssp

n
ss
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cm 
ss = (1 − a) 

cn 
ssp

n 
ss 

(cn 
ssp

n 
ss)/(c

T 
ssp

T 
ss) 

cm 
ss = (1 − a) 

cn 
ssp

n 
ss 

0.87 
(8.62) 

The level of . cx
ss is obtained straightforward, using Eq. (8.14): 

.cx
ss = a

1 − a
cm
ss (8.63) 

From Eq. (8.1), we obtain the level of . css : 

.css =
⎛
(cT

ss)
−μ + (cn

ss)
−μ

⎞−1/μ
(8.64) 

From the demand for labor from the exportable-, importable-, and nontradable-
producing firms and the demand for capital from the nontradable-producing firms, 
we obtain an expression for the levels of . wss , . wx

ss , . w
m
ss , and . rkn

ss : 

.wss = αnpn
ss

yn
ss

hn
ss

. (8.65) 

wx 
ss = αx px 

ss 
yx 
ss 

hx . (8.66) 

wm 
ss = αm y

m 
ss 

hm . (8.67) 

rkn 
ss = (1 − αn )Q(pn 

ss)(h
n 
ss)

αn 
(kn )−αn 

(8.68) 

Equations (8.45)–(8.68) define the steady state of the entire model. 

8.4.8 Model Solution 

Tables 8.4, 8.5, and 8.6 present the 35 nonlinear equations and variables of the 
model, constituting a nonlinear system. For ease of log-linearization, each variable 
is expressed in Dynare as .exp(xx), where .xx = ln xt . However, the following 
variables are denoted in Dynare as x: foreign assets (. Bt ), terms of trade disturbance 
(. px

t ), labor for nontradable-producing firms (. hn
t ), leisure (. lt ), capital rent in the 

tradable sector (. rk
t ), capital rent for nontradable-producing firms (. rkn

t ), productivity 

disturbances across sectors (.Ax
t , A

m
t , An

t ), real interest rate (. r
f
t ), risk premium (. rpt ), 

interest differential (.intd iff ), trade balance to output ratio .(tb/y)t , and current 
account to output ratio .(ca/y)t .
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Dynare conducts linearization of variables represented in logarithms and levels to 
derive variables in log deviations and deviations from their steady state, respectively. 
Specifically, Dynare expresses the log-deviation variable as . ̂xt = ln xt − ln xss, 
where . xt represents the variable of interest and . xss denotes its steady-state value. 
Similarly, the deviation variable is expressed as .~xt = xt − xss. These variables are 
utilized by Dynare to compute steady states, policy and state functions, impulse-
response functions, and theoretical moments. 

8.5 Impulse-Response Analysis 

This section examines the impulse-response functions of the model variables 
induced by a terms of trade shock and a uniform productivity shock across sectors. 

8.5.1 Impulse-Response Functions to Terms of Trade Shock 

Figure 8.2 plots the response of the aggregated variables measured at import prices. 
Firstly, an improvement in the terms of trade induces to shift capital from 

importables to exportables industry. Because capital is homogeneous, firms allocate 
more capital to the exportables sector and less capital in the importables sector until 
returns on capital from both industries equalize, given a stock of capital available 
to tradable sector. This capital reallocation over time from the importables sector to 
the exportables sector is depicted in Fig. 8.3. 

Indeed, with reference to Eqs. (8.23) and (8.25), the marginal productivity of cap-
ital remains equal across the tradable industries. Hence, employing the definitions 
of output for exports and imports, we can derive the following relationship: 
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Turning to the optimality condition for investment, a terms of trade shock 
prompts an economic expansion. This occurs because the expected returns from 
capital in the tradable sector increase, leading households to reallocate resources 
toward accumulating capital for the production of exportables in the subsequent 
period, as shown in Fig. 8.2. 

When the price of exportable goods rises due to the expenditure switching 
effect, households tend to consume more importable goods and fewer exportable 
goods within the basket of tradable goods. This causes a shift in production from 
importable to exportable goods, while consumption shifts from exportables to
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Fig. 8.2 Effects of a terms of trade shock 

importables. Understanding these dynamics requires considering the “price effects” 
as pivotal. As illustrated in Fig. 8.2, the increase in real output is proportionally 
smaller than the increase in consumption and investment. These dynamics typically 
signal a deterioration in the trade balance. However, as output shifts toward the 
production of exportable goods and consumption moves toward importable goods, 
the economy achieves a positive trade balance and accumulates net foreign assets 
in terms of value. Consequently, output at import prices experiences a significant 
increase, primarily due to the direct positive impact of the terms of trade on 
purchasing power, as depicted in Fig. 8.4. 

Consumption of nontradables also increases. Given this increment, total con-
sumption at import prices increases after the shock. Figure 8.4 plots the response of 
the composite goods and the relative prices. This result aligns with the Harberger-
Laursen-Metzler (HLM) effect. 

Figure 8.4 also illustrates that both . pn
t and .RERt increase in response to the 

terms of trade shock, triggering a real appreciation. The increase in . pn
t underscores 

the fact that the increased demand for nontradables is met with a nearly unaltered
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Fig. 8.3 Effects of a terms of trade shock on capital allocations 

supply, which yields a rise in . pn
t . Given the structure of the consumer price index 

(CPI), which contains . px
t , the shock results in an appreciation of the real exchange 

rate. 
For this reason, a positive real interest rate differential increases alongside the 

real appreciation. Consequently, the anticipated realignment of the real exchange 
rate results in a negative interest rate differential. As the terms of trade shock 
gradually diminishes, less capital needs to be allocated to the exportables sector 
compared to the importables sector to equalize returns between both sectors. 
The growth rate of output at import prices slows down, reflecting the declining 
purchasing power of exports and the return of capital . kT

t to its initial level. This 
convergence follows a monotonic path toward equilibrium. 

Similarly, consumption .cimp
t follows a monotonically convergent trajectory, 

albeit at a slower pace. This slower pace is attributed to trade surpluses in earlier 
periods that finance subsequent deficits. Likewise, the ratio of the trade balance to 
output .(tb/y)t requires time to fully return to its initial equilibrium. Thus, surpluses 
from earlier periods are offset by deficits over multiple future periods.
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Fig. 8.4 Effects of a terms of trade shock 

8.5.2 Impulse-Response Functions to Productivity Shock 
Across Sectors 

Figure 8.5 depicts the response of aggregated variables measured at import prices. 
The dynamics caused by productivity shocks exhibit distinct differences com-

pared to those induced by a terms of trade (TOT) shock. First and foremost, 
the productivity shock triggers a more robust surge in net exports. This outcome 
materializes due to the uniform enhancement in productivity across both tradable 
and nontradable sectors, generating a potent wealth effect that prompts households 
to amplify their savings. Given that capital remains fixed in the nontradeable 
sector, these heightened savings predominantly find allocation in foreign assets. 
Additionally, the variance-covariance and autocorrelation structures of the shocks 
curtail significant deviations in the anticipated, risk-adjusted differentials between 
domestic marginal products of capital in the tradable sector and . r∗. Consequently, 
the substantial variance of the trade balance in the G-7 benchmark can be attributed 
to the estimated size of productivity shocks and their positive correlation with TOT 
shocks.
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Fig. 8.5 Effects of a productivity shock across sectors 

Moreover, the responses of the real exchange rate, the relative price of nontrad-
ables, and the real interest rate differential exhibit their own distinctive patterns. 
In the context of the productivity shock, both tradables and nontradables undergo 
a substantial supply response, albeit with a slight decline in . hn

t due to a wealth-
induced leisure effect. This decline contributes to a reduction in . pn

t in order to attain 
market equilibrium, consequently resulting in a depreciation of the real exchange 
rate. Importantly, given that the terms of trade remain unaltered, the magnitude of 
real depreciation is smaller than the decline in the price of nontradables . pn

t . 
Furthermore, the real interest differential shifts into the negative territory follow-

ing the real exchange rate appreciation. Subsequently, an anticipated appreciation 
prompts a change in the direction of the interest differential (Fig. 8.6). 

8.5.3 Comparison of Data and Theoretical Moments 

Finally, we compare the simulations conducted with the model to actual data. In 
this case, we use data of the 42 countries studied in this chapter. We focus on 
the moments related to terms of trade and the real exchange rate. The model
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Fig. 8.6 Effects of a productivity shock across sectors 

Table 8.8 Comparison of the cyclical behavior of the theoretic model with the empirical data 

Data Model 

Variable (. xt ) .ρxt ,yimp .ρxt ,px .ρxt ,xt−1 .ρxt ,yimp .ρxt ,px . ρxt ,xt−1

.yimp 1.000 0.420 0.630 1.000 0.526 0.925 

.cimp 0.880 0.290 0.630 0.999 0.545 0.923 

investment 0.710 0.290 0.590 0.883 0.766 0.768 

.trade balance . −0.100 0.170 0.550 . −0.490 0.316 0.588 

.px 0.420 1.000 0.660 0.526 1.000 0.473 

RER 0.570 0.190 0.640 0.968 0.694 0.857 

overestimates the procyclicality of real exchange rate and its relationship with the 
terms of trade. The model is also capable of obtaining a stronger negative correlation 
between the balance of trade and the business cycle, although the data in the sample 
of countries considered shows a weaker one (Table 8.8).
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8.6 Summary 

This chapter presents a small open economy RBC model that incorporates three 
main features: (i) a nontradable sector, (ii) a tradable sector composed of exportable-
and importable-producing goods, and (iii) a terms of trade shock that affects the 
relative price of exports. 

The motivation to study such a model serves several purposes. First, terms of 
trade shocks are considered one of the key drivers of business cycles, especially in 
small open economies with sizable commodity export sectors. Second, it permits 
to study the factors behind the reaction of the balance of trade to terms of trade 
shocks and disentangle the reasons for the presence of a Harberger-Laursen-Metzler 
(HLM) effect or a Obstfeld-Razin-Svensson (ORS) effect. Finally, the presence 
of nontradables allows for the study of the business cycle properties of the real 
exchange rate, which exhibit a procyclical behavior in the data, a stylized fact hard 
to replicate by productivity shocks. 

We start by examining the stylized facts linking terms of trade, real exchange 
rates, and business cycles in the data. We study a sample of 42 countries covering the 
period from 1980 to 2020. The findings confirm the procyclical behavior observed 
in the real exchange rate and the positive correlation between terms of trade and 
GDP. 

We then proceed to introduce the model, closely following Mendoza (1995) and 
solve it. We confirm the capacity of the model to match these two stylized facts. 
Under positive productivity shocks, output expansion occurs in conjunction with 
a fall in nontradable prices. Since importables’ prices are determined by world 
markets, this generates a fall in nontradable prices relative to tradable prices on 
impact. Since the price of the foreign basket is unaffected, the cheaper domestic 
basket represents a real depreciation. 

By contrast, a terms of trade shock increases the price of exportables. The 
shift on relative prices creates important sectoral dynamics as production shifts to 
exportables, while consumption shifts to importables. This reallocation contributes 
to the positive wealth effect, also increasing the demand for nontradable goods. 
Given the higher demand and low elasticity of supply, the price of nontradable 
goods augments. The higher nontradables’ prices represent a real exchange rate 
appreciation, which helps obtaining a positive correlation between the real exchange 
rate and the business cycle. 

8.7 Codes 

The model’s solution, along with the impulse-response functions, has been directly 
developed in Matlab by creating several m-files and also in Dynare by constructing 
a mod-file. The results from both approaches are consistent. However, the advantage 
of creating an m-file directly is that it allows for the explicit handling of many details
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in the model’s solution and simulation. Additionally, both the R and Python scripts 
for working with the database have been uploaded to the book’s companion website 
(Table 8.9). 

Table 8.9 Codes in Matlab and Dynare 

Codes Description 

Matlab 

Graphs.m This m-file plots the impulse-response functions of the 
model to terms of trade shock and productivity shock 
across sectors. It use the mod file Mendoza95_irf.mod 

series_chile.m This m-file plots various series of aggregated variables 
of Chile for comparison 

Dynare 

Mendoza95.mod This mod file contains the nonlinear model and is 
solved in Dynare 

Mendoza95_irf.mod This mod file provides the impulse-response functions 
for both the terms of trade and productivity shocks



Appendix A 
Dynamic Optimization 

A.1 Introduction 

This appendix describes the mathematical elements needed in dynamic program-
ming. Each of the models described in the book can be approached by this method, 
which is widely used in macroeconomics. 

This appendix has two parts. The first contains some concepts of real analysis and 
the second contains the main elements of dynamic programming. The objective of 
the first part is to emphasize the necessary concepts in this technique; therefore, we 
have only focused on some issues of real analysis. In the second part, we have tried 
to be explicit in the hypotheses, propositions, and theorems that underlie dynamic 
programming so that the reader has a clear overview of this technique. Finally, we 
have described an application step by step so that the reader can observe how to use 
the technique, and we have left an exercise so that the reader is free to apply what 
has been learned. 

A.2 Fundamentals of Real Analysis 

A.2.1 What Mathematical Concepts Do We Need? 

To define what mathematical concepts we need in dynamic programming, it is useful 
to start with one of its main theorems called fixed-point theorem for (Banach’s) 
contractions. 

This theorem indicates the following: let .Ca(X) the set of continuous and 
bounded functions with the norm of the supremum .‖ · ‖ (complete normed vector 
space), and then the operator “T,” defined in .Ca(X), is an application of this space 
on itself; that is, T: .Ca(X) → Ca(X), defined as 
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.T [V ](x) = sup

⌠
r(xt , ut ) + βV (g(xt , ut ))

⎫
(A.1) 

subject to, .ut ∈ Γ (xt ), satisfies: 

1. . T [V ] ∈ Ca(X)

2. “T” has a single fixed-point “V”: . T [V ] = V

3. For any .V0 ∈ Ca(X), it has 

. ‖T n(V0) − V ‖ ≤ βn‖V0 − V ‖

Particularly 

. Lim
n→∞T n(V0) = V

This theorem contains three major concepts, which we will develop here: 

1. A space of functions .Ca(X). To understand this space, it is worth reviewing the 
definition of a vector space, a metric space, a normed space, and a complete 
space. 

2. Contraction .T [V ]. In particular, we are interested in finding the sufficient 
conditions for an operator to be considered a “contraction.” 

3. Fixed point (of a contraction). Similarly to the case of contraction, we are 
interested in finding some conditions for a contraction to have a “fixed point.” 

A.2.2 Concepts (Part I): Spaces 

A.2.2.1 Vectorial Space 

A (real) vector space “X” is a set of elements (vectors) with two operations: 

1. Addition. For two vectors .x, y ∈ X, addition gives a vector “.x + y” .∈ X. 
2. Scalar multiplication. For a vector .x ∈ X and a real number .α ∈ R, scalar 

multiplication gives a vector “. αx” .∈ X. 

Furthermore, such operations obey the usual laws of algebra; that is, for 
everything .x, y, z ∈ X, and .α, β ∈ R: 

• . x + y = y + x

• . (x + y) + z = x + (y + z)

• . α(x + y) = αx + αy

• . (α + β)x = αx + βx

• . (αβ)x = α(βx)

In addition, there exists a vector “0” .∈ X that has the following properties: 
• .x + 0 = x
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• . 0x = 0
Finally 

• . 1x = x

The following two examples illustrate the properties of a vector space: 

Example A.1 (The Cartesian Plane . R2) This plane, whose elements have the 
following form .(x, y) with .x, y ∈ R, is a real vector space with the following 
operations: 

• Addition 

. (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

• Scalar multiplication 

. a.(x, y) = (ax, ay)

Where “.a ∈ R” 

Example A.2 (Set of Functions) Let X be a non-empty set. The set .RX of all 
functions from X to R is a real vector space with the following operations: 

• Addition 

. (f + g)(x) = f (x) + g(x)

• Scalar multiplication 

. a.f (x) = af (x)

. ∀x ∈ X,∀a ∈ R

• If .X = R, then the space of all real functions of real variable is obtained. 
• If . X is an open interval, say .(a, b) or R, and .C(X) is the set of continuous 

functions of . X on . R, then .C(X) is a real vector space. 

Vector Space with Additional Structure Although vector spaces ad hoc represent 
an important conceptual element in real analysis, they do not offer a framework 
for analyzing whether a sequence of functions converges to another function. 
Furthermore, it is not adapted to deal with infinite series, since the sum only allows 
a finite number of terms. 

Both themes are fundamental in mathematical analysis. For this reason, new 
structures are required, such as metric spaces and normed spaces, which are 
important in dynamic programming. Before addressing these new structures, it is 
worth mentioning that the normed space is a vector space; however, a metric space 
may or may not be a vector space.
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A.2.2.2 Metric Space 

What Is a Metric? A metric (or distance) is a function “d,” defined as 

. d : SxS → R

Such that for all .x, y, z ∈ S, the following holds: 

(a) .d(x, y) ≥ 0, with equality if and only if .x = y nonnegativity 
(b) .d(x, y) = d(y, x) (symmetry) 
(c) .d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality) 

The definition of “metric” summarizes the four basic properties of Euclidean 
distance: 

1. The distance between different points is strictly positive. 
2. The distance of a point from itself is zero. 
3. The distance is symmetric. 
4. The triangle inequality holds. 

What Is a Metric Space? A metric space is a set “S” on which a metric “d” 
has been defined. Usually, the pair (S, d) is called a metric space. This concept 
is illustrated below with two examples: 

Example A.3 (R as a Metric Space) R is a metric space with a distance function 
d(x, y) = |x − y|. So, (R, d) is a metric space. 

Example A.4 (Space of Functions) The set of functions C[a, b] (continuous 
functions of the closed interval [a, b] on R) is a metric space with a distance function 
( metrics): 

. d∞ : C[a, b]xC[a, b] → R

Defined by 

. d∞(f, g) = sup
t∈[a,b]

|f (t) − g(t)|

Then, (C[a, b], d∞) is a metric space. 

Why Is the Concept of a Metric Space Useful? Metric spaces have four 
properties: 

• Connexed: If a space can be separated into two open sets with empty intersec-
tion, then the space is not connected. 

• Separability: Related to countable sets. 
• Compactness: A space can be described by a finite number of open sets. 
• Completeness: Allows us to analyze whether a sequence is convergent without 

the need to know its limit.
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The last two properties (compactness and completeness) are essential in real 
analysis and in optimization theory. In addition, in metric spaces, you can study 
open sets, closed sets, and interior points, among other concepts of sets. 

A.2.2.3 Normed (Vector) Space 

What Is a Norm? A norm is a function that gives the notion of “length” of a vector. 
The norma “.‖ · ‖” is defined as 

. ‖ · ‖ : S → R

Such that for everything .x, y, z ∈ S and .α ∈ R it holds that: 

(a) .‖ · ‖ ≥ 0, with equality if and only if . x = 0
(b) . ‖αx‖ =| α | ‖x‖
(c) .‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality) 

For example, the norm of the supremo is defined as follows: 

.‖f ‖ = sup{|f (x)|} (A.2) 

What Is a Normed Space? A normed space is a vector space “S” in which a 
standard has been defined “‖ · ‖.” The usual notation is as follows: (S, ‖ · ‖) it is 
called a normed space. 

Likewise, any normed space (S, ‖ · ‖) is a metric space with the metric given by 

. d(x, y) = ‖x − y‖

This metric is called “metric induced by the norm ‖·‖.” Furthermore, all the concepts 
defined for metric spaces apply to normed spaces. 

A.2.2.4 Complete Space 

Convergence of a Sequence A sequence .{xn}∞n=0 in S converges to .x ∈ S, if for  
every .ϵ > 0, exists . Nϵ such that 

.d(xn, x) < ϵ, for alln ≥ Nϵ (A.3) 

Therefore, a sequence .{xn}∞n=0 in a metric space .(S, d) converges to .x ∈ S if and 
only if the sequence of distances .{d(xn, x)}, a sequence in . R+, converges to zero. 
In this case, it is written 

.xn −→ x ⇐⇒ d(xn, x) −→ 0
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Cauchy Sequence A sequence {xn}∞n=0 in S is a Cauchy sequence (satisfies the 
Cauchy criterion) if for each ϵ >  0, there exists Nϵ such that 

.d(xn, xm) < ϵ, for alln,m ≥ Nϵ (A.4) 

Therefore, a sequence is Cauchy if the points are getting closer to each other. The 
advantage of the Cauchy criterion, compared to (A.3), is that (A.4) can be checked 
only knowing the sequence {xn}∞n=0. However, for the Cauchy criterion to be useful, 
it is necessary to work in spaces where it (the space) implies the existence of a limit 
point. So, when can it be affirmed that a Cauchy sequence implies convergence (of 
said sequence)? This can be confirmed when we work in complete spaces. 

Complete (Metric) Space A metric space (S, d) is complete if every Cauchy 
sequence in S converges to an element in S. In a complete space, verifying that 
a sequence satisfies the Cauchy criterion is one way to verify the existence of a limit 
point in S. It is worth mentioning that a complete normed vector space is called 
Banach space. 

Complete Normed Space Let X ⊆ Rl , and let Ca(X) be the set of continuous and 
bounded functions f : X → R with the norm of the supremum, ‖f ‖ =  sup 

x∈X

‖f (x)‖; 
then 

. Ca(X) is a complete normed vector space.

In this space, the defined metric is d(x, y) = ‖x − y‖, where x, y are functions. 

A.2.3 Concepts (Part II): Contractions 

A.2.3.1 Contraction (Contractive Application) 

What Is a Contraction? Let (X, d) be a metric space. An application (function) 
on itself .T : S → S is called contraction (with modulo . β) if .∀x, y ∈ S, there exists 
some .β ∈ (0, 1) such that 

. d(T (x), T (y)) ≤ βd(x, y)

That is, the distance between the images of the two points is less than the distance 
between these points. Every contraction has the following properties: 

• A contraction has at least one fixed point. 
• The Banach fixed-point theorem states that every contraction over a complete 

metric space has a unique fixed point, and therefore, for each x of S, the iterative 
sequence .x, f (x), f (f (x)), f (f (f (x))), ... converges to the fixed point. 

• Every contraction T in a metric space (S, d) is continuous.
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A.2.3.2 Blackwell’s Conditions 

Blackwell provides conditions for an operator T to be considered a contraction. 

Sufficient Blackwell Conditions for Contractions Let .X ⊆ Rl , and let .B(X) be 
the space of bounded functions defined on X, .f : X → R, with the norm of the 
supreme. Let .T : B(X) → B(X) be an operator that satisfies 

1. (Monotonicity) .f, g ∈ B(X) y .f (x) ≤ g(x), for all .x ∈ X, implies 

. T [f ](x) ≤ T [g](x), for all x ∈ X

2. (Discount) is there any .β ∈ (0, 1) such that 

. T [f + a](x) ≤ T [f ](x) + βa, for all f ∈ B(X), a ≥ 0, x ∈ X

Where .(f + a)(x) is the function defined by . (f + a)(x) = f (x) + a

So, “T ” is a contraction with module . β. 

A.2.4 Concepts (Part III): Fixed Point 

A.2.4.1 What Is a Fixed Point? 

The fixed points of T are the elements of S that satisfy 

. T (x) = x

That is, they are the intersections with the 45 line. In this context, the question 
that arises is: under what circumstances can it be ensured that a contraction has a 
fixed point? under the conditions of Banach’s theorem. 

A.2.4.2 Contractive Application Theorem 

If (. S, d) is a complete metric space and .T : S → S is a contractive mapping with 
module . β, then: 

(a) T has only one fixed-point . v ∈ S

(b) For any .v0 ∈ S, d(T n, v0, v) ≤ βnd(v0, v), . n = 0, 1, 2 . . .

This theorem suggests two important issues: 

• To ensure that the operator T has a unique fixed point, two things are required: 
[1] That the workspace (set of functions) is a complete metric space and [2] T is 
a contraction.
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• Will converge to that fixed point regardless of where we start to iterate the 
operator. This follows from the expression “for any .v0 ∈ S” in item “b.” 

A.3 Dynamic Programming 

Dynamic programming is one of the main mathematical tools in macroeconomics. 
Its usefulness lies in the fact that it facilitates the solution of recursive models, 
common in macroeconomics, by means of Bellman’s “principle of optimality” 
(Bellman, 1957). This principle indicates that we can start solving the model from 
the last period, considering as given the solution of the previous period. This 
recursive process is performed period by period up to the initial period. An excellent 
book that explains in greater detail the concepts related to dynamic programming is 
that of Stokey and Lucas (1989). 

A.3.1 Outlook 

In this section, we define what problem we want to solve. In dynamic macroeco-
nomics, usually the problem is defined in sequential terms. This means that the 
solution consists of a set of sequences such as the “consumption sequence” .{ct }∞t=0, 
which in extended form is .c0, c1, c2, c3...ci ...where each consumption value in each 
period is the (optimal) equilibrium value that the representative consumer chooses 
as a solution to the dynamic optimization problem he/she faces. The interesting 
thing about the dynamic programming method is that it transforms this sequential 
problem into a functional problem, which is the simplest to solve under certain 
conditions. Likewise, in this section, the value function, the Bellman equation, and 
the functional problem are defined. 

A.3.1.1 What Kind of Problem Do We Want to Solve? 

We want to solve a “dynamic optimization” problem, which we will call sequential 
problem (SP): 

.sup
{ut }

∞⎲
t=0

βt r(xt , ut ) (A.5) 

.s.a :
xt+1 = g(xt , ut )
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ut ∈ Γ (xt ), t = 0, 1, 2, ... 

x0 ∈ X given 

Where: 

1. .r(xt,ut) : return function (instantaneous) 

. r(xt , ut ) : XxRm → R

2. . β : discount factor, . β ∈ [0,∞)

3. . xt : state variables vector (.xt ∈ Rn) 
4. . ut : control variables vector (.ut ∈ Rm) 
5. .g(xt,ut) : function that describes the evolution of the state variables (function of 

transition or movement law) 

. g(xt , ut ) : XxRm → X

6. .Γ (xt) : is a correspondence that describes the possibilities of the control 
variable when the economy is in the state “. xt” 

. Γ : X ⇒ Rm

7. . X : is the space of the values that the state variable can take (.X ⊂ Rn) 
8. .x0 : the initial value of the state variable (initial state) 
Example (Brock and Mirman (1972)) The basic growth model is described by 
the following problem (in general terms): 

. Max
{ct ,kt+1}∞t=0

∞⎲
t=0

βt lnct

s.t.: 

. kt+1 = (1 − δ)kt + it

. ct + it = f (kt )

. ct , kt ≥ 0∀t

We call this problem the sequential problem (SP). Considering the following 
functional forms: .u(ct ) = lnct , .f (kt ) = kα

t . In addition to the following 
assumptions, .α ∈ (0, 1), .δ = 1, and . k0 given, if you have the following:



410 A Dynamic Optimization

. Max
{ct ,kt+1}∞t=0

∞⎲
t=0

βt lnct

s.a: 

. kt+1 = kα
t − ct

. ct , kt ≥ 0

There are three ways to solve this type of problem: 

1. Method of successive approximations. This method starts from an initial value 
of the solution and successively we approach the solution. 

2. Dynamic programming. This method solves a dynamic optimization problem 
through the analysis of functional equations. 

3. Lagrange method. Method that we have used throughout the book and that is 
an extension of the Lagrange technique applied to the static model. 

A.3.1.2 Function Valor 

Bellman (1974) indicates that SP has a recursive property, which allows transform-
ing SP into a functional problem (FP). In this context, a “function value .V (x0)” 
is defined which indicates the maximum value of the objective function for each 
.x0 ⩾ 0: 

.V (x0) = max{ut }

⌠ ∞⎲
t=0

βt r(xt , ut )

⎫
(A.6) 

For example, in .t = 1, if you have . x1

.V (x1) = max{ut }

⌠ ∞⎲
t=1

βt−1r(xt , ut )

⎫
(A.7) 

A.3.1.3 Bellman Equation 

Bellman (1974) transforms the objective function of SP into a functional equation: 

.V (x0) = max{ut }

⌠ ∞⎲
t=0

βt r(xt , ut )

⎫

= max{ut }

⌠
r(x0, u0) + βr(x1, u1) + β2r(x2, u2)...

⎫
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= max{ut }

⌠
r(x0, u0) + β

⎾
r(x1, u1) + β2r(x2, u2)...◟ ◝◜ ◞

V (x1)

⏋⎫

V (x0) = max{ut }

⌠
r(x0, u0) + βV (x1)

⎫

This last equation is known as the Bellman equation. This is a functional 
equation; that is, it is an equation whose solution is a function (function value). 

A.3.1.4 Functional Problem 

Substituting the Bellman equation into the SP, we get the FP (for t): 

.V (xt ) = max{ut }

⌠
r(x0, u0) + βV (g(xt , ut ))

⎫
(A.8) 

. s.a :
ut ∈ Γ (xt ), t = 0, 1, 2, . . .

x0 ∈ X dado

This FP deserves three comments: 

1. The problem of infinite periods (SP) has become a problem of two periods. 
2. SP recursion is being used (exploited). 
3. Now the problem consists of finding the function that solves the FP; that is, the 

function value. 

A.3.1.5 From SP to FP 

Figure A.1 describes the transformation process from SP to FP and how this problem 
is solved. The process is as follows: first, the SP is transformed into a FP, whose 
solution consists of a function called function value. Second, the FP becomes a 
fixed-point problem, which is easier to solve under the “fixed-point” theorem. The 
interesting thing about this “new” problem is that the fixed-point theorem suggests 
a way to find the solution (function) by iterating the value function. After finding 
this function, we proceed to find the policy function that describes the behavior of 
the control variables as a function of the state variables; then, the optimal plan of 
the control variables is found. Finally, this solution of the fixed-point problem is the 
solution of the FP, which by means of the equivalence theorem is the solution of 
the SP.
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Sequential 
Problem (SP) 

Functional 
Problem (FP) 

Fixed point 
problem 

Solution 
Solution FPSolution SP 

(supreme value) 

Equivalence 
Theorem 

becomes becomes 

21 3 

456 

By the fixed point 
theorem for 
contractions 

Find the fixed point of 
the operator T in Ca(X): 

T[V](x) = V(x) 
The function value (V) is 

found 

Policy function is found : 
h(x) 

The optimal plan is 
found : {(xt, ut)} 

Solving the FP 
maximization problem 

step by step 

Is… 

Ca(X ): set of all bounded functions 

Fig. A.1 From SP to FP and its solution process 

A.3.2 Details 

In the previous section, we have defined the SP, the FP, and the relationship between 
them. Moreover, we have seen how we can transform the SP to a FP. However, 
we have not been explicit in the assumptions behind said relationship nor have we 
obtained said relationship formally. In this section, we will detail how to go from 
SP to FP and what are the hypotheses we need to obtain said relationship. 

Hypotheses that Support the Propositions and Theorems In Fig. A.2, the  
hypotheses that support the propositions and theorems for the SP and FP are 
described. In dynamic programming, there are three main theorems: the first is 
the equivalence theorem, which allows transforming SP to FP; the second is the 
fixe- point theorem, which allows us to transform the FP into a fixed-point problem. 
Finally, the third theorem is about the differentiability of the value function, which 
allows us to obtain the solution of the FP by exploiting the properties of the value 
function. 

Each of these theorems are based on a set of hypotheses (or assumptions). 
For example, the first theorem is based on four propositions, which, in turn, are 
based on three hypotheses (H1–H3). Likewise, the second theorem is based on two 
hypotheses (H4 and H5). Finally, the third theorem is based on eight hypotheses 
(H4, H5, and H7–H12). All these hypotheses will be described later in the appendix.
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ῦ 
ῦ 

Fig. A.2 Three main theorems in dynamic programming (and their relationship with their 
hypotheses and propositions) 

A.3.2.1 Optimality Principle 

Bellman (1974) proposed a principle, which allowed finding a relationship between 
the solution of the SP and the FP. This principle is known as the “principle of 
optimality.” 

Theorem A.1 (Optimality Principle) The solution V of the FP, evaluated at . x0, 
gives the value of the supremum in the SP when the initial state is . x0. Furthermore, 
a sequence .{ut }∞t=0 reaches the supremum if and only if this sequence satisfies (A.9) 

.V (xt ) = r(xt , ut ) + βV (xt+1) (A.9) 

The question that arises is under what conditions does the principle of 
optimality hold? Four propositions together establish the conditions that allow the 
solution of the SP and the FP to coincide exactly and that make it possible for the 
optimal policies to be those that satisfy (A.9). These propositions are detailed below 
(see Fig. A.2): 

1. Proposition 1. Establishes that the function of the supremum . ~V for the SP 
satisfies the FP (from SP to FP). However, the functional equation (besides . ~V ) 
can have other solutions. 

2. Proposition 2. Establishes the inverse partially (from FP to SP). It is partial 
because a bounding condition is imposed. This proposition prevents the func-
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tional equation from having other solutions because they do not satisfy the strong 
transversality condition. The only solution that satisfies this condition is . ~V . 

3. Proposition 3. Shows that if .{ut }∞t=0 is a sequence that reaches the supremum in 
the SP, then it satisfies (A.9) for  

. V◟◝◜◞
sol. FP

= ~V◟◝◜◞
sol. SP

4. Proposition 4. States that any sequence .{ut }∞t=0 that satisfies (A.9) for  . V = ~V
and that also satisfies a bounding condition, then it also reaches the supremum in 
SP. 

Definitions Before analyzing the hypotheses that support the four propositions, it 
is important to mention some definitions: 

1. Dynamic feasible from . x0. Is a succession of states and controls .{(xt , ut )}∞t=0 in 
.XxRm for the SP if .ut ∈ Γ (xt ) y .xt+1 = g(xt , ut ) for all . t = 0, 1, 2....

2. .Π(x0): Set of all feasible dynamics from . x0

. Π(x0) :
⌠
{(xt , ut )}∞t=0 such that ut ∈ Γ (xt ),∀t = 0, 1, 2...

⎫

3. Feasible plan from . x0. It is a sequence of controls . {(ut )}∞t=0.

4. Optimal plan from . x0. Is a feasible plan .{(u∗
t )}∞t=0 that allows you to reach the 

supreme SP. 

It is worth mentioning that a feasible plan uniquely determines a feasible 
dynamic. Therefore, an optimal plan .{(ut )}∞t=0 determines an optimal dynamic 
.{(x∗

t , u∗
t )}∞t=0. 

Hypothesis A.1 (.Γ (x) /= φ for all .x ∈ X) 

• Hypothesis A.1 ensures that .Π(x0) (set of feasible dynamics from . x0) is not  
empty .∀x0 ∈ X. This indicates that all feasible plans can be evaluated using 
.r(x, u) and . β. 

• In the SP, .
∑∞

t=0 βt r(xt , ut ) could take three values: a finite number, .+∞, or  
.−∞. We want this objective function to be bounded; that is, that the infinite 
summation has a finite value. 

Hypothesis A.2 (Objective Function) For all .x0 ∈ X, . ∃Mx0 ∈ R, such that
.
∑∞

t=0 βt r(xt , ut ) ≤ Mx0 for all feasible dynamics .{(xt , ut )}t=0,1,2... from . x0. 

• Hypothesis A.2 eliminates the possibility that .
∑∞

t=0 βt r(xt , ut ) is .+∞. To do  
this, the set of feasible dynamics is restricted in such a way that said sum is 
bounded (superiorly). 

• However, the objective function (infinite sum) can still take, for sure feasible 
dynamics, the value of .−∞. Hypothesis A.3 seeks to delimit said dynamics.
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Hypothesis A.3 (Objective Function) For all .x0 ∈ X, . ∃ a dynamically feasible 
.{(xt , ut )}t=0,1,2... since . x0 and a . mx0 ∈ R, such that the sequence of partial sums
.{Sn}t=0,1,2...Sn = ∑n

t=0 βt r(xt , ut ) satisfies .mx0 ≤ Sn. 

• Therefore, hypotheses 2 and 3 have the sole purpose of guaranteeing the 
existence of a finite value for the supreme of the SP; that is, that the objective 
function is well defined for each feasible dynamic .{(xt , ut )} ∈ Γ (x0). 

• Based on the above conditions, we can define the “supreme function” . ~V : X → R
to be the supreme value of SP: 

.~V (x0) = sup
{(xt ,ut )}∈Π(x0)

∞⎲
t=0

βt r(xt , ut ) (A.10) 

Where .~V (x0) is the supreme value of the SP. This function . ~V is called a “value 
function.” 

Supreme Function By definition, the function supreme .~V : X → R is unique and 
satisfies three conditions (considering a generic objective function .μ(x)): 

. ~V (x0) = sup
x∈Π(x0)

μ(x)

1. Si .|~V (x0)| < ∞, then: 

• . ~V (x0) ≥ μ(x),∀(for all) x ∈ Π(x0)

• For any .ϵ > 0: . ~V (x0) ≤ μ(x) + ϵ, for some x ∈ Π(x0)

2. If .|~V (x0)| = +∞, then there exists a sequence .{xk} in .Π(x0) such that 

. Lim
k→∞μ(xk) = +∞

3. If .|~V (x0)| = −∞, then .μ(x) = −∞, for all . x ∈ Π(x0)

Next, the four propositions that support the principle of optimality are described 
in detail. 

Proposition A.1 Under hypotheses 1, 2, and 3, . ~V solves the FP. 

Proof The proof strategy has two steps. The first is to find the relationship between 
the supreme function . ~V and the functional equation for two different initial values 
. x1 and . x0; the second is to join the result of step 1 for . x1 and . x0. 

1. Evaluating at . x1: Let .ϵ > 0, u0 ∈ Γ (x0), and . x1 = g(x0, u0)

• Since .~V (x1) is the supreme value of SP with initial value .x1(t = 1), then . ∃
a feasible dynamic from .x1, {(x1, u1), (x2, u2), ...}, such that (by the property 
of the supreme)



416 A Dynamic Optimization

.

∞⎲
t=1

βt−1r(xt , ut ) ≥ ~V (x1) − ϵ (A.11) 

• It is known that .{(x0, u0), (x1, u1), ...} ∈ Π(x0) and that by the property of 
the supreme 

. ~V (x0) ≥
∞⎲
t=0

βt r(xt , ut )

≥ r(x0, u0) + β

∞⎲
t=1

βt−1r(xt , ut )

≥ r(x0, u0) + β~V (x1) − βϵ

~V (x0) ≥ r(x0, u0) + β~V (g(x0, u0)) − βϵ

To go from the second to the third line, Eq. (A.11) is used. 
• As the last equation is true for all .ϵ > 0 and . u0 in any element of .Γ (x0), then 

we have that 

. ~V (x0) ≥ r(x0, u0) + β~V (g(x0, u0)), ∀u0 ∈ Γ (x0)

• Since the previous equation is true for all . u0, then 

. ~V (x0) ≥ sup
u0∈Γ (x0)

⌠
r(x0, u0) + β~V (g(x0, u0))

⎫

• Generalizing for all “t” 

.~V (x) ≥ sup
u∈Γ (x)

⌠
r(x, u) + β~V (g(x, u))

⎫
(A.12) 

2. Evaluating at . x0: Let .ϵ > 0, then by definition of supremum, . ∃ a feasible dynamic 
from .x0 .{(x0, u0), (x1, u1), ...}, such that 

. ~V (x0) ≤
∞⎲
t=0

βt r(xt , ut ) + ϵ

~V (x0) ≤ r(x0, u0) + β~V (x1) + ϵ

• Since . ϵ is arbitrary, then
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. ~V (x0) ≤ r(x0, u0) + β~V (g(x0, u0))

~V (x0) ≤ sup
u0∈Γ (x0)

⌠
r(x0, u0) + β~V (g(x0, u0))

⎫

• Generalizing for all “t” 

.~V (x) ≤ sup
u∈Γ (x)

⌠
r(x, u) + β~V (g(x, u))

⎫
(A.13) 

3. Joining results: By joining the Eqs. (A.12) and (A.13), we have 

. sup
u∈Γ (x)

⌠
r(x, u) + β~V (g(x, u))

⎫
≤ ~V (x) ≤ sup

u∈Γ (x)

⌠
r(x, u) + β~V (g(x, u))

⎫

4. Therefore 

.~V (x) = sup
u∈Γ (x)

⌠
r(x, u) + β~V (g(x, u))

⎫
(A.14) 

Which indicates that the supreme function (or value function) is a solution of the 
functional equation (FP). 

5. Proposition 1 indicates that . ~V is a solution of the FP, but it does not indicate that 
it is the only one. In order to ensure that this is the only solution of the FP, an 
additional constraint is imposed: “strong transversality condition.” Proposition 2 
ensures the above. 

Proposition A.2 According to hypotheses 1, 2, and 3, V solves the FP, and if the 
strong transversality condition is also met 

. Lim
t→∞βtV (xt ) = 0

for all .x0 ∈ X and dynamically feasible .{(xt , ut )} from . x0, then .~V = V (i.e., V 
solves for the SP ). 

Proof In this case, we must prove that V is the supreme function . ~V . The proof 
strategy has two steps: the first is to show that for all feasible dynamics from . x0 it 
is true that .V (x0) ≥ ∑∞

t=0 βt r(xt , ut ); the second is to show that for every . ϵ > 0, ∃
a dynamically feasible .{(xt , ut )} from . x0, such that .V (x0) ≤ ∑∞

t=0 βt r(xt , ut ) + ϵ. 
Both steps ensure that V is the supreme function (or value function). 

1. Step 1a. Since V is a solution of the FP, then . ∀ feasible dynamics . {(xt , ut )} ∈
Π(x0), we have  

.V (x0) ≥ r(x0, u0) + βV (x1)(BY SUPREME PROPERTY)



418 A Dynamic Optimization

V (x1) ≥ r(x1, u1) + βV (x2)(FOR x1) 

r(x0, u0) + βV (x1) ≥ r(x0, u0) + βr(x1, u1) + β
⎾
βV (x2)

⏋
BY TRANSITIVITY IN THE 1ST INEQUALITY: 

V (x0) ≥ r(x0, u0) + βr(x1, u1) + β2V (x2) 

V (x0) ≥ 
1⎲

t=0 

βt r(xt , ut ) + β2V (x2) (IN COMPACT FORM) 

BY INDUCTION (K STEPS): 

V (x0) ≥ 
k⎲

t=0 

βt r(xt , ut ) + βk+1V (xk+1) (A.15) 

2. Step 1b. Making .k → ∞ and using the strong transversality condition 

. V (x0) ≥ Lim
k→∞

⌠ k⎲
t=0

βt r(xt , ut ) + βk+1V (xk+1)

⎫

V (x0) ≥ Lim
k→∞

⌠ k⎲
t=0

βt r(xt , ut )

⎫
+ Lim

k→∞

⌠
βk+1V (xk+1)

⎫

FOR STRONG TRANSVERSALITY CONDITION:

V (x0) ≥
∞⎲
t=0

βt r(xt , ut ) + 0

V (x0) ≥
∞⎲
t=0

βt r(xt , ut ) (A.16) 

3. Step 2a. Let .ϵ > 0 and .{δt }t=0,1,2... be a sequence of positive real numbers, such 
that 

.

∞⎲
t=0

δtβ
t ≤ ϵ (A.17) 

Step 2b. Since V resolves the FP, then .∃u0 ∈ Γ (x0) such that 

. (BY SUPREME PROPERTY)

V (x0) ≤ r(x0, u0) + βV (x1) + δ0

THERE ALSO EXISTS u1 ∈ Γ (x1) SUCH THAT:

V (x1) ≤ r(x1, u1) + βV (x2) + δ1
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r(x0, u0) + βV (x1) ≤ r(x0, u0) + βr(x1, u1) + β
⎾
βV (x2)

⏋ + βδ1 

BY TRANSITIVITY IN THE 1ST INEQUALITY: 

V (x0) ≤ r(x0, u0) + βr(x1, u1) + β2V (x2) + βδ1 

(IN COMPACT FORM) 

V (x0) ≤ 
1⎲

t=0 

βt r(xt , ut ) + β2V (x2) + 
1⎲

t=1 

βt δt 

4. Step 2c. By induction (k steps) 

. V (x0) ≤
k⎲

t=0

βt r(xt , ut ) + βk+1V (xk+1) +
k⎲

t=1

βtδt

5. Step 2d. Making .k → ∞ and using Expression (A.17) 

. V (x0) ≤ Lim
k→∞

⌠ k⎲
t=0

βt r(xt , ut ) + βk+1V (xk+1) +
k⎲

t=1

βt δt

⎫

V (x0) ≤ Lim
k→∞

⌠ k⎲
t=0

βt r(xt , ut )

⎫
+ Lim

k→∞

⌠
βk+1V (xk+1)

⎫
+ Lim

k→∞

⌠ k⎲
t=1

βt δt

⎫

BY CONDITION OF STRONG TRANSVERSALITY AND (A.17): 

V (x0) ≤ 
∞⎲
t=0 

βt r(xt , ut ) + 0 + ϵ

V (x0) ≤ 
∞⎲
t=0 

βt r(xt , ut ) + ϵ (A.18) 

6. From relations (A.16) and (A.18), it is concluded that V is the supreme function 
(value function). 

7. The FP can have many solutions, but proposition 2 shows that these solutions 
(except . ~V ) violate the strong transversality condition and the only one that 
satisfies said condition is . ~V . Therefore, .V = ~V . 

Proposition A.3 Under hypotheses A.1, A.2, and A.3, let  .{(x∗
t , u∗

t )} be a feasible 
dynamic from . x∗

0 that allows reaching the supreme of SP, if then said feasible 
dynamics satisfies (A.9) 

.~V (x∗
t ) = r(x∗

t , u∗
t ) + β~V (x∗

t+1) (A.19) 

That is, it allows one to reach the supreme in the FP. 

Proof The proof strategy has two steps: first we prove that Eq. (A.19) holds for 
.t = 0; then, we extend this result for all .t = 1, 2, 3 (by induction).
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1. Step 1a. Because .{(x∗
t , u∗

t )} is a feasible dynamic from . x∗
0 that allows reaching 

the supremum of SP, then it is true: 

. ~V (x∗
0 ) =

∞⎲
t=0

βt r(x∗
t , u∗

t )

∞⎲
t=0

βt r(x∗
t , u∗

t ) = r(x∗
0 , u

∗
0) + β

∞⎲
t=0

βt r(x∗
t+1, u

∗
t+1) (A.20) 

2. Step 1b. For all feasible dynamics .{(x∗
1 , u1), (x2, u2), (x3, u3), ...} ∈ Π(x∗

1 ), by  
the definition of the supreme, it is fulfilled: 

.

∞⎲
t=0

βt r(x∗
t , u∗

t ) ≥ r(x∗
0 , u

∗
0) + β

∞⎲
t=0

βt r(xt+1, ut+1) (A.21) 

Therefore, from Expressions (A.20) and (A.21), we have that 

.

∞⎲
t=0

βt r(x∗
t+1, u

∗
t+1) ≥

∞⎲
t=0

βt r(xt+1, ut+1) (A.22) 

3. Step 1c. Furthermore, as the feasible dynamics . {(x∗
1 , u

∗
1), (x

∗
2 , u

∗
2), (x

∗
3 , u

∗
3), ...} ∈

Π(x∗
1 ), then it is fulfilled that .

∑∞
t=0 βt r(x∗

t+1, u
∗
t+1) has to be the supreme value 

with initial value in . x∗
1 : 

.~V (x∗
1 ) =

∞⎲
t=0

βt r(x∗
t+1, u

∗
t+1) (A.23) 

4. Step 1d. Replacing Expressions (A.23) in (A.20), we have 

.~V (x∗
0 ) = r(x∗

0 , u
∗
0) + β~V (x∗

1 ) (A.24) 

5. Step 2a. It was proved that 

. ~V (x∗
0 ) = r(x∗

0 , u
∗
0) + β~V (x∗

1 )

~V (x∗
1 ) =

∞⎲
t=0

βt r(x∗
t+1, u

∗
t+1)

6. Step 2b. The inductive hypothesis is proposed: 

.~V (x∗
k ) = r(x∗

k , u∗
k) + β~V (x∗

k+1) (A.25)
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Where .~V (x∗
k )∀k ∈ N is defined as 

.~V (x∗
k ) =

∞⎲
t=0

βt r(x∗
t+k, u

∗
t+k) (A.26) 

If the hypothesis (Eq. (A.25)) holds for “.k + 1,” then the hypothesis is true. 
7. Step 2c. Reviewing  for “.k + 1” 

. FROM (A.25) AND (A.26) 

r(x∗
k , u∗

k) + β~V (x∗
k+1) = ~V (x∗

k ) = 
∞⎲
t=0 

βt r(x∗
t+k, u

∗
t+k) 

r(x∗
k , u∗

k) + β~V (x∗
k+1) = r(x∗

k , u∗
k) + β 

∞⎲
t=0 

βt r(x∗ 
t+(k+1), u

∗ 
t+(k+1))

~V (x∗
k+1) = 

∞⎲
t=0 

βt r(x∗ 
t+(k+1), u

∗ 
t+(k+1))

~V (x∗
k+1) = r(x∗

k+1, u
∗
k+1) + β 

∞⎲
t=0 

βt r(x∗ 
t+(k+2), u

∗ 
t+(k+2))

~V (x∗
k+1) = r(x∗

k+1, u
∗
k+1) + β~V (x∗

k+2) (A.27) 

Therefore, the inductive hypothesis is true and generalizable for all “t=0, 1, 2, 
....” 

Proposition A.4 Under hypotheses 1, 2, and 3, if .{(x∗
t , u∗

t )} a feasible dynamic 
from . x∗

0 that satisfies (A.19) and the weak transversality condition is fulfilled 

. Lim
t→∞βtV (xt ) ≤ 0,

then .{(x∗
t , u∗

t )} solves the SP. 
Proof The strategy is as follows: if .{(x∗

t , u∗
t )} solves the SP, this means that it 

allows to reach the supreme: .~V (x0) = sup
{ut }

{∑∞
t=0 βt r(xt , ut )

}
; i.e., . ~V (x∗

0 ) =
∑∞

t=0 βt r(x∗
t , u∗

t ). This last is what we have to prove. 

1. Step 1. Since .{(x∗
t , u∗

t )} is a feasible dynamic from . x0, then 

.~V (x∗
0 ) ≥

∞⎲
t=0

βt r(x∗
t , u∗

t ) (A.28)
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2. Step 2. Also, .{(x∗
t , u∗

t )} satisfies (A.19); that is, it allows to reach the supreme in 
the FP: 

. ~V (x∗
t ) = r(x∗

t , u∗
t ) + β~V (x∗

t+1)

∀t = 0, 1, 2, ... :

~V (x∗
0 ) = r(x∗

0 , u
∗
0) + β~V (x∗

1 )

~V (x∗
1 ) = r(x∗

1 , u
∗
1) + β~V (x∗

2 )

~V (x∗
2 ) = r(x∗

2 , u
∗
2) + β~V (x∗

3 )

...

~V (x∗
k ) = r(x∗

k , u∗
k) + β~V (x∗

k+1)

3. Step 3. Substituting .~V (x∗
2 ) in . ~V (x∗

1 )

. ~V (x∗
2 ) = r(x∗

2 , u
∗
2) + β~V (x∗

3 )

~V (x∗
1 ) = r(x∗

1 , u
∗
1) + β

⎾
r(x∗

2 , u
∗
2) + β~V (x∗

3 )

⏋

REPLACING ~V (x∗
1 ) IN ~V (x∗

0 ) :

~V (x∗
0 ) = r(x∗

0 , u
∗
0) + β

⎾
r(x∗

1 , u
∗
1) + βr(x∗

2 , u
∗
2) + β2~V (x∗

3 )

⏋

COMPACTLY:

~V (x∗
0 ) =

2⎲
t=0

βt r(x∗
t , u∗

t ) + β3~V (x∗
3 )

BY INDUCTION (K STEPS):

~V (x∗
0 ) =

k⎲
t=0

βt r(x∗
t , u∗

t ) + βk+1~V (x∗
k+1) (A.29) 

4. Step 4. Taking .k → ∞ into Eq. (A.29) 

. ~V (x∗
0 ) = Lim

k→∞

⎾ k⎲
t=0

βt r(x∗
t , u∗

t ) + βk+1~V (x∗
k+1)

⏋

~V (x∗
0 ) =

∞⎲
t=0

βt r(x∗
t , u∗

t ) + Lim
k→∞

⎾
βk+1~V (x∗

k+1)

⏋

FOR WEAK TRANSVERSALITY CONDITION: Lim
t→∞βt V (xt ) ≤ 0

~V (x∗
0 ) ≤

∞⎲
t=0

βt r(x∗
t , u∗

t ) (A.30)
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5. Step 5. From Relations (A.28) and (A.30), we have 

.

∞⎲
t=0

βt r(x∗
t , u∗

t ) ≤ ~V (x∗
0 ) ≤

∞⎲
t=0

βt r(x∗
t , u∗

t ) (A.31) 

Therefore 

.~V (x∗
0 ) =

∞⎲
t=0

βt r(x∗
t , u∗

t ) (A.32) 

Which indicates that the feasible dynamics .{(x∗
t , u∗

t )} solve the SP. 
Conclusion Propositions 1 to 4 imply that (under hypotheses 1, 2, and 3) the 
solution to Eq. (A.9): .V (xt ) = r(xt , ut ) + βV (xt+1) (FP) coincides exactly (in 
terms of optimal values and plans) with the solution of SP; that is, the principle of 
optimality holds. 

A.3.2.2 Method to Solve the FP 

So far, the relationship between the SP and the FP has been studied, but no 
method has been presented to solve the FP. The interesting thing about dynamic 
programming is that it offers several FP solution methods: theoretical and numerical 
methods. The main method is to consider the FP as a fixed-point problem. For this, 
we need two additional hypotheses: about the correspondence .Γ (x) and the return 
function .r(x, u). 

Hypotheses that allow considering the PF as a fixed point: 

Hypothesis A.4 .Γ : X ⇒ X is a compact-valued mapping (i.e., .Γ (x) is compact 
for all x), continuous and .Γ (x) /= φ for all x. 

Hypothesis A.5 .β ∈ (0, 1) y .r(xt , ut ) is bounded and continuous on the graph of 
. Γ . Where 

. graph ofΓ : {
(x, u) ∈ XxRm such that u ∈ Γ (x)

}

• Hypotheses A.4 and A.5 imply hypotheses 1, 2, and 3. Thus, propositions 1 
through 4 hold and hence the principle of optimality. 

• By hypothesis A.5, . ~V (and, consequently, “V” by the optimality principle), which 
is a real function, is also bounded and continuous. 

• Let’s define .Ca(X) : Space of real, continuous, and bounded functions. So:. ~V =
V ∈ Ca(X). 

• We define an operator T: .Ca(X) → Ca(X) of FP:
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.T [V ](x) = sup
{u}∈Γ (x)

⌠
r(x, u) + βV (g(x, u))

⎫
(A.33) 

• From the FP, we know 

.V (x) = sup
{u}∈Γ (x)

⌠
r(x, u) + βV (g(x, u))

⎫
(A.34) 

• From (A.33) and (A.34), the FP becomes a “fixed-point problem (fixed point)”: 

.T [V ](x) = V (x) (A.35) 

Where the function V is the fixed point. If we find the function V that solves 
(A.35) (fixed point), then we will have the solution of the FP, and by the principle 
of optimality, we will have the solution of the SP. 

• Since we have the function value, we can find the optimal plan: 

– Form 1: solving step by step the problem of the maximum that appears in the 
FP (i.e., finding the policy function) 

– Form 2: solving the system of equations 

. V (x∗
t ) = r(x∗

t , u∗
t ) + βV (x∗

t+1), t = 0, 1, 2, 3...

We need a theorem that ensures that the operator “.T : Ca(X) → Ca(X)” has a 
unique fixed point and, therefore, a solution to (A.35) (fixed point) . The fixed-point 
theorem for contractions ensures this. 

Theorem A.2 (Fixed-Point Theorem) Under hypotheses A.4 and A.5, let  . Ca(X)

(space of real, continuous, and bounded functions on X) with the norm of supremum 
.‖ · ‖, then the operator “T” defined on .Ca(X) is an application of this space on 
itself, T: .Ca(X) → Ca(X), defined as 

.T [V ](x) = sup

⌠
r(xt , ut ) + βV (g(xt , ut ))

⎫
(A.36) 

subject to, .ut ∈ Γ (xt ), satisfies: 

1. . T [V ] ∈ Ca(X)

2. “T” has a unique fixed-point “V”: . T [V ] = V

3. For any .V0 ∈ Ca(X), it has: 

. ‖T n(V0) − V ‖ ≤ βn‖V0 − V ‖

Particularly
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. Lim
n→∞T n(V0) = V

Note: The norm of supremum .‖ · ‖ is defined as 

.‖f ‖ = sup{|f (x)|} (A.37) 

The fixed-point theorem offers a method of solving the PF: “the convergence of 
successive iterations of a contractive function to the fixed point,” which consists of 
the sequence of functions .{Vn}∞n=0, defined as 

.Vn = T [Vn−1], n ≥ 1 (A.38) 

Which converges to the fixed point (V) of the contraction T; that is to say 

.Lim
n→∞Vn = V (A.39) 

Proof 

1. Step 1. Under hypotheses 4, 5, and 8, we have that for each .f ∈ Ca(X)∧x ∈ X, 
the fixed-point problem 

.T [f ](x) = max
ut∈Γ (X)

{
r(xt , ut ) + βf (ut )

}
(A.40) 

It reduces to maximizing the continuous function: 

.
{
r(xt , ·) + βf (·)} (A.41) 

About the compact set .Γ (X). This allows you to reach the maximum. 
One question we have to answer is: is .T [f ] bounded and continuous? His/her 
domain is known to be. 

2. Step 2a. Since .r(xt , ut ) and .f (ut ) are bounded, then 

. T [f ], is also bounded.

3. Step 2b. Since .r(xt , ut ) and .f (ut ) are continuous, and .Γ (X) is compact, then 
by the maximum theorem, .T [f ] is keep going. 

Therefore, from step 2a and 2b we have that .T [f ] is continuous and bounded, 
and since T was defined (domain) in .Ca(X), then it is obtained that the operator 
.T [f ] is 

. T [f ] : Ca(X) → Ca(X)

4. Step 4. T is a contraction? 
If this is because the operator T satisfies the Blackwell conditions.



426 A Dynamic Optimization

5. Step 5. Does T have a unique fixed point? 
Yeah. Since .Ca(X) is a Banach space, then by the “contractive mapping” 

theorem, T has a unique fixed point .V ∈ Ca(X) and it holds that 

. ‖T n(V0) − V ‖ ≤ βn‖V0 − V ‖

With these tools in our hands, let’s move on to solve some examples. 

Example Brock and Mirman model (1972) 

The basic growth model is described by the following problem (in general terms): 

. Max
{ct ,kt+1}∞t=0

∞⎲
t=0

βt lnct

s.t.: 

. kt+1 = (1 − δ)kt + it

. ct + it = f (kt )

. ct , kt ≥ 0∀t

We call this problem a sequential problem (SP). Considering the following 
functional forms

(
.u(ct )lnct , .f (kt ) = kα

t

)
and assumptions

(
.α ∈ (0, 1) , . δ = 1

and . k0 given
)
, we have  

. Max
{ct ,kt+1}∞t=0

∞⎲
t=0

βt lnct

s.t.: 

. kt+1 = kα
t − ct

. ct , kt ≥ 0

The functional (or Bellman) equation is 

. V (kt ) = Max
{ct ,kt+1}∞t=0

{
lnct + βV (kt+1)

}

By replacing the constraint in the Bellman equation .kt+1 = kα
t −ct , the associated 

functional problem is described as follows:
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. V (kt ) = Max
{ct }∞t=0

{
lnct + βV (kα

t − ct )
}

. 0 ≤ ct ≤ kα
t

1. To solve the PF, we will use the value function iteration method (proposed by the 
fixed-point theorem for contractions), Expression (A.38): 

.Vn = T [Vn−1], n ≥ 1 (A.42) 

It starts with the simplest function: . V0 = 0
2. Finding . V1

. V1 = T [V0]
↓

= Max
{ct }∞t=0

{
lnct + β V0(k

α
t − ct )◟ ◝◜ ◞
=0

}

= Max
{ct }∞t=0

{
lnct

}
(A.43) 

(a) At this stage, the first-order condition applies 

. 
∂ Objective Function

∂ct

= 0

However, in this case, since “ln” is monotone, then the maximum value is 
reached when .ct = kα

t (see the FP constraint). 
(b) Replacing . ct that maximizes the objective function in (A.73), we obtain . T [V0]

and, therefore, . V1

. V1 = T [V0] = ln
⎾
kα
t

⏋
V1 = αlnkt (A.44) 

3. Finding . V2

.V2 = T [V1]
↓

= Max
{ct }∞t=0

{
lnct + β V1(k

α
t − ct )◟ ◝◜ ◞

=αln(kα
t −ct )

}
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= Max
{ct }∞t=0

{
lnct + βαln(kα 

t − ct )
}

(A.45) 

• . (a) At this stage, the first-order condition applies 

. 
∂ objective function

∂ct

= 0

.ct = kα
t

1 + βα
(A.46) 

• . (b) Replacing . ct that maximizes the objective function in (A.75) gives  . T [V1]
and, therefore, . V2

. V2 = T [V1] = α(1 + βα)lnkt + βαln

⎾
βα

1 + βα

⏋
− ln(1 + βα)

V2 = α(1 + βα)lnkt + βαln

⎾
βα

1 + βα

⏋
− ln(1 + βα) (A.47) 

4. In the same way, we can do for . V3 and then, in general, we see that 

.Vn(kt ) = An +
⎛

α

n−1⎲
i=0

(βα)i lnkt

⎞
(A.48) 

Where we make .n → ∞ for the property (A.39) 

. Lim
n→∞Vn = V

. Lim
n→∞Vn(kt ) = Lim

n→∞An + Lim
n→∞

⎛
α

n−1⎲
i=0

(βα)i lnkt

⎞

V = A +
⎛

α

∞⎲
i=0

(βα)i lnkt

⎞

V = A + α

1 − βα
lnkt (A.49) 

The constant “A” can be found by replacing “V” and we can find the optimal 
dynamics in the Bellman equation. After this, we move on to finding the policy 
function. With this end in mind, since we already know the value function (V ), we 
plug it into the Bellman PF equation.
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1. Replacing the function value in the FP 

. V (kt ) = Max
{ct }∞t=0

{
lnct + β

⎾
ln(kα

t − ct )
⏋}

. 0 ≤ ct ≤ kα
t

The functional problem becomes a standard optimization problem (in “t”), to 
which first-order conditions (FOC) can be applied. 

Applying FOC 

. 
∂Objective Function

∂ct

= 0

We find the policy function: . ct = h(kt )

.ct = (1 − αβ)kα
t (A.50) 

2. Finding the constant “A”: We plug the value function and the policy function 
into the Bellman equation (the maximum disappears because the policy function 
allows it to be reached): 

. A + α

1 − βα
lnkt = ln(h(kt )) + β

⎾
ln(kα

t − h(kt ))
⏋

Solving and equating the coefficients of like terms 

. A =
⎾

1

1 − β

⏋
(ln(1 − αβ) + αβ

1 − αβ
lnαβ)

Finally, we find the optimal dynamics: 

1. The optimal dynamics is the sequence .{ct , kt }∞t=0 described by this system of 
equations (with . k0 given): 

. STATE VARIABLE EVOLUTION EQUATION

kt+1 = kα
t − (1 − αβ)kα

t = αβkα
t . (A.51) 

POLICY FUNCTION 

ct = (1 − αβ)kα 
t (A.52) 

The following exercise is left to the reader. The way to solve it is by following 
the steps in the example.
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Exercise model with consumption habits 

. Max
{ct ,kt+1}∞t=0

∞⎲
t=0

βt (lnct + γ lnct−1)

subject to 

. ct + kt+1 ≤ Akα
t

Where .β ∈ (0, 1), .γ < 0, .A > 0 y .α ∈ (0, 1). . k0 y .c−1 given. 

1. Write the Bellman equation. 
2. Show that the solution of the said equation has the following form: 

. v(kt , ct−1) = E + F lnkt + Glnct−1

3. Show that the optimal dynamics of capital has this form: 

. lnkt+1 = I + Hlnkt

Where E, F, G, H, and I are constants. Give explicit formulas for these constants 
in terms of the parameters of the problem. 

A.3.2.3 Differential Calculus Method to Solve the PF 

In order to apply the methods of differential calculus in the solution of dynamic 
optimization problems, it is required that the value function has three important 
properties: monotonicity, concavity, and differentiability. 

[1] Monotonicity of .V (xt ) To ensure the monotonicity of the value function, we 
need two additional hypotheses (H6 and H7). 

Hipotesis A.6 (.r(x, u) y .g(x, u)) For each .u ∈ Rm, the functions 

. r(xt , u) : X → R is strictly increasing

g(xt , u) : X → X is increasing

Hypothesis A.7 (.Γ (x)) . Γ is monotone (i.e., if .x' > x → Γ (x') ⊇ Γ (x) ) 

With these two additional hypotheses, we have the following proposition that 
ensures the monotonicity of the function value: 

Proposition A.5 (Monotonicity of .V (x)) Under hypotheses A.4 to A.7, the value 
function is strictly increasing.
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Proof The strategy has two steps. The first is to prove that “T[f]” is a strictly 
increasing function; the second step is to consider the “fixed-point problem” and 
from there derive that “V” is also strictly increasing. 

1. We know: 

• .Ca(X) is the space of real, continuous, and bounded functions with the norm 
of the supremum. 

• .Cc(X) ⊂ Ca(X) is the space of real, continuous, bounded, and increasing 
functions. 

• It is observed that .Cc(X) is a closed subspace in .Ca(X), and therefore, it is a 
complete space in the norm of the supremum. 

2. Step 1. Let’s prove that “if .f ∈ Ca(X) is increasing, then .T [f ] is a strictly 
increasing function.” 

3. Step 1a. By hypothesis A.6, if .x' ≥ x, then .g(x', u) ≥ g(x, u) ∀u: 

. SINCE F IS INCREASING:

f (g(x', u)) ≥ f (g(x, u))

r(x', u) + βf (g(x', u)) ≥ r(x', u) + βf (g(x, u))

BY HYPOTHESIS A.6 r(x, u) IS INCREASING: 

r(x', u)  ≥ r(x, u), THEN: 

r(x', u)  + βf (g(x', u))  >  r(x, u) + βf (g(x,  u)) (A.53) 

4. Step 1b. Applying “max” on the  relation (A.53) 

. max
u∈Γ (x)

⌠
r(x', u) + βf (g(x', u))

⎫
> max

u∈Γ (x)

⌠
r(x, u) + βf (g(x, u))

⎫
(A.54) 

5. Step 1c. By hypothesis A.7, we have that “if .x' ≥ x ⇒ Γ (x') ⊇ Γ (x)” 

( ) 

( ) 

Where .u ∈ Γ (x), then .u ∈ Γ (x'). Replacing this result in (A.54), we have 

. max
u∈Γ (x')

⌠
r(x', u) + βf (g(x', u))

⎫
> max

u∈Γ (x)

⌠
r(x, u) + βf (g(x, u))

⎫
(A.55)
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6. Step 1d. By the definition of the operator “T” for any function “f” 

. T [f ](x) = sup
{u}∈Γ (x)

⌠
r(x, u) + βf (g(x, u))

⎫

Expression (A.55) becomes 

.T [f ](x') > T [f ](x) (A.56) 

That is, .T [f ] is strictly increasing. 
Conclusion 1 
What we wanted to test in step 1 is fulfilled: “If .f ∈ Ca(X) is increasing, then 
.T [f ] is a strictly increasing function.” 

7. Step 2. Since .Cc(X) is a closed subspace of .Ca(X), then the function value “V” 
is in .Cc(X): 

Ca(X) 

Cc(X) 

V 

Also, since .T [V ] = V , and T is strictly increasing, then “V” is also strictly 
increasing. 
Conclusion 2 
The function value (V) is strictly increasing. 

[2] Concavity of .V (xt ) To ensure the concavity of the value function, three 
additional hypotheses are required: the first is related to the set X, the second, with 
the functions .r(·) and . g(·), and the third, with .Γ (x). 

Hypothesis A.8 (X) X is a convex subset of . Rn. 
It should be remembered that the set “X” is convex if, for two elements of said 

set x and y, the linear combination (with .t ∈ [0, 1]) also lies within a said set. That 
is, .∀x ∧ y ∈ X y .∀t ∈ [0, 1] it is true that .[(1 − t)x + ty] ∈ X.
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Hypothesis A.9 (.r(x, u) y .g(x, u)) .r(xt , ut ) is strictly concave and .g(xt , ut ) is 
concave. 

Let us remember that a real function, defined in a convex set (domain), is concave 
if for any two points x and y defined in their domain, and for any .t ∈ [0, 1], it is  
fulfilled: 

.f (tx + (1 − t)y) ≥ tf (x) + (1 − t)f (y). 

y 

0 

M 
S 

P 

xx0 x0+h 

Hypothesis A.10 (.Γ (x)) .Γ (xt ) is convex; that is to say 

1. .Γ (x) is a convex set for all .x ∈ X. 
2. Given .λ ∈ [0, 1], x, x' ∈ X and .x /= x', then if .u ∈ Γ (x) y .u' ∈ Γ (x') implies 

that 

. λu + (1 − λ)u' ∈ Γ (λx + (1 − λ)x')

With these additional assumptions, the concavity of the value function is assured, 
which is expressed in the following proposition: 

Proposition A.6 (Concavity of .V (x)) According to hypotheses 4, 5, 8, 9, and 10, 
the value function is strictly concave and the policy correspondence is a continuous 
function.
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Proof The strategy is to first prove that “T[f]” is an increasing and strictly concave 
function; then, it is to consider the “fixed-point problem” and from there derive that 
“V” is also increasing and strictly concave. 

1. Step 1. Let’s prove that “if .f ∈ Ca(X) is increasing and concave, then .T [f ] is 
an increasing and strictly concave function.” (We know that it is increasing from 
proposition 5.) 

2. Step 1a. Given .λ ∈ [0, 1], .x, x' ∈ X and .x /= x', and let .u, u' be such that they 
solve the maximum problem defined by .T [f ](x) and .T [f ](x'), respectively. 

3. Step 1b. In addition, by hypothesis A.10, we have that 

. λu + (1 − λ)u' ∈ Γ (λx + (1 − λ)x')

Then, we have that (by the definition of the supreme) 

.T [f ](~x) ≥ r(~x,~u) + βf (g(~x,~u)) (A.57) 

Where 

. ~x = λx + (1 − λ)x'

~u = u + (1 − λ)u'

4. Step 1c. But .r(·, ·) is strictly concave (hypothesis A.9); then, for .r(~x,~u) which 
is equal to .r(λx + (1 − λ)x', u + (1 − λ)u'), you have to 

.r(λx + (1 − λ)x', u + (1 − λ)u') > λr(x, u) + (1 − λ)r(x', u') (A.58) 

5. Step 1d. Also, since .g(·, ·) is concave (hypothesis A.9), then we have 

.g(~x,~u) ≥ λg(x, u) + (1 − λ)g(x', u') (A.59) 

And since f is increasing, then applying “f” to the previous equation (Eq. A.59) 

.f (g(~x,~u)) ≥ f (λg(x, u) + (1 − λ)g(x', u')) (A.60) 

And since f is concave 

.f (λg(x, u) + (1− λ)g(x', u')) ≥ λf (g(x, u)) + (1− λ)f (g(x', u')) (A.61) 

6. Step 1e. Introducing Expressions (A.58) and (A.61) (multiplied by . β) in the  
initial expression (A.57), we have 

.T [f ](~x) ≥ r(~x,~u) + βf (g(~x,~u))

> λr(x, u) + (1 − λ)r(x', u') + β[λf (g(x, u)) + (1 − λ)f (g(x', u'))]
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>
⎾
λr(x, u) + λβf (g(x, u))

⏋
+⎾

(1 − λ)r(x', u') + (1 − λ)βf (g(x', u'))
⏋

> λ
⎾
r(x, u) + βf (g(x, u))◟ ◝◜ ◞

T [f ](x)

⏋ + (1 − λ)
⎾
r(x', u') + βf (g(x', u'))◟ ◝◜ ◞

T [f ](x')

⏋

T [f ](~x) > λT [f ](x) + (1 − λ)T [f ](x') 

Conclusion 1: What we wanted to prove in step 1 is fulfilled: 

“If .f ∈ Ca(X) is increasing and concave, then .T [f ] is an increasing and strictly 
concave function.” 

7. Step 2. Since .Cc(X) (bounded for strictly concave functions) is a closed subspace 
of .Ca(X), then the function value “V” is in .Cc(X) (bounded for strictly concave 
functions): 

Ca(X) 

Cc(X) 

V V 

Strictly 
Concave 

Also, since .T [V ] = V , and T is strictly concave, so “V” is too. 
Conclusion 2: The function value (V) is strictly concave. 

[3] Differentiability of .V (xt ) In the same way as in the two previous properties of 
the value function, for it to be differentiable, two additional hypotheses are required. 

Hypothesis A.11 (.r(x, u) and .g(x, u)) .r(xt , ut ) and .g(xt , ut ) are continuously 
differentiable inside the graph of .Γ (xt ). 

Hypothesis A.12 (Differentiability) Let .(x∗, u∗) be in the interior of the graph of 
. Γ , such that . ∃ a differentiable function “. τ” defined in an open neighborhood V of 
. x∗ such that 

. τ : V → U

And for everything .x ∈ V : τ(x) ∈ Γ (x) y . g(x, τ (x)) = g(x∗, u∗)
With these two additional hypotheses, two very useful theorems in dynamic 

programming are obtained. The first corresponds to the differentiability of the 
value function, and the second is a practical way of obtaining the first-order 
conditions directly from differentiating the value function. Both theorems come 
from Benveniste-Scheinkman; the latter is known as the envelope theorem.
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Theorem A.3A (Differentiability of the Value Function (Benveniste-
Scheinkman)) Under hypotheses A.4, A.5, A.8, A.9, A.10, A.11, and A.12; if  
.x0 ∈ Int (X) and .h(x0) ∈ Int (Γ (x0)), then the function value is continuously 
differentiable at . x0, and its derivative is given by 

.
∂V (x0)

∂x0
= ∂r(x0, h(x0))

∂x0
+ β

∂V (g(x0, h(x0)))

∂x0
(A.62) 

This is generalized for all t . 
This theorem is a previous step to proving the envelope theorem. Also, said 

theorem requires that the policy function .h(x) be introduced into the Bellman 
equation (in addition to the equation of motion of the state variable .g(x, h(x))). 
It should be noted that the hypotheses described ensure that the value function is 
twice differentiable (Stokey and Lucas, 1989 p. 84), which ensures that the policy 
function .h(x) is differentiable. This property is collected in the theorem of 3A and 
3B. 

Theorem A.4A (Theorem of the Envelope (Benveniste-Scheinkman)) Under 
hypotheses A.4, A.5, A.8, A.9, A.10, A.11, and A.12; if  .x0 ∈ Int (X) and . h(x0) ∈
Int (Γ (x0)), and fulfilling theorem 3A, then for .x, u it is true: 

.
∂V (x0)

∂x0
= ∂r(x0, u0)

∂u0
(A.63) 

This is generalized for all t . 
This theorem ensures a relationship between the value function and the utility 

function. 

Steps to use the Benveniste-Scheinkman method 

1. In the Bellman equation applies the FOC; that is, derive the right-hand side of 
the said equation with respect to the control variable. 

2. Apply the envelope theorem. Remember that the differentiability theorem is only 
to prove the envelope theorem. 

It should be noted that this method (BS theorem) explicitly provides the FOC 
without the need to know the value function; however, it does not provide the 
solution to the problem, that is, it does not specify the policy function. 

Example Application of the envelope theorem. A typical example of the consumer 
problem 

. Max
{ct ,wt+1}∞t=0

∞⎲
t=0

βtu(ct )

subject to
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. wt+1 = (1 + r)(wt + ct )

Where .β ∈ (0, 1), . wt is the wealth of the individual and . w0 given. 

Solution Bellman equation is 

. V (wt) = Max
{ct }∞t=0

⌠
u(ct ) + βV (wt+1)

⎫

Introducing the equation of the state variable 

.V (wt) = Max
{ct }∞t=0

⌠
u(ct ) + βV ((1 + r)(wt + ct ))

⎫
(A.64) 

The first-order conditions are obtained by differentiating the right-hand side of 
the Bellman equation with respect to the control variable . ct : 

. 
∂u(ct )

∂ct

+ β
∂V (wt+1)

∂wt+1

∂[(1 + r)(wt + ct )]
∂ct

= 0

∂u(ct )

∂ct

+ β
∂V (wt+1)

∂wt+1
(−1)(1 + r) = 0

.
∂u(ct )

∂ct

= β(1 + r)
∂V (wt+1)

∂wt+1
(A.65) 

The envelope theorem states 

.
∂V (wt )

∂wt

= ∂u(ct )

∂ct

(A.66) 

One period forward 

.
∂V (wt+1)

∂wt+1
= ∂u(ct+1)

∂ct+1
(A.67) 

Introducing Eq. (A.67) (envelope theorem) in Eq. (A.68) (FOC), we have Euler’s 
equation: 

. 
∂u(ct )

∂ct

= β(1 + r)
∂V (wt+1)

∂wt+1

.
∂u(ct )

∂ct

= β(1 + r)
∂u(ct+1)

∂ct+1
(A.68)



438 A Dynamic Optimization

A.3.3 Applications 

A.3.3.1 Growth with Human Capital 

Preliminaries 

1. This model holds that there is a trade off between the time spent working (. nt ) 
and training (accumulating human capital (. ht )). The more time spent working, 
the less time will be dedicated to training: “to accumulate human capital, you 
have to dedicate time to study/train, which implies stopping working for a bit”: 

. ↑ nt →↓ ht

2. The dynamic described is captured by this expression: 

.ht+1 = htΨ (nt ) (A.69) 

Where .Ψ (nt ) is a function of .[0, 1] in . R+

. Ψ (nt ) : [0, 1] → R+

: In addition, it is assumed that .Ψ (nt ) fulfills the following properties: 

• Continue 
• Strictly concave 
• Strictly decreasing 
• .Ψ (0) = 1 + λ, which indicates that if the representative agent dedicates all 

his/her time to training, then the accumulation of human capital will grow at 
a constant rate (. λ): 

. ht+1 = ht (1 + λ)

• .Ψ (1) = 1 − δ, which indicates that if the representative agent dedicates all 
his/her time to work, then the accumulation of human capital will decrease at 
a constant rate (. δ): 

.ht+1 = ht (1 − δ)
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nt 

Function Ψ(nt) 

Statement 

. Max
{ct ,nt }∞t=0

∞⎲
t=0

βt

⎾
cσ
t

σ

⏋

subject to 

. ct = f (htnt ) = (htnt )
α

. ht+1 = htΨ (nt )

Ψ (nt ) = (λ + δ)

/
1 − n2 t + (1 − δ), β ∈ (0, 1), γ ∈ (0, 1), α ∈ (0, 1) y h0 given. 

You are prompted for the following: 

1. Set up the sequential problem. 
2. Find the Bellman equation and state the functional problem. 
3. Prove that the function value (V ) has the form Ahασ 

t . 
4. Prove that the policy function is constant (i.e., find the optimal job) (n) and the 

constant A of the function value, considering the values of the parameters: σ = 
0.5, β = 0.95, λ = 0.025, δ = 0.01, α = 0.8. In this case, build a code in Matlab 
to solve the nonlinear system.
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Solution 
[1] Sequential Problem 

. Max
{nt }∞t=0

∞⎲
t=0

βt

⎾ [htnt ]ασ

σ

⏋

subject to 

. ht+1 = htΨ (nt )

[2] Bellman Equation 

.V (ht ) = Max
{nt }∞t=0

⌠ [htnt ]ασ

σ
+ βV (ht+1)

⎫
(A.70) 

[3] Functional Problem 
Introducing the equation of the state variable in the Bellman equation 

.V (ht ) = Max
{nt }∞t=0

⌠ [htnt ]ασ

σ
+ βV (htΨ (nt ))

⎫
(A.71) 

subject to 

. 0 ≤ nt ≤ 1

[4] Iteration of the Value Function 

1. To solve the FP, we will use the value function iteration method (proposed by the 
fixed-point theorem for contractions): 

.Vn = T [Vn−1], n ≥ 1 (A.72) 

It starts with the simplest function: V0 = 0 
2. Finding V1 

. V1 = T [V0]
↓

= Max
{nt }∞t=0

⌠ [htnt ]ασ

σ
+ β V0(htΨ (nt ))◟ ◝◜ ◞

=0

⎫

= Max
{nt }∞t=0

⌠ [htnt ]ασ

σ

⎫
(A.73)
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• (a) At this stage, the first-order condition applies: 

. 
∂ objective function

∂nt

= 0

However, in this case, the objective function takes its maximum value when 
nt = 1 (see the FP restriction). 

• (b) Replacing nt that maximizes the objective function at (A.73), it obtains 
T [V0] and, therefore, V1: 

. V1 = T [V0] = [ht ]ασ

σ

V1 = [ht ]ασ

σ
(A.74) 

3. Finding V2 

. V2 = T [V1]
↓

= Max
{nt }∞t=0

⌠ [htnt ]ασ

σ
+ β V1(htΨ (nt ))◟ ◝◜ ◞

= [ht Ψ (nt )]ασ

σ

⎫

= Max
{nt }∞t=0

⌠ [htnt ]ασ

σ
+ β

[htΨ (nt )]ασ

σ

⎫
(A.75) 

(a) At this stage, the first-order condition applies: 

. 
∂ objective function

∂ct

= 0

However, it can be seen that the maximization of the objective function does 
not depend on ht . This indicates that when deriving said objective function 
with respect to the control variable (nt ), it will only depend on the parameters 
of the model (constant values) and, therefore, nt = constant. Consequently, 
in the value function, it could be considered as a constant A. 

Factoring

⌠
[ht ]ασ 

σ

⎫

.V2 =
⌠ [ht ]ασ

σ

⎫
Max
{nt }∞t=0

⌠
[nt ]ασ + β[Ψ (nt )]ασ◟ ◝◜ ◞

Does not depend onht

⎫
(A.76)
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From the FOC, it obtains 

.nt = constant depending on the parameters = n (A.77) 

(b) Replacing nt = n that maximizes the objective function in (A.75), we obtain 
T [V1] and, therefore, V2: 

. V2 = T [V1] = A(n)

⌠ [ht ]ασ

σ

⎫

V2 = A(n)

⌠ [ht ]ασ

σ

⎫
(A.78) 

Where A(n) is a constant, which we just call A. 

4. We can generalize the above equation: 

.V (ht ) = A

⌠ [ht ]ασ

σ

⎫
(A.79) 

The constant “A” can be found by substituting “V” and the optimal dynamics into 
Bellman equation. 
[5] Finding the Policy Function 
Substituting the value function (V ) into the Bellman equation 

. V (ht ) = Max
{nt }∞t=0

⌠ [htnt ]ασ

σ
+ β V (htΨ (nt ))◟ ◝◜ ◞

=A
[ht Ψ (nt )]ασ

σ

⎫

= Max
{nt }∞t=0

⌠ [htnt ]ασ

σ
+ βA

[htΨ (nt )]ασ

σ

⎫
(A.80) 

Factoring

⌠
[ht ]ασ 

σ

⎫

.V (ht ) =
⌠ [ht ]ασ

σ

⎫
Max
{nt }∞t=0

⌠
[nt ]ασ + βA[Ψ (nt )]ασ

⎫
(A.81) 

Applying FOC (derivative with respect to the control variable), we have 

.nασ−1
t = −βA(Ψ (nt ))

ασ−1Ψ̇ (nt ) (A.82) 

The solution of this nonlinear equation is the following: 

.nt = n∗
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The policy function is a constant; that is, it does not matter what the level of human 
capital (ht ) is, since the agent always chooses to work n∗. To know the value of n∗, 
we have to find the constant A and define the function Ψ (nt ). 
[6] Finding the Constant A 

Substituting the value function and the policy function in the Bellman equation, 
we have 

. A
[ht ]ασ

σ
=

⌠ [ht ]ασ

σ

⎫⌠
[n∗]ασ + βA[Ψ (n∗)]ασ

⎫

Therefore 

.A = [n∗]ασ + βA[Ψ (n∗)]ασ (A.83) 

Then 

. A = A(n∗)

Equations (A.82) and (A.83) form a system of nonlinear equations in (n∗, A): 

.n∗ασ−1 = −βA(Ψ (n∗))ασ−1Ψ̇ (n∗). (A.84) 

A = [n∗]ασ + βA[Ψ (n∗)]ασ (A.85) 

Where 

. Ψ (nt ) = (λ + δ)

/
1 − n2t + (1 − δ)

The question that arises is the following: How do we solve a system of nonlinear 
equations in Matlab? The “fsolve” function will help us in this task. 

Solution of Systems of Nonlinear Equations (Matlab) This function solves 
systems of nonlinear equations; that is, finding the roots of the system. For this, 
the system has to be specified like this: 

. F(x) = 0

The goal is to find the value of the vector x that makes F(x)  equal to zero. The 
syntax 

. x = f solve(f un, x0)

Where “fun” is a function containing the nonlinear system of equations (F(x)) and 
x0 is the initial value for the vector x.
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Equation system 

y = x2 − 5 
y = 3x + 7 

Fig. A.3 Solution of a system of nonlinear equations (see the function “system_na.m”) 

Example Consider the following system of nonlinear equations: 

.y = x2 − 5. (A.86) 

y = 3x + 7 (A.87) 

We can rewrite the system as 

.F1 = y − x2 + 5 = 0. (A.88) 

F2 = y − 3x − 7 = 0 (A.89) 

Then 

. F(x) = [F1, F2]

Assuming that z = [z(1), z(2)] = [x, y], we write a function in Matlab that cap-
tures the nonlinear system (see example_function.m and sol_example_function.m) 
(Fig. A.3). 

A.3.3.2 Hercowitz and Sampson (1991) Model 

This model is left as an exercise for the reader. To solve it, following the steps 
described in the first application is suggested. Consider the basic growth model with
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these data: 

. u(ct , lt ) = ln(ct − an
γ
t )

yt = kt
αnt

1−α

kt+1 = kt

⎛
it

kt

⎞1−δ

= kt
δit

1−δ

Considering that .a > 0 and .γ > 1, the following is requested: 

1. Set up the SP, the Bellman equation, and the FP. 
2. Prove that the function value has the following form: 

. V (kt ) = D0 + D1lnkt

Where . Di are constants. 
3. Prove that the policy function has the following form: 

. ct = Π1k
Ψ1
t

nt = Π2k
Ψ2
t

Where . Ψ2 = α
−1+γ+α

4. Show that the optimal dynamics of capital are 

. kt+1 = Π3k
Ψ3
t

Where . Πi are constants. 
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