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Introduction

Welcome to Beginning Mathematica and Wolfram for Data Science.

Why is data science important nowadays? Data science is an active topic that is 

evolving daily; new methods, techniques, and data are created daily. Data science 

is an interdisciplinary field involving scientific methods, algorithms, and systematic 

procedures to extract data sets and thus better understand the data in its different 

structures. It is a continuation of some theoretical data analysis fields such as statistics, 

data mining, machine learning, and pattern analysis. With a unique objective, to extract 

quantitative and qualitative information of value from the data being recollected from 

various sources, and thus be able to objectively count an event for decision-making, 

product development, pattern detection, or identification of new business areas.

�Data Science Roadmap
Data science carries out a series of processes to solve a problem, which includes data 

acquisition, data processing, model construction, communication of results, and 

data monitoring or model improvement. The first step is to formalize an objective in 

the investigation. From the object of the investigation, you can proceed to the data 

acquisition sources. This step focuses on finding the right data sources. The product of 

this path is usually raw data, which must be processed before it can be handled. Data 

processing includes transforming the data from a raw form to a state in which it can 

be reproduced to construct a mathematical model. Proceeding to the construction 

of the model, a stage that intends to obtain the information by making predictions in 

accordance with the conditions established in the early stages. Here, the appropriate 

techniques and tools, which consist of different disciplines, are used. The objective is 

to obtain a model that provides the best results. The next step is to present the outcome 

of the study. Which consists of reporting the results obtained and whether they are 

congruent with the established research objective. Finally, it comes to data monitoring, 

with the intention of keeping the data updated because data can change constantly and 

in different ways.
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�Data Science Techniques
Data science includes analysis techniques from different disciplines, such as 

mathematics, statistics, computer science, and numerical analysis. The following are 

some disciplines and techniques used.

•	 Statistics (linear, multiple regressions, least squares method, 

hypothesis testing, analysis of variance (ANOVA), cross-validation, 

resampling methods)

•	 Graph theory (network analysis, social network analysis)

•	 Artificial intelligence

•	 Machine learning

•	 Supervised learning (natural language processing, decision trees, 

naive bayes, nearest neighbors. support vector machine)

•	 Unsupervised learning (cluster analysis, anomaly detection, K-means 

cluster)

•	 Deep learning (artificial neural networks, deep neural networks)

•	 Stochastic processes (Monte Carlo methods, Markov chains, time 

series analysis, nonlinear models)

Even though many techniques exist, this list only shows a part of it since research on 

data science, machine learning, and artificial neural networks is constantly increasing.

�Prerequisites
This book is intended for readers who want to learn about Mathematica / Wolfram 

Language and implement it in data science; it focuses on the basic principles of data 

science as well as for programmers outside of software development, that is, people who 

write code for their academic and research projects, including students, researchers, 

teachers, and many others. The general audience is not expected to be familiar with 

Wolfram Language or with the front-end program Mathematica, but little or any 

experience is welcome. Previous knowledge of the syntax would be an advantage in 
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understanding how the commands work in Mathematica. If this is not the case, the 

book provides the basic concepts of the Wolfram Language syntax. The fundamental 

structure of expressions in the Wolfram Language. Basic handling and understanding of 

Mathematica notebooks.

Prior knowledge or some experience with programming, mathematical concepts 

such as numbers, trigonometric functions, and basic statistics are useful, along 

with some understanding of mathematical modeling, which is also helpful but not 

compulsory.

Wolfram Language is different from many other languages but very intuitive and 

user-friendly to learn.

The book aims to teach the general structure of the Wolfram Language, data 

structures, objects, and rules for writing efficient code, and at the same time, teach data 

management techniques that allow them to solve problems in a simple and effective 

way. Provide the reader with the basic tools of the Wolfram Language, such as creating 

structured data, to support the construction of future practical projects.

For this new version, all the programming was carried out on a MacBook Air M1 

with Sonoma 14 environment with the installation of version 13.3.1.0 and 14 of Wolfram 

Mathematica. Wolfram Mathematica is currently supported in other environments such 

as Linux, Windows, and macOS. The code found in the book works with both the Pro and 

Student versions.

�Book Conventions
Throughout the book, you may come across different words written distinctly from 

others. Throughout the book, the words command, built-in functions, and functions may 

be used as synonyms that mean Wolfram Language commands written in Mathematica. 

So, a function will be written in the form of the real name; for example, RandomInteger.

The evaluation of expressions appears in the Mathematica In/Out format; the same 

applies to blocks of code.

In[#]:= “Hello World!”

Out[#]= “Hello World!”
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�The Layout
The book is written in a compact and focused way to cover the basic ideas behind the 

Wolfram Language and cover details on more complex topics. Some chapters have been 

revised and redesigned in this new version to focus on novice and advanced topics.

Chapter 1 discusses the starting topics of the Wolfram Language, basic syntax, 

and basic concepts with some example application areas, followed by an overview of 

the basic operations and debugging techniques, and concludes by discussing security 

measures within a Mathematica session.

Chapter 2 provides the key concepts and commands for data manipulation, 

sampling, types of objects, and some concepts of linear algebra—the introduction to 

lists, an important concept to understand in the Wolfram Language.

Chapter 3 discusses how to work properly with data and the initiation of the core 

structures for creating a dataset object, introducing concepts like associations and 

association rules are discussed with a conclusion remarking how associations and 

dataset constructions can be interpreted as a generalization of a hash table aiming to 

expose a better understanding of internal structures inside the Wolfram Language, 

including an overview of performing operations on a list and between lists and then 

discussing various techniques applied to dataset objects.

Chapter 4 exposes the main ideas behind importing and exporting data with 

examples throughout the chapter with common and newly added file formats. It also 

presents a very powerful command known as SemanticImport, which can import data 

elements that are natural language.

Chapter 5 covers the topic areas for new data visualization, common data plots, data 

colors, data markers, and how to customize a plot. Basic commands for 2D plots and 3D 

plots are presented, too.

Chapter 6 introduces the statistical data analysis. Starting with random data 

generation begins by introducing some standard statistical measures, followed 

by a discussion on creating statistical charts and performing an ordinary least 

square method.

Chapter 7 exposes the basis for data exploration and reviews a central discussion on 

the Wolfram Data Repository. Performing descriptive statistics and data visualization 

inside Fisher’s Irises dataset objects is also covered.
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Chapter 8 starts with machine learning concepts and techniques, such as gradient 

descent, linear regression, logistic regression, and cluster analysis, including examples 

from various datasets like the Boston and Titanic datasets and newly implemented 

features.

Chapter 9 introduces the key ideas and the basic theory to understand the 

construction of neural networks in the Wolfram Language, such as layers, containers, 

and graphs. The MXNet framework in the Wolfram Language scheme is also discussed.

Chapter 10 concludes the book by discussing training neural networks in the 

Wolfram Language. In addition, the Wolfram Neural Net Repository is discussed with 

an example application, examining how to access data inside Mathematica and the 

retrieval of information, such as credit risk modeling fraud detection, and concluding 

with the example of the LeNet neural network, reviewing the idea behind this neural 

network and exposing the main points on the architecture with the help of the MXNet 

graph operations and a final road map on the creation, evaluation, and deployment of 

predictive models with the Wolfram Language. In this new version, LLM (large language 

model) features are introduced with the connection to GPT services, use of chat cells, 

and presentation of the GPT-1 and GPT-2 models.
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CHAPTER 1

Introduction 
to Mathematica
The chapter begins with a preliminary introduction to why Mathematica is a useful and 

practical tool. It explores the core concepts of the Wolfram Language and its syntax. 

It starts by explaining the internal structure of Mathematica and how to add code 

effectively. The concept of a notebook is introduced, which is important to understand 

the type of format that Mathematica handles. The chapter examines this interface class 

and demonstrates how notebooks simultaneously support code and text. In this way, 

a notebook is a computable text file. Next, you inspect various add-ons that can be 

employed within a notebook to help the user maximize their code’s capabilities.

The next section demonstrates how to write expressions in Mathematica, examining 

topics such as arithmetic, algebra, symbols, global and local variables, built-in functions, 

date and time formats, plotting functions, logical operators, performance measures, 

delayed expressions, and accessing Wolfram Alpha. You then look at how Mathematica 

performs code computations, including its accepted varieties of inputs and the 

evaluation of these inputs. This chapter concludes with tips for seeking support within 

Mathematica, managing and handling errors, searching for solutions, and safely dealing 

with security concerns in notebooks that incorporate dynamic content.

�Why Mathematica?
Mathematica is a mathematical software package created by Stephen Wolfram more 

than 35 years ago. Its first official version (Mathematica 1.0) emerged in 1988 and 

was created as an algebraic computational system capable of handling symbolic 

computations. However, Mathematica has established itself as a tool capable of 

performing complex tasks efficiently, automatically, and intuitively. Mathematica is 

https://doi.org/10.1007/979-8-8688-0348-2_1#DOI
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widely used in many disciplines like engineering, optics, physics, graph theory, financial 

engineering, game development, and software development.

Mathematica provides a complete, integrated platform to import, analyze, and 

visualize data. Mathematica does not require plug-ins. It also has a mixed syntax, 

performing both symbolic and numerical calculations. It provides an accessible way 

to read the code with the implementation of notebooks as a standard format, which 

also serves to create detailed reports of the processes carried out. Mathematica can 

be characterized as a powerful platform enabling efficient and concise forms of work. 

Among computer languages, the Wolfram Language falls into the group of programming 

languages classified as a high-level, multi-paradigm interpreted language. Unlike 

conventional programming languages, the Wolfram Language adheres to unique rules, 

facilitating order and clear, compact code composition.

�The Wolfram Language
Mathematica is powered by the Wolfram Language, an interpreted high-level 

programming language that covers both symbolic and numeric capabilities. To 

understand the Wolfram Language, it is necessary to remember that the language’s 

core nature resembles a normal mathematical text, as opposed to other programming 

languages’ syntax. The following describes some remarkable features of the Wolfram 

Language.

•	 The first letter of a built-in function word is uppercase and is also 

human-readable.

•	 Any element introduced in the language is taken as an expression.

•	 Expressions take values consisting of the Wolfram Language atomic 

expressions.

–– A symbol made up of letters, numbers, or alphanumeric contents

–– Four types of numbers: integers, rational, real, and complex

–– The default character string is written within the quotation marks (“ ”)

Chapter 1  Introduction to Mathematica
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•	 In Mathematica, there are three ways to group expressions.

–– Parentheses group terms within an expression (expr1 + expr2) + (expr3).

–– Command entries are enclosed by brackets [ ]. Also, square brackets enclose 

the arguments of a built-in function, F[x].

–– Mathematica uses curly braces {} (e.g., {a, b, c}) to represent lists, arrays, 

matrixes, and other collections.

�Structure of Mathematica
Before entering code, you need to get the layout of Mathematica. To launch 

Mathematica, go to your Applications folder and select the Mathematica icon. This 

action brings up the new welcome screen, illustrated in Figure 1-1.

Figure 1-1.  The default welcome screen for Mathematica’s latest version
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Tip T he startup window offers valuable information for new and adept users, 
including the Mathematica version, access to documentation, resources, and the 
Wolfram community, among other things.

After the startup screen appears, you can create a new notebook by selecting the New 

Document button, and a blank page should appear like the one shown in Figure 1-2. 

New documents can also be created by selecting File ➤ New ➤ Notebook or with the 

⌘+N (macOS) or Ctrl+N (Win) keyboard shortcut command.

Figure 1-2.  A blank notebook ready to receive input

The blank document that appears is called a notebook, and it’s the core interaction 

between the user and Mathematica. Notebooks can be saved locally from the menu bar 

by selecting File ➤ Save (or Save as). Initializing Mathematica always exhibits an untitled 

notebook. Notebooks serve as the standard document format. They can be customized 

to display text alongside computations. However, the key feature of Mathematica lies 

in its capacity to perform computations, extending beyond numerical calculations, 

regardless of the notebook’s purpose.
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Note  Mathematica version 13.1 introduced a new default assistant toolbar.

Mathematica’s notebooks are separated into input spaces called cells. Cells are 

represented by the square brackets on the notebook’s right side. Each input and output 

cell has its bracket. Brackets enclosed by larger brackets are related computations, 

whether input or output. Grouped cells are represented by nested brackets that contain 

the whole evaluation cell. Other cells can be grouped by selecting and grouping them 

with the right-click option. Cells can also have the capability to show or hide input by 

simply double-clicking the cells. To add a new cell, move the text cursor down, and a flat 

line should appear, marking the new cell ready to receive input expressions. The plus 

tab in the line is the assistant input tab, showing the various types of input supported by 

Mathematica. Figure 1-3 displays grouped input (In[-]) and output (Out[-]) cells.

Figure 1-3.  Expression cells are grouped by input and output

There are four main input types. The default input is the Wolfram Language code 

input. Free-form input is involved with Wolfram knowledge-base servers, and the results 

are shown in Wolfram Language syntax. Wolfram Alpha query is associated with results 

explicitly shown on the Wolfram Alpha website. External Language Input is built-in 

support for common external programming supported by Mathematica.

There are four main input types.

•	 Default input: Wolfram Language code input

•	 Free-form input: involved with Wolfram knowledge-base servers and 

the results are shown in Wolfram Language syntax

•	 Wolfram Alpha query: associated with results explicitly shown on the 

Wolfram Alpha website

•	 External language input: built-in support for common external 

programming supported by Mathematica

These are illustrated in Figure 1-4.
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Figure 1-4.  Main input types in Mathematica

Tip  Keyboard shortcuts for front-end instruction commands are shown on the 
right or left side of each panel.

�Design of Mathematica
Now that you have the lay of the land of Mathematica’s basic format, you can learn 

the internal structure of how Mathematica works. Inside Mathematica, there are 

two fundamental processes: the Mathematica kernel and the graphical interface. 

The Mathematica kernel is the one that takes care of performing the programming 

computations; it is where the Wolfram Language is interpreted and is associated with 

each Mathematica session. The Mathematica interface allows the user to interact with the 

Wolfram Language functions and, at the same time, document your progress.  

Chapter 1  Introduction to Mathematica
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Each notebook contains cells, where the commands that the Mathematica kernel 

receives are written and then evaluated. Each cell has an associated number. There are 

two types of cells: the Input cell and the Output cell. These are associated with each other 

and have the following expressions: In[n]:= Expression and Out [n]: = Result or (“new 

expr”). The evaluations are listed according to which cell is evaluated first and continue 

in ascending order. When quitting the kernel session, all the information, computations 

made, and stored variables are relinquished, and the kernel is restarted, including the 

cell expressions. To quit a kernel session, select Evaluation ➤ Quit Kernel ➤ Local.

Tip T o start a new kernel session, click Evaluation ➤ Start Kernel ➤ Local.

To begin, try typing the following computation.

In[1] := (11*17) + (4/2)

Out[1] = 189

The computation shows that In and Out have a number enclosed. This number is the 

number associated with the evaluated expression.

A suggestion bar appears after every expression is evaluated (see Figure 1-5). 

The suggestion bar in Mathematica is always visible unless the user hides it. But the 

suggestion bar offers suggestions for possible new commands or functions to be applied 

to the generated output. The suggestion bar can sometimes be helpful if you are unsure 

what to code next; if used wisely, it might be helpful.

Figure 1-5.  Suggestion bar for more possible evaluations

The input form of Mathematica is intuitive; to write in a Mathematica notebook, 

you just have to put the cursor in a blank space, and the cursor indicates that you are 

inside a cell that has not been evaluated. To evaluate a cell, click the keys [Shift + Enter], 

instructing Mathematica kernel to evaluate the expression written. The next chapter 

looks at the new form to evaluate expressions using the new toolbar.

To evaluate the whole notebook, go to the Evaluation tab on the toolbar and  

select Evaluate Notebook. If the execution of calculations takes more time than  

expected, you make a wrong execution of code, or if you want to seize a computation, 

Mathematica provides several ways to stop calculations. To abort a computation, go to 
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Evaluation ➤ Abort Evaluation. Alternatively, use the keyboard shortcut in Windows  

[Alt + .] or macOS [⌘ + .].

When a new notebook is created, the default settings are applied to every cell (input 

style). Nevertheless, preferences can be edited in Mathematica with various options. To 

access them, go to Edit ➤ Preferences. On macOS, the Preferences (settings) menu is 

located in the application menu, go to Mathematica ➤ Settings.

Once opened, a pop-up window appears (see Figure 1-6) with multiple tabs 

(Interface, Appearance, AI Settings, etc.). Basic customizations involve magnification, 

language settings, and other general instructions. The Appearance tab is related to code 

syntax color (i.e., symbols, strings, comments, errors, etc.). The AI Settings tab is the new 

tab associated with the LLM (large language model) evaluator. Other options belong to 

advanced settings that are not used in this book. Feel free to navigate each option.

Figure 1-6.  Preferences window
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Later, you learn about in-depth settings and customization options for the notebook 

interface that allow you to tailor preferences.

�Mathematica Environment
This section explores the user interface of Mathematica, with a focus on the notebook 

interface, as well as the other user experience functionalities.

�Notebook Interface
Mathematica is always on the quest to improve user experience and boost productivity. 

In version 13.1, a big enhancement has been introduced—the seamless integration of a 

default toolbar (see Figure 1-7) across all standard notebook user interfaces (UIs).

Figure 1-7.  The new UI default toolbar showcases essential tools and 
functionalities for efficient code development. Toolbar icons may vary by 
Mathematica version

This new toolbar (described left to right) includes several new features to enhance 

user experience. Evaluate allows users basic and costume code evaluation. Abort 

lets users cancel queued cells and remove chosen ones; both options are shown 

in Figure 1-8. These features can also be accessed via the keyboard, as previously 

mentioned.
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Figure 1-8.  Extensive options for code evaluation and abort options in a notebook 
interface; the double arrow-like shape hides the toolbar

The other options integrate text cell formatting, offering styling options like cell style 

(title, subtitle, etc.) and cell color background. Users also benefit from the convenient 

cell management functions, such as grouping, dividing, merging cells, and inserting 

input/output of cells, all reduced to simple buttons. Continuing to options like extend 

selection, convert natural language into Wolfram Language code, collapse cells, insert 

comment, math form input, and LATEX rendering, users also have access to drawing 

canvas and hyperlink features. Finally, the rightmost section of the toolbar includes 

buttons for chat notebooks (utilizing LLM features), saving or publishing to the Wolfram 

Cloud, accessing documentation (local or web-based), and searching within the 

notebook.

Note D ifferent buttons may appear based on the selected cell type where the 
cursor resides, ranging from text to code formatting. Figure 1-7 shows for Wolfram 
Language code input cell. Figure 1-9 shows for text display cell.

Figure 1-9.  Text cell options for bold, italic, and underline and insert code text 
evaluation and abort options in a notebook interface
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This essential addition provides a coherent user experience and fosters a more 

streamlined, productive programming environment within Mathematica. For example, 

Figure 1-10 shows a code input cell with a colored background.

Figure 1-10.  Light-green code input cell, with a 2pt black top margin

Besides the default toolbar, more improvements were made to the other toolbars, 

Ruler, Formatting, Templating, and Testing, as Figure 1-11 shows. The last two are not 

shown since they are more associated with a specific type of programmatic notebook, 

which is beyond the scope of this book.

Figure 1-11.  Notebook application toolbar menu showcasing three distinct 
toolbars: formatting (upper), default (central), and ruler (lower)

Note T o show or hide any toolbar, go to Window ➤ Toolbar. Toolbar availability 
varies by version.
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The prominent toolbar Ruler indicates and adjusts the text margins of specified cells 

using draggable marks, offering control over the text format. The Formatting toolbar 

brings advanced textual design options, while the Templating and Testing toolbars 

(not shown in the image) facilitate the efficient creation of new templates and testing 

programmatic notebooks.

�Text Processing
Notebooks can include explanatory text, titles, sections, and subsections. The 

Mathematica notebook resembles a computable document rather than a programming 

command line. Text is useful for describing code and can be inserted into cells as text 

cells, which often relate to the corresponding computations. Mathematica allows you to 

work with multiple forms of text cells, including lines of text, chapters, formulas, items, 

bullets, and more. Like a word-processing tool, notebooks can have titles, chapters, 

sections, and subsections. By selecting Format ➤ Style, additional options become 

available. For more control over style cells, use the formatting toolbar (see Figure 1-12) 

found by navigating to Window ➤ Toolbar Formatting in the menu bar. The formatting 

toolbar streamlines cell styling, allowing users to justify text left, center, right, or fully.

Figure 1-12.  The Style Format toolbar has a user-friendly interface for 
customizing text appearance

The cell types can be arranged in different forms, depending on the notebook’s 

format. There are numerous forms to add text in a cell; the most straightforward is 

to type the text in the input cell, and the Assistant tab input automatically suggests 

converting it to text. Another alternative is to choose the cell type from the toolbars, with 

the input chooser or the shortcut (⌘+7 or Ctrl+7).

Styled text can be created with the formatting toolbar or by selecting the desired style 

in Format ➤ Style ➤ (title, chapter, text, code, input, etc.). In the Style menu, note the 

keyboard shortcuts for all the available text styles. It can be used instead of going into 

the menu bar every time. Plain text can also be converted into input text by formatting 

the cell in the Input style. There is no restriction in converting text; text can be converted 

into whatever style is supported in the format menu.
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Note T o convert text, highlight the text or select the cell that contains the text.

As shown in Figure 1-13, styled cells look different from others. Each style has 

a unique order by which a notebook is organized into cell groups. A title cell has a 

higher order in a notebook, so the other cells are anchored to the title cell, as shown 

in Figure 1-13, but it does not mean that if another title cell is added, both titles are 

grouped. If the title cell is collapsed, the title is the only displayed text.

Figure 1-13.  A notebook with different format styles; this includes title, subtitle, 
section, subsections, plain text, item list, and subitem list

Text can be given a particular style, changed, and different formats applied 

throughout the notebook. By selecting Font or Show Fonts (macOS users) from the 

Format menu, a pop-up window appears, allowing you to change the font, font style, 

size, and other characteristics.
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Tip T o clear the format style of a cell, select the cell and then the right-click 
button and choose Clear Formatting.

�Palettes
Palettes show different ways to enter various commands into Mathematica. A 

diverse quantity of special characters and typesetting symbols are used in the 

Wolfram Language, which can be typed within expressions to more closely resemble 

mathematical text. The best way to access these symbols is by using the pallets built 

into Mathematica. To select a simple pallet, go to Pallets ➤Basic Math Assistant. Each 

pallet has different tabs that stand for different categories with distinct commands and a 

variety of characters or placeholders that can be inserted using the pallets. To enter the 

symbol, type ESC followed by the name of the symbol, then ESC again. Try typing (ESC a 
ESC) to type the lowercase alpha Greek letter. Figure 1-14 shows the basic math assistant 

pallet in Mathematica.
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Figure 1-14.  The Basic Math Assistant palette

Note H overing the mouse cursor over a symbol or character, an information tip 
pops up, showing the keyboard shortcut. This also applies to placeholders.

�Notebook Style and Features
In the new versions comprising version 13.0 and beyond, Mathematica has been 

refining and polishing its notebook interface by adding new features for a smoother user 

experience. One considerable enhancement involves the handling of extensive outputs 

within the user interface. Users can efficiently manage and interpret sizable outputs 

without overwhelming the notebook display or causing memory issues. The following 
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example generates a large amount of data, which can be suppressed, displayed, or even 

stored in the notebook (see Figure 1-15).

In[2]:= Table[i^12,{i,1,10^4}]

Out[2]=

Figure 1-15.  Large output menu displaying additional user control

Figure 1-15 shows that the input code returns a responsive output. Users can expand, 

show, iconize, or select to store the whole data expression. Additionally, the data can 

be fully stored in the notebook, preserving the entire output for future manipulation 

and consuming 0.7MB of memory. If you iconize large outputs, a summary of the data 

structure, length, and size is displayed. See Figure 1-16.

Figure 1-16.  List structure with 10,000 items and a byte count of 682,696

Another aspect that has been renewed is the preference settings. The whole settings 

display has undergone notable refreshment in terms of customization options, as 

illustrated in Figure 1-6. Specifically, regarding the notebook front end, by selecting 

the Appearance tab (see Figure 1-17), users can tailor their choices to optimize their 

notebook code style, resulting in a more personalized experience.
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Figure 1-17.  Notebook settings customization

Figure 1-17 shows Appearance Settings window. The Syntax Coloring tab is related 

to the visual representation of code elements (variables, errors, automatic coloring, 

highlighting, etc.). The Debugger tab includes coloring options about debugger 

highlights, breakpoints, and evaluation points. The Numbers tab offers multiple choices 

based on formatting and configuration choices, a few mentions are digits control 

numerical notation, among others. The Graphics tab allows you to choose the render of 

2D and 3D graphics, from lowest to highest quality.

Note T o change the colors of the code syntax options in the Appearance 
windows. Select the variables checkbox and click the green square. A color wheel 
pops up, allowing you to change the color. This process is the same for the three 
code setting options. Also, as you can see, there are different tabs.
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�Expression in Mathematica
Basic arithmetic operations can be performed in Mathematica with a common, 

intuitive form.

In[3]:= (3*3) + (4/2)

Out[3] = 11

Mathematica also provides the capability to use a traditional mathematical notation. 

To insert a placeholder in the form, click [Ctrl + 6]. To indicate the product operation, use 

a space between expressions or add an asterisk (*) between.

In[4]:= 1002 ∗ 10

Out[4]= 100000

In[5]:= 2 1

Out[5]= 2

The standard Mathematica format aims to deliver the value closest to its regular 

form, so when dealing with decimal numbers or general math notation, Mathematica 

always gives you the best precision (involving, in some circumstances, infinite 

precision). However, it allows you to manipulate expressions numerically, to display 

numeric values, you use the N function. To insert the square root, type [Ctrl + 2].

In[6]:= 1/2 + 2
Out[6]= 1/2 + 2

In[7]:= N[1/2+ 2]
Out[7]= 1.91421

You can manage the number precision of a numeric expression. In this case, you 

establish 10 decimal places.

In[8]:= N[77/13,10]

Out[8]= 5.923076923

For a shortcut to work with the decimal point, just type a dot (.) anywhere in the 

expression, and with this, you are telling Mathematica to calculate the value with 

machine precision.
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In[9]:= 
4

2

2

13

.
+

Out[9]= 2.15385

Mathematica performs the sequence of operations from left to right, in line with the 

written expression, while adhering to the standard order of mathematical operations. To 

evaluate an expression without showing the result, you add a semicolon (;) after the end 

of the first term. In the following example, the 11/7 is evaluated but not shown, and the 

other term is displayed.

In[10]:= 11/7; Sqrt[4]

Out[10]= 2

The last form of code is called a compound expression. Expressions can be written in 

a single line of code, and with compound expressions, they are evaluated in the intended 

sequence. If you write the semicolon in each expression, Mathematica does not return 

the values, but they are evaluated.

In[11]:= 3*4; 100*100; Sqrt[4];Power[2,2];

Out[11]=

There is no output, but all the expressions have been evaluated. Later, you use 

compound expressions to understand the concept of delayed expressions. This basic 

feature of the Wolfram Language makes it possible for expressions to be evaluated but 

not displayed to save memory.

�Assigning Values
In the Wolfram Language, each variable requires a unique identifier that distinguishes 

it from the others. A variable in the Wolfram Language can be a union of more than one 

letter and digits; it must also not coincide with protected words—reserved words that 

refer to commands or built-in functions. Keep in mind that the Wolfram Language is 

case-sensitive. User variables are advised to be lowercase to avoid confusion with built- 

in symbols.

Note  Mathematica supports assigning values to variables, which enables the 
effective handling of algebraic variables.
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Undefined variables or symbols appear in blue font, while defined or recognized 

built-in functions appear in black. It is also true that the previously mentioned 

characteristics can be changed in the preferences window.

Use the keyboard shortcut Esc pi Esc (pi number) to write special constants and 

Greek letters. A symbol of a vertical ellipsis (⋮) should appear every time Esc is typed. 

Another choice is to write the first letter of the name, and a sub-menu showing a list of 

options should appear.

In[12]:= a=Pi

x=11

z+y

Out[12]= π
Out[13]= 11

Out[14]= y+z

In the previous example, Mathematica expresses each output with its cell, even 

though the input cell is just one. That is because Mathematica gives each cell a unique 

identifier. To access previous evaluations, the symbol (%) is used. Additionally, 

Mathematica lets you retrieve previous values using the cell input/output information by 

the % # command and the number of the cell or by explicitly writing the command with 

In [# of cell] or Out [# of cell]. As demonstrated in the next example, Mathematica gives 

the same value for each expression.

In[15]:=

%12

In[12]

Out[12]

Out[15]= π
Out[16]= π
Out[17]= π

To determine whether a word is reserved within the Wolfram Language, use the 

Attributes command; this displays the attributes to the associated command. Attributes 

are general aspects that define functions in the Wolfram Language. When the word 

“Protected” appears in the attributes, it means that the word of the function is reserved. 

The next example shows whether the word “Power” is reserved.
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In[18]:= Attributes[Power]

Out[18]= {Listable,NumericFunction,OneIdentity,Protected}

As seen in the attributes, “Power” is a protected word. Importantly, most of the built- 

in functions in Mathematica are listable—that is, the function is interleaved to the lists 

that appear as arguments to the function.

Variables can be presented in a notebook in the following ways: (1) global variables, 

or those that are defined and can be used throughout the notebook, like the ones in 

the earlier examples; and (2) local variables, which are defined in only one block that 

corresponds to what is known as a module, in which they are only defined within 

a module. A module has the following form: Module [symbol1, symbol 2... body of 

module].

In[19]:= Module[{l=1,k=2,h=3},h Sqrt[k+l] + k + l]

Out[19]= 3 + 3 3

Variables inside a module turn green by default; this is a handy feature for seeing the 

code inside a module block. A local variable only exists inside the module, so if you try to 

access them outside their module, the symbol is unassigned, as shown in the following 

example.

In[20]:= {l,k,h}

Out[20]= {l,k,h}

Variables can be cleared with multiple commands, but the most suitable command 

is the Clear[symbol], which removes assigned values from the specified variable or 

variables. So, if you evaluate the variable after Clear, Mathematica treats it as a symbol, 

and you can check it with the command Head; Head always gives you the head of the 

expression, which is the type of object in the Wolfram Language.

In[21]:= Clear[a,x]

And if you check the head a, you see that “a” is a symbol.

In[22]:= Head[a]

Out[22]= Symbol

Symbols or variables assigned during a session remain in the memory unless they 

are removed or the kernel session ends.
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Note R emove is an alternative to Clear.

�Built-in Functions
Built-in commands or functions are written in common English with the first letter 

capitalized. Some functions have abbreviations, while others employ PascalCase 

notation with two capital letters. Here, different examples of functions are presented. 

Built-in functions and group expressions often require arguments, which are values that 

the function needs to execute the correct operation. Functions may or may not accept 

arguments; they are separated by commas.

In[23]:= RandomInteger[]

Out[23]= 0

Note R andomInteger, with no arguments, returns a random integer from the 
interval of 0 to 1, so do not panic if the result is not the same.

In[24]:= Sin[90 Degree] + Cos[0 Degree]

Out[24]= 2

In[25]:= Power[2,2]

Out[25]= 4

Built-in functions can also be assigned symbols.

In[26]:= d=Power[2,2]

 F=Sin[π] + Cos[π]
Out[26]= 4

Out[27]= -1

In[28]:= Clear[d,F]

Some commands or built-in functions in Mathematica have options that can be 

specified in a particular expression. To see whether a built-in function has available 
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options, use Option. In the next example, the RandomReal function creates a pseudo- 

random real number between an established interval.

In[29]:= Options[RandomReal]

Out[29]= {WorkingPrecision → MachinePrecision}

RandomReal has only one option for specifying specific instructions within the 

WorkingPrecision command. The default value for this option is MachinePrecision. 

WorkingPrecision defines the number of digits of precision for internal computations, 

while MachinePrecision is the symbol used to approximate real numbers, denoted by 

$MachinePrecision. To see the value of MachinePrecision, type $MachinePrecision. The 

next example observes the difference between using default values for an option and 

employing custom values.

In[30]:= RandomReal[{0,1},WorkingPrecision->MachinePrecision]

RandomReal[{0,1},WorkingPrecision->30]

Out[30]= 0.19858

Out[31]= 0.451259323577871140781571594337

Tip  In the Wolfram Language, global constants, which can be considered 
environmental variables, always start with a dollar sign (e.g., $MachinePrecision).

The first one returns a value with six digits after the decimal point, and the other 

returns a value with 30 digits after the decimal point. However, some built-in functions, 

such as Power, do not have any options associated with them.

In[32]:= Options[Power]

Out[32]= {}

�Dates and Time
The DateObject command provides results for concretely manipulating dates and times 

(see Figure 1-18). Date and time input and basic words are supported.

In[33]:=DateObject[]

Out[33]=
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Figure 1-18.  The date of Wed 13 Sept 2023 and time zone

DateObjects with no arguments give the current date, as shown in Figure 1-19. 

Natural language is supported in Mathematica—for instance, getting the date after Wed 

13 Sept 2023.

In[34]:= Tomorrow

Out[34]=

Figure 1-19.  The date of Thu 14 Sep 2023

The date format is entered as year, month, and day. It also supports string date 

formats and different calendars, as the next code dates show.

In[35]:= DateString[DateObject[{2020,6,10}]]

Out[35]= Wed 10 Jun 2020

In[36]:= DateString[DateObject[Today,CalendarType->"Julian"]]

DateString[DateObject[Today,CalendarType->"Jewish"]]

Out[36]= Wed 31 Aug 2023

Out[37]= Yom Revi'i 27 Elul 5783

The command also supports options that are related to a time zone.

In[38]:= DateString[DateObject[{2010,3,4},TimeZone->"America/Belize"]]

Out[38]= Thu 4 Mar 2010

Your current location’s sunrise and sunset times can be calculated (support data is 

downloaded).

In[39]:= DateString[Sunset[Here,Now]]

DateString[Sunrise[Here,Yesterday]]

Out[39]= Wed 13 Sep 2023 18:41:27

Out[40]= Tue 12 Sep 2023 06:23:34
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To get the current time, use TimeObject with zero arguments (see Figure 1-20). It can 

be entered in the format of 24h or 12h. To introduce the time, enter the hour, minute, 

and second.

In[41]:= TimeObject[]

Out[41]=

Figure 1-20.  Wed 13 Sep GMT-6 time

Time zone conversion is supported; convert 5 p.m. from GMT-5 Cancun time to 

Pacific Time Los Angeles. You can also use DatesString to use pure string objects.

In[42]:=

DateString[TimeZoneConvert[TimeObject[{17,0,0},TimeZone-> "America/

Cancun"],"America/Los_Angeles"]]

Out[42]= 15:00:00

�Strings
Text can be useful when a description of the code is needed. Mathematica allows you to 

input text into cells and create a text cell related to your computations. Mathematica has 

different forms to work with text cells. Text cells can have lines of text, and depending on 

the purpose of the text, you can work with different text formats, like creating chapters, 

sections, or just general text. In contrast, to text cells, you can introduce comments to 

expressions that need an explanation of their purpose or just a description. For that, you 

simply write the comment within the symbols (* *). And the comments are shown with 

different colors; comments also always remain as unevaluated expressions. Comments 

can be single-line or multiline.

Mathematica can work with strings. To input a string, enclose the text in quotation 

marks “text”; Mathematica knows that it is dealing with text. Characters can be whatever 

you type or enter into the cells.

In[43]:= "Hello World" (*This is a comment*)

Out[43]= Hello World
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Mathematica assumes that what you enter is text by being enclosed in quotation 

marks, although you can always impel it to explicitly treat it as text using the ToString 

command. You can check the head of the expression to make sure you are dealing with 

strings.

In[44]:= ToString[23.423563]

Out[44]= 23.4236

In[45]:= % // Head(*We use Head to know what type of object is*)

Out[45]= String

Strings appear without apostrophes when entered because it is the default format.

In[46]:= "Welcome to Mathematica"

Out[46]= Welcome to Mathematica

Whenever you put the type cursor over a string in Mathematica and enter input, it 

automatically appears surrounded by apostrophes. In this way, you can know you are 

working with strings.

Later, you learn about the functionality of AtomQ. The following demonstrates that 

strings cannot have subexpressions in the Wolfram Language. The output, true, indicates 

that the string input is a single, indivisible unit.

In[47]:= AtomQ["The sky is blue and tomorrow is expected to rain"]

Out[47]= True

You can also separate a string by characters.

In[48]:= Characters["Hello World"] (*Function that breaks the string into 

its characters*)

Out[48]= {H,e,l,l,o, ,W,o,r,l,d}

Replace particular characters in a string with a rule operator (→ or ->, in plain text).

In[49]:= StringReplace["Hello this is a string ",{"h","H"}->"4"] (*This 

function replaces the string each time it appears for rule of the 

pattern,that is 4*)

Out[49]= 4ello t4is is a string
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Convert a text string to uppercase or lowercase.

In[50]:= ToUpperCase["hello my name is"]

Out[50]= HELLO MY NAME IS

In[51]:= ToLowerCase["HELLO MY NAME IS"]

Out[51]= hello my name is

Join a text string.

In[52]:= StringJoin["Nice","to","have","you","back"]

Out[52]= Nicetohaveyouback

Or with the string join symbol (<>).

In[53]:= "Nice"<>"to"<>"have"<>"you"<>"back"

Out[53]= Nicetohaveyouback

�Basic Plotting
The Wolfram Language offers a basic description to easily create two-dimensional 

and three-dimensional graphics. It has a wide variety of graphics, such as histograms, 

contour, density, and time series. To graph a simple mathematical function, use the Plot 

command, accompanied by the variable symbol and the interval where you want to 

graph (see Figure 1-21).

In[54]:= Plot[x^3,{x,-20,20}]

Out[54]=
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Figure 1-21.  A cubic plot

The plot function also supports handling more than one function; simply gather the 

functions inside curly braces. Figure 1-22 shows the two functions in the same graph; 

each with a unique color.

In[55]:= Plot[{Tan[x],x},{x,0,10}]

Out[55]=

Figure 1-22.  Multiple functions plotted
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You can also customize graphics in color if the curve is thick or dashed; this is done 

with the PlotStyle option (see Figure 1-23).

In[56]:= Plot[Tan[x],{x,0,10},PlotStyle->{Dashed,Purple}]

Out[56]=

Figure 1-23.  Dashed tangent function

The PlotLabel option allows you to add basic descriptions to your graphics by adding 

a title. On the other hand, the AxesLabel option lets you add names to axes, both x and y, 

as depicted in Figure 1-24.

In[57]:= Plot[E^x,{x,0,10},PlotStyle->{Blue}, PlotLabel -> "ex" ,AxesLabel-> 

{"x-axis","y-axis"}]

Out[57]=
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Figure 1-24.  A plot with title and labeled axes

�Logical Operators and Infix Notation
Infix notation and logical operators are commonly used in logical statements or 

comparisons of expressions, and the result values are either true or false. Table 1-1 

shows the relation operators of the Wolfram Language.

Table 1-1.  Operators and Their Definitions

Definition Operator Form

Greater than >

Less than <

Greater than or equal ≥

Less than or equal ≤

Equal =

Unequal != or ≠

Structural Equality ===

Relational operators, also called comparison operators and logical binary operators, 

check the veracity or falsity of certain relationship proposals. The expressions that 

contain them are called relational expressions. They accept various types of arguments, 
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and the result can be true or false—that is, they are Boolean results. As you can see, they 

are all binary operators, of which two are of equality condition == and !=. These serve to 

verify the equality or inequality of expressions.

In[58]:= 6*1>2

Out[58]= True

In[59]:= 6*1<2

Out[59]= False

In[60]:= 
1

2
>=1/2

Out[60]= True

In[61]:= 1/4<=
1

2

Out[61]= True

In[62]:= 3.12 == 2.72

Out[62]= False

In[63]:= π != −1
Out[63]= True

In[64]:= 2===2.

Out[64]= False

Boolean operands produce a true or false result or test whether a condition is 

satisfied. Table 1-2 shows Boolean operators of the Wolfram Language.

Table 1-2.  Boolean Operators and Their 

Definitions

Definition Operator Form

AND && or ∧

OR || or ∨

XOR ⊻

Equivalent ⇔

Negation ¬
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The AND operator returns a true value if both expressions are true. Otherwise, the 

result is false.

In[65]:= 2==1 && 3.12==2

Out[65]= False

The OR operator returns true if any of the expressions is true. Otherwise, it returns 

false. This operator has an analogous operation to the previous one.

In[66]:= 2*2==3||23*2==1

Out[66]= False

The XOR operator is an exclusive “or” operator that returns true when both 

expressions differ. Otherwise, it returns false when the expressions have the same value.

In[67]:= 2==1 \[Xor] 2==2

Out[67]= True

The equivalent operator returns true if expressions are powered from each other. 

Otherwise, it returns false.

In[68]:= Power[1,2] \[Equivalent] 1^2

Out[68]= True

The negation operator, also called logical negation, returns a value that can be an 

expression that evaluates to a result. The result of this operator is always a Boolean type.

In[69]:= \[Not]2==1

Out[69]= True

Another approach, instead of using Boolean operators, is to use different functions 

with postfix (Q), which consists of testing whether an object meets the condition of the 

built-in function. A few honorable mentions are SameQ, UnsameQ, AtomQ, IntegerQ, 

and NumberQ. The next example tests whether a number is a float expression or an 

integer.

In[70]:=

IntegerQ[1]

IntegerQ[1.]

Out[70]= True

Out[71]= False
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The valuable application of the AtomQ function can tell you whether an expression 

is subdivided into subexpressions. Later, you are shown how to deal with subexpressions 

with lists. If the result is true, then the expression cannot be subdivided into subterms, 

and if it is false, then the expression has subterms.

In[72]:= AtomQ[12]

Out[72]= True

As shown, numbers cannot be subdivided because a number is a canonic 

expression; the same applies to strings, as seen before.

�Algebraic Expressions
The Wolfram Language can work with algebraic expressions. For instance, perform 

symbolic computations, algebraic expansions, and simplifications. Many words used 

in common language in algebra are preserved in Mathematica. To expand an algebraic 

expression, use Expand.

In[73]:= Expand[((x^2)+y^2)*(x+y)]

Out[73]= x^3+x^2 y+x y^2+y^3

Adding a space between variables is the same as adding the multiplication operator. 

This can be checked by a*x==a x.

In[74]:= Expand[a x^2*(a x)^3]

Out[74]= a^4 x^5

But be careful when writing algebraic expressions because the ax symbol is not 

the same as an x. This also is checked using the SameQ[ax, a x] or the short notation a 

x === ax.

To simplify an expanded expression, use Simplify or FullSimplify.

In[75]:= Simplify[x^3+x^2 y+x y^2+y^3]

FullSimplify[x^3+x^2 y+x y^2+y^3]

Out[75]= x^3+x^2 y+x y^2+y^3

Out[76]= (x+y) (x^2+y^2)
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The difference is that the latter tries transformations to simplify the expression more 

broadly. To unite terms over a repeated denominator, use Together. To expand into 

partial fraction decomposition, use Apart.

In[77]:=

Together[1 1

1

1

2z z z
�

�
�

�
]

Apart[
2 4

1 2

2� �
�� � �� �

z z
z z z

]

Out[77]= (2+4 z+z^2)/(z (1+z) (2+z))

Out[78]= 1/z+1/(1+z)-1/(2+z)

�Solving Algebraic Equations
Various functions are accessible for finding solutions to algebraic equations. The most 

common is the Solve function. The first argument is the equation or expression to be 

solved, and the second is for the variable to be solved.

In[79]:= Solve[z^2+1==2,z]

Out[79]= {{z → -1},{z → 1}}

Note A s you might remember, equal is expressed as double equal ( == ); do not 
use one equal ( = ) because that means assigning a value to a symbol or variable.

The result means that z has two solutions: one is –1, and the other is 1. Each result is 

expressed in the form of a rule. A rule expression changes the assignment of the left side 

to the one on the right side (left → right) whenever it applies. For example, z → 1 is the 

same as Rule [z, 1].

To verify the solution, the values of z (–1, 1) must be replaced in the original 

equation. For this, you can use the ReplaceAll operator (/.) along with the rule command 

→ or Rule, which is used to apply a transformation to a variable or a pattern with other 

expressions.

In[80]:= z^2+1 /.Rule[z,{1,-1}]

Out[80]= {2,2}
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The other option is to type the solutions explicitly in the equation.

In[81]:= {1^2+1==2, (-1)^2+1==2}

Out[81]= {True,True}

Multiple equations can be solved, too, given a system of equations and a list of 

interested variables. To solve the equations, place the system of equations in one list and 

the variables in another.

For example, solve the next system of equations.

x + y + z == 2

6x - 4y + 5z == 3

5x +2y +2z ==1

The solution is

In[82]:= Solve[{x+y+z == 2, 6x-4y+5z == 3, x+2y+2z == 1},{x,y,z}]

Out[82]= x y z� � ���
�
�

�
�
�

�
�
�

�
�
�

3
10

9

19

9
, ,

Note T he results are listed. Lists are essential structures in the Wolfram 
Language and are discussed in the next chapter.

The latter process is also applicable to equations assigned to variables. You can write 

this with the use of compound expressions.

In[83]:=

EQ1=x+y+z==2;

EQ2=6 x-4 y+5 z==3;

EQ3=x+2 y+2 z==1;

Solve[{EQ1,EQ2,EQ3},{x,y,z}]

Out[83]= x y z� � ���
�
�

�
�
�

�
�
�

�
�
�

3
10

9

19

9
, ,

The Solve function also works with pure algebraic equations.

In[84]:= Solve[{x + y + z == a, 6 x - 4 y + 5 z == b, x + 2 y + 2 z == c}, 

{x, y, z}]

Out[84]= x a c y a b c z a b c� � � � �� � � � � �� ��
�
�

�
�
�

�
�
�

�
�
�

2
1

9
7

1

9
16 10, ,
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The Solve function supports expressions with a mixture of logical operators, 

expressing y and x in terms of z.

In[85]:= Solve[EQ1 && EQ2, {x, y}]

Out[85]= x z y z
� �� � �

��
�
�

�
�
�

�
�
�

�
�
�

1

10
11 9

9

10
,

It also uses the OR operator.

In[86]:= Solve[x^2 + y^2 == 0 || x - 2 y == 1, x]

Out[86]= {{x →  − ⅈy}, {x → ⅈy}, {x → 1 + 2y}}

The Solve function returns the solution for each of the equations entered.

Establishing a condition with the AND operator lets you return solutions that satisfy 

a condition; for example, the following equation has two solutions 1 and –1, but you can 

solve the equation with the condition that z must be different from 1.

In[87]:= Solve[z^-2 + 1 == 2 && z != 1, z]

Out[87]= {{z → -1}}

To obtain more general results, Reduce is used, as shown in the following example.

In[88]:= Reduce[Cos[x]==-1,x]

Out[88]= c1 ∈ Z &  & (x =  =  − π + 2πc1 ‖  x =  = π + 2πc1)

Here, the alternative solutions are separated by the OR operator, and the condition 

is established by the AND. So this means that there are two possible solutions −π + 2πc1 

or π + 2πc1 and that the constant c1 must be a number that belongs to the integers (Z). In 

addition, Reduce can also solve inequalities.

In[89]:= Reduce[h^2+k2<11,{h,k}]

Out[89]= � � � � � � � �11 11 11 11
2 2h h k h&&

Here, the simultaneous equations are for h and k. Furthermore, Reduce can show the 

combination of equations with certain conditions.

In[90]:= Reduce [α + β ∗ α ^ 2 =  = E, α]

Out[90]= � � � �
�

�
�

�
�

�� ��� � � ��
� � �

��
� � ��

�
��

�

�
��

�

�
�
�

�

�
�0 0

1 1 4

2

1 1 4

2
&& &&e

e e

��
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The first solution is that α and β must be the number e and zero. The second solution 

is in terms of α and the condition that β must differ from zero.

�Using Wolfram Alpha Inside Mathematica
A really good application inside Mathematica uses the Wolfram Alpha computable 

knowledge base. Wolfram Alpha can be called from Mathematica with the Wolfram 

Alpha query. To enter the Wolfram Alpha query, type the double equal sign before typing 

any expression; an orange asterisk with a white equal sign should appear, meaning that 

the input typed is a query with natural language. To execute the cell, click the Enter key.

So, for example, algebraic equations can be solved using the Wolfram Alpha query. 

Type the double equal sign (==) in an input cell, and the Wolfram Alpha query symbol 

should appear (see Figure 1-25). Alternatively, select Wolfram Alpha query as a new 

input from the + menu (left of the horizontal line) for a new cell.

In[91]:=

Figure 1-25.  Wolfram Alpha query input

 Out[91]=

Figures 1-25 and 1-26 show the input and output of the Wolfram Alpha query.
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Figure 1-26.  Wolfram Alpha query output

As shown, the system returns the solutions for x and other calculations. The cell 

represents the calculations in the Wolfram Alpha form. Clicking the plus icon shows a 

list of different forms of input. To see the equivalent in the Wolfram Language, select the 

Input option. The other related way to use Wolfram Alpha is with free-form input. It is 

worth mentioning that words associated with Mathematica commands, like Reduce, can 

be used too. Figure 1-27 shows the input cell in the free-form input. Clicking the plus 
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icon shows more calculations, like in the Wolfram Alpha query. The following code is the 

equivalent in the Wolfram Language of input typed. Clicking the code, replace it with the 

Wolfram Language syntax.

Figure 1-27.  Input code in the free-form input

In[91]:=

Out[91]= x x y x�� � ��
�

�
�

�

�
� �� �

1

5

1

5

2|| &&

A clarification here, not just calculations can be made. With Wolfram Alpha, access 

to curated data for various topics is available; for example, getting the financial data for a 

particular stock in March (see Figure 1-28) or the population of Australia, as depicted in 

Figure 1-29.

In[93]:=

Out[93]=

Figure 1-28.  Input and output of the Tesla stock in March 2023. Identified by the 
financial entity and returns a TimeSeries object, made possible by the latest version 
of Mathematica

In[94]:=

Out[94]=

Figure 1-29.  Input for the population of Australia
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Both free-form input and Wolfram Alpha queries can be useful and practical tools. 

For example, if you do not know the appropriate syntax of a function or command, try 

using the free-form input in natural language so that, when evaluated, you can get the 

equivalent Wolfram Language syntax of that function. Nevertheless, a downside of the 

Wolfram Alpha query is that the computations are done outside Mathematica, meaning 

that the computations are made on the Wolfram Alpha servers. In contrast, calculations 

with free-form input can be reproduced inside Mathematica. Sometimes it is preferable 

to work directly with the Wolfram Language to better manage the results, as extracting 

results from Wolfram Alpha can be tedious. It should be noted that to access these two 

features from Mathematica, it is necessary to have access to Wolfram servers via an 

online network.

�Delayed and Immediate Expressions
The Wolfram Language has two important features. First, let’s look at how the Set 

mechanism works. The symbol = is the script for Set, and := is for SetDelayed. The Set 

mechanism is represented by W = expr. W is the variable you are assigning a value to, 

and expr is the expression or value you are assigning to W. This means that Mathematica 

evaluates the expression straightaway, then each time the variable or defined function is 

called, the value of W is written, and the result is shown. On the contrary, using W:= expr 

means that the expression is not evaluated until called, so each time the W is called, it 

evaluates the stored expression every time.

In[95]:= W=RandomReal[]

Out[95]= 0.536369

Test whether W equals W.

In[96]:= W==W

Out[96]= True

The condition is true in this case because Set is used for declaring the W variable 

with the RandomReal function, which returns a pseudo-random choice from 0 to 1. 

The same approach is used for SetDelayed, and the result is false because every time 

W appears, the function is called for a new evaluation. You can write the code as a 

compound expression.
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In[97]:= Clear[W];W:=RandomReal[];W

Out[97]= 0.550058

Let’s check.

In[98]:= W==W

Out[98]= False

The result is false since the RandomReal function is evaluated again each time 

W is called. So, the first W evaluates RandomReal, and the second W again evaluates 

RandomReal, even though they are the same symbol.

The same approach applies to Rule (→) for immediate evaluation and RuleDelayed 

(:>) for evaluation only when used. Consider the following example.

In[99]:=

z=2; (*Assigning 2 to z*)

R=z->z^3; (*Rule example*)

RD=z:>z^3; (*RuleDelayed example*)

R

RD

Out[102]= 2 → 8

Out[103]= 2 ⧴ z3

The expression returns 2 → 8 since z is evaluated immediately, while the expression 

z ⧴ z^3 delays the evaluation of z^3 until it is applied. These operators can be used with 

the ReplaceAll operator (/.) as previously seen with algebraic equations.

�Improving Code
Code efficiency is essential to achieve performance and decrease resource consumption, 

leading to faster execution times and improved maintenance. One specific context where 

these matters are improving code for increased efficiency and reliability in Mathematica 

and Wolfram Language. As a developer, you can achieve greater readability and facilitate 

easier troubleshooting by using the built-in functions. Also, built-in symbols are 

optimized for efficiency, making them preferable to defining your own.
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�Code Performance
In Mathematica, there are many ways to write an expression in the same form. However, 

when you carry out long code operations, there may be a better notation to improve the 

performance of the code and thus not consume too many computational resources. This 

can be achieved by the relative performance of different functions for the development 

of the same result. The Wolfram Language provides a measure of this. The timing 

function shows the performance in units of seconds to each process in relation to the 

value of $TimeUnit, which is the CPU time it takes for the Wolfram Language kernel 

to carry out the process. $TimeUnit varies from system to system, so you might get 

something different—such as 1/1000.

Note A  lower value of $TimeUnit would be considered more precise than using it, 
as it provides a higher granularity or resolution in the time measurements.

The following example shows how long it takes to calculate the expression with 

a built-in function and a common power expression. Timing returns two values: the 

unit time and the calculation result, but the output is suppressed because it is a very 

big value.

In[104]:= Timing[Power[10,10^8];]

Out[104]= {1.1401,Null}

In[105]:= Timing[10^10^8;]

Out[105]= {1.54863,Null}

As you see, there is a difference between each; this has to do with how the Wolfram 

Language processes each computation and your computer specs. To look at the absolute

In[106]:= AbsoluteTiming[10^10^8;];]

Out[106]= {1.13833,Null}

In[107]:= AbsoluteTiming[Power[10,10^8];]

Out[107]= {1.13189,Null}

There is a difference, too, as in the case with Timing. To restrain a computation by 

time, use TimeConstrained. With this command, time constraints can be added to a 
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calculation. The evaluation is aborted if the code is still running and the time limit has 

been reached. For example, abort the evaluation after 1 second has passed.

In[108]:= TimeConstrained[10^10^8,1]

Out[108]= $Aborted

The EchoTiming function has been improved and can display the timing information 

of an evaluated expression. EchoTiming supports the latter methods of Timing and 

AbsoluteTiming.

In[109]:=

EchoTiming[Power[10,10^8];,"Time in seconds:",Method->Timing]

EchoTiming[Power[10,10^8];,"Time in seconds:",Method->AbsoluteTiming]

Out[109]= Time in seconds:  1.13813

Out[110]= Time in seconds:  1.12619

�Handling Errors
Mistakes may be commonplace, as you most commonly develop code as you continue 

to learn. When a function fails, Mathematica displays a message below the written 

function. The message form provides the name of the function associated with the error, 

along with a possible description of the cause of the error.

Next, let’s look at how this works (see Figure 1-30).

In[111]:= StringJoin["hello","I am ",Jeff]

Out[111]= helloI am <>Jeff

Figure 1-30.  Error message for the code entered

The associated function in the message appears in red (see Figure 1-20). What 

happens here is that the StringJoin function works only for strings, and you are writing a 

Jeff variable, not a string, hence the error.

To learn more about the error, click the red ellipsis icon. A menu appears, listing the 

different options available to handle the error. To review the error in the documentation, 

you must click the error option, which is the option that has an open book icon. This 

option takes you to the documentation of the associated function.
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Another option from the pop-up menu that appears is Show Stack Trace. This 

option shows you graphically and in blocks how the function and its expressions are 

being evaluated. This option is analogous to the Trace command. Let’s look at the next 

example error and Figure 1-31.

In[112]:= Power[x/0,2]

Out[112]= ComplexInfinity

Figure 1-31.  Error message for infinite expression

Here, the error is that Mathematica encounters a division by zero, which is 

undefined, and you can see the trace of the function with Stack Trace in Figure 1-32.

Figure 1-32.  Show Trace Stack pop-up window
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�Debugging Techniques
In Mathematica, debugging practices help programmers identify, diagnose, and 

fix errors or unusual behavior in their written segments of code. Traditional code 

operations using the Wolfram Language built-in functions like Trace, Echo, and Print, 

among others, let you follow each step of your code as it runs. This makes it easier to 

focus on the specific implementation details and not the whole abstract operations 

that the code does, providing a flexible and robust sense of what the code or code block 

should do.

Since version 13, a few improved built-in functions, like EchoLabel and 

EchoEvaluation, have been added to the repertoire, as seen in the following example.

In[113]:=

x=2;

Echo[x];x=x^2+1;

Echo[x];x=x^2+1;

Echo[x];

Out[114]=

>> 2

>> 5

>> 26

Let’s go over what happened here. Initially, the value 2 is assigned to x. The first Echo 

prints the value of x, which is 2. Then, in the 2nd operation, x is updated based on its 

original form. Subsequently, the second Echo prints the new value, 5, which continues 

until the final value of 26 is reached (5^2 + 1).

The same can be achieved using EchoLabel and EchoEvaluation but tagging 

costume messages.

In[117]:=

x=2;

Echo[x,"Initial Value: "];

x=x^2+1;

EchoLabel["First Iteration: "][x];

x=x^2+1;

EchoEvaluation[x=x^2+1,"Second Iteration: "->"Output :"];

Chapter 1  Introduction to Mathematica



46

Out[118]=

>> Initial Value:   2

>> First Iteration:   5

<< Second Iteration:   x=x^2+1

<< Output :  677

The previous example performs three iterations of the same operation on the same 

initial value. The first Echo prints the value of x. The second EchoLabel prints the output 

of the first iteration with a costume label and finalizes with the last evaluation and label 

association. Before evaluation, the initial label is printed, followed by the second label 

being printed once the evaluation is complete. Throughout the process, it displays 

results next to symbols with different colors: orange (>>) and blue (<<). The first symbol 

represents output, and the second symbol represents input.

Now, by utilizing operations to measure the time, as seen before, you can combine 

them to pinpoint which stages demand more time to compute, as exemplified in the 

following example.

In[123]:=

x=2;

EchoTiming[Echo[x,"Initial Value: "]];

x=x^2+1;

EchoTiming[EchoLabel["First Iteration: "][x]];

x=x^2+1;

EchoTiming[EchoEvaluation[x=x^2+1,"Second Iteration: "->"Output :"]];

Clear[x];

Out[124]=

>> Initial Value:   2

⌚ 0.013603
>> First Iteration:   5

⌚ 0.018695
<< Second Iteration:   x=x^2+1

>> Output :  677

⌚ 0.031909

Chapter 1  Introduction to Mathematica



47

As seen, the last evaluation took the longest time (0.031909 seconds), while the initial 

value estimation was the fastest (0.013603 seconds). These techniques are useful when 

program flow is broken into small chunks of digestible code, like visualizing variable 

values at key points and gauging computation time for performance breakdown.

�How Mathematica Works
This section explores the internal workings of computations and discovers ways to 

visualize data using multiple basic yet powerful commands.

�How Computations are Made (Form of Input)
Each time Mathematica receives a computation in the input cell, it uses the 

StandardForm, which is the output representation of expressions in the Wolfram 

Language and has many aspects of common mathematical notation. Input can be 

written in various forms, but to know how the expression is written in the Wolfram 

Language, StandardForm is used.

In[130]:= StandardForm[1/x+x^2]

Out[130]//StandardForm=

1 2

x
x+

InputForm works similarly but produces the output acceptable to be entered as 

Wolfram Language input.

In[131]:= {InputForm[
1 2

x
x+ ], InputForm[ax], InputForm[ax], InputForm[ 2]}

Out[131]= {x^(-1) + x^2,a^x, Subscript[a, x], Sqrt[2]}

Every type of format has its equivalent in one line of code text, like the square root 

symbol (√), which means the same as Sqrt[ ]. To convert input into StandardForm, 

InputForm, and other forms, select the cell block and head to Cell ➤ Convert To ➤ 

StandardFrom, and InputForm, among others. StandardForm and InputForm apply to 

every expression in the Wolfram Language. Try using InputForm on the previous plots 

to see how the expression is written completely. To understand better how Mathematica 

works, you want to know how symbolic or numeric computations are performed or 

written. The FullForm and TreeForm commands can be applied to view how expressions 
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are represented symbolically. TreeForm represents the command in a graphical format, 

while FullForm represents the form of the expression managed internally by the Wolfram 

Language.

In[132]:= FullForm[
t
2

2 2+ ^ ]

Out[132]//FullForm= Plus[4,Times[Rational[1,2],t]]

FullForm also represents the input as a one-line output code, like InputForm. But 

even if InputForm also returns a one-line output code, why not use InputForm? The 

reason is that FullForm represents what Mathematica understands as input. With this in 

mind, FullForm is useful because it lets you know what Mathematica interprets about 

the written input. In Mathematica, the mathematical order of operations is preserved. 

So the previous output is as follows: first, Mathematica detects the rational number 1/2 

(Rational[1,2]) and the symbol t, followed by the multiplication of these two elements 

(Times[Rational[1,2],t]) followed by the addition of 22 (Plus[4, Times[Rational[1,2],t]]).

Another type of command that helps in creating a visualization of how Mathematica 

manipulates expressions is TreeForm. TreeForm returns the expression as a tree plot 

(see Figure 1-33). Alternatively, you can apply commands using the postfix form ‘expr // 

function’, rather than writing in the canonical form ‘F[expression]’.

In[133]:= t
2

2 2+ ^ //TreeForm

Out[133]//TreeForm=

Figure 1-33.  Tree plot representation
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In short terms, Mathematica detects the multiplication of 1/2 times t and then proceeds 

to add the result of the product with the result of two squared. The tree graph is read 

from bottom to top until you reach the top of the tree.

One more helpful command is Trace. Trace returns individual forms corresponding 

to the evaluation line, which contains the sequence of forms of the evaluated expression.

In[134]:= Trace[Plus[4,Times[Rational[1,2],t]]]

Out[134]= {{{Rational[1,2], 1

2

}, t
2
},4+ t

2
}

So here, the sequence of operations is as follows: first use the term Rational [1, 2], 

followed by 1/2, then 1/2 is multiplied by t, and the result is added to 4. Using FullForm 

in Trace lets you see how the internal structure changes.

In[135]:= FullForm[Trace[Plus[4,Times[Rational[1,2],t]]]]

Out[135]//FullForm= List[List[List[HoldForm[Rational[1,2]],HoldForm[Rationa

l[1,2]]],HoldForm[Times[Rational[1,2],t]]],HoldForm[Plus[4,Times[Rational[

1,2],t]]]]

It can be seen that the terms change each step. The HoldForm command is 

used to see the output in an unevaluated form. As a complement to Trace, FullForm 

and TreeForm can be combined to see the hierarchy of operations in an expression 

internally, as seen in Figure 1-34.

In[136]:= Trace[
t
2

2 2+ ^ ]//TreeForm

Out[136]//TreeForm=
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Figure 1-34.  TreeForm and Trace combined

Here, the tree shows how changes are made and read from left to right. Reading the 

tree, you see that Mathematica recognizes that 1/2 is 2^-1; this is followed by t times 1/2, 

followed by 2^2, which is 4, and so on until the end. Moving the cursor over each block 

displays a representation of the operation being held. There may be occasions when you 

encounter operations or expressions you do not understand. A solution to this would be 

using the previous commands, which allow you to see the expression’s inner structure 

and thus understand how the operation is performed.

�Searching for Assistance
The Wolfram Documentation Center contains the registry of all built-in functions. 

Documentation of functions can be accessed through the front end by opening a new 

window, clicking the Help tab on the toolbar, or entering expressions. Since version 13.1, 

the documentation can also be accessed through the toolbar’s rightmost icon, which is 

an open book icon. The Input Assistant is displayed as an autocomplete or suggestion 

bar when a command or related sensible options are written. When writing a built-in 

function or command, Mathematica tries to automatically complete the phrase.

Like in Figure 1-35, type the word Random, and different associated commands 

appear as suggestions. If the desired command is listed, you can select it with the cursor 

pointer.
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Figure 1-35.  Autocomplete pop-up menu

To access the documentation for a particular command, click the “i” document icon 

next to the command name, and the documentation windows should appear.

Note A utocomplete also works for assigned symbols.

When writing the built-in function or command followed by the left square bracket, 

the completion menu appears; if you click the double-down arrow, it displays the input 

forms supported by that command, as shown in Figure 1-36.

Figure 1-36.  Built-in function RandomPolygon with different input forms

As seen in the example, the RandomPolygon function has four types of input forms; 

also, in the menu, you can see text related to the different forms of the input.
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To learn how a function works or how built-in functions are written, the best 

resource is to consult the Wolfram Documentation Center. You can also check if an 

alternative input expression can be used. So, if you need help understanding how the 

Head function works, you input a question mark (?) before the function’s name, giving 

you a simple understanding of how the command works (see Figure 1-37). If you want 

additional information related to the attributes of the function, a double question mark 

(??) can be employed. As a piece of advice, the Wolfram Documentation Center can be 

used for more in-depth options. Use the F1 shortcut, which opens the Documentation 

Center. If you highlight the symbol name and press F1, you are taken directly to the 

documentation page for that symbol.

In[137]:= ?Head

Out[137]=

Figure 1-37.  Output information for the Head command

The previous command showed how to show information related to a specific 

function. But if you don’t recall the exact spelling, you can write the first letters of the 

name followed by an asterisk (*), and Mathematica provides a list that matches your 

query. In the following example, the output is the functions whose names start with 

“Hea” (see Figure 1-38). The Wolfram documentation can be used in a scenario that 

needs more in-depth knowledge.

In[138]:= ?Hea*

Out[138]=
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Figure 1-38.  Output information for the commands starting with the letters Head

�Notebook Security
The Wolfram Language provides creation and the ability to run dynamic content. These 

contents allow the user to create programs that can perform useful and complex tasks; 

on certain occasions, unwanted content may be executed or code misused. A notebook 

may or may not contain dynamic content as part of its code. Notebooks containing 

dynamic content can be instantly downloaded without any user action. Sometimes, 

Mathematica alerts the user when a notebook contains dynamic content, displaying a 

message like that shown in Figure 1-39.

Figure 1-39.  Warning message of dynamic content

If the notebook is not found in a trusted directory, a message warns the user that 

the notebook contains unreliable dynamic content. The dynamic content is executed 

without displaying a previous message to the user if the notebook is located in a 
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reliable directory. To find out if a notebook is located in a trusted directory with the 

name TrustedPath, check out the trusted math directories, which are found in (1) $ 

BaseDirectory, (2) $ UserBaseDirectory, and (3) $ InitialDirectory.

In[139]:= $BaseDirectory

Out[139]= /Library/Mathematica

In[140]:= $UserBaseDirectory

Out[140]= /Users/macosx/Library/Mathematica

In[141]:= $InitialDirectory

Out[141]= /Users/macosx

In this case, these are the trusted directories; yours may defer. By default, the 

directories called UntrustedPath are those from which you can store files that can 

be potentially harmful, such as files downloaded from the Internet. For this, in the 

Wolfram Language, the user’s writing directories and configuration directories are called 

UntrustedPath. To add, change, or remove the trusted and untrusted directories, go to 

the Preferences menu and then to the Security tab. There are options to edit unreliable 

and trusted directories.

�Summary
This chapter served as an introduction to Mathematica, a comprehensive software used 

for mathematical computation and analysis. The chapter also introduced the unique 

Wolfram Language used within the software, focusing on its notebook interface, text 

processing, palettes, and various styles and features. It also delved into expressions 

in Mathematica and concluded with topics related to code performance, error and 

debugging management, and ensuring security.
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CHAPTER 2

Data Manipulation
This chapter reviews the basics of data creation and data handling in the Wolfram 

Language. The chapter begins with the concept of lists and structures within the 

language. Numbers, digits, and simple ways to use them with common math functions 

are discussed. Next, you are introduced to lists of objects, representing, and generating 

lists, delving into data arrays and examining nested lists, vectors, matrixes, and relevant 

operations for various purposes. The chapter ends with study list manipulation 

techniques—retrieving, assigning, or removing data—and structuring lists to offer a 

general guide to understanding list manipulation in the Wolfram Language.

�Lists
Lists are the core of data construction in the Wolfram Language. Lists can gather objects, 

construct data structures, create tables, store values or variables, make elementary to 

complex computations, and characterize data. A list can represent any expression in 

the Wolfram Language (numbers, text, data, images, graphics, etc.)—that is, any set of 

whichever data.

If you access the information structure of a list, as demonstrated in Figure 2-1, you 

can see the typical format to form a list. Lists are represented by curly braces or the List 

command. In the Wolfram Language, almost every data object result can be listable; in 

other words, lists allow you to group data that maintain some type of relationship, even 

if they are of a different type, by manipulating all together (using the same identifier) or 

each separately.

In[1]:= ??List

Out[1]=
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Figure 2-1.  List definition in the Wolfram Language

As seen in the evaluation, commas separate elements, and the whole list is between 

curly braces. Also, List is a protected variable, meaning you cannot assign values to the 

name List.

�Types of Numbers
The fundamental number types in the Wolfram Language are represented by integers, 

rational, real, and complex numbers.

First, the integers have an exact result since they are numbers that cannot be 

represented by a decimal point.

In[2]:= {10, InputForm[10]}

Out[2]= {10,10}

Therefore, integers in the Wolfram Language are handled with infinite precision and 

infinite accuracy.

In[3]:= {10//Accuracy, InputForm[10]//Precision}

Out[3]= {∞, ∞}

Second, rational numbers can be represented as a quotient of two integers.

In[4]:= {5/10,InputForm[10/12]}

Out[4]= {1/2, 5/6}

Mathematica treats rational numbers exactly as with integers, so whenever 

Mathematica deals with rational numbers, it returns the minimum expression in which 

that number is represented.

In[5]:= {5/10 //Accuracy,InputForm[10/12] //Precision}

Out[5]= {∞, ∞}
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Third, real numbers—typically known as floating-point numbers—are represented 

in the Wolfram Language by any number with a decimal point.

In[6]:= {2.72 //Precision, InputForm[2.72]}

Out[6]= {MachinePrecision,2.72}

Since real numbers are approximate, they do not have an exact precision. 

These numbers are considered machine numbers, which have the precision of the 

$MachinePrecision variable. It should be noted that in the Wolfram Language, numbers 

1 and 1.0 are treated differently. Although Mathematica recognizes that they are 

equivalent expressions, it must be taken into account that they are not the same object 

within the Wolfram Language.

To corroborate this, let’s look at the following example, where you use SameQ to test 

if the expressions are the same for 1 and 1.0.

In[7]:= SameQ[1,1.0]

Out[7]= False

The heads of the expressions are different because one is an integer and the other a 

real number.

In[8]:= {Head[1],Head[1.0]}

Out[8]= {Integer, Real}

Complex numbers are numbers that contain a real part and an imaginary part. The 

form of a complex number is a + bi, where “a” is the real part and “b” is the imaginary 

part. The symbol “i” represents the square root of the negative number –1.

In[9]:= 10+19I

Out[9]= 10+19I

The type of precision in these numbers can be exact or approximate since these 

numbers can be built from the numbers described previously.

In[10]:= {Precision[I], Precision[1 + 0.3I], FullForm[11+1I]}

Out[10]=  {∞, Machineprecision, Complex[11, 1]}

Though complex numbers appear as a single atomic expression, these numbers 

can be subdivided into different expressions, such as when extracting the real or 

imaginary parts.
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In[11]:= 1+I //AtomQ

Out[11]= True

In[12]:= {ReIm[1+3I],Re[1+0.3I],Im[Complex[1,0.2]]}

Out[12]= {{1,3},1.,0.2}

When you deal with transcendental numbers like pi and the golden ratio, these 

numbers are treated as symbols—that is, Mathematica has reserved these symbols since 

they are important numerical constants. Therefore, they have an exact precision despite 

being real numbers.

In[13]:= {Accuracy[\[Pi]],Precision[E],Accuracy[I],Precision[GoldenRatio]}

//NumberQ

Out[13]= False

To determine whether a given value is considered a number within the Wolfram 

Language, use the NumberQ command. It returns “True” if the expression is a number 

and “False” if not. This can be observed in the previous command (for transcendental 

numbers) and the following examples.

In[14]:= {NumberQ[1/2],NumberQ[1],NumberQ[E]}

Out[14]= {True,True,False}

As a result, you can see how a rational number and an integer are numbers, but the 

number E is not. In fact, E is a type of symbol.

In[15]:= {Head[E],FullForm[E]}

Out[15]= {Symbol,E}

Generally speaking, there is no restriction on combining the different types 

of numbers within the Wolfram Language. You can perform operations between 

different types.

In[16]:= {1+0.2+1/2+1+11+1I}

Out[16]= {13.7 +1. I}

Conversion between approximate numbers to exact numbers is carried out with 

Rationalize.

In[17]:= Rationalize[2.72]

Out[17]= 68/25
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Also, alternative number notations like scientific notation are supported. Scientific 

notation is a useful tool to represent large numbers in powers of ten.

In[18]:= {ScientificForm[N@E/1000000],2.71828*^-6}

Out[18]={2.71828 × 10−6, 2.71828 × 10−6}

You know that the N function is used to calculate approximate numbers. It converts 

an exact expression to an approximate one, keeping in mind that the desired precision 

can also be specified.

Different forms can generally be extrapolated to all the built-in function notations of 

the Wolfram Language.

•	 Employing the direct application of the N function [ ] to the 

expression

In[19]:= N[13/7]

Out[19]= 1.85714

•	 Utilizing the infix notation, ~N~

In[20]:= E~N~E

Out[20]= 2.72

•	 Through the postfix notation, // N

In[21]:= E//N

Out[21]= 2.71828

•	 Using the prefix notation, N@

In[22]:= N@E

Out[22]= 2.71828

When the precision is not defined, Mathematica uses the value of $MachinePrecision 

to determine the standard precision of the approximate number. The value of 

$MachinePrecision varies since it is a float number established by Mathematica 

according to the characteristics of each computer.

In[23]:= $MachinePrecision

Out[23]= 15.9546
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Setting arbitrary precision with SetPrecision or using machine precision.

In[24]:= SetPrecision[E, 17]

Out[24]= 2.7182818284590452

The following uses machine precision.

In[25]:= SetPrecision[E,MachinePrecision]

Out[25]= 2.71828

When precision is not introduced, Mathematica uses MachinePrecision numbers.

In[26]:= SetPrecision[e,MachinePrecision] == N@e

Out[26]= True

Another way to enter approximate numbers with some precision is by adding the 

grave accent symbol (‘) after the real number, followed by the precision. For example, 

use it for six-digit precision.

In[27]:= 77/3`6

Out[27]= 25.6667

�Working with Digits
To extract digits that make up an exact number, use the IntegerDigits function.

In[28]:= IntegerDigits[234544553]

Out[28]= {2,3,4,5,4,4,5,5,3}

RealDigits for approximate numbers.

In[29]:= {RealDigits[321.4546554],RealDigits[N@E]}

Out[29]={{{3,2,1,4,5,4,6,5,5,4,0,0,0,0,0,0},3},{{2,7,1,8,2,8,1,8,2,8,4,5,9,

0,4,5},1}}

In the case of a complex number, it would consist of extracting its real and imaginary 

parts and then extracting the digits of each part, as the case may be.

In[30]:= RealDigits[ReIm[113+2.7213I]]

Out[30]= {{{1,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0},3},{{2,7,2,1,3,0,0,0,0,0,0,0,

0,0,0,0},1}}
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By default, the two previous functions give results in the decimal base. To define 

a base, enter the base you want as the function’s second argument; for example, 

using base 2.

In[31]:= RealDigits[321.4546,2]

Out[31]= {{1,0,1,0,0,0,0,0,1,0,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,1,0,1,0,1,0,1,

0,0,1,1,0,0,1,0,0,1,1,0,0,0,0,1,1,0,0,0,0},9}

Specifying the three digits of the number e in base-10 notation.

In[32]:= RealDigits[N@E, 10, 3]

Out[32]= {{2,7,1},1}

Reconstructing a number from the representation of their integers is possible with 

the FromDigits function.

In[33]:= FromDigits[{2,7,1,1}]

Out[33]= 2711

Also, it is possible to form a float point number.

In[34]:= N@FromDigits[{{2,7,1,1},1}]

Out[34]= 2.711

and to measure the length of an integer number.

In[35]:= IntegerLength[2711]

Out[35]= 4

�A Few Mathematical Functions
The Wolfram Language offers a wide repertoire of mathematical functions, ranging from 

the most basic to the most specialized. These functions can be managed numerically or 

symbolically, facilitating pure analytical manipulation.

Trigonometric functions are available either in radians or in degrees. Typing a 

number alone calculates and returns the value in radians.

In[36]:= Cos[Pi]

Out[36]= -1
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Entering the number followed by the Degree unit or the symbol of degrees (°) 

calculates and returns the value in degrees.

In[37]:= Sin[90 Degree]==Sin[90\[Degree]]

Out[37]= True

In[38]:= Sin[90\[Degree]]

Out[38]= 1

The same applies to hyperbolic trigonometric functions and inverse trigonometric 

functions.

In[39]:= N[Cosh[Pi]]

N[Tanh[45 Degree]]

Out[39]= 11.592

Out[40]= 0.655794

In[41]:= N[ArcTan[Pi]]

N[ArcSinh[45 Degree]]

Out[41]= 1.26263

Out[42]= 0.721225

Logarithmic functions and exponential functions are written like common math 

notation. Logarithms with only a number compute the natural logarithm.

In[43]:= Log[E]

Out[43]= 1

To specify a base, type the number as the first argument and the base as the second 

argument.

In[44]:= Log[10,10]

Out[44]= 1

Exponentials can be written with Exp or with the constant E.

In[45]:= Exp[2]==E^2

Out[45]= True
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The factorial is represented by either typing the exclamation mark after the number 

or by using Factorial.

In[46]:= 12!

Out[46]= 479001600

In[47]:= Factorial[12]

Out[47]= 479001600

�Numeric Function
In the Wolfram Language, functions are available for manipulating numerical data, these 

functions can work with any types of numbers, including real, integer, rational, and 

complex. Users can handle precision either exactly or using floating-point precision.

To truncate a number, z, to its closest integer (z), use the Round function with no 

arguments. By adding a second argument, the Round function rounds z to the nearest 

multiple of the second provided number.

In[48]:=Round[8.9](*Rounds to 9 because it is the closest number*)

Out[48]= 9

In[49]:=Round[8.9,2](*Rounds to 8 because it is the closest multiple of 

2, 2^3*)

Out[49]= 8

Other similar functions that can truncate numbers given a number z are Floor and 

Ceiling. The Floor function rounds to the largest integer less than or equal to the number 

typed. The Ceiling function rounds to the smallest integer larger than or equal to the 

typed number.

In[50]:= Floor[Pi]

Out[50]= 3

In[51]:= Ceiling[Pi]

Out[51]= 4
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The Floor and Ceiling functions can be written in their mathematical notation, ⌊z⌋ 

for Floor and ⌈z⌉ for Ceiling, by typing the key ESC lf ESC for the left Floor and ESC rf 
ESC for the right Floor. The same applies to Ceiling—just change lf for lc (left Ceiling) 

and rf for rc (right Ceiling).

In[52]:= ⌊Pi⌋
Out[52]= 3

In[53]:= ⌈Pi⌉
Out[53]= 4

Converting a float point number to a rational approximation can be done with 

Rationalize. However, adding the number 0 as the second argument can force the 

calculation to find the most exact form of a float point number; for example, a rational 

approximation to the number E.

In[54]:= Rationalize[N[E],0]

Out[54]= 325368125/119696244

The Max and Min functions return the maximum and minimum number of a list of 

numbers.

In[55]:= Max[{9,8,7,0,3,12}]

Out[55]= 12

In[56]:= Min[{0987,32,9871}]

Out[56]= 32

�Lists of Objects
This section extends the concept of lists in the Wolfram Language, focusing on 

techniques for creating and managing lists, nesting them through specialized functions, 

and effectively storing data in a variable. The topic covers how to create datasets and 

how they can be derived from various functions, as the composition of a list can include 

a wide range of elements, such as sets of numbers, text strings, equations, arithmetic 

operations, or any expression in Mathematica. Despite this, you explore concepts like 

arrays and sparse arrays and their respective object types. Additionally, this section 

discusses the nested lists and multiple ways to create data in a nested form.
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�List Representation
The curly braces denote a list of general objects, with each member separated by a 

comma. The simplest form to create a list is to enclose data in curly braces, or by using 

the List function. The following examples demonstrate how to assign lists to variables 

and gather objects in a list.

In[57]:= {x2+1, "Dog", π}
List[1,P,Power[3,2]] (* Power[3,2] represents 3 raised to the power of 2 *)

Out[57]= {x2+1, "Dog", π}
Out[58]= {1,P,9}

The list identifier or symbol is an optional name to create the structure.

In[59]:= List["23.22","Dog", π,2,4,6,456.,56,2==3 && 3==2]
Out[59] = {23.22,Dog, π,2,4,6,456.,56,False}

Inside a list, between the braces, you can define all the elements that you consider 

suitable to be listed.

In[60]:= {1+I, π + π,"number 4",Sin[23 Degree],425+I-413-3I,24,4456., "dog" 
+ "cat"}

Out[60]= {1+I, 2π,number 4,Sin[23°],12-2 I,24,4456.,cat+dog}

In Mathematica, there are different types of objects. To identify an object type, you 

have to use the Head function. The returning value is the head of the expression, known 

as the data type. If you apply Head to a list, you get that the head of the expression 

is a list.

In[61]:= % //Head

Out[61]= List

This means that the object you have created is a List object.

�Generating Lists
Lists can be created with costume values, but Mathematica has a variety of functions to 

create automated lists, such as Range and Table. Both Range and Table functions create 

an equally spaced list of numbers. However, the Table generates a list with specified 
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intervals, like when “i” goes from 1 to 10. Wolfram Language also lets you incorporate 

built-in functions inside a list.

In[62]:= Range[10]

Table[i,{i,1,10}]

Table["Soccer",{i,1,15}]

Out[62]= {1,2,3,4,5,6,7,8,9,10}

Out[63]= {1,2,3,4,5,6,7,8,9,10}

Out[64]= {Soccer,Soccer,Soccer,Soccer,Soccer,Soccer,Soccer,Soccer,Soccer, 

Soccer,Soccer,Soccer,Soccer,Soccer,Soccer}

The Table function can also be used to create indexed lists. Each interval is specified 

within the curly braces { }, as shown in the previous and following examples.

In[65]:= Table["Red and Blue",5]

Range[-5,5]

Out[65]= {Red and Blue,Red and Blue,Red and Blue,Red and Blue,Red and Blue}

Out[66]= {-5,-4,-3,-2,-1,0,1,2,3,4,5}

The Table function can work with or without an inner iterator, but to create 

structured lists, using an iterator is recommended.

In[67]:= Table[i^i,{i,1,5}]

Out[67]= {1,4,27,256,3125}

This shows the function without an iterator.

In[68]:= Table[10^3,{5}]

Out[68]= {1000,1000,1000,1000,1000}

Note  When using the iterator, make sure to properly write the expression to avoid 
errors. When the table recognizes the iterator, it changes colors because the letter 
is no longer a symbol.

You can create a list of lists. This type of structure is considered a nested list.

In[69]:= {Range[5], Table[h, {h, -6, 2}]}

Out[69]= {{1, 2, 3, 4, 5}, {-6, -5, -4, -3, -2, -1, 0, 1, 2}}
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The iterator can also be an alphanumeric variable.

In[70]:= Table[data2, {data2, 0, 6}]

Out[70]= {0, 1, 2, 3, 4, 5, 6}

Structures of arrays with the same data can also be created, such as an array of 2×2.

In[71]:= Table[11,{2},{2}]

Out[71]= {{11,11},{11,11}}

The Table function supports multiple iterators, which is useful when constructing 

tabular data.

In[72]:= Table[i+j+k,{i,1,4},{j,1,4},{k,1,4}]

Out[72]={{{3,4,5,6},{4,5,6,7},{5,6,7,8},{6,7,8,9}},{{4,5,6,7},{5,6,7,8}, 

{6,7,8,9},{7,8,9,10}},{{5,6,7,8},{6,7,8,9},{7,8,9,10},{8,9,10,11}}, 

{{6,7,8,9},{7,8,9,10},{8,9,10,11},{9,10,11,12}}}

To display a list in a more structured way using the Grid command.

In[73]:= Table[i-j,{i,1,2},{j,1,2}]//Grid

Out[73]= 0    -1

         1    0

An alternative to the Grid command is the TableForm command, which lets you 

display the list created as a table. This command is explained in detail later.

In[74]:= Table[i+j,{i,1,2},{j,4,6}]//TableForm

Out[74]//TableForm= 5    6    7

                    6    7    8

There is no limitation on the intervals of the iterators. You can choose that “i” goes 

from 0 to 3 and “j” from “i” to 3 and use TableForm to view it.

In[75]:= Table[{i,j},{i,3},{j,i,3}]//TableForm

Out[75]//TableForm= 1 1 1

                    1 2 3

                    2 2

                    2 3

                    3

                    3
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You can even use other syntax notations like the increment (++) or decrement (--) in 

the interval iterator.

In[76]:= Table[{i,j},{i,2},{j,i++,2}]

Out[76]= {{{2,1},{2,2}},{{3,2}}}

The increment (++) and decrement (--) operators can also be used in assigned 

variables; this operator can have precedence or posteriority. When written before the 

variable, they are called PreIncrement or PreDecrement.

In[77]:= x=0;x++;x (*applied on the current value and shown next time x is 

called*)

Out[77]= 1

In[78]:= Clear[x];x=0;--x (*applied on the current value and shown when x 

is called*)

Out[78]= -1

Alternatively, you can apply replacement rules with the symbol (/.). For example, 

you create a list of random integers consisting of 0s or 1s, then replace the 1s with 2s 

whenever they appear. Add a space between the condition expressions to avoid a typo 

error and the correct right arrow (\[Rule]). Another form of Table can also be used with 

explicit values for the iterator.

In[79]:= Table[RandomInteger[],{i,1,10}]/. 1->2

Out[79]= {2,0,2,0,2,2,0,0,2,2}

In[80]:= Table[i^2,{i,{1,2,3,4,5}}]

Out[80]= {1,4,9,16,25}

�Arrays of Data
There are different forms to create an array. The most used form is a list, as you saw in 

the previous section. But as an alternative to the Table command or Range command, 

arrays can be created with the Array command, which generates a list with a specific 

function applied to the elements created. The Array, ConstantArray, and SparseArray 

functions can also be used to build lists. The form of these functions is analogous to the 

previous ones.

Chapter 2  Data Manipulation



69

In[81]:= Array[Cos[90 Degree],{3,3}]//Grid

Out[81]= 0[1,1]    0[1,2]    0[1,3]

         0[2,1]    0[2,2]    0[2,3]

         0[3,1]    0[3,2]    0[3,3]

What happens with Array is that it constructs an array from a function. In the 

previous example, you generated an array from the numerical value of the cosine of 90 

degrees, followed by the structure of the array, which is 3×3. The indices on the right side 

of the array values are the positions of each element in the array.

If you generalize to any function, you can better see how Array works.

In[82]:= Array[F,{2,2}]//Grid

Out[82]= F[1,1]    F[1,2]

         F[2,1]    F[2,2]

As you can observe, the F function is applied and is respective to each element of the 

arrangement.

To create an array of constant values the ConstantArray function is used. To write the 

function, first write the value you want to repeat, followed by the times you want it to repeat.

In[83]:= ConstantArray[\[Pi],5]

Out[83]= {π,π,π,π,π}

You can also create arrangements with defined dimensions.

In[84]:= ConstantArray[\[Pi],{4,4}]

Out[84]= {{π,π,π,π},{π,π,π,π},{π,π,π,π},{π,π,π,π}}

To display a data array, there is the MatrixForm command, which, as its name 

suggests, shows the array in matrix form.

In[85]:= ConstantArray[\[Pi],{4,4}]//MatrixForm

Out[85]//MatrixForm= 

p p p p
p p p p
p p p p
p p p p

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

A sparse arrangement is one in which the elements generally have the same value. 

The SparseArray command lets you define the values of the array positions. By standard, 

if any position is not defined, the value is 0.
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The SparseArray command generates an object of type SparseArray, shown in 

Figure 2-2, with the name of the command and a gray box that appears.

In[86]:= SparseArray[{{1,1},{2,2}}->{1,2}]

Out[86]=

Figure 2-2.  SparseArray object

If you click the + icon, you see the array’s characteristics and its rules; this is shown 

in Figure 2-3.

Figure 2-3.  Specifications of the array

In the Wolfram Language, there is no limitation on the content of a SparseArray.

Furthermore, you can create an array with the same values on its diagonal.

Figure 2-4 illustrates elements of the same values in the array appear in one color, 

and different values appear in another.

In[87]:= SpArray=SparseArray[{{1,1}->"A",{2,2}->"A",{3,3}->"A",{4,4}-> 

"A"},{4,4}]

Out[87]=

Figure 2-4.  Sparse Array with more elements
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With the help of MatrixForm, you can visualize the arrangement as a matrix.

In[88]:= MatrixForm[%]

Out[88]//MatrixForm=

	

A

A

A

A

0 0 0

0 0 0

0 0 0

0 0 0

æ

è

ç
ç
ç
ç

ö

ø

÷
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To convert the sparse array object to a list object, use Normal to normalize into 

expression form.

In[89]:= Normal[SpArray]

Out[89]= {{A,0,0,0},{0,A,0,0},{0,0,A,0},{0,0,0,A}}

And now you deal with a list.

In[90]:= Head[%]

Out[90]= List

�Nested Lists
A nested list is a list of lists where the elements of the lists correspond to another list, 

and so on. Nested lists can be used for ordered or unordered data structures. To create a 

nested list, you can use curly braces within curly braces or built-in functions.

In[91]:= {{"This","is","A"},{"Nested","List","."}}

Out[91]= {{This,is,A},{Nested,List,.}}

You can also use the Table function.

In[92]:= Table[Prime[i]+Prime[j],{i,1,3},{j,2,4}]

Out[92]= {{5,7,9},{6,8,10},{8,10,12}}

To measure a list, you must use the Length command.

In[93]:= NestL=Table[Prime[i]+RandomReal[j],{i,1,3},{j,1,3}];

Length[NestL]

Out[93]= 3

Chapter 2  Data Manipulation



72

The length of the list is 3 because Length is properly used with flattened lists. To 

properly measure the depth of a nested list, Dimensions is more suited for the task.

In[94]:= Dimensions[NestL]

Out[94]= {3,3}

Dimensions provide a general aspect of the dimensions of the nested list, meaning 

that a list of three sublists constitutes your list and that the sublists each have three 

elements. Mathematica constructs a list with three elements, in which those three 

elements are also a list, and those lists have three elements, and each element 

corresponds to a specific value form.

Note  You might want to use TreeForm to explore how Mathematica deals with 
nested list expressions; for instance, (*TreeForm[NestL]*).

The ArrayDepth command measures the depth of a nested list or an array.

In[95]:= ArrayDepth[NestL]

Out[95]= 2

Now you know programmatically that NestL has a depth of 2.

�Vectors
Mathematica handles vectors the same way as with lists. Usual calculations of linear 

algebra can be symbolic or numeric.

In[96]:= V={6,3,2}

Out[96]= {6,3,2}

A vector is always shown as a list. To see a vector in regular notation, the MatrixForm 

command is used.

In[97]:= MatrixForm[V]

Out[97]//MatrixForm=

	

6

3

2
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÷
÷ 	
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The VectorQ command can tell you if the list you are dealing with is a vector.

In[98]:= VectorQ[V]

Out[98]= True

To see the rank of the vector, use either ArrayDepth or TensorRank.

In[99]:= {TensorRank[V],ArrayDepth[V]}

Out[99]= {1,1}

Vectors are created with the same commands that create a list: Table, Array, Range, 

curly braces, SparseArray, ConstantArray, and so forth. Also, common operations of 

vectors are performed like normal lists.

In[100]:=

Print["Addition: "<>ToString[V+V]]

Print["Subtraction: "<>ToString[V-V]]

Print["Scalar product: "<>ToString[2*V]]

Print["Cross product: "<>ToString[Cross[V,{1,3,2}]]]

Print["Norm: "<>ToString[Norm[V]]]

Addition: {12, 6, 4}

Subtraction: {0, 0, 0}

Scalar product: {12, 6, 4}

Cross product: {0, -10, 15}

Norm: 7

�Matrixes
A matrix is a square list or list of lists arranged in n-rows and m-columns, where n and m 

are the dimensions of the matrix.

	

A

a a a

a a a

a a a

m n

n

n

m m mn

´ =

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

11 12 1

21 22 2

1 2

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯ 	
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The easiest form is to create a list of lists.

In[105]:= {{3,3,1},{7,8,7}}//MatrixForm

Out[105]//MatrixForm=

	

3 3 1

7 8 7

æ

è
ç

ö

ø
÷

	

Another way is to go to Insert ➤ Table/Matrix ➤ New. A pop-up menu appears; 

select Matrix and specify the rows and columns within this menu. With this option, you 

can also specify to fill contents and the diagonal and add a grid or frames, such as in the 

next example that has drawn lines between columns.

In[106]:=A =
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

1 0 0

0 1 0

0 0 1

Out[106]:= {{1,0,0},{0,1,0},{0,0,1}}

To test whether a list of lists is a matrix, use MatrixQ.

In[107]:= MatrixQ[A]

Out[107]= True

Transpose returns the transpose of a matrix—that is, changing its rows by columns. 

For matrix A, the transpose is denoted by AT.

In[108]:= Transpose[{{0,1,0},{0,1,0},{0,1,0}}]//MatrixForm

Out[108]//MatrixForm=

	

0 0 0

1 1 1

0 0 0
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�Matrix Operations
Common operations between matrixes are performed by the rules of linear algebra: 

addition, subtraction, and multiplication. Remember that when multiplying two 

matrixes, A and B, the number of columns in A must match the number of rows in B. In 

mathematical terms: Am × n × Bn × l = Cm × l.

In[109]:= B={{0,1,0},{0,1,0},{0,1,0}};

Print["Addition: "<>ToString[A+B]]

Print["Subtraction: "<>ToString[A-B]]

Print["Product: "<>ToString[Dot[B,V]]]

Addition: {{1, 1, 0}, {0, 2, 0}, {0, 1, 1}}

Subtraction: {{1, -1, 0}, {0, 0, 0}, {0, -1, 1}}

Product: {3, 3, 3}

To calculate the determinant, use Det.

In[113]:= {Det[A],Det[B]}

Out[113]= {1,0}

To construct a diagonal matrix, use the DiagonalMatrix command; for the identify 

matrix, use the IdentityMatrix command. DiagonalMatrix is for costume values, and 

IdentityMatrix returns a matrix with a diagonal with the same elements.

In[114]:= DiagonalMatrix[{X,Y,Z}]//MatrixForm

IdentityMatrix[{2,2}]//MatrixForm(*Identity matrix of 2 by 2*)

Out[114]//MatrixForm=

	

X
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Z

0 0

0 0

0 0
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Out[115]//MatrixForm=

	

1 0

0 1
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�Restructuring a Matrix
Matrix restructuring is done with the same commands to restructure a list, like replacing 

an element with a new value.

In[116]:= ReplacePart[A,{{1,1},{2,2}}-> 3]//MatrixForm

Out[116]//MatrixForm=

	

3 0 0

0 3 0

0 0 1
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Also, it can be done by assigning the value. To access the elements of a matrix, enter 

the symbol followed by the subscript of the element of interest with the double bracket 

notation ([[ ]]). Later, you see the proper functionality of this short notation. In this case, 

you change the value of the element in position 1,1 of the matrix.

In[117]:= A[[1,1]] = 2;

MatrixForm[A]

Out[118]//MatrixForm=

	

2 0 0

0 1 0

0 0 1
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If matrix A is called again, the new value is preserved. To invert a square matrix, use 

Inverse.

In[119]:= Inverse[A]//MatrixForm

Out[119]//MatrixForm=

	

1 2 0 0

0 1 0

0 0 1
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Measuring the dimensions of a matrix is done by using Dimensions.

In[120]:= Dimensions[A]

Out[120]= {3,3}
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�Manipulating Lists
The previous section demonstrated different ways to create lists, including arrays, nested 

lists, and tables. This section describes how to manipulate these lists through referenced 

names, functions, and compact notation. You learn how to access the data of a list 

depending on its position. You learn how to add and delete elements in a list, replace 

single parts, and change the value of a specific element. You also examine restructuring 

lists once it has been built, ordering them, and converting nested lists to linear lists 

based on their depth. Finally, the section investigates how to see data from a list through 

patterns and examine pattern behavior in the Wolfram Language.

�Retrieving Data
Several functions exist for handling elements of a list. The Part [“list”, i] function allows 

you to select index parts of a list with index i.

Note T he index in a list starts at 1. Index 0 is for the head of the list.

For example, let you define a list called list1 and use Part to access the elements inside 

the list. The Part function works by defining the position of the element you want.

In[121]:= list1={1,2};

Part[{1,2},1]

Out[122]= 1

It also works with index notation.

In[123]:= {1,2}[[1]]

Out[123]= 1

Lists can be fully referenced by using their assigned names. Elements inside the 

structure can be accessed using the notation of double square brackets [[ i ]] or with the 

special character notation of double brackets, ⟦ ⟧.

Tip T o introduce the double square bracket character, type Esc [[ Esc and 
Esc ]] Esc.
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In[124]:= list1[[1]] (*[[i]] gives you access to the element of the list in 

the position i.*)

Out[124]= 1

Note  Square brackets ([[ ]] ) are the short notation for part Esc.

To access the elements of the list by specifying the positions, you can use the span 

notation, which is with a double semicolon (;;).

In[125]:= list2=List[34,6,77,4,5,6];

Part[list2,1;;4] (*from items 1 to 4*)

Out[126]= {34,6,77,4}

You can also use backward indices, where the counts start from right to left, which is 

from the last element to the first. Let you now select from position –6 to –4.

In[127]:= list2[[-6;;-4]]

Out[127]= {34,6,77}

For the nested list, the same process is applied. The concept can be extended into a 

more general aspect. The next example creates a nested list with three levels and select a 

unique element.

In[128]:= list3=List[2^3,2.72,{\[Beta],ex,{Total[1+2],"Plane"}}];

list3[[3,3,2]]

Out[129]= Plane

In the previous example, you created a nested list of depth three. Next, you select the 

third element of the list {8, 2.72, {β, ex, { Total[1 + 2], “Plane”}}, then from that list, select 

the third element of the previous list, which is {Total[1 + 2], “Plane”}. Finally, you select 

the element in the second position of the last list, which is “Plane”.

If you are dealing with a nested list, use the same concept you saw with the span 

notation. The next example selects the third element of the list3 and then display from 

position 1 to 2.

In[130]:= list3[[3,1;;2]]

Out[130]= {β, ex}
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The same is done to a more in-depth list; you use the list’s third element, then 

display from position 3 to 3 and select part 1.

In[131]:= list3[[3,3;;3,1]]

Out[131]= {3}

Segments of data can be displayed based on what parts of the data you are interested 

in. For example, the Rest function shows the data elements, except for the first. Most 

display the whole list except for the last element(s), depending on the type of list.

In[132]:= Rest[list3]

Out[132]= {2.72,{ β,ex,{3,Plane}}}

In[133]:= Most[list3]

Out[133]= {8,2.72}

An alternative to the previous functions is the Take function, which lets you select 

more broadly the data in a list. There are three possible ways to accomplish this.

•	 By specifying the first i elements

In[134]:= Take[list3,2]

Out[134]= {8,2.72}

•	 By specifying the last -i elements

In[135]:= Take[list3,-1]

Out[135]= {{ β,ex,{3,Plane}}}

•	 By selecting the elements from i to j

In[136]:= Take[list3,{1,3}]

Out[136]= {8,2.72,{ β,ex,{3,Plane}}}

�Assigning or Removing Values
Once a list is established—if you have defined a name for it—it can be used just like any 

other type. This means that elements can be replaced by others. To change a value or 

values, select the position of the item, and then set the new value.
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In[137]:= list4={"Soccer","Basketball",0,9};

list4[[2]]=1 (*position 2 corresponds to the string Basketball and we 

change it for the number 1*)

Out[138]= 1

You can check that the new values have been added.

In[139]:= list4

Out[139]= {Soccer,1,0,9}

In addition to using the abbreviated abbreviation notation, you can use the Replace 

function part of specific values and choose the list, the new element, and the position.

In[140]:= ReplacePart[list4,Exp[X],4]

Out[140]= Soccer, 1, 0, ⅇX

To add new values, use PrependTo and AppendTo; the first adds the value on the 

left side of the list, whereas the second adds it by the right side of the list. Append and 

Prepend operate the same but with storing the new value in the original variable.

In[141]:= PrependTo[list4,"Blue"]

Out[141]= {Blue,Soccer,1,0,9}

In[142]:= AppendTo[list4,4]

Out[142]= {Blue,Soccer,1,0,9,4}

In[143]:= list4(*we can check the addition of new values.*)

Out[143]= {Blue,Soccer,1,0,9,4}

To remove the values of the list, you use Drop. Drop can work with the level of the 

specification or the number of elements to be erased.

In[144]:= Drop[list4,3];(*first 3 elements,Delete[list3,3]*)

Drop[list4,{5}](*or by position,position, number 5*)

Out[145]:= {Blue,Soccer,1,0,4}

The Delete command can also do the job by defining the particular positions on the 

list—for example, deleting the contents in positions 1 and 5.

In[146]:= Delete[list4,{{1},{5}}]

Out[146]= {Soccer,1,0,4}
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As an alternative to Append and Prepend, there is the Insert function, with which 

you can add elements indicating the position where you want the new data. Given the 

expression (list4), insert the new element (2/43.23) at the third position. Consequently, 

the number 2/43.23 now occupies the list’s third slot.

In[147]:= Insert[list4,2/43.23,3]

Out[147]= {Blue,Soccer,0.0462642,1,0,9,4}

The Insert function allows the use of several positions at the same time; for example, 

inserting the number 0.023 at positions –6 (second) and 7 (the last position).

In[148]:= Insert[list4,0.023,{{-6},{7}}]

Out[148]= {Blue,0.023,Soccer,1,0,9,4,0.023}

If you want to add repetitive terms or remove terms to a list or an array, you can use 

the ArrayPad function. The standard value is zeros if the term to be added is not defined.

In[149]:= ArrayPad[list4,1](*number 1 means one zero each side*)

Out[149]= {0,Blue,Soccer,1,0,9,4,0}

If you want to add one-sided terms, it is written as follows.

In[150]:= ArrayPad[list4,{1,2}](*1 zero to the left and 2 zeros to 

the right*)

Out[150]= {0,Blue,Soccer,1,0,9,4,0,0}

To add values other than zero, you must write the value to the right of the number of 

times the value is repeated.

In[151]:= ArrayPad[list4,{0,3},"z"](*Adding the letter z three times only 

the right side*)

Out[151]= {Blue,Soccer,1,0,9,4,z,z,z}

With ArrayPad you can add reference lists; for example, add a new list of values 

either left or right.

In[152]:= newVal={0,1,4,9}; (*Here we add them on the left side*)

ArrayPad[list4,{4,0},newVal]

Out[153]= {4,9,0,1,Blue,Soccer,1,0,9,4}
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ArrayPad also can remove elements from a list symmetrically using negative indices.

In[154]:= ArrayPad[list4,-1](*it deletes the first and last elements*)

Out[154]= {Soccer,1,0,9}

Note  With ArrayPad, addition and deletion are symmetric unless otherwise 
specified.

�Structuring List
When you work with lists, in addition to the different forms of access and removing its 

content, you might encounter cases where a list needs to be accommodated, sectioned, 

or restricted. The following explores several forms to achieve these tasks.

To sort a list into a specific order, use Sort followed by the sorting function.

In[155]:= Sort[{1,12,2,43,24,553,65,3},Greater]

Out[155]= {553,65,43,24,12,3,2,1}

Sort by default sorts values from less to greater, either numbers or text.

In[156]:= Sort[{"b","c","zz","sa","t","p"}]

Out[156]= {b,c,p,sa,t,zz}

To reverse a list, use the Reverse command.

In[157]:= Reverse[{1,12,2,43,24,553,65,3}]

Out[157]= {3,65,553,24,43,2,12,1}

To create a nested list in addition to that previously seen, you can generate partitions 

to a flat list by rearranging the elements of the list. For example, you create partitions of a 

list to subdivide the list into pairs.

In[158]:= Partition[{1,12,2,43,24,553,65,3},2]

Out[158]= {{1,12},{2,43},{24,553},{65,3}}
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You can choose a partition with successive elements included.

In[159]:= Partition[{1,12,2,43,24,553},3,1]

Out[159]= {{1,12,2},{12,2,43},{2,43,24},{43,24,553}}

Depending on how you want a nested list, you can add an offset to the partition; for 

example, a partition in two with an offset of four.

In[160]:= Partition[{"b","c","zz","sa","t","p"},2,4]

Out[160]= {{b,c},{t,p}}

To return to a flat list, the Flatten function is used.

In[161]:= Flatten[{{1,12},{2,43},{24,553},{65,3}}]

Out[161]= {1,12,2,43,24,553,65,3}

Depending on the depth of the list, you can decide how deep the Flatten should be.

In[162]:= Flatten[{{{{1},1},1},1},1] (*here we flatten a list with a level 

1 depth.*)

Out[162]= {{{1},1},1,1}

The ArrayReshape function lets you reshape data into a specific rectangular array 

with; for example, create an array of 3×3.

In[163]:= ArrayReshape[{1,12,2,43,24,553,65,3},{3,3}]

Out[163]= {{1,12,2},{43,24,553},{65,3,0}}

Elements that complete the array form are zeros. This is shown in the next example 

using ArrayShape to create an array of 2×2 from one element in the list.

In[164]:= ArrayReshape[{6},{2,2}]

Out[164]= {{6,0},{0,0}}

When dealing with a nested list, SortBy is also used, but instead of a sorting 

function, a built-in function is used. For example, order a list by the result of their 

approximate value.

In[165]:= SortBy[{1,4,553,12.52,4.3,24,7/11},N]

Out[165]= {7/11,1,4,4.3,12.52,24,553}
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�Criteria Selection
Particular values of a list can be selected with certain conditions; conditions can be applied 

to lists by using the Select command. The function selects the elements of the list that are 

true to the criteria established; the functions used for criteria can be order functions.

In[166]:= nmbrList=List[12,5,6,345,7,3,1,5];

Select[nmbrList,EvenQ] (*only the values that return True are selected, in 

this case values that are even*)

Out[167]= {12,6}

Pick is also an alternative to Select.

In[168]:= Pick[nmbrList,PrimeQ @ nmbrList]

Out[168]= {5,7,3,5}

Pattern matching is used in the Wolfram Language to decree whether a given 

criterion should be associated with an expression. In the context of the Wolfram 

Language, three distinct types of patterns exist.

•	 The underscore symbol (_) represents any expression within the 

Wolfram Language.

•	 The double underscore symbol (__) represents a sequence 

containing one or more expressions.

•	 The triple underscore symbol (___) represents a sequence containing 

zero or more expressions.

Every pattern has its built-in function name. One underscore is Blank, two 

underscores are BlankSequence, and three underscores are BlankNullSequence.

To better understand the following examples in the channels, you use the Cases 

function, which allows you to select data that corresponds to the pattern.

The following is a list of data pairs where you write the selection pattern (_).

In[169]:= Cases[{{1,1},{1,2},{2,1},{2,2}},{_}]

Out[169]={}

It does not choose any element because it does not have the form of the list pattern; 

for example, the form {a, b}. Now if you change this shape, you see that it selects all the 

elements that match the shape of the pattern.
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In[170]:= Cases[{{1,1},{1,2},{2,1},{2,2}},{_,_}]

Out[170]= {{1,1},{1,2},{2,1},{2,2}}

The same result can be obtained if you use the double underscore.

In[171]:= Cases[{{1,1},{1,2},{2,1},{2,2}},{__}]

Out[171]= {{1,1},{1,2},{2,1},{2,2}}

The following example shows how to select data from a list that contains numerical 

and categorical data. You use the RandomChoice function, which gives you a random 

selection from a list. In this case, it is a random selection between the words Red or Blue. 

The next chapter explains how this random function works in the Wolfram Language.

In[172]:= SeedRandom[1234]; (*Employ SeedRandom[s] to ensure the same 

sequence of pseudorandom in the following examples.*)

tbl=Table[{i,j,k,RandomChoice[{"Red","Blue"}]},{i,1,3},{j,1,3},{k,1,3}]//

TableForm

Out[173]//TableForm=

1 1 1 Blue       1 2 1 Red        1 3 1 Red

1 1 2 Blue       1 2 2 Red        1 3 2 Red

1 1 3 Blue       1 2 3 Red        1 3 3 Red

2 1 1 Blue       2 2 1 Blue       2 3 1 Blue

2 1 2 Blue       2 2 2 Red        2 3 2 Red

2 1 3 Red        2 2 3 Red        2 3 3 Blue

3 1 1 Blue       3 2 1 Red        3 3 1 Red

3 1 2 Red        3 2 2 Blue       3 3 2 Red

3 1 3 Blue       3 2 3 Red        3 3 3 Red

The numbers on the right side are named Red or Blue. For example, you can use 

Cases to choose the values in the Blue or Red category. Since this is a nested list of depth 

four, you must specify the level ({4}) at which Cases should search for patterns.

In[174]:= Cases[tbl,{_,_,_,"Blue"},{4}]

Out[174]=

{{1,1,1,Blue},{1,1,2,Blue},

{1,1,3,Blue},{2,1,1,Blue},{2,1,2,Blue},

{2,2,1,Blue},{2,3,1,Blue},{2,3,3,Blue},

{3,1,1,Blue},{3,1,3,Blue},{3,2,2,Blue}}
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Furthermore, the same result can be obtained using the double underscore. Using 

only the number 4, search in levels from 1 through 4.

In[175]:= Cases[tbl,{__,"Blue"},{4}]

Out[175]=

{{1,1,1,Blue},{1,1,2,Blue},

{1,1,3,Blue},{2,1,1,Blue},{2,1,2,Blue},

{2,2,1,Blue},{2,3,1,Blue},{2,3,3,Blue},

{3,1,1,Blue},{3,1,3,Blue},{3,2,2,Blue}}

You can even count how much of the Blue category you have.

In[176]:= Count[Tbl,{__,"Blue"},{4}]

Out[176]= 11

Count works in the next form, Count[“list”, pattern, level of spec].

Now that you understand the underscore function, you can use the Cases function 

to check conditions and filter values. To attach a condition, use the form (/; “condition”), 

where the symbol /; followed by a rule or pattern indicates that the subsequent 

expression is a condition or pattern in Mathematica. In the next example, the x_ 

represents an arbitrary element x, which represents the list’s elements in this case. The 

condition that x is greater than 5 is then applied.

In[177]:= Cases[nmbrList,x_ /;x>5]

(*only the values greater than 5 are selected.*)

(*x can be replaced by any arbitrary symbol try using z_ and z > 5, the 

result should be the same *)

Out[177]= {12,6,345,7}

As you saw in the previous example, what happens when you use _ means that the 

expression x_ must be applied to the condition > 5 since _ means any expression, which 

is the list.

Cases can also select data where the condition is true for the established pattern 

or set of rules. The next example selects data that are integers. The pattern objects are 

represented by an underscore or a rule of expression.
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In[178]:=mixList={1.,1.2,"4",\[Pi],{"5.2","Dog"}, 3,66,{Orange,Red}};

Cases[mixList,_Integer]

(*We now select the numbers that are integers*)

Out[179]= {3,66}

The underscore can be applied to patterns that check the head of an expression, 

which is an integer. Cases compare each element to see if they are integers.

As for conditional matching, if the blanks of a pattern are accompanied by a question 

mark (?) and then the function test, the output is a Boolean value.

In[180]:= MatchQ[mixList,_?ListQ](*we test if mixlist has a head of List*)

Out[180]= True

You can select the level of specification with Cases. The next example selects the 

cases that are a string; you write two as a level of specification because mixList is a nested 

list with two sublists.

In[181]:= Cases[mixList,_?StringQ,2]

Out[181]= {4,5.2,Dog}

You can include several patterns with alternatives. To test different alternatives, place 

a (|) between patterns, so it resembles the form “pattern1” | “pattern2” |”pattern3 “| ...

In[182]:= Cases[mixList, _?NumberQ| _?String] (*We select the numbers and 

the strings*)

Out[182]= {1.,1.2,3,66}

�Summary
This chapter serves as an opening to the concept of lists, which are a core structure 

employed in Mathematica. It emphasizes the utility of lists and presents the unique 

Wolfram Language syntax. The chapter covers diverse types of objects that can be 

represented as lists. It concludes with basic functionalities for manipulating lists based 

on data requirements.
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CHAPTER 3

Working with Data 
and Datasets
This chapter reviews the basics of working with data and datasets in the Wolfram 

Language. It starts by reviewing how to apply functions to a list, followed by how to 

define user functions that can be used throughout a notebook. Next, you are introduced 

to how to write code in one of the powerful syntaxes used in the Wolfram Language, 

called pure functions. Naturally, you then delve into associations, explaining how to 

associate keys with values and why they are fundamental for proper dataset construction 

in the Wolfram Language. The chapter concludes with an overview of how associations 

are abstract constructions of hierarchical data representations.

�Operations with Lists
Let’s look at how to perform operations on and between lists. This is important since, for 

the most part, results in Mathematica can be treated as lists. This section explains how to 

perform arithmetic operations, addition, subtraction, multiplication, division, and scalar 

multiplication. You also learn how to apply functions to a list using Map and Apply. 

These tools are helpful when dealing with linear and nested lists because they allow 

you to specify a function’s depth level of application. This section also discusses how to 

make user-defined functions, their syntax, term grouping, receive groups, and apply the 

function like any other. It reviews an important concept of the Wolfram Language, which 

is pure functions, since these are very important for carrying out powerful tasks and 

activities and compactly writing code.

https://doi.org/10.1007/979-8-8688-0348-2_3#DOI
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�Arithmetic Operations to a List
This section discusses how lists support different arithmetic operations between 

numbers and between lists. You can perform basic arithmetic operations like addition, 

subtraction, multiplication, and division with lists.

�Addition and Subtraction

The following are examples of addition and subtraction operations.

In[1]:= List[1,2,3,4,5,6]+1

Out[1]= {2,3,4,5,6,7}

In[2]:= List[1,2,3,4,5,6]-5

Out[2]= {-4,-3,-2,-1,0,1}

�Division and Multiplication

The following are examples of division and multiplication operations.

In[3]:= List[1,2,3,4,5,6]/ π

Out[3]= 
1 2 3 4 5 6

p p p p p p
, , , , ,

ì
í
î

ü
ý
þ

Scalar multiplication operations can also be performed.

In[4]:= List[1,2,3,4,5,6]*2

Out[4]= {2,4,6,8,10,12}

�Exponentiation

The following is an example using exponentiation.

In[5]:= List[1,2,3,4,5,6]^3

Out[5]= {1,8,27,64,125,216}

Lists can also support basic arithmetic operations between lists.

In[6]:= List[1,2,4,5]-List[2,3,5,6]

Out[6]= {-1,-1,-1,-1}
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You can also use mathematical notation to perform operations.

In[7]:= 
" "Dog ,

,

2

2 1

{ }
{ }

Out[7]= 
Dog
2

2,
ì
í
î

ü
ý
þ

To perform computations between lists, the length of the lists must be the same; 

otherwise, Mathematica returns an error specifying that lists do not have the same 

dimensions, like in the following example.

In[8]:= {1,3,-1}+{-1}

During evaluation of In[8]:= Thread::tdlen: Objects of unequal length in 

{1,3,-1}+{-1} cannot be combined.

Out[8]= {-1}+{1,3,-1}

�Joining a List

To join one list with another—that is, to join the two lists—there is the Union command, 

which joins the elements of the lists and shows it as a new list.

In[9]:= Union[List["1","v","c"],{13,4,32},List["adfs",3,1,"no"]]

Out[9]= {1,3,4,13,32,1,adfs,c,no,v}

In addition to the Union command, there is the Intersection command, which has a 

function analogous to what it represents in set theory. This command lets you observe 

the common elements in the list or lists.

In[10]:= Intersection[{7,4,6,8,4,7,32,2},{123,34,6,8,5445,8}]

Out[10]= {6,8}

As seen the lists only have in common the numbers 6 and 8.

�Applying Functions to a List
Functions can be concisely applied and automated to a list. The most used functions are 

Map and Apply. A short notation is to use the symbol @ instead of the square brackets [ ]; 

f@ “expr” is equivalent to f[expr].
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In[11]:= Max@{1,245.2,2,5,3,5,6.0,35.3}

Out[11]= 245.2

Map has the following form, Map[f, “expr”]; another way of showing it is with the 

shorthand notation using the symbol @. f /@ “expr” and Map[f, “expr”] are equivalent. 

This function also supports nested lists.

In[12]:= Factorial/@List[1,2,3,4,5,6]

Out[12]= {1,2,6,24,120,720}

Map can be applied to nested lists.

In[13]:= Map[Sqrt,{{1,2},{3,4}}]

Out[13]= {{1,Sqrt[2]},{Sqrt[3],2}}

The Map function is applied to each element of the list. Map can also work with 

nested lists, as in the previous example. The next example creates a list of 10 elements 

with Table. Those elements are random numbers between 0 and 1, and then you map a 

function to convert them to string expressions.

In[14]:= data=Range[RandomReal[{0,1}],10];(*List*)

ToString/@data (*mapping a to convert to string*)

Head/@% (*Checking the data type of every element*)

Out[15]= {0.526418,1.52642,2.52642,3.52642,4.52642,5.52642,6.52642,7.52642,

8.52642,9.52642}

Out[16]= {String,String,String,String,String,String,String,String,String, 

String}

Let’s look at how to apply a function to a list with additional functions. Apply has the 

form Apply [f, “expr”] and the shorthand notation is f @@ “expr”.

In[17]:= Apply[Plus,data](*It gives the sum of the elements of Data*)

Out[17]= 50.2642

In[18]:= Plus@@data

Out[18]= 50.2642

Also, commands can be applied to a list in the same line of code, which is helpful 

when dealing with large lists. For example, if you want to know whether an element 

satisfies a condition, instead of going through each value, the element can be gathered 

into a list and tested for the specified condition.
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In[19]:= primelist=Range[100];Map[PrimeQ,primelist]

Out[19]= {False,True,True,False,True,False,True,False,False,False,True,False, 

True,False,False,False,True,False,True,False,False,False,True,False,False, 

False,False,False,True,False,True,False,False,False,False,False,True,False, 

False,False,True,False,True,False,False,False,True,False,False,False,False, 

False,True,False,False,False,False,False,True,False,True,False,False,False, 

False,False,True,False,False,False,True,False,True,False,False,False,False, 

False,True,False,False,False,True,False,False,False,False,False,True,False, 

False,False,False,False,False,False,True,False,False,False}

The previous example created a list from 1 to 100 and then tested which of the 

numbers satisfies the condition of being a prime number with the PrimeQ function. 

Other functions can be used to test different conditions with numbers and strings. Also, 

a more specific function for testing logical relations in a list can be used (MemberQ, 

SubsetQ).

�Defining Own Functions
User functions can be written to perform repetitive tasks and reduce the size of a 

program. Segmenting the code into functions allows you to create pieces of code that 

perform a certain task. Functions can receive data from outside when called through 

parameters and return a fixed result.

A function can be defined with the set or set delayed symbol, but remember, using 

the set symbol assigns the result to the definition. To define a function, first write the 

name or symbol, followed by the reference variable and an underscore. As with cases, 

the underscore tells Mathematica that you are dealing with a dummy variable. As a 

warning, defined functions cannot have space between letters. Functions can also 

receive more than one argument.

In[20]:=  MyF[z_]:=12+2+z;MyF2[x_,z_]:=z/x

Now, you can call the function with different z values.

In[21]:= List[MyF[1],MyF[324],MyF[5432],MyF2[154,1],MyF2[14,4],MyF2[6,9]]

Out[21]= 15 338 5446
1
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Also, another way to write functions is to write compound functions. This concept is 

similar to compound expressions; expressions of different classes are written within the 

definition. Each computation can or cannot be ended with a semicolon. The following 

example shows the concept.

In[22]:= StatsFun[myList_]:={Max@myList,Min@myList,Mean@myList,Median 

@myList,Quantile@@{myList,1}(*25 percent*)(*to write a function with 

multiple arguments with shorthand notation use curly braces*)}

You can also send a list as an argument.

In[23]:= myList=Table[m-2,{m,-2,10}];

StatsFun[myList]

Out[24]= {8,-4,2,2,8}

You can have multiple operations within a function, with the option to create 

conditions for the arguments to meet. To write a condition, use the dash and semicolon 

(/;) symbols. When the condition is true, the function is evaluated; otherwise, if the 

condition is not true, the function is not evaluated. Compound functions need to be 

grouped; otherwise, Mathematica treats them as though they are outside the body of the 

whole function.

The next example creates a function that tells you if an arbitrary string is a 

palindrome, which is when the word is the same when written backward.

In[25]:= PalindromeWord[string_/;StringQ@string==True]:=(*we can check if 

the input is really a string*)

(ReverseWord=StringJoin[Reverse[Characters[string]]];

(*here we separate the characters,reverse the list and join them into a 

string*)

ReverseWord==string (*then we test if the word is a palindrome,the output 

of the whole function will be True or False*))

Let’s test the new function.

In[26]:= PalindromeWord/@{"hello","room","jhon","kayak","civic","radar"}

Out[26]= {False,False,False,True,True,True}
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When you have a local assignment on a compound function or functions, the 

symbols used are still assigned, so if the symbol(s) are called outside the function, it can 

cause coding errors. One thing to consider is that you can clear the function and local 

symbols when the function is no longer used. Clearing only the function name does not 

remove local assignments. Another solution is to declare variables inside a module since 

the variables are only locally treated, as shown in the following form.

In[27]:= MyFunction[a0_,b0_]:=Module[{m=a0,n=b0},(*local variables*)m+n 

(*body of the module*)](*end of module*)

In[28]:= Clear[MyF,MyF2,StatsFun,PalindromeWord,ReverseWord] (*To remove

tag names of the functions and local symbols *)

�Pure Functions
Pure functions, also known as anonymous functions, are a powerful feature of the 

Wolfram Language. They allow the execution of a function without referencing a name 

and can be explicitly assigned to an operation. Arguments within pure functions are 

denoted with a hashtag (#). To refer to a specific argument, append a number to the 

hashtag (e.g., #1, #2, (#3, ... for the first, second, third, ... argument). An ampersand (&) 

is used at the end of the definition to signify the use of the hashtag references. Pure 

functions can be constructed with the Function keyword or using the shorthand notation 

of hashtag and ampersand.

In[29]:= Function[#^-1][z]==#^-1&[z]

#^-1&[z] (*both expression mean 1/z*)

Out[29]= True

Out[30]= 1/z

Some examples of pure functions.

In[31]:= {#^-1&[77],#1+#2-#3&[x,y,z] (*we can imagine that #1,#2,#3 are the 

1st,2nd and 3rd variables*),Power[E,#]&[3]}

Out[31]= {1/77,x+y-z,E^3}

You can use pure functions along with Map and Apply to pass each argument of a list 

to a specific function. The # represents each element of the list, and the & represents that 

# is filled and tested for the elements of the list.
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In[32]:= N[#]&/@ {1,1,1,12,3,1}

Sqrt[#]&/@{-1,2,4,16}

Out[32]= {1.,1.,1.,12.,3.,1.}

Out[33]= {I,Sqrt[2],2,4}

Code can be written more compactly using Apply and pure functions, as shown in 

the next example. You can select the numbers bigger than 10.

In[34]:= Select@@{{1,22,41,7,62,21},#>10&}

Out[34]= {22,41,62,21}

�Indexed Tables
You can create and display results in tables to provide a quick way to observe and 

manage a group of related data, which leads to how to create tables in the Wolfram 

Language, such as giving titles to columns and names to rows. A series of examples 

to help you learn the essentials of using the tables so that you can present your data 

properly are featured in this section.

�Tables with the Wolfram Language
Tables are created with nested lists, and those lists are shown with TableForm.

In[35]:= table1={{"Dog","Wolf"},{"Cat","Leopard"},{"Pigeon","Shark"}};

TableForm[table1]

Out[36]//TableForm=

Dog     Wolf

Cat     Leopard

Pigeon  Shark

The format of TableForm is [“list”, options]. Formatting options let you justify the 

columns of tables in three ways: left, center, and right. In the next example, the contents 

of the table are centered.
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In[37]:= TableForm[table1,TableAlignments\[RightArrow]Right]

Out[37]//TableForm=

Dog     Wolf

Cat     Leopard

Pigeon  Shark

Titles can be added with the TableHeadings option command and by specifying 

whether the rows and column labels are exposed or just one of them. Choosing the 

Automatic option gives index labels to the rows and columns. Remember to write strings 

between the apostrophes or to use ToString.

In[38]:= TableForm[table1,TableHeadings->{{"Row 1","Row 2","Row 

3"},{"Column 1","Column 2"}}]

Out[38]//TableForm=

       | Column 1  Column 2

_______|___________________

Row 1  | Dog       Wolf

Row 2  | Cat       Leopard

Row 3  | Pigeon    Shark

Labeled rows and columns can be customized with desired names.

In[39]:= colname={"Domestic Animals","Wild Animals"};

rowname={"Animal 1","Animal 2","Animal 3"};

TableForm[table1,TableHeadings->{rowname,colname}]

Out[41]//TableForm=

       | Domestic Animals   Wild Animals

_______|_________________________________

Row 1  | Dog                Wolf

Row 2  | Cat                Leopard

Row 3  | Pigeon             Shark

The same concept applies to labeling just columns or rows by typing None on the 

rows or columns option.

Chapter 3  Working with Data and Datasets



98

In[42]:= TableForm[table1,TableHeadings->{None,{"Domestic Animals","Wild 

Animals"}}]

Out[42]//TableForm=

Domestic Animals   Wild Animals

________________________________

Dog                Wolf

Cat                Leopard

Pigeon             Shark

Automated forms of tables can be created with the use of Table and Range. By 

applying the Automatic option in the TableHeadings, you can create indexed labels for 

the data.

In[43]:=tabData={Table[i,{i,7}],Table[5^i,{i,7}]};TableForm[tabData,TableHe

adings->Automatic]

Out[43]//TableForm=

  | 1  2   3    4    5     6      7

_ |_____________________________________

1 | 1  2   3    4    5     6      7

2 | 5  25  125  625  3125  15625  78125

For exhibit reasons, a table can be transposed too.

In[44]:= TableForm[Transpose[tabData],TableHeadings->Automatic]

Out[44]//TableForm=

  | 1  2

_ |_______

1 | 1  2

2 | 2  25

3 | 3  125

4 | 4  625

5 | 5  3125

6 | 6  15625

7 | 7  78125
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Another useful tool is Grid, which displays a list or a nested list in tabular format. 

Like TableForm, Grid can also be customized to exhibit data more properly.

Note G rid works with any expression.

In[45]:= tabData2=Table[{i,Exp[i],N@Exp[i]},{i,7}];

Grid[tabData2]

Out[46]=

i    Expi    Numeric approx.

1    e    2.71828

2    e2    7.38906

3    e3    20.0855

4    e4    54.5982

5    e5    148.413

6    e6    403.429

7    e7    1096.63

To add headers, insert them in the original list as strings and in position 1.

In[47]:= Grid[Insert[tabData2,{"i","Expi","Numeric approx."},1]]

Out[47]=

i    Expi    Numeric approx.

1    e    2.71828

2    e2    7.38906

3    e3    20.0855

4    e4    54.5982

5    e5    148.413

6    e6    403.429

7    e7    1096.63
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You can add dividers and spacers too. With Dividers and Spacing, you can divide or 

space the y and x axes.

In[48]:= Grid[Insert[tabData2,{"i","Expi","Numeric approx."},1], 

Dividers->{All,False},Spacings->{1,1}]

Out[48]=

| i | Expi | Numeric approx.

| 1 | e     | 2.71828

| 2 | e2   | 7.38906

| 3 | e3   | 20.0855

| 4 | e4   | 54.5982

| 5 | e5   | 148.413

| 6 | e6   | 403.429

| 7 | e7   | 1096.63

Background can be added with the Background option. This option allows specific 

parts of the table or column table to be colored.

In[49]:= Grid[Insert[tabData2,{"i","Exp i","Numeric approx."},1],Dividers -> 
{All,False},Spacings -> {Automatic,0},Background -> {{LightYellow,None,LightBlue}}]
Out[49]= 
i Expi Numeric approx. 

1 e 2.71828

2 e2 7.38906

3 e3 20.0855

4 e4 54.5982

5 e5 148.413

6 e6 403.429

7 e7 1096.63
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�Associations
Associations are fundamental in developing the Wolfram Language; associations 

are used to index lists or other expressions and create more complex data structures. 

Associations, much like dictionaries in many other programming languages, are a more 

structured construct that allows you to provide a process for creating pairs of keys and 

values. Later, you see that they are important for handling datasets in the Wolfram 

Language.

Associations are of the form Association[“key_1” → val_1, key_2 →val_2 ...] or <| 

“key_1”→ “val_1”, “key_2” → “val_2” ... | >; they associate a key to a value. Keys and 

values can be any expression. The Association command is used to construct an 

association, or you can use the symbolic entry <| --- |>.

In[50]:= Associt=<|1->"a",2->"b",3->"c"|> (*is the same as Association 

[a\[RightArrow]"a",b\[RightArrow]"b",c\[RightArrow]"c"]*)

Associt2=Association[dog->"23","score"->\[Pi]*\[Pi],2*2->Sin[23 Degree]]

Out[50]= < ∣ 1 → a, 2 → b, 3 → c ∣ >
Out[51]= < ∣ dog → 23, score → π2, 4 → Sin[23°] ∣ >

Entries in an association are ordered, so data can be accessed based on the key of the 

value or by the position of the entries in the association, like with lists. The position is 

associated with the values (position of the entries), not the keys, as the order of the keys 

is not always preserved.

In[52]:= Associt[1](*this is key 1 *)

Associt2[[2]] (*this is position of key 2, which is π2 *)

Out[52]= a

Out[53]= π2

As seen in the latter example, the position is associated with the values, not the key. 

So, if you want to show parts of the association, use the semicolon.

In[54]:= Associt[[1;;2]]

 Associt2[[2;;2]]

Out[54]= <|1→a,2→b|>

Out[55]= <|score→ π2 |>
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Values and keys can be extracted with the Keys and Values commands.

In[56]:= Keys@Associt2

Values@Associt2

Out[56]= {dog, score, 4}

Out[57]= {23, π2,Sin[23 °]}

You get an error if you ask for a key without a proper reference.

In[58]:= Associt["a"](*there is no "a" key in the association, thus 

the error*)

Out[58]= Missing[KeyAbsent,a]

Associations can also be associations. The next example shows how to associate 

associations, thus producing an association of associations. This concept is basic for 

understanding how a dataset works in the Wolfram Language.

In[59]:= Association[Associt,Associt2]

Out[59]= <| 1 → a, 2 → b, 3 → c, dog → 23, score → π2, 4 → Sin[23°] |>

You can also make different associations with lists using AssociationThread. The 

keys correspond to the first argument and the values to the second. AssociationThread 

threads a list of keys to a list of values like the next form: < | {“key_1”, “key_2”, “key_3” ...} 

→ {“val_1”, “val_2”, “val_3” ... } | >. The latter form can be seen as a list of keys marking 

a list of values. When you have defined the lists of keys and values, the command can 

associate a list with another list. You can also create a list of associations to read keys as a 

row and a column.

In[60]:=AssociationThread[{"class","age","gender","survived"},{"Economy",2

9,"female",True}]

Out[60]= <| class → Economy, age → 29, gender → female, survived → True |>

You can construct the list of keys and values.

In[61]:= keys={"class","age","gender","boarded"};

values={"Economy",29,"female",True};

AssociationThread@@{keys,values}

Out[63]= <| class → Economy, age → 29, gender → female, 

boarded → True |>
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More complex structures can be created with associations. For example, the next 

association creates a data structure based on the information about a sports car, with the 

model name, engine, power, torque, acceleration, and top speed.

In[64]:= Association@{"Model name" -> "Koenigsegg CCX",

"Engine" -> "Twin supercharged V8",

"Power" -> "806 hp",

 "Torque" -> "5550 rpm",

"Acceleration 0-100 km/h" -> "3.2 sec",

"Top speed" -> "395 Km/h"}

Out[64]= <|Model name→Koenigsegg CCX, Engine→Twin supercharged V8, 

Power→806 hp, Torque→5550 rpm, Acceleration 0-100 km/h→3.2 sec, Top 

speed→395 Km/h|>

You can see how labels and their elements are created in a grouped way. In addition 

to that, it is shown how the curly braces mark how each row can arrange the key/

value pair.

�Dataset Format
Associations are an essential part of making structured forms of data. Datasets in the 

Wolfram Language offer a way to organize and exhibit hierarchical data by providing 

a method for accessing data inside a dataset. This section features examples of how to 

convert lists, nested lists, and associations to a dataset. It also covers how to add values, 

access values in a dataset, drop and delete values, map functions over a dataset, deal 

with duplicate data, and apply functions by row or column.

�Constructing Datasets
Datasets are for constructing hierarchical data frameworks, where lists, associations, and 

nested lists have an order. Datasets are useful for exhibiting large data in an accessible, 

structured format. Datasets can show enclosed structures in a sharp format with row 

headers, column headers, and numbered elements. Having the data as a dataset allows 

you to look at the data in multiple ways.
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Datasets can be constructed in four forms.

•	 A list of lists; a table with no denomination in rows and columns

•	 A list of associations, a table with labeled columns; a table with 

repeated keys and different or same values

•	 An association of lists, a table with labeled rows; a table with different 

keys and different or same values

•	 Association of associations; a table with labeled rows and columns

The most common form to create a new dataset is from a list of lists. Create a list 

within the curly braces {} using the Dataset function. Each brace represents the parts of 

the table. Figure 3-1 shows the output of the Dataset function.

In[65]:= Dataset@{{"Jhon",23,"male","Portugal"},{"Mary",30,"female","USA"},

{"Peter",33,"male","France"},{"Julia",53,"female","Netherlands"},{"Andrea",

45,"female","Brazil"},{"Jeff",24,"male","Mexico"}}

Out[65]=

Figure 3-1.  Dataset object created from the input code

By hovering the mouse cursor over the elements of the dataset, you can see their 

position in the lower-left corner. The name France corresponds to row 3 and column 4. 

The notation of a dataset is first rows, then columns. If you have labeled columns, rows, 

or both, you see the column name and row name instead of the numbers.

Constructing a dataset with a list of associations is performed by creating 

associations first with repeated keys and then enclosing them in a list. First, create the 

associations; the repeated keys specify each column header. The values represent the 

contents of the columns. Datasets have a head expression of Dataset.
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In[66]:=

Dataset@{

<|"Name"->"Jhon","Age"->23,"Gender"->"male","Country"->"Portugal"|>,

<|"Name"->"Mary","Age"->30,"Gender"->"female","Country"->"USA"|>,

<|"Name"->"Peter","Age"->33,"Gender"->"male","Country"->"France"|>,

<|"Name"->"Julia","Age"->53,"Gender"->"female","Country"->"Netherlands"|>,

<|"Name"->"Andrea","Age"->45,"Gender"->"female","Country"->"Brazil" |>,

<|"Name" -> "Jeff", "Age" -> 24, "Gender" -> "male", "Country" -> "Mexico" 

|>}(*Head @ % *)

Out[66]=

As seen in Figure 3-2, Mathematica recognizes that Name, Age, Gender, and Country 

are column headers, which is why the color of the box is different.

Figure 3-2.  Dataset with column headers

When passing the cursor over the column labels, they are highlighted in blue, thus 

making it possible to click the name of the label, and then it produces only the selected 

label and not the whole dataset, as seen in Figure 3-3.
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Figure 3-3.  Column name selected in the dataset

When this happens, the name of the column also appears. To return to the whole 

dataset, hit the spreadsheet icon  in the upper-left corner or the name All. This type of 

layout is practical when dealing with a big set of rows and columns, and you want to 

focus only on a few sections of the dataset.

In an association of lists, the keys represent the label of the rows, and the values are 

the list of the elements of the rows; then, you associate the whole block. The next block 

of code generates an association of a list.

Note T he same is true here. Whenever you click a row’s name, it only displays 
that row.

In[67]:=  Dataset@

<|"Subject A"->{"Jhon",23,"male","Portugal"},

"Subject B"->{"Mary",30,"female","USA"},

"Subject C"->{"Peter",33,"male","France"},

"Subject D"->{"Julia",53,"female","Netherlands"},

"Subject E"->{"Andrea",45,"female","Brazil"},

"Subject F"->{"Jeff",24,"male","Mexico"}|>

Out[67]=
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As seen in Figure 3-4, the rows are now labeled.

Figure 3-4.  Dataset with labeled rows

Row labels are recognized and displayed in the color box. When selecting the row’s 

label, it display only that row, as shown in Figure 3-5.

Figure 3-5.  Subject E row selected

In an association of associations, the repeated keys of the association of associations 

are the column labels and the values of the dataset. In the second association, the 

keys are the labels of the rows, and the first associations are the values of the second 

association. The next example clarifies this.

In[68]:= Dataset@

<|"Subject A"-><|"Name"->"Jhon","Age"->23,"Gender"->"male","Country"-> 

"Portugal"|>,"Subject B"-><|"Name"->"Mary","Age"->30,"Gender"-> 

"female","Country"->"USA"|>,"Subject C"-><|"Name"->"Peter","Age"->33, 

"Gender"->"male","Country"->"France"|>,

"Subject D"-><|"Name"->"Julia","Age"->53,"Gender"->"female","Country"-> 

"Netherlands"|>,"Subject E"-><|"Name"->"Andrea","Age"->45,"Gender"-> 

"female","Country"->"Brazil"|>,"Subject F"-><|"Name"->"Jeff","Age"-> 

24,"Gender"->"male","Country"->"Mexico"|>|>

Out[68]=
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Figure 3-6.  Dataset with names in rows and columns

As can be seen in Figure 3-6, the rows and columns are now labeled. Like the 

previous examples, the column and row labels are recognized and displayed in the color 

box. When selecting the label of the row or a column, it displays only that row or column, 

as seen in Figure 3-7.

Figure 3-7.  Only a row selected

If you select only a particular value, then that value is solely displayed. Figure 3-8 

shows its form.

Figure 3-8.  Name for subject F

Creating a dataset from associations of associations is best for compact datasets 

because sometimes it can get messy to extract values and keys. However, the best 

approach is the one that works best for you.
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�Accessing Data in a Dataset
Mathematica gives each element a unique index; so if you are interested in selecting data 

from a dataset, assign a symbol to the dataset and proceed to specify each output in the 

next form. The first and second positions of the arguments represent row and column 

[nth row, mth column]. So, to extract data based on a column name or a set of columns, 

enclose the columns in brackets. You can also use double-bracket notation. If only one 

argument is received, it is only the rows. First, let’s create the dataset.

In[69]:=Dst=Dataset@{

<|"Name"->"Jhon","Age"->23,"Gender"->"male","Country"->"Portugal"|>,

<|"Name"->"Mary","Age"->30,"Gender"->"female","Country"->"USA"|>,

<|"Name"->"Peter","Age"->33,"Gender"->"male","Country"->"France"|>,

<|"Name"->"Julia","Age"->53,"Gender"->"female","Country"->"Netherlands"|>,

<|"Name"->"Andrea","Age"->45,"Gender"->"female","Country"->"Brazil"|>,

<|"Name"->"Jeff","Age"->24,"Gender"->"male","Country"->"Mexico"|>};

The notation [[ ]] works the same as the special character for double brackets (⟦ ⟧). 

Also, you can select data using the specific keys of the value, as shown in Figure 3-9.

In[70]:= Dst[[1,2]](*This is for row 1,column 2*)

Dst[1](*row 1*)

Out[70]= 23

Out[71]=

Figure 3-9.  Row 1 for Dst

Let ́s look at the following and Figure 3-10.

In[72]:= Dst[1;;3](*to manipulate data of the column try Dst[1;;3,1;;3]*)

Out[72]=
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Figure 3-10.  Values from rows 1 to 3 and columns 1 to 3

This case selected data from positions 1 to 3, from John to Peter. The same is applied 

to columns.

You can also show specific columns and maintain all the fixed rows with their keys. 

The same process is applied when having a label in each row. Typing All means all the 

elements in the column or the row. The output is shown in Figure 3-11.

In[73]:= Dst[All,{"Name","Age"}] (*If more than 1 column label is added 

then enclosed the labels by curly braces.*)

Out[73]=

Figure 3-11.  Values for column name and age

Chapter 3  Working with Data and Datasets



111

Alternatively, you can extract a column or a row as a list to better manipulate them in 

the Wolfram Language. To do that you need to use the Normal function and the Values 

command. Remember that you are dealing with associations, so if you want the values, 

you use the Values command and then Normal to convert it to a normal expression.

In[74]:= Normal@Values@Dst[All,{"Name","Age"}](*values of the name and age 

columns*)

Out[74]= {{Jhon,23},{Mary,30},{Peter,33},{Julia,53},{Andrea,45},{Jeff,24}}

It is the same idea for the rows: if they have a label, you can use them.

In[75]:= Normal@Values@Dst[[1,All]]

Out[75]= {Jhon,23,male,Portugal}

The result is the same if you first do Normal and then Values.

In[76]:= Values@Normal@Dst[[1,All]]

Out[76]= {Jhon,23,male,Portugal}

Another function that can be used is Query, a specialized function that works with 

datasets. Queries must be applied to the symbol of the dataset or directly to the dataset. 

Queries are helpful because they allow easy selectivity of the values; you can extract rows 

or columns and get individual records.

In[77]:= Query[All,"Country"]@Dst

Query[3]@%

Out[77]=

Figure 3-12 shows that you can extract columns and values with Query.
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Figure 3-12.  Country values

Out[78]= France

Another function that works more intuitively is Take, in which you can specify the 

symbol of the dataset and then how many rows and columns to display. Take comes 

in handy when dealing with large datasets, and you want to only view a specific part of 

the data.

In[79]:= Take[Dst,2] (*First 2 rows*)

(*Take[Dst,3,3] First 3 rows and columns*)

Out[79]=

Figure 3-13 shows you can use Take as an alternative.

Figure 3-13.  First two rows of a dataset
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�Adding Values
Now that you have examined how to access the elements of a dataset, you can add new 

values to the dataset. You can add rows with Append or Prepend, but remember that 

AppendTo and PrependTo can be used too. However, they assign the new result to the 

assigned variable. Append adds at the last and Prepend at the first.

To add a row, you would need to write the new row like you write the associations 

with repeated keys, calling the dataset and then the function, followed by the new row, 

as shown in Figure 3-14.

In[80]:= Dst[Append[<|"Name"->"Anya","Age"->19,"Gender"-> 

"female","Country"->"Russia"|>]]

Out[80]=

Figure 3-14.  New row added at the end of the dataset

The operator form of the Append function was used in this case. Operator forms 

in the Wolfram Language allows for a more concise and readable code syntax. They 

essentially allow function to be used directly without square brackets. This form 

can be used with other function, like Apply, to make expression with a more natural 

representation. For example, to add a new row at the top of the dataset, try using the 

code, Dst@Prepend[<|“Name”->“Anya”, “Age”->19, “Gender”->“female”, “Country”-> 

“Russia”|>], which is the same as Dst[Prepend[<|"Name"->"Anya","Age"->19, 

"Gender"->"female", "Country"->"Russia"|> ]].
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Adding a new column of only single values can be done by simply assigning a value 

to the side of the columns of the dataset with the key name, which is the column name. 

Figure 3-15 shows the new column added.

In[81]:= Dst[All,Prepend["ID number"->1]]

Out[81]=

Figure 3-15.  ID column added

To add a list of values as a column, first create a list of values. Next, use 

AssociationThread to associate each value with the same key, creating an association 

of values for the repeated key. Then you create a dataset of the new association and 

combine it with the original dataset with the Join function. This merges expressions of 

the same head.

In[82]:= Id={1,2,3,4,5,6};(*our list of values*)

ID=AssociationThread["ID"->#]&/@Id (*the process is threaded in the list*)

Out[82]= {<|ID->1|>,<|ID->2|>,<|ID->3|>,<|ID->4|>,<|ID->5|>,<|ID->6|>}

Each element needs to be associated one by one for the later block because 

AssociationThread suppresses repeated keys, so you would only have one association, 

and you need to have a repeated key marking different values.

Next, create the new dataset with the same key shown in Figure 3-16.

In[83]:= Dataset[ID]

Out[83]=
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Figure 3-16.  ID column dataset

Finally, join the same objects; here, Join is used with a level of specification of 2 

because the new dataset is a sublist of depth 2. If you want to add the column on the 

left side, the new column goes first, followed by the dataset; for the right side, it is the 

opposite. Figure 3-17 shows the output dataset.

In[84]:= Join[%,Dst,2]

Out[84]=

Figure 3-17.  ID column added
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The previous cases worked with a dataset from a list of associations; since you are 

working with tagged rows only or tagged rows and columns, adding a row or column 

is preserved by adding the same structure to the dataset. So, adding a new row to an 

association of lists would take the form < | “key” → {elem, ... } |>; for columns, this 

would be the process of creating a dataset and joining them. In the case of a list of lists, 

adding a row would be the same approach but without a key. For the case of association 

of associations, to add a row would be <| “key” → < |”key 1” → “val 1”, ... | > |>, and for 

columns, it would be the same as before, a key associated with a value. Nevertheless, 

there is no restriction on how data can be accommodated.

Finally, to change unique values, select the item and give it the new content. In 

the case that you have labels on rows and columns, the original form is still preserved: 

“rows”, “columns”}. So, if you want to replace Jhon’s age, use the ReplacePart function 

by calling the symbol of the dataset and specifying the column tag and then with the 

new value, which is 50. If you were working with only a row label or a column label, the 

process would be the same, but using the row or column label and then the number 

position of the element. Figure 3-18 shows the new value is 50.

In[85]:= ReplacePart[Dst,{1,"Age"}->50](*Also using the index will produce 

the same output,that would be {1,2} -> 50*)

Out[85]=

Figure 3-18.  Jhon age value changed to 50
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�Dropping Values
You can eliminate the contents of a row or column without deleting the entire table 

structure. To accomplish this, use the Drop function or the Delete function. When using 

Drop, you enclose the number of the row or column with { } to delete a unique row or 

column (see Figure 3-19).

In[86]:= Drop[Dst,{1}](*in the instance we want to delete more than one 

then we write m through n dropped {m,n}*)

Out[86]=

Figure 3-19.  Drop row 1

Figure 3-19 shows that the first row has been dropped. You can also drop rows and 

columns at the same time. Figure 3-20 shows the second row and last column dropped.

In[87]:= Drop[Dst,{2},{4}]

Out[87]=
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Figure 3-20.  New dataset after dropping row 2 and column 4

Another way is to use Delete on a row or column label, as shown in Figure 3-21.

In[88]:= Dst[All,Delete["Age"]] (*to delete a row use["label of row",All]*)

Out[88]=

Figure 3-21.  Age column deleted
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�Filtering Values
Having the data as a dataset allows you to look at the data in multiple ways. Let’s now 

work with the tagged dataset to better expose how filtering values work. For starters, you 

use the labeled dataset shown in Figure 3-22.

In[89]:= Clear[Dst];(*Let's clear the symbol "Dst" of previous 

assignments*)

Dst=Dataset@

<|"Subject A"-><|"Name"->"Jhon","Age"->23,"Gender"->"male","Country"-> 

"Portugal"|>,"Subject B"-><|"Name"->"Mary","Age"->30,"Gender"-> 

"female","Country"->"USA"|>,"Subject C"-><|"Name"->"Peter","Age"->33, 

"Gender"->"male","Country"->"France"|>,

"Subject D"-><|"Name"->"Julia","Age"->53,"Gender"->"female","Country"-> 

"Netherlands"|>,"Subject E"-><|"Name"->"Andrea","Age"->45,"Gender"-> 

"female","Country"->"Brazil"|>,"Subject F"-><|"Name"->"Jeff","Age"->24, 

"Gender"->"male","Country"->"Mexico"|>

|>

Out[90]=

Figure 3-22.  Tagged dataset
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As with lists, you can create one or more filter conditions; for example, you can select 

an age greater than 30 and get a dataset object (see Figure 3-23).

In[91]:= Cases[Dst[All,"Age"],x_/;x>30](*also we can select data that 

matches exactly 30 with the==sign*)

Out[91]=

Figure 3-23.  Filtered data from the age column

Figure 3-23 shows the filtered data. Data can be selected based on True or False 

results. For that, you can use the Select function. Figure 3-24 shows the selected subjects.

In[92]:= Select[Dst[All,"Age"],EvenQ]

Out[92]=

Figure 3-24.  Selected subjects

The use of pure functions can be applied too. Remember that the #Age resembles the 

elements in the Age column, as shown in Figure 3-25.

In[93]:= Dst[Select[#Age>30&]]

Out[93]=
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Figure 3-25.  Selected values using pure function syntax

Also, you can count categorical data values, as shown in Figure 3-26. This is helpful 

when you want to identify how many types of a class you have in the data. For example, 

you can count how many females and males are in the dataset.

In[94]:= Counts[Dst[All,"Gender"]] (*alternative 

form:Dst[Counts,"Gender"]*)

Out[94]=

Figure 3-26.  Count data for class male and female

More complex groups can be made based on a class; for instance, you can group the 

dataset by gender, as shown in Figure 3-27.

In[95]:= Dst[GroupBy["Gender"],Counts,"Age"]

Out[95]=
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Figure 3-27.  Data arranged by class and age

As a good practice, clear symbols when they are no longer used.

In[96]:= Clear[Dst]

�Applying Functions
Functions can be applied to the dataset to get statistics, determine dimensions, or 

transform the data. Functions can be applied to single columns or a unique element in 

the data structure. First, let’s create a dataset comprising 10 items, whose columns are 

the factorial of 1 to 10, a random real number from 1 to 0, and the natural logarithm from 

1 to 10. Figure 3-28 shows the new dataset.

In[97]:= DataNumbr=Dataset@Table[<|"Factorial"->Factorial[i],"Random 

number"->RandomReal[{0,1}],"Natural Logarithm"->Log[E,i]|>,{i,1,10}]

Out[97]=
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Figure 3-28.  Numeric dataset

And now you can compute basic operations on the data, like getting the mean of the 

factorials and random numbers, as shown in Figure 3-29.

In[98]:= DataNumbr[Mean,{"Factorial","Random number"}]//N

Out[98]=

Figure 3-29.  Mean for values in Factorial and Random number columns

Parenthesis and the composition of functions can also be used to relate operations 

applied to the data by using the @ *(composition) symbol. Figure 3-30 shows the data for 

random numbers sorted from less to greater.
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In[99]:= DataNumbr[All,"Random number"]@(Sort@*N)

Out[99]=

Figure 3-30.  Sorted data in canonical order

You can apply different functions to the data. As shown in Figure 3-31, the dataset 

shows numbers in decimal form; otherwise, it would not fit in the square box.

In[100]:= DataNumbr[{Total,Max,Min},"Natural Logarithm"]

Out[100]=

Figure 3-31.  Total, Max, and Min value for Natural Logarithm column

You can also apply your own functions; let’s use a previously constructed function. 

Figure 3-32 shows the function you created previously applied to a dataset column.

In[101]:= DataNumbr[{StatsFun},"Natural Logarithm"]

Out[101]=

Figure 3-32.  StatsFun applied to the Natural Logarithm column

Functions to restructure the dataset can be applied too, like Reverse, as shown in 

Figure 3-33.

In[102]:= DataNumbr[Reverse,All]

Out[102]=
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Figure 3-33.  Reversed elements of the dataset

Map can also apply functions, as you saw with lists in the previous sections. The next 

example maps a function directly into the dataset, as shown in Figure 3-34.

In[103]:= Map[Sqrt,DataNumbr]

Out[103]=
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Figure 3-34.  The square root function mapped in the dataset

Transposition is an operation that consists of converting columns to rows and rows to 

columns and can sometimes help you observe data differently. To obtain the transposition 

of the dataset, use the Transpose function applied to the dataset. Figure 3-35 shows all 

columns are now rows and displayed compactly because it is a large row.

In[104]:= DataNumbr//Transpose

Out[104]=

Figure 3-35.  Dataset values by Mathematica due to large contents

If you click a row, you should get the values for the corresponding row.
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�Functions by Column or Row
Another approach is to directly apply a function to the values of a column, and you can 

specify a rule of transformation. For example, you can round to the smallest integer 

greater than or equal to all the values in the Natural Logarithm column. Figure 3-36 

shows the output.

In[105]:= DataNumbr[All,{"Natural Logarithm"->Ceiling}](*The same can be 

done using the index number of the columns,DataNumbr*)

Out[105]=

Figure 3-36.  Ceiling function applied as a rule

You can apply the square root to the first row. Map can also be used to apply 

functions to rows. Figure 3-37 shows the output generated

In[106]:= DataNumbr[1,Sqrt] (*Map[Sqrt,DataNumbr[1;;2,All]] can also do the 

work for the first 2 rows*)

Out[106]=
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Figure 3-37.  Output generated from the earlier code

When you want to apply a function to a defined level, you can use MapAt. MapAt has 

the form MapAt[f, “expr”, {i, j, ...}], where {i, j} means the level of the position, as shown in 

Figure 3-38.

In[107]:= MapAt[Exp,DataNumbr,{1}](*for first position of row 1 only*) 

(*Double semi-colon can be used to define from row to row,try using 4;;6. 

Caution you might get big numbers*)

Out[107]=

Figure 3-38.  Exponentiation for the first row only with MapAt
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Occasionally, you might encounter duplicate data, making it hard to understand the 

data, especially if something goes wrong. One approach can be to remove an entire row 

or column, as you saw in previous sections; but as an alternative, you can use built- 

in functions that can do the job. The DeleteDuplicates function is the most common. 

DeleteCases can be used, too, but it removes data that matches a pattern, in contrast to 

DeleteDuplicates. Let’s create a dataset for the example.

In[108]:= Sales = Dataset@{

<|"Id" -> 1, "Product" -> "PC", "Price" -> "800 €",  "Sale Month" -> 
"January"|>,

<|"Id" -> 2, "Product" -> "Smart phone", "Price" -> "255 €", "Sale Month" 
-> "January"|>,

<|"Id" -> 3, "Product" -> "Anti-Virus", "Price" -> "100 €",  "Sale Month" 
-> "March"|>,

<|"Id" -> 4, "Product" -> "Earphones", "Price" -> "78 €", "Sale Month" -> 
"February"|>,

<|"Id" -> 5, "Product" -> "PC", "Price" -> "809 €",  "Sale Month" -> 
"March"|>,

<|"Id" -> 5, "Product" -> "PC", "Price" -> "809 €", "Sale Month" -> 
"March"|>,

 <|"Id" -> 6, "Product" -> "Radio", "Price" -> "60 €", "Sale Month" -> 
"January"|>,

 <|"Id" -> 7, "Product" -> "PC", "Price" -> "700 €", "Sale Month" -> 
"February"|>,

 <|"Id" -> 8, "Product" -> "Mouse", "Price" -> "100 €", "Sale Month" -> 
"March"|>,

 <|"Id" -> 9, "Product" -> "Keyboard", "Price" -> "125 €", "Sale Month" -> 
"January"|>,

 <|"Id" -> 10, "Product" -> "USB 64gb", "Price" -> "90 €", "Sale Month" -> 
"March"|>,

 <|"Id" -> 11, "Product" -> "LED Screen", "Price" -> "900 €", "Sale Month" 
-> "February"|>,

 <|"Id" -> 11, "Product" -> "LED Screen", "Price" -> "900 €", "Sale Month" 
-> "February"|>}

Out[108]=
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Figure 3-39 reveals two duplicated rows in the dataset: ID numbers 5 and 11. The 

DuplicateFreeQ function can detect whether the dataset appears to have duplicates. The 

function returns False when there is duplicate data and True when there is not. It can be 

applied straight to the dataset, or you can detect the rows that appear to be duplicated.

Figure 3-39.  Dataset example for duplicate data

Let’s check if there are duplicates in rows 1 through 7.

In[109]:= DuplicateFreeQ[Sales[1;;7,All]]

Out[109]= False
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Duplicate data was programmatically found in the dataset. You can also check for 

duplicates by column.

In[110]:= Sales[All,{"Id"}]@DuplicateFreeQ

Out[110]= False

To delete duplicates, the DeletDuplicates function is used. It can be applied to the 

dataset, column, or row as a function. The output generated is shown in Figure 3-40.

In[111]:= DeleteDuplicates[Sales] (*Datas[All,{"ID"}]@DuplicateFreeQ*)

Out[111]=

Figure 3-40.  Dataset without duplicates
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An alternative is to use GroupBy to identify which data is duplicated in the dataset. 

Notice in Figure 3-41 that the repeated data is stacked together.

In[112]:= GroupBy[Sales,"Id"]

Out[112]=

Figure 3-41.  Dataset grouped by duplicates

�Joining and Merging Datasets
Combining multiple datasets into one based on shared attributes is a frequent task. 

This process can be achieved depending on how a dataset should be joined. The three 

different functions that operate on datasets are Join, JoinAcross, and Merge.
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The first function combines two datasets end-to-end, effectively concatenating them 

into a single dataset (see Figure 3-42).

In[113]:= dataset1={<|"a"->1,"b"->2|>,<|"a"->3,"b"->4|>};

dataset2={<|"a"->5,"b"->6|>};

Join[dataset1,dataset2]//Dataset

Out[116]=

Figure 3-42.  Dataset grouped by the Join function

The second function combines datasets on a specified key or keys, similar to how 

relational databases join tables based on common keys (see Figure 3-43). Similar to 

operations from relational databases like join, left join, right join, inner join, outer join, 

and more.

In[117]:= dataset3={<|"ID"->1,"Value"->"A"|>,<|"ID"->2,"Value"->"B"|>};

dataset4={<|"ID"->1,"Score"->95|>,<|"ID"->2,"Score"->90|>};

JoinAcross[dataset3,dataset4,"ID"]//Dataset

Out[119]=
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Figure 3-43.  Dataset combined by the JoinAcross function

The third function combines datasets, using a function f to combine values with the 

same key, returning a single value (see Figure 3-44).

In[120]:= Merge[Dataset[JoinAcross[dataset3,dataset4,"ID"]],Total]

Out[120]=

Figure 3-44.  Dataset combined by the Merge and Total functions of each key

�Customizing a Dataset
Datasets can be customized depending on how you want to show the data. Working with 

datasets can be personalized based on preferences. To explore this, the next block loads 

example data from the Wolfram reference servers to discover how to personalize data for 

your needs. When loading data from the server, depending on your Internet connection, 

it might pop up a loading frame trying to access the Wolfram servers.

Let’s load the data by using ExampleData and then choosing statistics of animal 

weights and converting the list into a dataset. By using the MaxItem option, you can 

display how many rows or columns to exhibit from the dataset. The first four rows and 

the first three columns are shown in this example. When viewing the dataset, scroll 
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bars appear on the left and top sides; use them to move over the dataset. Alternatively, 

you can align the contents on the left, center, or right sides. In Figure 3-45, only the left 

scrollbars appear.

In[121]:= AnimalData=ExampleData[{"Statistics","AnimalWeights"}]; 

Dataset[AnimalData,MaxItems->{4,3},Alignment->Center] (*To align a  

sole column,Alignment-> “Col_name" -> Left}*)

Out[121]=

Figure 3-45.  Animal dataset

The Background option is used to color the dataset’s contents; the colors of the 

notation {row, col} are preserved. To paint the whole data, enter only the color. To paint 

by row or column, enter the colors as a nested list—that is, {{“color_row1”, “color_row2”, 

... }, {“color_col1”, “color_col2”, ... } }. Mixing colors can also be done by nesting the nested 

colors. For specific values, the position of the values would need to be entered. The next 

example colors the first two columns, as shown in Figure 3-46.

In[122]:= Dataset[AnimalData,MaxItems->{4,3},Background-> {{None},{LightBlue, 

LightYellow}},ItemSize->{12}]

Out[122]=
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Figure 3-46.  Columns 1 and 2 colored

For particular values, the position of the values would need to be entered. Another 

option is the size of the items, which is controlled with the ItemSize option. If you want 

to edit the same options but with headers, you would use HeaderAlignment for placing 

the text left, center, or right; HeaderSize for the size of the titles; and ItemStyle for the 

style of the font of the items. Figure 3-47 shows the dataset in bold style.

In[123]:= Dataset[AnimalData,MaxItems->{4,3},Background->{{4,3}-> 

Yellow},ItemSize->{12},ItemStyle->Bold]

Out[123]=

Figure 3-47.  Dataset with bold style

Another useful option is HiddenItems, which hides items that should not be 

displayed. Therefore, to hide row 1 and column 1, use HiddenItems → {“row #”, “col #”}. 

Columns can be hidden with their associated labels. Figure 3-48 illustrates the form of 

suppressed rows and columns in the dataset. For specific values, nest the value’s position 

and try HiddenItems → {{2,3}}.
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In[124]:= Dataset[AnimalData,MaxItems->{4,3},HiddenItems->{1,1}]

Out[124]=

Figure 3-48.  Column 1 and row 1 suppressed

You can add headers to each column in the new dataset with the Query command. 

To rename the columns, the same procedure is applied; the new names would be ruled 

to the old names—that is, “New name” → “Animal Name,” as shown in Figure 3-49.

In[125]:= Query[All,<|"Animal Name"->1,"Body Weight"->2,"Brain 

Weight"->3|>]@Dataset[AnimalData]

(*for display motives we put row 7 to 9,use All for the whole data set*)

(*or "symbol_of_the_dataset"[All,<|"Animal Name"-> 1,"Body Weight"->2, 

"Brain Weight"->3|>]*)

Out[125]=
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Figure 3-49.  Animal dataset with added column headers

�Generalization of Hash Tables
A hash table is an associative data structure that allows data storage and, in turn, 

the rapid retrieval of elements (values) from objects called keys. Hash tables can be 

implemented inside arrays, where the main components are the key and the value. The 

way to search for an element in the array is by using a hash function, which maps the 

keys to the pairs of values and gives you the place where it is in the array (index).
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In other words, the hash function searches for a certain key, evaluates that key, and 

returns an index. This process is known as hashing. Figure 3-50 shows a representative 

schema of a hash table.

Figure 3-50.  Graphic representation of a hash table

Inside the hash table, the number of keys and values can go on and on, which is one 

of the reasons hash tables are very useful; they can store large amounts of information. 

Inside the Wolfram Language, associations can represent hash tables. Primarily, this is 

because associations are an abstract data structure with fundamental components such 

as keys and values, just like a hash table. This combines the structure of an associative 

array and an indexed list, more like a nest of hash arrays. With the crucial property that 

associations are immutable, each association-type object is unique and the reference 

to one association has no link to another, even though they are referenced to the 

same symbol.

Other special commands are available. Let’s first create an association. Nested 

associations are defined as associations that have associations within them—in other 

words, a key that points to a bucket of values that correspond to keys that have other 

values inside (see Figure 3-51).

In[126]:= Asc=<|"User"->

<|"Edgar"-> <|"id"->01, "Parameters"-><|"Active"->True,"Region"-> 

"LA","Internet Traffic"->"1 GB"|>|>,

<|"Anya"-><|"id"->02,"Parameters"-><|"Active"->False,"Region"-> 

"MX","Internet Traffic"->"3 GB"|>|>
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|>|>|>;

Dataset[%]

Out[127]=

Figure 3-51.  Nested associations in the dataset format

Executing operations like accessing items, updating values, and deleting is 

supported by the commands associated with keys and values. Remember that Keys 

returns the keys of the association and Values the values. Keys only work at the surface 

level inside a nested association, as seen in the following code.

In[128]:= Keys[Asc]

Out[128]= {User}

Applying the Keys command returns only the key user. The Keys command needs to 

be applied to deeper levels to see the keys inside a nested association, which is achieved 

with Map by specifying the sublevel only.

In[129]:= Map[Keys,Asc,#]&/@{{0},{1},{2}}//Column

Out[129]= {User}

<|User->{Edgar,Anya}|>

<|User-><|Edgar->{id,Parameters},Anya->{id,Parameters}|>|>

As seen on the surface level (0), the key is User. The next sublevel has the keys Edgar 

and Anya, and the last level has the keys ID and parameters for each of the keys Edgar 

and Anya. MapIndexed lets you look inside the whole association and apply Keys to 

sublevels to show the predecessors of the keys.
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In[130]:=

Print["Level 0: "<>ToString@MapIndexed[Keys,Asc,{0}]]

Print["Level 1: "<>ToString@MapIndexed[Keys,Asc,{1}]]

Print["Level 2: "<>ToString@MapIndexed[Keys,Asc,{2}]]

Out[130]=

Level 0: {{}[User]}

Level 1: <|User -> {{Key[User]}[Edgar], {Key[User]}[Anya]}|>

Level 2: <|User -> <|Edgar -> {{Key[User], Key[Edgar]}[id], {Key[User], 

Key[Edgar]}[Parameters]}, Anya -> {{Key[User], Key[Anya]}[id], {Key[User], 

Key[Anya]}[Parameters]}|>|>

At level 0, only the User key exists, and the predecessor is {}. At level 1, the User 

predecessor and the Edgar and Anya keys are values of the User key. At level 2, the 

predecessor keys are Edgar/Anya and User for the ID and Parameters keys. In other 

words, the expression {Key[User], Key[Anya]}[id] means that ID corresponds to the Anya 

key and Anya to the User key, and so on. This is also useful because it means that access 

to a value or values of a key is done with the operator form applied to the association 

specifying the keys.

In[133]:= Asc["User"]["Edgar"]["id"](*{Key[User],Key[Anya]}[id],*)

Out[133]= 1

As shown, you get the value that corresponds to the ID inside Edgar inside User key.

To see a graphical representation of the previous expression, you can use MapIndexed 

to label the positions of the keys and dataset applied, for example, in sublevel 4 (see 

Figure 3-52).

In[134]:= Dataset@MapIndexed[Framed[Labeled[#2,#1],FrameMargins->0, 

RoundingRadius->5]&,Asc,{4}] (*Try changin the number to see how the 

expression changes*)

Out[134]=
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Figure 3-52.  Dataset representation marking the keys inside the nested 
association

Each box contains the values of the predecessor key. This is why 1 GB corresponds 

to {Key[User],Key[Edgar],Key[Parameters],Key[Internet Traffic]}. To see the whole 

expression, the level of specification is Infinity (see Figure 3-53).

In[135]:=MapIndexed[Framed[Labeled[#2,#1,ImageMargins->0,Spacings->0], 

FrameMargins->0,RoundingRadius->5]&,Asc,Infinity]

Out[135]=
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Figure 3-53.  Framed levels of the keys in a nested association

Values use the same approach as with Keys. To test if a key exists, use KeyExistQ; this 

returns true if the key exists. Otherwise, it is false. To test inside deeper levels, use Map.

In[136]:={KeyExistsQ[Asc,"User"],Map[KeyExistsQ["Anya"],Asc,{1}],Map 

[KeyExistsQ["Anya"],Asc,{2}]}

Out[136]= {True,<|User->True|>,<|User-><|Edgar->False,Anya->False|>|>}

Another way to test whether a key in a particular form exists inside an association, 

use KeyMemberQ—for example, if there is a string pattern key.

In[137]:= KeyMemberQ[Asc["User"]["Anya"],_String]

Out[137]= True

To test if a value exists given a key, use Lookup.

In[138]:= Lookup[Asc["User"]["Anya"],"Parameters"]

Out[138]= <|Active->False,Region->MX,Internet Traffic->3 GB|>
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To select a key based on criteria, use KeySelect.

In[139]:= KeySelect[Asc["User"]["Anya"],StringQ]

Out[139]= <|id->2,Parameters-><|Active->False,Region->MX,Internet 

Traffic->3 GB|>|>

Or use KeyTake to grab a particular key.

In[140]:= KeyTake[Asc["User"]["Anya"]["Parameters"],{"Region","Internet 

Traffic"}]

Out[140]= <|Region->MX,Internet Traffic->3 GB|>

To remove a key, use KeyDrop.

In[141]:= KeyDrop[Asc["User"],"Edgar"]

Out[141]= <|Anya-><|id->2,Parameters-><|Active->False,Region->MX,Internet 

Traffic->3 GB|>|>|>

To assign a new value, the value associated with the key is assigned with the 

new value

In[142]:= Asc["User"]["Edgar"]["Parameters"]["Region"]="CZ"

Out[142]= CZ

Passing this into a dataset, you can look for the new assigned value (see Figure 3-54).

In[143]:= Dataset[Asc]

Out[143]=

Figure 3-54.  Dataset with the region value changed to CZ
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To add a key and a value to the association, you can insert the new expression by 

specifying the position to insert it with the key (see Figure 3-55).

In[144]:= Insert[Asc["User"],"Alexandra"-><|"id"->0,"Parameters"-

><|"Active"->False,"Region"->"RS","Internet Traffic"->"12 

GB"|>|>,Key["Edgar"]]//Dataset

Out[144]=

Figure 3-55.  New row added by the key position

�Summary
This chapter continued to build upon the list operations introduced in Chapter 2. You 

explored the unique syntax of pure functions in the Wolfram Language and delved 

into several methods for creating indexed tables and associations. Additionally, you 

transitioned to the powerful capabilities of datasets, which provide a structured and 

organized way to handle and analyze data. The chapter wrapped up by providing 

insights into the essential components of associations and key-value management.
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CHAPTER 4

Import and Export
This chapter reviews the import and export of data, including the relevant Wolfram 

Language commands and the import and export formats that Mathematica supports. 

Experimental data can come from different sources; the way to process this external data 

is to import it through Wolfram Language. Data that has been calculated or obtained 

externally can be transferred to Mathematica and exported for use on other platforms. 

However, Mathematica has tools to handle different data types (numbers, text, audio, 

graphics, and images). This chapter focuses on working with numerical and categorical 

data, the most frequently used data types for analysis.

Importing data from multiple sources into Mathematica allows you to load data into 

a notebook for analysis. The Wolfram Language supports numerous import formats; to 

see which are supported, type the dollar symbol ($) accompanied by the ImportFormats 

command. Currently, Mathematica supports 256 file formats. As shown in the following 

code, new formats have been added and updated since the last version of this book.

In[1]:= Short[$ImportFormats,4](* Length[$ImportFormats] --> 256 formats*)

Out[1]//Short= {3DS,7z,AC,ACO,Affymetrix,AgilentMicroarray,AIFF,ApacheLog, 

ArcGRID,ASC,ASE,AU,AVI,Base64,BDF,Binary,BioImageFormat,Bit,BLEND,BMP, 

<<216>>,WAV,Wave64,WDX,WebP,WL,WLNet,WMLF,WXF,X3D,XBM,XGL,XHTML,XHTMLMathML, 

XLS,XLSX,XML,XPORT,XYZ,ZIP,ZSTD}

There are a lot of formats in the list, including audio, image, and text. But let’s focus 

on the text-based formats. To import any file, the Import command is used. Import 

receives two arguments: the file’s path and options. Options can vary between file 

format, elements, and other types of objects in Mathematica, like cloud and local. To 

select a file path, head to the toolbar and then to Insert ➤ File Path. A file explorer should 

appear; search the file you would like to import and select it. The path is enclosed in 

apostrophes like a string.

https://doi.org/10.1007/979-8-8688-0348-2_4#DOI
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Another option is the named file in the Insert menu. In contrast to File Path, the File 

option introduces the file’s contents directly without receiving prior formatting from 

Mathematica. File is better suited for importing notebooks or other Wolfram formats.

Note  The next series of imported files are included in the source code. The files 
are located in the host Desktop folder for ease of use.

Let’s look at transferring a simple text file. First, select the HelloWorld.txt file path 

using the Import command.

In[2]:= Import["/Users/macosx/Desktop/Hello_World.txt"]

Out[2]= Hello world!

Note  Based on your operating system, the file path shows forward slashes 
(Linux, macOS) or back slashes (Windows file system delimiter).

You have imported your first file. Mathematica recognizes it based on the file extension 

and then imports it automatically. If you import a file with no file extension but you know 

the type of format used in the file, you can choose the proper format as an option.

In[3]:= Import["/Users/macosx/Desktop/Hello_World.txt","Text"]

Out[3]= Hello world!

�Importing Files
Importing simple text files is easy and intuitive. However, based on the type of file you 

want to import, the options and format to display the data inside Mathematica can vary.

�CSV and TSV Files
This section focuses on how to import files into Mathematica. The examples work 

with comma-separated value (CSV) files, tab-separated value (TSV) files, and Excel 

spreadsheet-style files. CSV and TSV files are files that include text and numeric values. 

In CSV files, fields are separated by a comma; each row is one line record. Meanwhile, in 

TSV files, each record is separated with a tab space.
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With Import, you can import TSV or CSV files with the .tsv or .csv file extension, 

respectively. Let’s first import a regular CSV file by introducing the file path and then the 

CSV option.

In[4]:= Import["/Users/macosx/Desktop/Grocery_List.csv","CSV"]

Out[4]= {{id,grocery item,price,sold items,sales per day},{1,milk,4$,4,4 

Jun 2019},{2,butter,3$,2,6 Jun 2019},{3,garlic,2$,1,7 Jun 

2019},{4,apple,2$,4,1 Jun 2019},{5,orange,3$,5,8 Jun 2019},{6,orange 

juice,5$,2,8 Jun 2019},{7,cheese,5$,2,6 Jun 2019},{8,cookies,2$,5,9 Jun 

2019},{9,grapes,4$,3,21 Jun 2019},{10,potatoe,2$,5,26 Jun 2019}}

Now that the contents of the file are imported, depending on the format of the 

contents, the data is presented as a nested list or not. The elements of the nested list 

represent rows, and the elements of the whole list represent columns.

When importing data, parts of the data can be imported—that is, if you only need a 

row or a column.

In[5]:=Import["/Users/macosx/Desktop/Grocery_List.csv",{"Data",5;;10}]

Out[5]= {{4,apple,2$,4,1 Jun 2019},{5,orange,3$,5,8 Jun 2019},{6,orange 

juice,5$,2,8 Jun 2019},{7,cheese,5$,2,6 Jun 2019},{8,cookies,2$,5,9 Jun 

2019},{9,grapes,4$,3,21 Jun 2019}}

The previous example imported data from row 5 to row 10.

You can use the following form when you are only interested in single values.

In[6]:=Import["/Users/macosx/Desktop/Grocery_List.csv",{"Data",6,2}]

Out[6]= orange

Depending on the maximum bytes of the expression, Mathematica truncates the 

imported data and shows you a suggestion box of a simplified version of the whole data. 

To see the maximum byte size, go to Edit ➤ Advanced tab, and in “Maximum output size 

before truncation,” enter the new number of bytes before truncation. This preference 

applies to every output expression in Mathematica.

Let’s use the same approach to import TSV files. With the short command, you can 

show a part of the data, just in case the data is extensive.

In[7]:= Short[Import["/Users/macosx/Desktop/Color_table.tsv","TSV"]] 

(*Rest,to view the remain*)

Out[7]//Short= {{number,color},{1,red},<<7>>,{9,magenta},{10,brown}}
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Consequently, in the result, a seven appears among the elements of the imported 

file. This result happens because the file contains seven elements that are not visible. 

Now that you have learned how to import CSV and TSV files, you can display the 

imported data in table format using Grid or TableForm.

In[8]:= Import["/Users/macosx/Desktop/Grocery_List.csv","CSV"];

Grid[%]

Out[9]=

id    grocery item    price    sold items   sales per day

1     milk            4$       4            4 Jun 2019

2     butter          3$       2            6 Jun 2019

3     garlic          2$       1            7 Jun 2019

4     apple           2$       4            1 Jun 2019

5     orange          3$       5            8 Jun 2019

6     orange juice    5$       2            8 Jun 2019

7     cheese          5$       2            6 Jun 2019

8     cookies         2$       5            9 Jun 2019

9     grapes          4$       3            21 Jun 2019

10    potato          2$       5            26 Jun 2019

Once you have imported the file, data can be treated as a list or any other structure 

inside the notebook. Parts of the data are named after the imported data, and the 

contents can now be extracted, as discussed in later chapters.

�XLSX Files
The following example shows how to import data, display data as a spreadsheet, and 

transform it into a dataset. Let’s use the XLSX grocery list file rather than the CSV file for 

exemplification purposes. To start, you need first to import the data. To start, you need 

first to import the data.

In[10]:= path="/Users/macosx/Desktop/Grocery_List.xlsx";

Import[path,"Data"]

Out[11]= {{{id,grocery item, price, sold items,sales per day},{1.,milk,4 

$,4.,4-Jun-2019},{2.,butter,3$,2.,6-Jun-2020},{3.,garlic,2 

$,1.,7-Jun-2021},{4.,apple,2 $,4.,1-Jun-2022},{5.,orange,3 
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$,5.,8-Jun-2023},{6.,orange juice,5 $,2.,8-Jun-2024},{7.,cheese,5 

$,2.,6-Jun-2025},{8.,cookies,2 $,5.,9-Jun-2026},{9.,grapes,4 $,3.,21-Jun-20

27},{10.,potatoe,2 $,5.,26-Jun-2028}}}

As can be seen, the imported data appears as a nested list because Excel files can 

have multiple sheets inside a file. For this case, you have only one sheet. To see the 

number of sheets and the name of the sheets, use SheetCount and Sheets, respectively.

In[12]:= Import[path,#]&/@{"SheetCount","Sheets"}

Out[12]= {1,{Grocery_List}}

To show data as a spreadsheet, you use the TableView command (see Figure 4-1). 

The following format is used as an option to select a sheet: {“Data,” # of sheet}. To select 

a character encoding, use the CharacterEncoding option. Also, custom rows or columns 

can be imported, preserving the format: {“Data,” # of the sheet, # row, # column}.

In[13]:= TableView[Import[path,{"Data",1},CharacterEncoding->"UTF-8"]]

Out[13]=

Figure 4-1.  Spreadsheet view with TableView command

Note  With “Data”, import the data as a nested list.
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You can now see the data in spreadsheet format. Now, with TableView, you can view 

the data like in spreadsheet software, with selection tools, scrollbars, and text editing of 

the contents. However, one of the downsides is that with TableView, you cannot directly 

access the file’s contents; neither can calculations be performed. To do the latter, you can 

transform it into a dataset.

You can convert data into a dataset for better handling in Mathematica. By typing 

the “Dataset” as the option instead of “Data”, the imported file becomes a dataset but 

without headers (see Figure 4-2). To add the headers, use the HeaderLines option and 

choose the specification of the header by row or column type HeadLines → {# row, # 

column}. The file used is Grocery List 2.xlxs.

In[14]:=file="/Users/macosx/Desktop/Grocery_List_2.xlsx";Import[file, 

{"Dataset",1},HeaderLines->1]

Out[14]=

Figure 4-2.  Incomplete Grocery List dataset

You have imported incomplete data. EmptyField is implemented as a rule of 

transformation to treat empty spaces. If the data has empty spaces and no rule is 

expressed, the spaces are treated as empty strings. Figure 4-3 shows the output.

In[15]:= Import[file,{"Dataset",1},"EmptyField"->"NaN",HeaderLines->1]

Out[15]=
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Figure 4-3.  NaN-filled dataset

�JSON Files
The JavaScript Object Notation (JSON) file extension is a data representation file. JSON 

files store data as an ordered list of values, and a collection of value pairs constitutes 

each list. To import a JSON file, specify the two options: JSON or RawJSON.

In[16]:=json=Import["/Users/macosx/Desktop/Sports_cars.json","JSON"]

Out[16]=

{{Model->Enzo Ferrari,Year->2002,Cylinders->12,Horsepower HP->660,Weight 

Kg->1255},{Model->Koenigsegg CCX,Year->2000,Cylinders->8,Horsepower HP-> 

806,Weight Kg->1180},{Model->Pagani Zonda,Year->2002,Cylinders->12, 

Horsepower HP->558,Weight Kg->1250},{Model->McLaren Senna,Year->2019, 

Cylinders->8,Horsepower HP->800,Weight Kg->1309},{Model->McLaren 675 LT, 

Year->2015,Cylinders->8,Horsepower HP->675,Weight Kg->1230},{Model-> 

Bugatti Veyron,Year->2006,Cylinders->16,Horsepower HP->1001,Weight Kg-> 

1881},{Model->Audi R8 Spyder,Year->2010,Cylinders->10,Horsepower HP->525, 

Weight Kg->1795},{Model->Aston Martin Vantage,Year->2009,Cylinders->8, 

Horsepower HP->926,Weight Kg->1705},{Model->Maserati Gran Turismo,Year-> 

2010,Cylinders->8,Horsepower HP->405,Weight Kg->1955},{Model->Lamborghini 

Aventador S,Year->2017,Cylinders->12,Horsepower HP->740,Weight Kg->1740}}
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Given the nature of the JSON file structure, Mathematica recognizes each structure 

and interprets each key to its values when importing them. As you saw in the previous 

output, keys correspond to Model, Year, Cylinders, Horsepower, and Weight, and each 

key has its values. Everything said so far explains that all records are in a nested list. 

This outcome leads you to conclude that if you want to present it in a dataset, you 

cannot directly apply Association, and Association suppresses repeated keys. You 

must create an association for each record since it is a nested list, which you achieve 

with Map, specifying the depth level of the Association command. This is shown in the 

following code.

In[17]:= Map[Association,Json,1]

Out[17]= {<|Model->Enzo Ferrari,Year->2002,Cylinders->12,Horsepower HP-> 

660,Weight Kg->1255|>,<|Model->Koenigsegg CCX,Year->2000,Cylinders->8, 

Horsepower HP->806,Weight Kg->1180|>,<|Model->Pagani Zonda,Year->2002, 

Cylinders->12,Horsepower HP->558,Weight Kg->1250|>,<|Model-> 

McLaren Senna,Year->2019,Cylinders->8,Horsepower HP->800,Weight Kg-> 

1309|>,<|Model->McLaren 675 LT,Year->2015,Cylinders->8,Horsepower HP->675, 

Weight Kg->1230|>,<|Model->Bugatti Veyron,Year->2006,Cylinders->16, 

Horsepower HP->1001,Weight Kg->1881|>,<|Model->Audi R8 Spyder ,Year->2010, 

Cylinders->10,Horsepower HP->525,Weight Kg->1795|>,<|Model->Aston Martin 

Vantage,Year->2009,Cylinders->8,Horsepower HP->926,Weight Kg->1705|>, 

<|Model->Maserati Gran Turismo,Year->2010,Cylinders->8,Horsepower HP-

>405,Weight Kg->1955|>,<|Model->Lamborghini Aventador S,Year->2017, 

Cylinders->12,Horsepower HP->740,Weight Kg->1740|>}

You already have each record as an association, and now you can convert it to a 

dataset, as shown in Figure 4-4.

In[18]:= Dataset[%]

Out[18]=
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Figure 4-4.  Cars dataset

You can now handle a JSON file as a dataset. However, there is another way to do 

it without requiring as much calculation as before. When importing the file, you must 

import it as RawJson because, with RawJson, the Wolfram Language identifies and 

imports each record as a list of associations rather than a sole nested list, as shown here. 

This reason is because of the nature of the key and value of the JSON file extension.

In[19]:= Import["/Users/macosx/Desktop/Sports_cars.json","RawJSON"]

Out[19]=

{<|Model->Enzo Ferrari,Year->2002,Cylinders->12,Horsepower HP->660,Weight 

Kg->1255|>,<|Model->Koenigsegg CCX,Year->2000,Cylinders->8,Horsepower HP-> 

806,Weight Kg->1180|>,<|Model->Pagani Zonda,Year->2002,Cylinders->12, 

Horsepower HP->558,Weight Kg->1250|>,<|Model->McLaren Senna,Year->2019, 

Cylinders->8,Horsepower HP->800,Weight Kg->1309|>,<|Model->McLaren 675 

LT,Year->2015,Cylinders->8,Horsepower HP->675,Weight Kg->1230|>,<|Model-> 

Bugatti Veyron,Year->2006,Cylinders->16, Horsepower HP->1001,Weight Kg-> 

1881|>,<|Model->Audi R8 Spyder ,Year->2010,Cylinders->10,Horsepower HP-> 

525,Weight Kg->1795|>,<|Model->Aston Martin Vantage,Year->2009, 

Cylinders->8,Horsepower HP->926,Weight Kg->1705|>,<|Model->Maserati Gran 

Turismo,Year->2010,Cylinders->8,Horsepower HP->405,Weight Kg->1955|>, 

<|Model->Lamborghini Aventador S,Year->2017,Cylinders->12,Horsepower  

HP->740,Weight Kg->1740|>}
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The file is imported as an association in each record, and you can convert it into a 

dataset.

In[20]:=Cars=Dataset[%];

As a complement, once the data is imported, you can perform operations on the 

dataset, such as ordering the models by year from low to high.

In[21]:=Cars[SortBy[#Year&]];

Note  The previous example is also possible using the query command. (Query 
[SortBy[#Year &]][Cars]).

�Web Data
On the other hand, web data is also supported with Import. Instead of inserting the file 

path, the URL site is inserted as the argument of the Import command. The next example 

imports a simple text file from the National Oceanic and Atmospheric Administration 

(NOAA). The text file contains the list of country codes used for the Integrated Global 

Radiosonde Archive (IGRA). The parent directory where files are located is https://

www1.ncdc.noaa.gov/pub/data/igra/, but let’s only import the country list file. You 

need an Internet connection to make this work.

In[22]:=Short[Import["https://www1.ncdc.noaa.gov/pub/data/igra/igra2- 

country-list.txt","HTML"]]

Out[22]//Short= AC Antigua and Barbuda AE United Arab Emirates AF ...  WS 

Samoa YM Yemen ZA Zambia ZI Zimbabwe ZZ Ocean

The file is a plain text, but you can change how the data is imported by inserting a file 

format as an option. You can import it as a CSV file, for instance.

In[23]:=Short[Import["https://www1.ncdc.noaa.gov/pub/data/igra/igra2- 

country-list.txt","CSV"]]

Out[23]//Short= {{AC Antigua and Barbuda},{AE United Arab 

Emirates},<<215>>,{ZI Zimbabwe},{ZZ Ocean}}
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This is useful when you try to make computations with the data imported. 

Alternatively, you can use URL commands to check the status of an online file and then 

download it. To check the status of the online file, use URLRead. When the file is online, 

you should get an HTTP response object like the one shown in Figure 4-5. You can even 

perform this approach before importing data, ensuring the content is available online.

In[24]:= URLRead["https://www1.ncdc.noaa.gov/pub/data/igra/igra2-country- 

list.txt"]

Out[24]=

Figure 4-5.  HTTPResponse object of the URL entered

Now that you know the status, you can download the data file with URLDownload.

In[25]:= URLDownload["https://www1.ncdc.noaa.gov/pub/data/igra/igra2- 

country-list.txt"]

Out[25]=

You should get a file object with the file’s location (see Figure 4-6), the name, and the 

extension; in this case, it is in a temporary folder.

Figure 4-6.  File object with the locations of the file downloaded

Click the double chevron icon to open the file in an external viewer.

�Semantic Import
So far, you have seen how to import files of different formats, but there is another tool 

called SemanticImport that allows you to import files semantically and returns a dataset 

as a result. Let’s looks at a simple example with the CSV file.

In[26]:= sImprt=SemanticImport["/Users/macosx/Desktop/Grocery_List.csv"]

Out[26]=
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Figure 4-7 shows that when you use semantic import Mathematica, it imports the 

data in the form of a dataset, and when it does this, it recognizes some quantities.

Figure 4-7.  File imported as a dataset with SemanticImport

These quantities correspond to the magnitude and its units, such as in the case of 

the elements of the column of price and sales per day. When dealing with quantities, the 

color of the elements changes; as you see in the dataset, the elements appear differently 

from the other contents because a semantic-type object now represents them. Semantic 

objects include quantities, entities, dates, and geolocation. In other words, they are 

interpretations made by the freeform interpreter related to the Wolfram Knowledgebase.

Note  To check if the data is recognized as a quantity or semantic-type object, 
use Normal[sImprt]; you should see the entities colored differently.

In the case of imported data, there are two date-type objects, which you saw in the 

first chapter, and quantity type. It should be understood that to work with quantities, you 

must understand where they come from.
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�Quantities
The Quantity command converts a magnitude with units to a quantity type to convert 

the magnitude with their respective units; the magnitude is entered first, followed by its 

units in string type. When you do this, Mathematica displays the autocomplete menu as 

on other occasions. The following example shows it.

In[27]:= Quantity[2,"USDollars"]

Out[27]= $2

Thus, it is transformed into a quantity type. When you hover over the result, an ad 

is displayed, marking that a result is already a unit. In this case, it is a unit of US dollars. 

Now, if you check the head of the expression, it shows that it is a type of quantity.

Note  Quantities are shown in light brown color.

In[28]:= Quantity[2,"USDollars"]//Head

Out[28]= Quantity

You can also use the inline freeform input in the menu bar: Insert ➤ Inline Freeform 

Input. This input type is associated with the Wolfram Alpha search engine , so the inline 

freeform input transforms natural language into Wolfram Language input.

Inside the box, you’ll find the magnitude and quantity written. One of the advantages 

of this type of input is that it allows for using natural language. The following example 

writes the amount of 77 min, which means 77 minutes. Figure 4-8 shows the input cell of 

the inline freeform input.

In[29]:=

Figure 4-8.  Free inline freeform input for the quantity of 77 minutes

Out[29]= 77min
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To run the code, click ENTER since it gives you a result. Some tabs appear where 

you can click a submenu or a checkmark. If you click the checkmark, it is to accept the 

interpretation made. If you believe that the interpretation is different, you can click the 

other option, which is alternate interpretations, and it shows a small pop-up where it 

lists different interpretations. Figure 4-9 show the pop-up for the example.

Figure 4-9.  Options for the quantity entered

Once the interpretation is accepted, the result changes color and is a quantity-type 

object. And it can be used like any other quantity-type object.

When you have quantities, you cannot make operations between numbers; quantities 

are already different types. For these, there are two options: convert the data to quantities 

or extract the magnitude of a quantity. The QuantityMagnitude command is used to extract 

the magnitude. Make sure to copy the entity (light brown output), not the pure text 77 min.

In[30]:= {QuantityMagnitude[77 min],Head[%]}

Out[30]= {77,Quantity}

You have already extracted the magnitude, and it is already an integer. In the 

supposed case of wanting the units, the QuantityUnit command extracts the units.

In[31]:= QuantityUnit[77 min]

Out[31]= Minutes

�Datasets with Quantities
Another aspect to emphasize: To carry out operations, the concept of performing 

arithmetic operations among physical quantities is maintained; otherwise, the operation 

is not possible, and you get an error in which the units do not agree. When you carry out 

an operation between quantities, the result is also of the quantity type.

Chapter 4  Import and Export



161

In[32]:= {77min-77min,77min+77min,77min*77min,77min/77min,77min*3m}

Out[32]= {0min,154min,5929(min)^2,1,231m min}

This example shows how the results are of type quantity. Except for the division, it is 

already a quotient between the same units. The last one is 231 meters per minute.

Returning to the imported data, you can extract the data from the price column, as 

shown in Figure 4-10.

In[33]:= sImprt[[All,"price"]]

Out[33]=

Figure 4-10.  Price column

If you want to have them in a list, you must use the Normal command.

In[34]:= Normal[%]

Out[34]= {$ 4,$ 3,$ 2,$ 2,$ 3,$ 5,$ 5,$ 2,$ 4,$ 2}

The result is the list but in quantity type. It is fair to say that you can do operations 

with quantities, but if what matters are the magnitudes, you can extract them. It’s worth 

noting that working with magnitudes alone is generally faster and more efficient, which 

reduces the overhead or additional quantity processing. Unless a specific quantity is 

required, converting to pure numbers may be preferable.

Let’s look at how.

In[35]:= QuantityMagnitude[#]&[%]

Out[35]= {4,3,2,2,3,5,5,2,4,2}

You are now working with only the magnitudes.

You can even work with dates and quantities, as shown in Figure 4-11, starting by 

displaying the ID of the products and the date they were sold.

In[36]:= sImprt[[All,{"id","sales per day"}]]

Out[36]=
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Figure 4-11.  ID and sales per day columns

Having done this, you can extract the values and work directly with the date 

object types.

In[37]:= Normal[Values[%]]//InputForm

Out[37]//InputForm=

{{1, DateObject[{2019, 6, 4}, "Day"]},

 {2, DateObject[{2019, 6, 6}, "Day"]},

 {3, DateObject[{2019, 6, 7}, "Day"]},

 {4, DateObject[{2019, 6, 1}, "Day"]},

 {5, DateObject[{2019, 6, 8}, "Day"]},

 {6, DateObject[{2019, 6, 8}, "Day"]},

 {7, DateObject[{2019, 6, 6}, "Day"]},

 {8, DateObject[{2019, 6, 9}, "Day"]},

 {9, DateObject[{2019, 6, 21}, "Day"]},

 {10, DateObject[{2019, 6, 26}, "Day"]}}

Each value represents a date using DateObject, which is easily converted to numeric 

values using AbsoluteTime. It is handy for numerical operations involving dates, making 

the data handling more flexible and efficient.
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Note  You should get the date object when testing the code instead of the pure 
word; here, the InputForm is used to avoid image conflicts.

Knowing this, you can make an association between the IDs of each product and 

when it was sold, applying the Rule command inside the nested list and creating the 

associations.

In[38]:= Association[Apply[Rule,%,1]]//InputForm

Out[38]//InputForm=

<|1 -> DateObject[{2019, 6, 4}, "Day"],

 2 -> DateObject[{2019, 6, 6}, "Day"],

 3 -> DateObject[{2019, 6, 7}, "Day"],

 4 -> DateObject[{2019, 6, 1}, "Day"],

 5 -> DateObject[{2019, 6, 8}, "Day"],

 6 -> DateObject[{2019, 6, 8}, "Day"],

 7 -> DateObject[{2019, 6, 6}, "Day"],

 8 -> DateObject[{2019, 6, 9}, "Day"],

 9 -> DateObject[{2019, 6, 21}, "Day"],

 10 -> DateObject[{2019, 6, 26}, "Day"]|>

To illustrate this, create a visualization in a timeline, as shown in Figure 4-12, 

marking the product sold and the date of its sale.

In[39]:= TimelinePlot[%]

Out[39]=

Figure 4-12.  Timeplot
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The date of each grocery item sold is shown by ID. A tooltip shows the exact date 

when the cursor is passed over the number in the timeline.

The idea is that when you use SemanticImport, you can integrate different forms 

of the Wolfram Language and how you can use this to your advantage when importing 

data. Semantic import makes it possible to compare data with other selected data. 

SemanticImport provides you with tools to work among various types of semantic 

objects. What is essential to observe is that instead of importing standard text, you can 

import currency types, dates, and any magnitude with the respective unit, as in the 

previous examples. This allows that data to be associated with different commands 

within the Wolfram Language.

�Costume Import (Dealing with Large Datasets)
Having said all this about semantic import, you can import data and choose how each 

column in the imported file should be interpreted. However, based on the same idea that 

you saw earlier, with semantic import, you can also choose what data to import (e.g., if it 

is only one column or several), as illustrated in Figure 4-13.

In[40]:= SemanticImport["/Users/macosx/Desktop/Grocery_List.csv",{"Integer", 

"String","Currency","Real","Date"}]

Out[40]=

id    grocery item  price  sold items  sales per day

1     milk          $ 4    4.0         Tue 4 Jun 2019

2     butter        $ 3    2.0         Thu 6 Jun 2019

3     garlic        $ 2    1.0         Fri 7 Jun 2019

4     apple         $ 2    4.0         Sat 1 Jun 2019

5     orange        $ 3    5.0         Sat 8 Jun 2019

6     orange juice  $ 5    2.0         Sat 8 Jun 2019

7     cheese        $ 5    2.0         Thu 6 Jun 2019

8     cookies       $ 2    5.0         Sun 9 Jun 2019

9     grapes        $ 4    3.0         Fri 21 Jun 2019

10    potato        $ 2    5.0         Wed 26 Jun 2019
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Figure 4-13.  Dataset with excluded rows

With this result, observe that the first column imported contains integers, the second 

contains text, the third contains a currency type quantity, the fourth contains a real 

number, and the last contains a date object. Having done this, it is possible in the same 

way that with spreadsheet files, you can import certain types of information in list form, 

either by column or by row. The following example imports rows 1 through 5.

In[41]:=SemanticImport["/Users/macosx/Desktop/Grocery_List.

csv",Automatic,"Rows"][[1;;5]]//InputForm

Out[41]//InputForm= {{1, "milk", Quantity[4, "USDollars"], 4, 

DateObject[{2019, 6, 4}, "Day"]}, {2, "butter", Quantity[3, "USDollars"], 

2, DateObject[{2019, 6, 6}, "Day"]}, {3, "garlic", Quantity[2, 

"USDollars"], 1, DateObject[{2019, 6, 7}, "Day"]}, {4, "apple", Quantity[2, 

"USDollars"], 4, DateObject[{2019, 6, 1}, "Day"]}, {5, "orange", 

Quantity[3, "USDollars"], 5, DateObject[{2019, 6, 8}, "Day"]}}

As indicated, columns can also be imported from columns 1 to 2.

In[42]:=SemanticImport["/Users/macosx/Desktop/Grocery_List.

csv",Automatic,"Columns"][[1;;2]]

Out[42]= {{1,2,3,4,5,6,7,8,9,10},{milk,butter,garlic,apple,orange,orange ju

ice,cheese,cookies,grapes,potato}}

It is necessary to emphasize that if you want to exclude data, importing with the 

ExcludedLines statement is recommended. For example, exclude rows 9 and 10, 

remembering that the titles are in row 1, as shown in Figure 4-13.
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In[43]:=SemanticImport["/Users/macosx/Desktop/Grocery_List.csv",ExcludedLin

es->{{10},{11}}]

Out[43]=

When working with large datasets, it’s crucial to manage memory usage. Review if 

your system can handle big sizes of data. If it’s too large to import at once, try importing 

it in smaller pieces and filtering/managing the data as needed. The following example 

effectively selects the first ten buildings (see Figure 4-14) from the buildings.dat dataset 

based on the specified condition using a pure function within Select.

In[44]:= SemanticImport["ExampleData/buildings.dat",<|"Name"-> 

Automatic,"City"->Automatic,"Country"->Automatic,"Year"-> 

Automatic|>,HeaderLines->1];

Select[%,#[[4]]<=2000&][[1;;10]]

Out[45]=

Figure 4-14.  Buildings dataset with selected rows

To filter the data dataset based on the condition that the Year column (index 4) is less 

than or equal to 2000. Then, use [[1;; 10]] to select the first ten elements from the filtered 

dataset, which are the first ten buildings that meet the condition.

�Export
Mathematica supports many formats; to view all supported formats, type 

$ExportFormat.
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In[46]:= Short[$ExportFormats,5]

Out[46]//Short= {3DS,AC,ACO,AIFF,ASE,AU,AVI,Base64,Binary,Bit,BLEND,BMP, 

BREP,BSON,Byte,BYU,BZIP2,C,CDF,<<167>>,WDX,WebP,WL,WLNet,WMLF,WXF,X3D,XBM, 

XGL,XHTML,XHTMLMathML,XLS,XLSX,XML,XPORT,XYZ,ZIP,ZPR,ZSTD}

Exporting data is carried out using the Export command. Export has the form 

Export[“directory path,” expr, “format”].

First, you need to set up a working directory. If not, the file is exported to the default 

Mathematica working directory. To see the working default directory, use Directory.

In[47]:= Directory[]

Out[47]= /Users/macosx

In this case, the default directory is the Desktop folder.

Two commands are key; one is SetDirectory, whose argument is the path of the new 

working directory, and the other is NotebookDirectory, which is the file’s location.

First, let’s set the new working directory to export files to the notebook location. 

Using the notebook directory as the argument on SetDirectory, you tell Mathematica 

that the new working directory is the location of the notebook in which you are currently 

working.

In[48]:= SetDirectory[NotebookDirectory[]]

Out[48]= /Users/macosx/Desktop

Now that you have set up a new directory, you can export data created in 

Mathematica. The next example exports a list of prime numbers from 1 to 10 as a table 

in a text file and a CSV file. An option applies as well as Import, but if the file extension is 

added, it is not compulsory to write the format option.

Note  There is no restriction about whether to assign a name to the list of data or 
to create the data directly in the export.

In[49]:= mydata=Table[Prime[i],{i,1,10}];

{Export["New_File.txt",mydata,"Table"], Export["New_File.csv",mydata]}

Out[50]= {New_File.txt,New_File.csv}
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The output generates the name of the new file exported. An alternative is manually 

entering the desired location of the file instead of setting a new working directory; in this 

case, Desktop was set as the new location.

In[51]:= Export["/Users/macosx/Desktop/New_File.TSV",mydata,"TSV"]

Out[51]= /Users/macosx/Desktop/New_File.TSV

Now that you have exported the data into a new location, the output is the full path 

of the new file. If you want to open the file from Mathematica, you can use SystemOpen. 

This command opens the operating system explorer.

In[52]:= SystemOpen["/Users/macosx/Desktop/New_File.TSV"]

SystemOpen lets you open the notebook directory folder to open other files inside 

the notebook directory.

In[53]:= SystemOpen[NotebookDirectory[]]

On the other hand, when dealing with tabular data, it can be exported as a 

spreadsheet. The next example export a tabular data structure and then export it into a 

spreadsheet format.

To create tabular data, let’s use the Table command.

In[54]:=

tabD1=Table[i,{i,4}];

tabD2=SetPrecision[Table[i/11,{i,4}],3];

Now that you have a set of coordinates, you can export the data to different sheets by 

typing the reference name of the data into a list of options: {data_sheet 1,data_sheet 2, ...}

In[56]:= Export["Tabular_data.xls",{{tabD1},{tabD2}}]

Out[56]= Tabular_data.xls

By opening the file with a spreadsheet viewer, you should get that TabD1 is in sheet 1 

and TabD2 is in sheet 2.

To customize the name of the sheets, you need to enter the names as a list of rules 

with the rule operator (➤).

In[57]:= Export["Tabular_data_2.xls",{"Page number 1"->tabD1,"Page number 

2"->tabD2}]

Out[57]= Tabular_data_2.xls
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If you open the file, now you should have two sheets with the names you have set.

In addition to this, there is the possibility to add the same data in a single 

spreadsheet. You only have to enclose the data you want in the same sheet in curly 

braces to do this.

In[58]:= Export["New_data.xls",Transpose[{tabD1,tabD2}]]

Out[58]= New_data.xls

After opening the file, you should see something like the following code.

In[59]:= Grid[Transpose[{tabD1,tabD2}]]

Out[59]=

1    0.0909

2    0.182

3    0.273

4    0.364

You can even export tables.

In[60]:= table1={{"Dog","Wolf"},{"Cat","Leopard"},{"Pigeon","Shark"}};

Export["Animal_table.xls",table1]

Out[61]= Animal_table.xls

�Other Formats
By advancing the topic, it is possible to export the data to simple formats such as TXT, DAT, 

CSV, and CSV. To do this, you only have to put the path of the file where you want it to be 

exported, along with the name of the new file, followed by the extension of the desired file. 

The second argument writes the data to be exported or the variable that contains the data. 

The third argument is what designates the format you want the data to import.

Let’s look at the following example, which exports new data to text and DAT formats. 

In this case, you only write the file’s name, which indicates that you want it to be 

exported to the working directory established earlier, corresponding to the notebook’s 

directory.

In[62]:= newD=Table[{i+j,i*j},{i,1,5},{j,1,5}];

{Export["File_text.txt",newD,"Text"],Export["File_dat.dat",newD,"Table"]}

Out[63]= {File_text.txt,File_dat.dat}
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It is advisable to pause for a moment. As shown in the earlier code, the Table format 

is used for the DAT file. This is because a Table is used so that the exported data becomes 

an expression in the Wolfram Language. After you have exported, verify that the files 

have been exported. Likewise, you can choose the format for a file. For example, instead 

of typing text, you export it in the TSV format.

In[64]:= Export["File_text.txt",newD,"TSV"]

Out[64]= File_text.txt

Similarly, you can export CSV and TSV files.

In[65]:={Export["File_csv.csv",newD,"CSV"],Export["File_tsv.

tsv",newD,"TSV"]}

Out[65]= {File_csv.csv,File_tsv.tsv}

It is possible to add titles to the columns of the data for when they are exported, 

either CSV or TSV.

In[66]:= Export["File_csv.csv",newD,"CSV",TableHeadings->{"column 

1","column 2","column 3","column 4","column 5"}]

Out[66]= File_csv.csv

It is also possible to define a list of names for the columns as follows.

In[67]:= labels={"Coordinates 1","Coordinates 2","Coordindates 

3","Coordinates 4","Coordindates 5"};Export["File_csv.csv",newD,"CSV", 

TableHeadings->labels]

Out[67]= File_csv.csv

In the same way, you can export datasets to known formats. Let’s use automobile 

braking distance statistics based on speed. For this, the data is loaded using 

the ExampleData command. Inside this, search “Statistics”; within that, search 

“CarStoppingDistances”.

In[68]:= spData=ExampleData[{"Statistics","CarStoppingDistances"}]

Out[68]={{4,2},{4,10},{7,4},{7,22},{8,16},{9,10},{10,18},{10,26},{10,34}, 

{11,17},{11,28},{12,14},{12,20},{12,24},{12,28},{13,26},{13,34},{13,34}, 

{13,46},{14,26},{14,36},{14,60},{14,80},{15,20},{15,26},{15,54},{16,32}, 

{16,40},{17,32},{17,40},{17,50},{18,42},{18,56},{18,76},{18,84},{19,36}, 

{19,46},{19,68},{20,32},{20,48},{20,52},{20,56},{20,64},{22,66},{23,54}, 

{24,70},{24,92},{24,93},{24,120},{25,85}}
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To get the dataset’s columns and a description, add Description and 

ColumnDescriptions.

In[69]:= ExampleData[{"Statistics","CarStoppingDistances"},#]&/@{"Descripti

on","ColumnDescriptions"}

Out[69]= {Car stopping distances as a function of speed.,{Speed in miles 

per hour.,Stopping distance in feet.}}

Continuing the exploration, you see that the first numbers represent the speed in 

miles per hour, and the second numbers represent the distance in feet.

Note  For more information, add properties as the second argument to 
ExampleData.

Moving forward in the exercise, you can add the column titles. This distinguishes 

each data type when you build the dataset (see Figure 4-15).

In[70]:= spDataset=Dataset[spData,Background->LightBlue][All,<|#1->1,#2-> 

2|>]&["Speed in miles per hours","Stopping distance in feet"]

Out[70]=
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Figure 4-15.  CarStoppingDistances dataset

You have finished the creation of the dataset. This data and the respective column 

titles can now be exported to a CSV format.

In[71]:= Export["Dataset_csv.csv",spDataset,"CSV"]

Out[71]= Dataset_csv.csv
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If the export is successful, you should have a CSV file in the correct format. For the 

case of a TSV file, see the following form.

In[72]:= Export["Dataset_tsv.tsv",spDataset,"TSV"]

Out[72]= Dataset_tsv.tsv

�XLS and XLSX Formats
It is worth distinguishing that to export datasets to spreadsheet formats such as XLS or 

XLSX, you should work the dataset as a list since exporting the dataset directly would 

result in exporting associations in a single cell, and you are not interested in that. 

Regarding the second point, since you have the dataset, to extract the values, you use 

the Normal command, which converts the dataset into a normal expression, followed by 

extracting the values from the braces with Values.

In[73]:= Values@Normal@spDataset

Out[73]={{4,2},{4,10},{7,4},{7,22},{8,16},{9,10},{10,18},{10,26},{10,34}, 

{11,17},{11,28},{12,14},{12,20},{12,24},{12,28},{13,26},{13,34},{13,34}, 

{13,46},{14,26},{14,36},{14,60},{14,80},{15,20},{15,26},{15,54},{16,32}, 

{16,40},{17,32},{17,40},{17,50},{18,42},{18,56},{18,76},{18,84},{19,36}, 

{19,46},{19,68},{20,32},{20,48},{20,52},{20,56},{20,64},{22,66},{23,54}, 

{24,70},{24,92},{24,93},{24,120},{25,85}}

Now that you have the data, you can add the column titles and export the extracted 

data from the dataset.

In[74]:= colTitles={"Speed in miles per hours","Stopping distance 

in feet"};

To attach the two lists, let’s use Prepend and assign the name exprtData to 

new values.

In[75]:= Short[exprtData=Prepend[%%,colTitles],1]

Out[75]//Short= {{Speed in miles per hours,Stopping distance in feet},{4,2}, 

{4,10},<<45>>,{24,93},{24,120},{25,85}}

You do not define variables to put together this data list and titles. A percentage 

notation is used to simplify the code. Now that you have complete data, you can export it 

to an XLS or XLSX format.
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In[76]:= Export["Stopping_distance_Dataset.xlsx",exprtData,"XLSX"]

Out[76]= Stopping_distance_Dataset.xlsx

If you verify the file, you should have something like the dataset created earlier.

�JSON Formats
It is also possible to export information to formats such as JSON. The following example 

creates a JSON structure from an association.

In[77]:= Association@{"Name"->"Ellis","Date of birth"-> 

"1990,01,04","Height"->"180 cm","Favorite color"->"Red","Hobbies"->"Soccer, 

Pc gaming, Board games","Social netwoks"->"Twitter, Facebook"};

Export["File_json.json",%,"JSON"]

Out[78]= File_json.json

If you open the new JSON file, you see that it has a structure corresponding to a JSON 

file. It is the same process for the case where you have a nested list, although you can also 

use the “Rawjson” format when exporting. The idea is that you can export data to JSON 

formats from associations; as you have seen, the braces and values of an association can 

be any expression. This leads you to say that more associations can be added, and these 

can be exported. The vital thing to note is that given the nature of the JSON format of 

containing braces and values in pairs, it is possible to export data in JSON format from 

associations. Examining the case for when you have a dataset (see Figure 4-16), proceed 

as noted here.

In[79]:=Association@{"Name"->"Ellis","Date of birth"-> 

DateObject[{1990,01,04}],"Height"->Quantity[180,"Centimeters"],"Favorite 

color"->"Red","Hobbies"->"Soccer, Pc gaming, Board games","Social netwoks"-> 

"Twitter, Facebook"};

user=Dataset[%]

Out[80]=
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Figure 4-16.  JSON file dataset

The dataset is built, but in some cases, the dataset may contain quantities or other 

semantic objects, as in this case, the date and height. So, exporting them would be the 

same way as before but using the JSON option format, not Rawjson, since this does not 

allow exporting dataset objects. To use Rawjson, you must convert the semantic objects 

to strings or numbers.

In[81]:= Export["Dataset_json.json",user,"JSON"]

Out[81]= Dataset_json.json

If you have a dataset of repeated keys, you can export it to the JSON format (see 

Figure 4-17).

In[82]:= assoc1=<|"Log in Date"->DateObject[{2020,06,29}],"User ID"-> 

123,"Status"->"Active"|>;

assoc2=<|"Log in Date"->DateObject[{2020,06,28}],"User ID"->122,"Status"-> 

"Not Active"|>;Dataset[{assoc1,assoc2}]

Export["Dataset2_json.json",%,"JSON"]

Out[83]=

Figure 4-17.  User Dataset
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Out[84]= Dataset2_json.json

To be precise, you can export shapes where the dataset contains complex structures, 

such as an association of associations. Let’s look at the following example, which builds a 

dataset (see Figure 4-18).

In[85]:= assoc3="Player A"->Association["Date"->DateObject[{2020,06,29}], 

"User ID"->123,"Status"->"Active"];assoc4="Player B"->Association["Date"-> 

DateObject[{2020,06,28}],"User ID"->122,"Status"-> 

"Not Active"];Dataset[{<|assoc3,assoc4|>}]

Out[85]=

Figure 4-18.  Tagged dataset

Subsequently, proceed to export the dataset.

In[86]:= Export["Dataset3_json.json",%,"JSON"]

Out[86]= Dataset3_json.json

Let’s try to better understand how to export in JSON format. When you export 

information such as a rule list or a single association, the structure of the content in 

the exported JSON file is through a collection of pairs between braces and values. On 

the contrary, when you have ordered structures, such as an association of lists and an 

association of associations, the structure of the content in the JSON file is as an ordered 

array within the array of the collections of associated pairs between braces and values. 

Quite the opposite; however, exporting a nested list is already in the form of sorted 

arrays. To clarify this, the reader can observe how a list of rules is exported through the 

following code.

In[87]:= rules={"apple"->3,"car"->"3","2"->2};

Export["Rules.json",rules,"JSON"]

Out[88]= Rules.json
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In addition, for a nested list or list of lists.

In[89]:= arry=Array[{#1,#2}&,{4,4}]

Export["Array.json",arry,"JSON"]

Out[89]= {{{1,1},{1,2},{1,3},{1,4}},{{2,1},{2,2},{2,3},{2,4}},{{3,1},{3,2}, 

{3,3},{3,4}},{{4,1},{4,2},{4,3},{4,4}}}

Out[90]= Array.json

If the created file is observed, it must contain an array of arrays inside the JSON file.

�Content File Objects
It should be concluded that for all the exported files, you can create a content object 

showing you the properties of the created files. This is done with the ContentObject 

function, which provides content from a file. Let’s use the association’s example to create 

a JSON file to do this.

In[91]:= Association@{"Name"->"Ellis","Date of birth"->DateObject[{1990,01,04}], 

"Height"->Quantity[180,"Centimeters"],"Favorite color"->"Red","Hobbies"-> 

"Soccer, Pc gaming, Board games","Social netwoks"->"Twitter, Facebook"};

user=Dataset[%];

jsonFile=Export["Dataset_json_2.json",user,"JSON"];

Now, you need to get the path where the file is located with AbsoluteFileName.

In[94]:= AbsoluteFileName[jsonFile]

Out[94]= /Users/macosx/Desktop/Dataset_json_2.json

Let’s now use the file to create the file object type representation. Then, 

ContentObject is applied to the file object.

In[95]:= ContentObject[%]

Out[95]=

A content-type object appears (see Figure 4-19).

Figure 4-19.  ContentObject for the JSON files created
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Pressing the + icon provides you with the exported file’s properties, such as name, 

size, creation dates, and file localization. You can access the properties programmatically 

using the following form.

In[96]:= ContentObject[%%]["Properties"]

Out[96]= {CreationDate,Plaintext}

This can be applied to other exported files.

�Searching Files with Wolfram Language
With the Wolfram Language, you can look at the location of the file or files.

The NotebookDirectory command is used to see the path of the notebook directory. 

It shows the full directory containing the notebook in which you work.

In[97]:= NotebookDirectory[]

Out[97]= /Users/macosx/Desktop/

Now, SetDirectory is used to set a working directory as the current directory. You can 

enter the path of the desired directory and establish it as the working directory. However, 

now set the notebook directory as the new working directory.

In[98]:= SetDirectory[NotebookDirectory[]]

Out[98]= /Users/macosx/Desktop

With this new directory set, you can locate files in the new directory, the notebook 

location. Here, the FileNames command lets you explore files in the working directory, 

which, in this case, is the notebook’s directory because it was set up in the previous code.

In[99]:= FileNames[]

Out[99]= {Color_table.txt,Grocery_List.csv,Hello_World,Hello_World.

txt,import export.nb,weather.csv}

FileNames show all types of files available in the directory. If you have many files in 

the directory, you can search for a particular file by using FindFile and entering the file’s 

name as a string. The full path of the file is displayed.

In[100]:= FindFile["Color_table.txt"]

Out[100]= /Users/macosx/Desktop/Color_Table.txt
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File extensions can be searched, too.

In[101]:= FileNames["*.txt"]

Out[101]= {Color_table.txt,File_text.txt,Hello_World.txt,New_File.txt}

Note  Other types of File commands exist; to look for more commands associated 
with the name file, enter ??File*.

Remember, this is when you set the working directory as the notebook directory. If 

you have not set a directory previously, Mathematica searches the default directories of 

your machine, which are the ones shown entering $Path.

�Connecting to External Services
Besides export and import capabilities, Mathematica can connect to various external 

services, like external resources, external connectivity, and database management 

through external evaluations.

�External Connections
With the launch of Mathematica version 13, improvements have been put together, 

especially in connecting with external services. One notable feature is external 

evaluators, which enable interaction with various languages such as Julia, Ruby, R, 

Python, Java, Octave, Node.js, Shell, and SQL. To discover and utilize installed evaluator 

systems, use FindExternalEvaluators, which scans standard directories for use in any 

local evaluation.

Executing FindExternalEvaluators[], with no arguments, searches for all available 

languages installed on your computer. Let’s find the version of the Shell evaluator. On 

macOS, it usually refers to the Bash shell; on Windows, it’s typically PowerShell.

In[102]:= FindExternalEvaluators["Shell"]//Normal//Print

Out[102] =

<|4ce695dd-ef6a-7006-f30d-b4320329bbd7 → <|System → Shell,

   �Version → 3.2.57, Target ⧴ /bin/bash, Executable ⧴ /bin/bash, 

Registered → Automatic|>,
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b217afb1-d97f-3cfa-3c52-19ec78df64bc → <|System → Shell,

   �Version → 3.2.57, Target ⧴ /bin/sh, Executable ⧴ /bin/sh,

Registered →Automatic|>,

342330ff-7009-e5ec-c00a-86949f3c0f7a → <|System → Shell,

   �Version → 5.9, Target ⧴ /bin/zsh, Executable ⧴ /bin/zsh,

Registered → Automatic|>|>

In this case, the output lists three shell versions: Bash (Bourne Again SHell), Sh 

(Bourne Shell), and Zsh (Z Shell).

Note  The external language cannot be used if the Registered value is not set 
to True or Automatic. For troubleshooting, go to the Wolfram documentation 
page at https://reference.wolfram.com/language/workflowguide/
ConnectingToExternalSoftware.html.

Once the external evaluator has been registered, it can be used with 

ExternalEvaluator. You can use ExternalEvaluate by applying the function directly or, in 

a new cell, by typing ‘>’ to initiate a command line, where a yellow block line appears. 

Choose your language from a drop-down list on the left icon or input it directly as a 

string and then the code, as shown in Figure 4-20.

Figure 4-20.  External evaluation for Z shell code using the ExternalEvaluate and 
the ‘>’ type command block

Executing the code following prints “Hello World!” using the Z shell. The resulting 

exit code is 0, signifying success, and is displayed as standard notebook output (see 

Figure 4-21).

In[103]:=

Out[103]=
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Figure 4-21.  External evaluation using Z shell code Hello World!

Different prerequisites may be required, such as additional libraries and the 

language executable, depending on the external language you intend to use. While 

language cells are handy, ExternalEvaluate offers more programmatic output flexibility.

�External Resources
The prior section highlights ExternalEvaluate’s role in integrating outer languages in a 

notebook. Despite this, Mathematica can generate and utilize outer resources like outer 

functions. Node.js version 21.2.0 was used while creating this book. It can be installed 

from the official site or approved repositories. In this case, the Homebrew package 

installer was used. Using Node.js required the zeromq library, installed using npm, as 

stated in the Wolfram documentation.

Note  For detailed info, visit Wolfram documentation. NodeJS for 
ExternalEvaluate: https://reference.wolfram.com/language/workflow/
ConfigureNodeJSForExternalEvaluate.html

To automatically identify Node.js, use FindExternalEvaluators[“NodeJS”], similar 

to the shell language process. If successful, Registered shows as Automatic, indicating 

complete setup. If MissingDependencies appears, Mathematica can’t find the necessary 

dependencies, requiring manual registration. Regardless, it’s advised to manually 

register the external evaluator by adding the executable’s path to ensure proper function.
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Like in the shell process, to autodetect Node.js, use FindExternalEvaluators[“Node

JS”]. If Registered shows as Automatic, all setup is done. If MissingDependencies shows, 

Mathematica lacks needed dependencies, requiring manual registration. Regardless, 

you should manually register the external evaluator by adding the executable’s path to 

ensure proper function.

In[104]:= RegisterExternalEvaluator["NodeJS","/opt/homebrew/bin/node"]

Out[104]= 629ba62a-8d17-e9fe-6cd9-870f94c7933c

Then, trying to find it again.

In[105]:= FindExternalEvaluators["NodeJS"] // Normal // Print

Out[105]=

<|629ba62a-8d17-e9fe-6cd9-870f94c7933c → <|System → NodeJS,

   Version → 21.2.0, Target ⧴ /opt/homebrew/bin/node,

   Executable ⧴ /opt/homebrew/bin/node, Registered → True|>|>

The Registered key has a value of True, meaning successful manual registration. To 

test it, calculate the square root of 25.

In[106]:= ExternalEvaluate["NodeJS","Math.sqrt(25)"]

Out[106]= 5

With Node.js set, custom functions can be implemented—for instance, a primary 

function to find the square root of a number.

In[107]:=  jsFun1 =ExternalFunction["NodeJS","Math.sqrt"]

Out[107]= ExternalFunction[System : NodeJS Command : Math. sqrt 

Session : Automatic ]

The outer Node.js system calculates using Math.sqrt. If no external session is 

manually set, it is automatic. The function is now at hand in the notebook.

In[108]:= jsFun1[#]&/@{25,36,49,64}

Out[108]= {5,6,7,8}

The Function syntax can vary, but the process is the same; for example, using an 

arrow function.
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In[109]:= jsFun2 =

ExternalFunction["NodeJS", "(number) => Math.sqrt(number);"];

jsFun2[#] &/@ {25,36,49,64}

Out[109]= {5,6,7,8}

Using the external block is also at hand. Figure 4-22 shows that the node.js function 

is linked to a default external node.js session.

In[111]:=

Out[111]=

Figure 4-22.  Node.js function to return the square root of the sum of two numbers

In[113]:= %[18,18]

Out[113]= 6

Note  To ensure that a function can be called in NodeJS using ExternalFunction, it 
must be explicitly returned.

To unregister an external evaluator, type the system language and the executable 

path. In this case, it is the same path used when registered.

In[114]:= UnregisterExternalEvaluator["NodeJS","/opt/homebrew/bin/node"]

Out[114]= 629ba62a-8d17-e9fe-6cd9-870f94c7933c
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�Database and File Operations (SQL)
Database and file operations can be performed in Mathematica using external languages 

like SQL. By leveraging ExternalEvaluate, it is possible to execute SQL queries and work 

directly with dataset formats.

You can generate a reference object for the database by utilizing a table from the 

example data folder.

In[115]:= DatabaseReference[FindFile["ExampleData/ecommerce-database.

sqlite"]];

Shallow[%]

Out[116]//Shallow=

DatabaseReference[<|Backend → SQLite, Name → /Applications/Mathematica.

app/Contents/Documentation/English/System/ExampleData/ecommerce-database.

sqlite|>]

The reference of the retrieved file with FindFile associates the .sqlite local file 

with the backend SQL engine set as SQLite, which performs operations and data 

management.

Note  SQL should be available within Mathematica, but check that it appears as 
a registered external evaluator FindExternalEvaluator[“SQL”]. If not, make sure to 
register the evaluator.

After referencing, view all database table names (see Figure 4-23). Choose a table 

(offices) (see Figure 4-24) and select territory and city, ordering by territory (see 

Figure 4-25).

In[117]:=

Out[117]=
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In[118]:=

Out[118]=

Figure 4-23.  Listing all tables

In[119]:=

Out[119]=

Figure 4-24.  Fetching all office data

Chapter 4  Import and Export



186

Figure 4-25.  Sorting offices by territory

�Summary
This chapter explored essential aspects of importing and exporting various file 

formats, including costume imports. It provides the basics of semantic import, 

dealing with quantities and large datasets. The chapter also offered a deep dive into 

data management and the search of content file objects within a notebook. The 

chapter concluded with a discussion on connecting to external elements, establishing 

connections, and working with external resources, databases, and files.
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CHAPTER 5

Data Visualization
This chapter discusses data visualization in more depth, showing the different ways of 

visually representing data, using different commands, and creating a range of different 

types of graphs. It also explains how to customize plots and use predefined plot themes.

�Basic Visualization
Data visualization is key for understanding information about data. Visual tools such 

as 2D plots, contour plots, 3D plots, and time series provide a handy form to view and 

understand trends and patterns of the data. One of the things about Wolfram Language 

is that it contains commands that enable you to plot graphs in a simple form. Now, you 

can better learn how plotting works. Mathematica treats every plot as a graphic object, 

that is because every graphic is created of primitive elements (points, lines, polygons, 

geometric figures, etc.), directives (style, shape, size, width, blurriness, etc.), and options 

(visual modifications, styles, frames, aspects, text, etc.). However, let’s focus on the area 

of 2D and 3D plots.

�2D Plots
Simple 2D plots over a specified range are relatively simple to create, as you saw in 

Chapter 1 with the Plot function. The Wolfram Language gives you accurate control over 

your plots; for example, you can define the range of your plot’s range and many options. 

For instance, you can add a title to the next plot, a LogPlot, which is a function in a 

logarithm scale (see Figure 5-1).

In[1]:= LogPlot[Log[x]/x,{x,1,20},PlotLabel->"New Log plot"]

Out[1]=

https://doi.org/10.1007/979-8-8688-0348-2_5#DOI
https://doi.org/10.1007/979-8-8688-0348-2_1
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Figure 5-1.  LogPlot

Figure 5-1 shows that a title has been added.

When plotting points over an interval, the default plot range to show is produced 

automatically by Mathematica. But with PlotRange, you can override the option and 

enter a desired range (see Figure 5-2).

In[2]:= LogPlot[x+(6/x),{x,1,20},PlotLabel->"New Log 

plot",PlotRange->{0,14}]

Out[2]=
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Figure 5-2.  LogPlot of x+(6/x), with custom range

By selecting All in PlotRange, the y axis increases. Alternatively, you can choose the 

limits by entering them in the form {y min, y max}. Sometimes, a graphic may not pass 

through a desired set of coordinates; to force this, AxesOrigin is used (see Figure 5-3). 

Intersections are written in the form {x,y}, where the coordinates denote the x and y 

origin points.

In[3]:= Plot[Abs[x],{x,-2,2}, AxesOrigin->{0,2}]

Out[3]=
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Figure 5-3.  The absolute value of x on origin 0, 2

AspectRatio is used to control the aspects using their height and width. This option 

allows you to specify how big or small a graphic can be, calculating the height and width 

ratio (h/w). However, when using ImageSize to directly select the width and height of a 

graphic, if you specify the height alone, it is better to set AspectRatio to Full. This ensures 

proper scaling as the width adjusts accordingly. Both options are shown in Figure 5-4.

In[4]:=GraphicsRow[{Plot[Cos[x],{x,0,2\[Pi]},ImageSize->Small], 

Plot[Cos[x],{x,0,2\[Pi]},AspectRatio->0.5]}]

Out[4]=

Figure 5-4.  First graphic with ImageSize; second with AspectRatio
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�Plotting Data
When plotting graphs, a set of points can be represented in a plot. Data can be plotted 

with different commands, depending on their purpose. To plot a list of coordinates, 

ListPlot is used, and the arguments of the plot are represented as x, y coordinates 

({x1,y1}, {x2,y2} ... ). You can create a list of values and pass them as the arguments. The 

following example creates a table of values to resemble a hyperbolic cosine, with one 

step between each point (see Figure 5-5).

In[5]:= ListPlot[Table[Cosh[i Degree],{i,1,20}]]

Out[5]=

Figure 5-5.  Hyperbolic cosine plot, ranging from 1 to 20

In this case, you only generate points in {1, y1}, {2, y2}, but you can also plot x and 

y values. Let’s generate the x points with Table and then thread each element of x to a y 

element and plot (see Figure 5-6) the new set of coordinates.

In[6]:= xcoor=Table[i,{i,1,5}];

ycoor={12,5,35,20,55};

coordinates=Thread[{xcoor,ycoor}];

ListPlot[coordinates]

Out[9]=
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Figure 5-6.  ListPlot of x and y coordinates

Another useful command is ListLinePlot, which plots points through points 

by joining them with a line. ListLinePlot (see Figure 5-7) can also plot predefined 

coordinates. You can show how many points to display to understand how the plot is 

constructed with the Mesh option.

In[10]:= ListLinePlot[coordinates,Mesh->20]

Out[10]=
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Figure 5-7.  ListLinePlot with mesh option set to 20

A plot can be represented with different colors and markers. Colors and markers 

are convenient to distinguish among different plots. To introduce markers, enter the 

PlotMarkers option followed by the markers symbol. Markers can be special characters 

or letters; use the special character pallet for a complete list of symbols and characters. 

By default, different sets are colored differently, but to choose a specific color, use 

PlotStyle. With PlotStyle the thickness of a line can be changed too, as shown in 

Figure 5-8.

In[11]:=

ListLinePlot[{Table[Cos[i], {i, 0, 2 \[Pi], 0.2}],

  Table[Sin[i], {i, 0, 2 \[Pi], 0.2}]}, PlotMarkers -> {"\[CloverLeaf]", "\

[FilledDownTriangle]"}, PlotStyle -> {Green, Black}]

Out[11]=
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Figure 5-8.  Plots with different marker points

Another general option is Ticks. With this option, you can modify the indicators on 

the axes for both x and y. For example, in Figure 5-9, the plot ticks are marked on the x 

axis; the ticks are –1 and 1. And the y axis is set to automatic (see Figure 5-9).

In[12]:= Plot[x^3,{x,-5,5},Ticks->{{-1,0,1},Automatic}]

Out[12]=

Figure 5-9.  Plots with ticks marked on –1 and 1 for the x axis
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Additionally, plots containing dates can be displayed with DateListPlot. The 

DateListPlot has the following form, DateListPlot[{v1,v2, ... }, “date specification”]. With 

DateListPlot, the x axis is converted into a timeline, and the y axis corresponds to the 

values (v1.v2, ...). Figure 5-10 shows a DateListPlot, starting in June and finishing in 

November.

In[13]:= data1=Table[Power[i,2],{i,0,5}];

data2=Table[Power[i,3],{i,0,5}];

DateListPlot[{data1,data2},{2006,06}]

Out[15]=

Figure 5-10.  Date plot, starting the plot from June 2006 to November 2006

Additionally, you can use ListLinePlot or ListPlot to create date plots. Employing the 

ScalingFunction option with {“Date”, Identity} allows a proper scaling along the date axis, 

for good data visualization over time, as the following code and Figure 5-11 show.

In[16]:= data1=Table[{DateObject[{2006,i}],Power[i,2]},{i,3,9}];

data2=Table[{DateObject[{2006,i}],Power[i,3]},{i,3,9}];

ListLinePlot[{data1,data2},ScalingFunctions->{"Date",Identity},PlotStyle-> 

Automatic,Frame->True,PlotLegends->{"Data 1","Data 2"}]

Out[17]=
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Figure 5-11.  Date plot using ListLinePlot with ScalingFunctions

�Plotting Defined Functions
You can define and plot custom functions (see Figure 5-12). User functions can also 

be used as arguments for plotting commands. Functions can have a single or multiple 

variables, as with 3D plots.

In[17]:= F[x_]:=Exp[x];

Plot[F[x],{x,-10,10}]

Out[18]=

Figure 5-12.  User-defined function for Exp of x
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Also, multiple defined functions are supported. When multiple plots are in the same 

graphic, each plot is colored differently (see Figure 5-13).

In[18]:= X[x_]:=x;Y[y_]:=-Sqrt[y];Z[z_]:=1/z;

Plot[{X[x],Y[x],Z[x]},{x,-10,10}]

Out[19]=

Figure 5-13.  Multiple plots

�Customizing Plots
The Wolfram Language lets users customize plots based on their needs, like adding 

text, changing color style, adding fill, presenting on tabular frameworks, and so forth. 

Many commands used in the 2D plots are also preserved in 3D plots. Depending on the 

graphical representation, options can vary between commands.

�Adding Text to Charts
Adding text to charts, like markers and the range of values, can make a chart more 

informative. Many other elements can be added too.

PlotLabel adds a title to a chart. In addition to this option, there is AxesLabel and 

PlotLegends. The first allows you to add labels to your axes in the form {“x_label,” “y_

label”}; the second enables you to add text related to each expression within the graph 

(see Figure 5-14).
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In[20]:= Plot[{Abs[x], x^2}, {x, -2, 2}, AxesLabel -> {"x", "y"},

 PlotLegends -> "Expressions"]

Out[20]=

Figure 5-14.  Plots with labeled axes and functions

You can use Labeled to add costume text expressions on plots (see Figure 5-15). As 

for the new Mathematica version, passing the cursor over the plot displays the x and y 

coordinates without creating an explicit tooltip.

In[21]:= Labeled[Plot[x^2, {x,-2,2}], "f(x) = "x2,, Left]

Out[21]=

Figure 5-15.  Label placed on the left side of the graphic
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Even with the Labeled command, Tooltips can be constructed. Tooltips display a 

label tooltip for any expression (see Figure 5-16). Tooltips are displayed when the mouse 

pointer is passed over the tooltip expression. The difference between Tooltips and 

PlotLegends is that PlotLegends is an option and not a command.

In[22]:= Tooltip[{Plot[x^2,{x,-2,2}]}]

Out[22]= {}

Figure 5-16.  Tooltip created for the plot expression

When you hover over the entire graph, it shows you the tooltip of the entire graph 

since you specify it. But you can do it just for the expression of the function (see 

Figure 5-17).

In[23]:= Plot[Tooltip[x^2],{x,-2,2},ImageSize->200]

Out[23]=

Figure 5-17.  Tooltip for the curve expression
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If you hover over the curve, it shows you the tooltip of x^2; this function also works 

with the other types of plots. You can add what the tooltip style should look like with the 

ToolTipStyle option (see Figure 5-18).

In[24]:=ListPlot[Tooltip[Range[10], TooltipStyle -> {Bold,Red,  

Background -> LightBlue}], ImageSize -> 250]

Out[24]=

Figure 5-18.  Tooltip for every point plotted

If you move the cursor to the points, you get the coordinates of the points written in 

red and the tooltip’s background in light blue.

�Frame and Grids
Plots can be framed and gridded. The Frame option is used, and to add labels to the 

frame, use FrameLabel, which receives instructions like AxesLabel (see Figure 5-19).

In[25]:= ListPlot[Table[Prime[i],{i,1,10}],Frame->True,FrameLabel-> 

{"X Framed Axis ","Y Framed Axis"}]

Out[25]=
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Figure 5-19.  Framed ListPlot

To add a grid (see Figure 5-20), use the GridLines option.

In[26]:= ListPlot[Table[Prime[i],{i,1,10}],GridLines->Automatic,AxesLabel-> 

{"X Framed Axis ","Y Framed Axis"}]

Out[26]=

Figure 5-20.  Gridded plot
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To modify the grid style, use the GridLinesStyle option, which can have a particular 

thickness using Directive (see Figure 5-21).

In[27]:= ListPlot[Table[Prime[i], {i, 1, 10}], GridLines -> Automatic, 

GridLinesStyle -> Directive[Thickness[0.0002], LightRed]]

Out[27]=

Figure 5-21.  GridLines colored in light red

�Filled Plots
Plots can be filled in various forms—for example, between the x axis, from the bottom 

and top of a curve (see Figure 5-22).

In[28]:= ListLinePlot[Table[Mod[i,2],{i,0,5}],Filling->Bottom]

Out[28]=
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Figure 5-22.  Filled plot from plotted points to the bottom of the axis

A specified region between curves can also fill them by introducing Filling → {“1st 

curve” → {“2nd curve”},”2nd curve” → {“3rd curve”}, as shown in Figure 5-23.

In[29]:= Plot[{x^2, x^3, x^4},{x,0,5}, Filling->{1->{2}, 2->{3}}]

Out[29]=

Figure 5-23.  Filled plots
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�Filling Patterns and Gradient
The updated version has added new features, such as cross-hatching fillers. This 

enhancement is used like the standard options illustrated in Figure 5-24.

In[30]:= ListLinePlot[Table[Mod[i,2], {i,0,5}], Filling -> Bottom, 

FillingStyle -> HatchFilling["Horizontal"]]

Out[30]=

Figure 5-24.  Filled horizontal style

New function additions are implemented by a style or a pattern, as seen in 

Figure 5-25.

In[31]:= ListLinePlot[Table[Mod[i,2], {i, 0, 5}], Filling -> Bottom, 

FillingStyle -> PatternFilling["ChevronLine", ImageScaled[1/20]]]

Out[31]=
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Figure 5-25.  Filled Chevron horizontal line style

The same applies to shading functions; additions are implemented by the gradient 

technique, as seen in Figure 5-26.

In[32]:= Plot[{x^2,x^3,x^4}, {x,0,5},FillingStyle -> LinearGradientFilling 

[{Red,Blue},Top],Filling -> {1->{2},2->{3}}]

Out[32]=

Figure 5-26.  Linear Filled Gradient red, blue, line style
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�Combining Plots
To display overlap graphics, there are ways to display the graphs even if they are not of 

the same type. The following example assigns names to plots without showing the result 

of each one and finally shows the three graphs. The Show command shows previously 

defined plots; the arguments are graphic objects followed by options. This is an 

alternative to doing multiple listable subplots.

In[33]:= plot1=Plot[x,{x,0,10},PlotStyle->Red];

plot2=Plot[Cos[x],{x,0,10},PlotStyle->Black];

plot3=ListPlot[Table[Sin[i]+1,{i,1,10}],PlotStyle->Brown];

Show[plot1,plot2,plot3,PlotRange->Automatic]

Out[33]=

As shown in Figure 5-27, Show changes the appearance of the graphics; the order 

in which they are entered is preserved when displayed. Although making the graphics 

within Show is possible, you can add colors within the Plot command to distinguish the 

different graphs (see Figure 5-28).

In[34]:= Show[Plot[Cos[x],{x,0,10},PlotStyle->Orange],

Plot[Sin[x],{x,0,10},PlotStyle->Purple],PlotRange->Automatic]

Out[34]=

Figure 5-27.  Combined plots shown in the same graphic
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Figure 5-28.  Cosine and Sine plot in the same graphic

There are several ways to create a list of graphs. You can assign variables to graphs 

and deploy them as a list.

In[35]:= {Plot1,Plot2,Plot3}

Out[35]=

As seen in Figure 5-29, these three graphs are separated by commas since it is a list.

Figure 5-29.  List of three different plots

�Multiple Plots
Multiple plots can be shown in a single output cell. To do this, use the Row command; 

this command allows the graphs to be displayed horizontally, with each graph on one 

side of the other (see Figure 5-30). However, Row generally displays expressions in row 

form, not just graphs.

In[36]:= Row[{plot1,plot2,plot3}]

Out[36]=
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Figure 5-30.  Plots expressed as a row

By entering a second argument for Row (see Figure 5-31), you have the option to add 

a separator between the graphs.

Figure 5-31.  Separator (**--**) added between each plot

In[37]:= Row[{plot1,plot2,plot3},"**--**"]

Out[37]=

Alternatively, there is the Column command, which acts similarly to Row but 

displays expressions or graphs in column form (see Figure 5-32).

In[38]:= Column[{plot1,plot2,plot3}]

Out[38]=
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Figure 5-32.  Graphics expressed as a column

If you look at the following example, it is possible to add frames over the entire chart 

(see Figure 5-33) for both columns and rows.

In[39]:={Column[{plot1,plot2,plot3},Frame-> True], 

Row[{plot1,plot2,plot3},Frame->True, FrameMargins->Medium]}

Out[39]=
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Figure 5-33.  Exhibit of column and row expression for the three plots

�Multiaxis Plots
Since the new version, creating a single graph with multiple coordinate systems into a 

single pack requires linking the axes with different styles using MultiAxisArrangement. 

So, the curves connect through the same axis (see Figure 5-34).

In[40]:= ListLinePlot[{Table[{x,x^2},{x,0,1,0.1}],Table[{x,x^3}, {x,0,2,0.1}], 

Table[{x,x^4},{x,0,3,0.1}]},MultiaxisArrangement-> All]

Out[40]=
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Figure 5-34.  An exhibit of column and row expression for the three plots

�Coloring Plot Grids
Column and Row allow you to customize graphs. There are various ways of changing the 

color of the frame and adding shading to the graphs (see Figure 5-35).

In[41]:= Column[{plot1,plot2,plot3},Frame->True,Background->LightCyan, 

FrameStyle->Directive[Black,Dashed],Dividers->All]

Out[41]=
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Figure 5-35.  Column graphics with multiple features

Some options are available depending on whether you use a Row or Column. With 

Column, there is the option of dividers; in Row, there is no such option, but it is done via 

a separator, as you saw earlier. Using Table, it is possible to create different shapes on the 

graphs, either by color or frames, as shown in Figure 5-36.

In[42]:= Table[Row[{plot1,plot2,plot3},Frame->True,FrameStyle->Opts], 

{Opts,{Thick,Dashed,Dotted}}]

Out[42]=

Figure 5-36.  Table of multiple features implemented with the Row command
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Next, let’s address the existing alternative using GraphicsRow and GraphicsColumn. 

Around these commands, there are also options for the image size (see Figure 5-37).

In[43]:= {GraphicsRow[{plot1,plot2,plot3},ImageSize->Medium],

GraphicsColumn[{plot1,plot2,plot3},ImageSize->Small]}

Out[43]=

Figure 5-37.  GraphicsRow vs. GraphicsColumn

GraphicsRow and GraphicsColumn are commands with specific shapes for 

constructing graphics, whether polygons, lines, dots, and so on. In addition, with Rows 

and Columns, the graphs are independent. With GraphicsRow or GraphicsColumn, if 

you select the graph, it is a unique image containing (in this case) the three plots you 

have made.

Another useful command shows you the graphs as a network, taking up the point 

stated earlier—if you select the graph, it is a unique image. The following example adds 

another chart to better illustrate why it’s helpful to use GraphicsGrid (see Figure 5-38).

In[44]:=plot4=LogLogPlot[Cos[x],{x,0,10},PlotStyle->Yellow];

GraphicsGrid[{{plot1,plot2},{plot3,plot4}},Frame->All,FrameStyle->Purple, 

Background->LightCyan]

Out[44]=
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Figure 5-38.  GraphicsGrid showing four different plots

As shown in Figure 5-38, this shape can help you compactly visualize four graphs 

at once. Without a doubt, the graphs do not have to be so simple. The options you have 

seen throughout this chapter can also be added, such as titles and labels on the axes, 

grid lines and colors, and more, as shown in the following example.

In[45]:=

newPlot1=Plot[x,{x,0,10},PlotStyle->{Purple,Thick},PlotLabel->"X"];

newPlot2=Plot[Cos[x],{x,0,10},GridLines->{{-1,0,1},{-1,0,1}},GridLinesSty

le->Directive[Dotted,Blue],PlotLabel->"Cos[x]",ColorFunction->"Rainbow"];

newPlot3=ListPlot[Table[Sin[i]+1,{i,1,10}],Frame->True,FrameLabel->{Style[

"X",Bold],Style["Y",Bold]},PlotStyle->Red,PlotMarkers->"X",PlotLabel->"2D 

Scatter Plot"];

newPlot4=LogLogPlot[Cos[x],{x,0,9},Filling->Axis,ColorFunction-> 

"BlueGreenYellow",PlotRange->{0,1},PlotLabel->"Log Log Plot"];
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Now that you have the new plots, you can compare them by putting them as a nested 

list in GraphicsGrid (see Figure 5-39).

In[46]:=Labeled[GraphicsGrid[{{newPlot1,newPlot2},{newPlot3,newPlot4}}, 

Frame->All,Background->White,Spacings->1],Style["Multiple Plots 

Box",20,Italic],Top,Frame->True,Background->LightYellow]

Out[46]=

Figure 5-39.  Grid of multiple plots

This is not restricted to displaying 2D graphs; it also applies to 3D graphs and other 

types of charts.
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�Colors Palette
If you are interested in more colors, there is a gamma of various types of colors in 

Mathematica. For this, go to the menu in Palettes ➤ Color Schemes, as the color palette 

in Figure 5-40 shows.

Figure 5-40.  Colors palette

The tabs that appear are of the colors associated with the different classes. To defer 

through the colors in the tabs, use the arrows, and the different names of the colors and 

their color or gradient are displayed. If you want to introduce colors that are not reserved 

words, then you use the insert button. For example, go to the Gradient tab and click the 

Insert button, which inserts the function with the chosen color into the notebook.

To illustrate, let’s look at the following example. Select the Color BrownCyanTones, 

insert it with the button, evaluate the expression, and get the result of the 

ColorDataFunction (see Figure 5-41).
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In[47]:= ColorData["BrownCyanTones"]

Out[47]=

Figure 5-41.  ColorData object

This gives you a color data object showing the name, color type, class, and domain. 

Gradient colors are intricate in text and work best with the ColorFunction function. So 

now that you know the name, you can assign it a color (see Figure 5-42).

In[48]:= Plot[x,{x,0,10},ColorFunction->ColorData["BrownCyanTones"]]

Out[48]=

Figure 5-42.  Gradient color of straight line x

Note P lain colors are located in the named tab of the palette.
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�3D Plots
Mathematica can perform various types of 3D graphics, many of which are simple. 3D 

functions are displayed as surfaces in space. Figure 5-43 presents the example.

In[49]:= Plot3D[Sinc[x*8+y^2],{x,-1,2},{y,-1,3},ImageSize->Medium, 

PlotPoints->20]

Out[49]=

Figure 5-43.  3D plot figure

Mathematica allows you to observe the graph by moving with the cursor. Hovering 

over the chart changes the cursor to rotating arrows, which means you can move the 

chart to observe it from different points. One last observation is that when you press the 

Ctrl or Cmd key, you can magnify the chart, keeping its position fixed.

Note that the cursor can manipulate 3D graphs so that you can visualize the angle 

spread graph. Common standard Mathematica displays the graph as a mesh, which 

can be modified with the Mesh option, as you saw earlier, or by adding more points 

to evaluate with the PlotPoints option. This increases the number of points in both 

directions in both x and y. It also serves to improve the quality of the chart.
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�Customizing 3D Plots
3D graphics can also be customized as 2D graphics (see Figure 5-44) as labels to 

axes, colors, grids, and so forth. Figure 5-44 shows a 3D plot with the AxesLabel, 

ColorFunction, and FaceGrids options.

In[50]:= Plot3D[Sin[4(x^2+y^2)]/0.5,{x,-0.8,0.8},{y,-0.8,0.8}, AxesLabel-> 

{"X axis","Y axis","Z axis"},ColorFunction->"Rainbow", FaceGrids->All]

Out[50]=

Figure 5-44.  Gridded 3D plot

Table 5-1 shows general options for 3D graphics.

Table 5-1.  Plot Options

Option Instructions

AspectRatio Height/width ratio

AxesLabel Add text to axes

PlotStyle Color, opacity, thickness, etc.

PlotRange Range of values

PlotLabel Plot title

Background Background Color
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Customization of graphics depends on how you plan to exhibit them. There is no 

limit on how graphics are presented. The following example plots a 3D function and 

colors the background light yellow (see Figure 5-45).

In[51]:= Plot3D[Sin[0.9(x^2+y^2)]/0.5,{x,-1,1},{y,-1,1},AxesLabel-> 

{"X axis","Y axis","Z axis"},FaceGrids->All,ColorFunction->Hue, PlotLabel-> 

"My 3D Plot",Background->LightYellow,ViewAngle->Pi/7]

Out[51]=

Figure 5-45.  Customized 3D plot

�Hue Color Function and List3D
The Hue color function is a directive that specifies that the values are colored depending 

on the height they are at. There are three arguments for the Hue color function. The first 

is for the tone of the color (hue); the second marks the saturation; the third marks the 

bright one; and the fourth is the opacity. With hue, it is possible to adequately identify 

the high and low areas from a graph (see Figure 5-46) in the four previous features. You 

can mark these four different parameters. The hue parameters are in the range of 0 to 1.

In[52]:= Plot3D[Sin[0.9(x^2+y^3)]/0.5,{x,-1,1},{y,-1,1}, FaceGrids-> 

None,ColorFunction -> (Hue[0.5,1,0.6,0.5]&),PlotLabel->Style["My 3D 

Plot",Italic,"Arial"], Background->Black]

Out[52]=
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Figure 5-46.  3D plot with colored Hue values

For 3D scatter plots (see Figure 5-47), you can do it using the same data. With 

ListPlot3D, the points are joined together to create a surface represented by the height 

values of each point. With ListPointPlot3D, a scatter plot is generated in 3D points.

In[53]:=Row[{ListPlot3D[Table[RandomReal[1,5],{i,5}],ColorFunction-> 

"SunsetColors",Ticks->None, PlotLegends-> BarLegend[Automatic, 

egendMarkerSize->90],ImageSize-> Small,PlotLabel->"ListPlot3D",Filling-> 

Bottom,BoxRatios-> Automatic] , ListPointPlot3D[Table[RandomReal[1,5], 

{i,5}], ColorFunction->"Rainbow", PlotLegends->BarLegend[Automatic, 

LegendMarkerSize->90], ImageSize->Small, PlotLabel->" ListPointPlot3D", 

Filling->Bottom,BoxStyle->Thick, BoxRatios->{1,1,1}]},Background->Lighter 

[Gray,0.80],Frame->True]

Out[53]=
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Figure 5-47.  ListPlot3D and ListPointPlot3D for random real numbers

�Contour Plots
One way to visualize a two-variable function is to use a scalar field in which the scalar z = 

f (x, y) is mapped to the point (x, y). A scalar field can be characterized by its contours (or 

contour lines) along which the value of f (x, y) is constant. The trace lines of contour line 

plots or contours can be done using the ContourPlot command, like in the next example.

In[54]:= ContourPlot[-((Pi*x)/(3+x^2+y^2)),{x,-5,5},{y,-5,5},ColorFunction-

>"Temperature",PlotLegends->Automatic,FrameLabel->{x,y}]

Out[54]=

Figure 5-48 plots a contour plot using the ColorFunction and PlotLegends options. 

When you use PlotLegends, you specify what type of legends the chart should use; in 

this case, you use automatic. This shows you the scale of the contours depending on the 

color of each outline; for example, red is when it is at 0.8 or greater. When you pass the 

cursor through the contour curves, the value of that curve appears. To label the values 

of the contour curves in the graph image, add the ContourLabels option and assign 

the value to true, as shown in Figure 5-49. To add lines that pass through the graph, 

use the GridLines command, as you saw earlier, or use Mesh. Mesh can be joined with 

MeshFunction or MeshStyle.

In[55]:= ContourPlot[-((Pi*x)/(3+x^2+y^2)), {x,-5,5}, {y,-5,5}, 

ColorFunction->"DeepSeaColors", PlotLegends-> Automatic, FrameLabel-> 
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{x,y}, ContourLabels->True, Mesh->{10,10}, MeshStyle->{White}, 

MeshFunctions-> {#3&}]

Out[55]=

Figure 5-48.  Contour plot for the defined z function

Figure 5-49.  Contour lines added to the contour plot
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To plot data into a contour plot (see Figure 5-50), use ListContourPlot. 

ListContourPlot creates a contour plot from an array of values shown in heights.

In[56]:= ListContourPlot[Table[Exp[x]*Sin[y],{x,0,2,.1},{y,0,2,.1}], 

ContourLines->True,Mesh->Full,ContourLabels->True]

Out[56]=

Figure 5-50.  ListContourPlot

Another plot is DensityPlot (see Figure 5-51). DensityPlot works similarly to 

ContourPlot.

In[57]:= DensityPlot[(Sin[2x]*Cos[3y])/5,{x,0,5},{y,0,5}, ColorFunction-> 

"SunsetColors", Mesh->Full]

Out[57]=
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Figure 5-51.  Density plot

You can plot density plots from data with ListDensityPlot (see Figure 5-52).

In[58]:= ListDensityPlot[Table[x/3 + Sin[3 x + y^2], {x, 0, 5, 0.1}, {y, 0, 

5, 0.1}],ColorFunction -> "LightTemperatureMap", Mesh -> 10, PlotLegends -> 

Placed[Automatic, Left]]

Out[58]=
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Figure 5-52.  Data represented as a density plot

�3D Plots and 2D Projections
With the Wolfram Language, it is possible to plot functions in 3D and, at the same time, 

project the contour maps to planes as the axis, as shown in Figure 5-53.

In[59]:= Show[Plot3D[(Sin[2 x]*Cos[2 y])/4, {x, 0, 2}, {y, 0, 2},

PlotStyle -> Directive[Opacity[1]], AxesLabel -> {"X axis", "Y axis", "Z  

axis"},ColorFunction -> "Rainbow", PlotTheme -> "Marketing"],SliceContourPlo

t3D[(Sin[2 x]*Cos[2 y])/4, {z == -0.15,    z == 0.15}, {x, 0, 2}, {y, 0, 2},  

{z, -1, 1}, ColorFunction -> "Rainbow", Boxed -> False],  ViewPoint -> 

{1, -1, 1}]

Out[59]=

Chapter 5  Data Visualization



227

Figure 5-53.  3D plot with contour plots along the xy plane

Let’s discuss what happens in the code. You plot a function in 3D (see Figure 5-53), 

and to this function, you add color, using the command directive to define the type of 

opacity, which is set to 1. This is followed by typing the name of the corresponding axes 

for the x, y, and z axes. The ColorFunction option can help define a function for the color 

type; in this case, it is Rainbow. The PlotTheme is an option to plot with various themes 

for visualization. Coming to this point, you move on to the SliceContourPlot3D, which 

gives you a graph of the function, either on a plane or a surface. you have plotted when z 

is worth ± 0.15. A cut is made on the xy plane. This occurs when x and y are in the range 

of 0 to 2, and z is in the range of –1 to 1. In the end, you combine the two graphs with 

the Show command; you use this command because you would not have the function’s 

graph in 3D only by plotting on its slice contour plot.

�Plot Themes
Preconstructed themes can be accessed using the PlotTheme option. You see the 

autocomplete menu when you add the PlotTheme option, followed by the first 

apostrophe. Figure 5-54 shows the different themes that exist.
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Figure 5-54.  PlotTheme pop-up menu

PlotTheme supports 3D plots, as shown in Figure 5-55.

In[60]:= data=Flatten[Table[{x,y,Sin[10(x^2+y^2)]/10},

{x,-2,2,0.2},{y,-2,2,0.2}],1]; ListPointPlot3D[data,ColorFunction-> 

"LightTemperatureMap", PlotTheme->"Detailed",ViewPoint->{0,-2,0}, 

ImageSize->250,PlotLegends->Placed[BarLegend[Automatic, LegendMarkerSize-> 

90],Left], ImageSize->20]

Out[60]=

Figure 5-55.  3D scatter plot

These themes can be used for both 2D and 3D graphics. Now, let’s look at another 

type of theme for a two-dimensional chart (see Figure 5-56).
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In[61]:= Plot[Cos[x],{x,0,10},PlotLabel->"Cos[x]",PlotTheme-> "Detailed"]

Out[61]= cos(x)

Figure 5-56.  2D plot theme: Detailed

Let’s discuss a characteristic of PlotTheme. Some themes already have functions 

within these themes. Figure 5-55 shows that the Detailed theme adds frames, plot 

legends, and grid lines, even though you can add them manually.

It is also notable that other topics can only be used for explanatory and 

demonstrative purposes—that is, no extra information is needed on the chart, but you 

need to be able to express the information effectively and concretely, as in the Business 

and Minimal themes (see Figure 5-57).

In[62]:= Table[Plot[Cos[x],{x,0,10},PlotLabel->"Cos[x]",PlotTheme->Pl],{Pl,

{"Business","Minimal"}}]

Out[62]=

Figure 5-57.  Business and Minimal plot themes
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While there are also topics that show more details, like the Detailed theme you saw 

earlier, other themes exist, like the Scientific theme, as shown in Figure 5-58. You can 

add more options, such as ColorFunction and a view, with the ViewProjection option, 

which allows you a fixed observation point.

Figure 5-58.  Orthographic point of view

Note P lotLegends can work together with ColorFunction, displaying how the 
colors of the dots transition between blue and red, from lowest to highest.

In[63]:= data=Flatten[Table[{x,y,Sin[10(x^2+y^2)]/10},

{x,-2,2,0.2},{y,-2,2,0.2}],1]; ListPointPlot3D[data,ColorFunction-> 

"LightTemperatureMap",PlotLegends-> Placed[BarLegend[Automatic, 

LegendMarkerSize->90],Left], PlotTheme->"Scientific", ViewProjection-> 

"Orthographic"]

Out[63]=

If you want to observe through the coordinate measurements, use the Viewpoint 

option, which is governed by {x coordinate, y coordinate, z coordinate}. These 

coordinates are relative to the graph’s center, as Figure 5-59 shows.
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In[64]:= ListPointPlot3D[Data,ColorFunction->"LightTemperatureMap", 

PlotLegends->Automatic,PlotTheme->"Scientific", ViewPoint-> 

{0,0,-2},ImageSize->Medium]

Out[64]=

Figure 5-59.  Viewpoint for x and y equal 0 and z equal –2

�Summary
This chapter introduced the basics of data visualization, emphasizing 2D plots, plotting 

data, and user-defined functions. As progress is made, the section on customizing plots 

covers text to charts, frames, grids, and filled plots, including further content on fill 

patterns and gradient filling, followed up by discussing how plot combinations are done, 

focusing on multiple plots, and coloring plot grids and concentrating on new additions 

like multi-axes plots. Furthermore, an overview of the color palette was presented, 

followed by a segmentation of 3D Plots, elaborating on the customization, Hue coloring, 

and contour plots. Finally, it culminates with an outlook on the variety of plot themes for 

3D graphs.

Chapter 5  Data Visualization



233
© Jalil Villalobos Alva 2024 
J. Villalobos Alva, Beginning Mathematica and Wolfram for Data Science,  
https://doi.org/10.1007/979-8-8688-0348-2_6

CHAPTER 6

Statistical Data Analysis
This chapter reviews concepts and techniques to analyze with the Wolfram Language, 

perform a linear adjustment through equations, and implement specialized functions 

of the Wolfram Language for the same purpose, using statistical functions. The Wolfram 

Language is a useful tool for statistics and probability. Mathematica has the functions to 

perform numerical and approximate calculations for descriptive statistics and random 

distributions, random numbers, and random sampling methods, as you see in this 

section.

�Random Numbers
This section reviews the basic commands to generate random numbers—for the case of 

integers, real and complex. You see the functions of performing random sampling with 

replacement and without replacement and, in addition, ensuring that the results are 

reproducible for random numbers.

To create random numbers, there are several functions to generate random integers 

and real ones. The RandomInteger function generates entered random numbers; if no 

arguments are entered in the function, the generation interval is 0 or 1.

In[1]:= RandomInteger[]

Out[1]= 0

To enter a range, you must define it within the function; for example, between  

 –1 and 1.

In[2]:= RandomInteger[{-1,1}]

Out[2]= 1

https://doi.org/10.1007/979-8-8688-0348-2_6#DOI
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To generate a list of random numbers, you must define how many numbers you want 

within the list.

In[3]:= RandomInteger[{-1,1},7]

Out[3]= {-1,0,1,1,1,1,1}

To repeat the numbers, add the form of the list or nested list as a second argument.  

For example, create a nested list of seven total items in each sublist with four items.

In[4]:= RandomInteger[{-10,10},{7,4}]

Out[4]= {{-8,7,7,0},{-4,-8,10,-8},{10,8,-8,0},{-2,-6,8,-10}, 

{8,-1,-6,-4},{1,4,0,-1},{5,7,9,10}}

The function for generating random numbers with a decimal point is called 

RandomReal. It works similarly to RandomInteger, where the interval is between 

curly braces.

In[5]:= RandomReal[]

Out[5]= 0.020413

A command for complex random and prime numbers also exists.

In[6]:= RandomComplex[]

Out[6]= 0.727318 +0.998602 I

You must define a minimum and maximum interval for random prime numbers— 

for example, if it is a prime number of the first 100.

In[7]:= RandomPrime[{1,100},6]

Out[7]= {89,2,59,71,53,29}

This type of function generates pseudorandom numbers so that you can set a seed 

to generate the numbers. This is done with SeedRandom. With a seed, you can ensure 

that the starting sequence of random numbers generated is the same to make random 

outputs reproducible. To set a seed, use the SeedRandom command. The following 

example sets a seed followed by a sequence of random numbers; once the seed is 

introduced, the results should be the same for that seed.

In[8]:= SeedRandom[6467789];RandomInteger[{-1,1},3]

Out[8]= {0,1,0}
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The seed must go in the same code block to generate the results. There is the option 

to choose the method. The following example uses the MersenneTwister method, which 

generates random numbers. Using another method allows you to generate sequences of 

different random numbers.

In[9]:=SeedRandom[Method->"MersenneTwister"];RandomInteger[{-1,1},{3,3}]  

// MatrixForm

Out[9]//MatrixForm

	

− − −
−

















1 1 1

0 0 1

0 0 1 	

The seed enters the function without arguments to return to the original value.

In[10]:= SeedRandom[];

In addition to introducing a seed, you can create blocks of random numbers in which 

functions can be used locally and not affect random behavior outside these blocks. This 

is done with the BlockRandom function.

In[11]:= BlockRandom[RandomReal[1]]

Out[11]= 0.774569

If you run an algorithm that produces random numbers within the BlockRandom 

and declare the seed, this should not impact other processes where random numbers 

are generated outside the BlockRandom. To illustrate, let’s look at the example.

In[12]:= SeedRandom[121];

{RandomReal[],BlockRandom[RandomReal[]],RandomReal[],RandomReal[]}

Out[13]= {0.994955,0.788549,0.788549,0.957081}

As seen, the latter process generated different random numbers

�Random Sampling
Use the RandomChoice function to make a sample with a replacement. To select a single 

item, you write only the list. You set a seed to get the same results.
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In[14]:= SeedRandom[12345]; ranData=RandomReal[{0,1},10]

Out[15]={0.158069,0.599452,0.656143,0.918006,0.0805897,0.682397,0.638187,

0.431772,0.126333,0.973705}

This generated a list of 10 random numbers from 0 to 1, and now you randomly 

choose an item of these numbers.

In[16]:= RandomChoice[ranData]

Out[16]= 0.973705

This gives you a single result from the list of 10 items. Similarly, you can choose the 

number of samples with some elements, with the following form: RandomChoice[“data,” 

“number of samples,” “several elements”]. You now pick three samples with one element 

of the ten elements.

In[17]:= RandomChoice[ranData,{3,1}]

Out[17]= {{0.126333},{0.431772},{0.973705}}

Although, if you want it in the same sample, you only need to specify the number of 

elements to choose from.

In[18]:= RandomChoice[ranData,5]

Out[18]= {0.0805897,0.158069,0.158069,0.0805897,0.973705}

To get a sampling without replacement, use RandomSample. This function only 

chooses a list item from the data list once. To choose, you only specify the number of 

elements in the sample as the second argument since the first one corresponds to the 

data list.

In[19]:= RandomSample[ranData,9]

Out[19]={0.158069,0.682397,0.431772,0.599452,0.918006,0.638187,0.656143,

0.126333,0.0805897}

Looking at the details, you notice that there is no repeated value. Each item in the list 

is equally likely to be selected in sampling.

In the case that each item in the list has a specific weight associated with it, then 

to enter those terms, you use the following form of expression, {w1, w2, w3...} → 

{element1, element2, element3...}; the list of items is associated with a specific weight for 

replacement sampling. You denote the list of weights and do the sampling by associating 

the weights and elements.
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In[20]:=w={0.03`,0.08`,0.22`,0.04`,0.12`,0.3`,0.12`,0.03`,0.04`,0.02`}; 

RandomChoice[w->ranData,2]

Out[20]= {0.656143,0.638187}

They are chosen depending on how each element is assigned a weight. For sampling 

without replacement, the process is analogous.

In[21]:= RandomSample[w->ranData,3]

Out[21]= {0.682397,0.656143,0.599452}

�Systematic Sampling
To perform a system sampling, you must determine the sample size, M. To get the 

sample size, you can list the items in the list or get the length of the list. To get started, 

you create a list of 200 prime numbers.

In[22]:= SeedRandom[09876]; rPrime=RandomPrime[{1,100},200];

Length[rPrime]

Out[24]= 200

The sample size was already calculated, so you must determine the size of a specific 

sample; for this case, you want a sample of 20 elements. Once the sample is determined, 

you calculate the interval of the denoted sampling j; j is calculated through a ratio, the 

original sample size divided by the total number of elements in the specified sample.

In[25]:= j=Length[rPrime]/20

Out[25]= 10

This means that the sampling interval for the new sample is from 1 to 10. From 

here, you select a random number within the interval, and from there, you add j times 

to choose the next element; that is, for the first element, it is a random h number of the 

range [1,10], for the second it is h + j, and for the third h + 3j, and so on, until it reaches 

the size of the original sample.

You chose a random number between 1 and 10.

In[26]:= RandomSample[Range[10],1]

Out[26]= {6}
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The result means that you select from the sixth element. You deploy the list to have a 

better view of the data.

In[27]:= rPrime

Out[27]={7,41,3,7,83,61,41,29,89,5,17,3,41,73,73,67,29,71,23,13,31,19,89, 

41,79,19,47,83,13,73,37,67,59,29,13,17,83,43,17,71,89,11,71,23,29,37,89,3, 

89,11,41,59,2,37,41,31,59,79,61,13,59,53,53,59,2,43,11,73,41,37,3,31,13, 

83,83,3,31,5,37,2,89,23,2,37,23,3,79,17,47,71,79,13,47,13,17,41,71,73,2, 

53,29,7,2,7,79,97,83,31,3,43,29,11,37,67,11,41,67,13,23,2,59,53,89,61,29, 

19,29,13,11,7,61,71,59,53,5,71,13,43,67,2,73,2,5,67,83,53,11,7,61,71,7,11, 

83,59,47,67,17,83,43,53,17,59,11,11,61,2,11,97,2,73,41,7,41,19,41,71,53,3,

3,41,29,5,73,53,79,43,13,19,29,2,73,67,29,41,13,3,43,23,59,89}

To get the positions of the items to be selected, it would be the random number for 

the selection, which is 6, plus n times j until you have 20 elements.

In[28]:= Table[6+n*j,{n,0,19}]

Out[28]= {6,16,26,36,46,56,66,76,86,96,106,116,126,136,146,156,166, 

176,186,196}

Note R emember that the position index starts from 1 to n elements.

You must choose the positions shown in the previous output. To choose, you use the 

double square bracket notation.

In[29]:= Table[rPrime[[6+n*j]],{n,0,19}]

Out[29]= {61,67,19,17,37,31,43,3,3,41,97,41,19,71,53,67,2,71,43,3}

Let’s take a closer look at the selected elements, highlighting them in red (here it is 

plaintext) with the help of MapAt and Style.

In[30]:= MapAt[Style[#,FontColor-> ColorData["HTML"]["Red"]]&, 

RPrime,{#}&/@{61,67,19,17,37,31,43,3,3,41,97,41,19,71,53,67,2,71,43,3}]

Out[30]={7,41,3,7,83,61,41,29,89,5,17,3,41,73,73,67,29,71,23,13,31,19,89, 

41,79,19,47,83,13,73,37,67,59,29,13,17,83,43,17,71,89,11,71,23,29,37,89,3, 

89,11,41,59,2,37,41,31,59,79,61,13,59,53,53,59,2,43,11,73,41,37,3,31,13, 

83,83,3,31,5,37,2,89,23,2,37,23,3,79,17,47,71,79,13,47,13,17,41,71,73,2, 
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53,29,7,2,7,79,97,83,31,3,43,29,11,37,67,11,41,67,13,23,2,59,53,89,61,29, 

19,29,13,11,7,61,71,59,53,5,71,13,43,67,2,73,2,5,67,83,53,11,7,61,71,7,11, 

83,59,47,67,17,83,43,53,17,59,11,11,61,2,11,97,2,73,41,7,41,19,41,71,53,3,

3,41,29,5,73,53,79,43,13,19,29,2,73,67,29,41,13,3,43,23,59,89}

As you can see, system sampling does not create a completely random sample. 

The random selection process comes in the first part when you select the first item to 

create the new sample. Once the first item is selected, the other selections are from 

a succession of non-random numbers. Another aspect to consider is the order of the 

original sample; if the elements are periodic, this can lead to significant variability in the 

selection of components.

�Commons Statistical Measures
Grasping the commonly used statistical formulas is crucial to understanding how the 

data behaves on a given set of conditions. Descriptive statistics are implemented once 

data has been collected, and it is one of the first steps in the process of exploratory data 

analysis, which allows you to find insights into the data collected in terms of discovering 

patterns, anomalies, trends, seasonality, variations, and so forth.

Exploratory data analysis is a set of techniques to detect characteristics that are not 

visible at first sight or revealed once the data has been collected. The basic structure of 

this technique relies on numeric data analysis, graphical representation, and a statistical 

model. Many reasons to use data exploratory analysis include reviewing for missing 

data, describing a general and particular idea of the underlying structure, and analyzing 

for different assumptions associated with the model creation, among many more.

The proposal for such a process was introduced by Jhon Tukey in 1977. To review this 

technique in more depth, visit the following reference, Exploratory Data Analysis (Tukey, 

J. W. [1977], Vol. 2, pp. 131-160).

�Measures of Central Tendency
Given a sample of data, you can calculate the descriptive measures. Central trend 

measures are those parameters that give you information on the average data values to 

be studied. The mean, also known as arithmetic mean, is a parameter calculated from 
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the sum of the values of the sample and divided by the sum of the number of elements. 

The Mean function calculates the average.

In[31]:= list1=Table[Prime[i],{i,10}];

"Prime list :"<>ToString@list1

"Mean: "<>ToString@Mean@N@list1

Out[32]= Prime list :{2, 3, 5, 7, 11, 13, 17, 19, 23, 29}

Out[33]= Mean: 12.9

Note T he symbol <> is the short notation for StringJoin.

The median is the value that divides the sample into two equal parts; since it is the 

data’s midpoint, the median is the symmetry value relative to the amount of data. The 

Median function gives you this value.

In[34]:= "Median: "<>ToString@Median@list1

Out[34]= Median: 12

Mode is the most common value of the sample. You use the Counts command, 

which gives you the number of occurrences of each item in the list.

In[35]:= Counts[list1]

Out[35]= <|2->1,3->1,5->1,7->1,11->1,13->1,17->1,19->1,23->1,29->1|>

In this case, the occurrence is 1. There are no repeated values; you can say there is no 

mode in this data sample.

�Measures of Dispersion
Dispersion measurements reveal information on the variability presented in the 

sample. The range tells you about the interval in which the data varies. This is taken by 

subtracting the max value and the minimum value. The Max and Min functions return a 

list’s maximum and minimum values.

In[36]:= "Range: "<>ToString[Max[list1]-Min[list1]]

Out[36]= Range: 27
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Variance is a measure obtained by subtracting the mean of each element in the 

sample. The result is squared, followed by adding the elements together. The summation 

is divided by the size of the sample. Its function is Variance.

In[37]:= "Variance: "<>ToString[N[Variance[list1],3]]

Out[37]= Variance: 81.4

Standard deviation is a measurement obtained from the square root of the variance 

or employing the StandardDeviation function.

In[38]:= {"Square root of Variance: " <> ToString[N[Sqrt[Variance[list1]], 

2]],"StandardDeviation: " <> ToString[N[StandardDeviation[list1], 2]]}

Out[38]= {Square root of Variance: 9.0,StandardDeviation: 9.0}

The standard score, z, is a score that measures how many standard deviations are 

away from the arithmetic average for each sample element. The mathematical equation 

is z x
=

− µ
σ

, where x is the measure, μ the mean, and σ the standard deviation. If z is 

positive, the element is greater than the mean. When z is negative, it is the opposite case. 

You determine the z-score for the second item in the list.

In[39]:= z=N[(list1[[2]]-Mean@list1)/StandardDeviation@list1,3];

"z score: "<>ToString@z

Out[40]= z score: -1.10

This result means that the score for the second element is 1.10 times below average.

Quartile calculation divides data into four equal parts. The lower quartile 

corresponds to the 25% quartile of the data, while the second quartile is 50%, the third 

quartile (the upper quartile) is 75%, and the fourth quartile (100%). To calculate the 

quartiles, you use the Quartiles function, which gives the values of the first, second, and 

third quartiles.

In[41]:= "Quartiles: " <> ToString@Quartiles[list1]

Out[41]= Quartiles: {5, 12, 19}

If you want to get a single value, use the Quantile function, followed by the 

percentile, to be calculated. Then, use the following for calculating the third quartile 

(75th percentile).

In[42]:= Quantile[list1,0.75]

Out[42]= 19
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To calculate the interquartile range, which is the difference between the upper and 

lower quartiles, use the InterquartileRange function.

In[43]:= InterquartileRange[List1]

Out[43]= 14

�Statistical Charts
Using charts to display data is a straightforward approach with Mathematica. Many times, 

studies include various types of information. Mathematica has a repertoire of statistical 

charts based on users’ needs for more visual and understandable presentations.

�Bar Charts
Sometimes, when you conduct a statistical study, you can find quantitative and 

qualitative variables and create a bar graph representation for these variables. A bar 

graph (see Figure 6-1) is a graphical representation where the number of frequencies of a 

discrete qualitative variable is displayed on an axis.

In[44]:= BarChart[{1,2,3,4},ChartLabels->{"feature 1","feature 2", 

"feature 3","feature 4"}]

Out[44]=

Figure 6-1.  Bar chart
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The different modalities of the qualitative variable are positioned on one of the 

axes. The other axis shows the value or frequency of each category on a given scale. The 

feature 2 bar has an associated value of 2. The orientation of the graph can be vertical, 

where the categories are located on the horizontal axis, and the bars are vertical or 

horizontal, where the categories are located on the vertical axis. The bars are horizontal 

(see Figure 6-2).

In[45]:= GraphicsRow[{BarChart[{1,2,3,4},ChartLabels->{"feature 1", 

"feature 2","feature 3","feature 4"},BarOrigin->Bottom,ChartStyle-> 

LightBlue],BarChart[{1,2,3,4},ChartLabels->{"feature 1","feature 

2","feature 3","feature 4"},BarOrigin->Left,ChartStyle->LightRed]}]

Out[45]=

Figure 6-2.  Bottom and left origin bar chart

Bar graphs can be used to compare magnitudes of different categories and observe 

how values change according to a fixed variable—for example, each feature. In addition, 

you can choose how to show the bars, where you show a single series, as shown in 

the earlier example; grouped, which contains several data series and is represented 

by a different type of bar; or stacked, where the bar is divided into segments with 

different colors representing various categories. The percentile layout is displayed on a 

percentage scale, as shown in Figure 6-3.

In[46]:= Labeled[GraphicsGrid[{{BarChart[{{4, 3, 2, 1}, {1, 2, 3}, {3, 5}}, 

ChartLayout -> "Grouped", ColorFunction -> "SolarColors"], BarChart[{1, 2, 

3, 4}, ChartStyle -> LightRed, ChartLayout ->

"Stepped"]}, {BarChart[{{4, 3, 2, 1}, {1, 2, 3}, {6, 5}}, ChartLayout -> 

"Stacked"], BarChart[{{4, 3, 2, 1}, {1, 2, 3}, {6, 5}}, ChartLayout -> 
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"Percentile", ColorFunction -> "DarkRainbow"]}},

Frame -> All, FrameStyle -> Directive[Black, Dashed], Background -> 

LightBlue, ImageSize -> 500], "Bar Charts", Top]

Out[46]=

Figure 6-3.  Bar chart grid

There is also the counterpart to 3D graphics, with BarChart3D (see Figure 6-4).

In[47]:= SeedRandom[123];

Labeled[GraphicsGrid[{{BarChart3D[{{4, 3, 2, 1}, {1, 2, 3}, {3, 5}},

ChartLayout -> "Grouped", ColorFunction -> "SolarColors"],

BarChart3D[{1, 2, 3, 4}, ChartStyle -> LightRed, ChartLayout -> 

"Stepped"]}, {BarChart3D[RandomReal[1, {10, 5}], ChartLayout -> "Stacked"], 

BarChart3D[{{4, 3, 2, 1}, {1, 2, 3}, {6, 5}}, ChartLayout -> "Percentile", 

ColorFunction -> "DarkRainbow"]}},  Frame -> All, FrameStyle -> 

Directive[Red, Thick],Background -> LightBlue, ImageSize -> 500], "3D Bar 

Charts", Top, Frame -> True, Background -> White]

Out[48]=
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Figure 6-4.  3D bar charts grid

�Histograms
Histograms are a type of visualization that is commonly used in statistical studies. With 

histograms, you can see how a sample is distributed. Histograms are used to represent 

the frequencies of a quantitative variable. The variable classes are positioned on the 

horizontal axis, and the frequencies are on the other axis. The following examples graph 

a histogram from a population of 50 random values between 0 and 1 and set the number 

of bins to 10. The second argument for histograms is to define the number of bins (see 

Figure 6-5).

In[49]:= SeedRandom[4322];

hist1=Table[RandomReal[{2,3}],{i,0,20}];

Histogram[hist1,10]

Out[51]=
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Figure 6-5.  Histogram for random real numbers

Note  When dealing with charts, if you put the pointer cursor on the graphic, an 
info tip marks the value.

Just like with bar charts, there are ways to edit the histogram’s origin and how the 

histogram is displayed—stacked or overlapped—as shown in Figure 6-6.

In[51]:= hist2=Table[Cos[i],{i,1,20}];

hist3=Table[Sin[i],{i,1,10}];

GraphicsColumn[{Histogram[{hist1,hist2},10,BarOrigin-

>Left,ChartStyle->"Pastel",ChartLegends->{"rand num", 

"Cos(x)"}],Histogram[{hist2,hist3},10,ChartLayout-> 

"Overlapped",ChartStyle->"Pastel",ChartLegends-> {"Cos(x)","Sin(x)

"}],Histogram[{hist2,hist3},10,ChartLayout-> "Stacked",ChartStyle-

>"Pastel",ChartLegends->{"Cos(x)","Sin(x)"}]}]

Out[54]=
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Figure 6-6.  Histogram shapes grid

With this in mind, you can also graph bidirectional histograms using 

PairedHistograms. These can be horizontal or vertical orientations and contain two data 

series whose bars go opposite directions (see Figure 6-7).

In[55]:=SeedRandom[123] ;GraphicsRow[{PairedHistogram[{RandomReal[{0,1},20]}, 

{RandomReal[{0,1},20]},BarOrigin->Left], PairedHistogram[{RandomReal 

[{0,1},20]}, {RandomReal[{0,1},20]},10,BarOrigin->Top, ChartStyle->"Pastel"]}]

Out[55]=
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Figure 6-7.  Paired histograms with different origins

While histograms offer a powerful way to visualize data distribution, you can 

enhance these visualizations by incorporating various statistical functions directly into 

the notebook. By default, histograms in the Wolfram Language display data counts 

within each bin. However, it’s often valuable to visualize cumulative distribution 

functions (CDFs) and probability density functions (PDFs), like the following example 

and Figure 6-8.

In[56]:= (*common options*)

continuousOpts = {Filling -> Axis, Frame -> True, FrameLabel -> {"X", #}, 

PlotLabel -> "Continuous " <> #} &;

(*Continuous PDF and CDF plots*)

continuousPlots =

 Grid[{{Labeled[Plot[PDF[NormalDistribution[0, 1], x], {x, -3, 3},      

Evaluate@continuousOpts["PDF"],  PlotStyle -> Directive[Blue, 

Opacity[0.5]]], "PDF", Top],  Labeled[Plot[CDF[NormalDistribution[0, 

1], x], {x, -5, 5},  Evaluate@continuousOpts["CDF"], PlotStyle -> 

Directive[Red, Thick]], "CDF", Top]}}, Frame -> All]

Out[57]=
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Figure 6-8.  PDF and CDF plots for the standard normal distribution

The previous code generates the PDF and CDF plots for a continuous distribution, 

for a standard normal distribution (mean 0, standard deviation 1). It uses the 

distributions as arguments for the PDF and CDF functions. The plots are labeled 

accordingly for clarity. Similarly, the process can be done to discrete distributions (see 

Figure 6-9).

In[57]:= (*common options*)

discreteOpts = {ExtentSize -> Full, Frame -> True, FrameLabel -> {"x", #}, 

PlotLabel -> "Discrete " <> #} &;

(*Discrete PDF and CDF plots*)

discretePlots =  Grid[{{Labeled[ DiscretePlot[PDF[BinomialDistribution 

[10, 0.5], x], {x, 0, 10}, Evaluate@discreteOpts["PDF"], PlotStyle -> 

Directive[Green, Opacity[0.5]]], "PDF", Top], Labeled[DiscretePlot[CDF 

[BinomialDistribution[10, 0.5], x], {x, 0, 10}, Evaluate@discreteOpts["CDF"],  

PlotStyle -> Directive[Orange, Thick]], "CDF", Top]}}, Frame -> All]

Out[58]=
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Figure 6-9.  PDF and CDF plots for the binomial distribution with parameters 
n=10 and p=0.5

�Pie Charts and Sector Charts
Pie charts are circles that are divided into two or more sections. They represent 

quantitative variables that make up a total; for example, the sector’s size is drawn 

proportional to the value it represents and is expressed in percentages, which only 

provides relative quantitative information. Pie charts are made with the PieChart 

command (see Figure 6-10).

In[59]:= GraphicsRow[{PieChart[{1,1,1},ChartLegends->{"part a","part b", 

"part c"},ChartStyle->{LightRed,LightBlue,LightYellow}], PieChart[{1,1}, 

ChartLegends->{"part a","part b"},ChartStyle-> "SunsetColors"]}]

Out[59]=

Figure 6-10.  Pie charts
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Sector charts are graphed with the SectorChart command (see Figure 6-11). They 

are used to compare different data that occur in the same place. They are constructed 

from the proportional size of x to the value of the radius of y. The dimension in which the 

quantities are expressed must be the same for all the segments.

In[60]:= SectorChart[{{2,1},{1,2}},ChartLegends->{"Sector a","Sector b"}, 

ChartStyle->{LightRed,LightYellow}]

Out[60]=

Figure 6-11.  Sector chart

For each graph seen, there is a corresponding command to create them in 3D, as 

shown in Figure 6-12.

In[61]:=

GraphicsGrid[{{SectorChart3D[{{2, 1, 1}, {3, 1, 2}, {1, 2, 2}},      

PlotLabel -> "3D Sector chart",     ChartStyle -> {Red, Blue, 

Yellow}],    PieChart3D[{1, 1, 1}, ChartStyle -> "GrayTones",     PlotLabel  

 -> "3D Pie Chart"]}, {Histogram3D[    Table[{i^3, i^-1}, {i, 20}], 10,      

ChartElementFunction -> "GradientScaleCube",     PlotLabel -> "3D 

Histogram"], None}}, ImageSize -> 500,  Frame -> True, FrameStyle -> 

Directive[Thick, Dotted]]

Out[61]=
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Figure 6-12.  3D grid charts

�Box Plots
The box plot is a way of representing and observing a data distribution. Fundamentally, 

it highlights aspects of data distribution in one or more series. To graph a box plot, you 

use the BoxWhiskerChart command (see Figure 6-13).

In[62]:= SeedRandom[1234] BoxWhiskerChart[{Table[RandomReal[],{i,0,50}], 

Table[RandomReal[],{i,0,50}], Table[RandomReal[],{i,0,15}]},ChartLabels→ 
{"Chart 1","Chart 2","Chart 3"}]

Out[62]=
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Figure 6-13.  Box plot

The box is represented by a rectangle that marks the interquartile range of the 

distribution. The first line from bottom to top marks the value of the first quartile (25%), 

the line that crosses the box is the median, and the last line that delimits the box is the 

third quartile (75%). Whiskers are the lines that mark the maximum and minimum 

values. When passing the mouse cursor over the plot, information about the data is 

shown; this includes minimum, maximum, median, 75th percentile, and first quartile. 

Depending on the specification, this can affect the parameters displayed and how (see 

Figure 6-14).

In[62]:= SeedRandom[123];

data = {Table[RandomReal[], {i,0,50}],Table[RandomReal[], {i,0,50}], 

Table[RandomReal[], {i,0,15}]};

options = {ImageSize -> Medium, ChartStyle -> "MintColors", FrameStyle -> 

Directive[White, 12]};

GraphicsGrid[{{BoxWhiskerChart[data, "Median", PlotLabel -> Style["Median", 

White], options], BoxWhiskerChart[data, "Basic", PlotLabel -> 

Style["Basic", LightOrange], FrameStyle -> Directive[Orange, 12], options], 

BoxWhiskerChart[data, "Notched",

PlotLabel -> Style["Notched", White], options]},

{BoxWhiskerChart[data, "Outliers", PlotLabel -> Style["Outliers", 

LightOrange], FrameStyle -> Directive[Orange, 12], options], 

BoxWhiskerChart[data, "Mean", PlotLabel -> Style["Mean", 
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White], options],BoxWhiskerChart[data, "Diamond", PlotLabel -> 

Style["Diamond", LightOrange], FrameStyle -> Directive[Orange, 12], 

options]}},FrameTicksStyle -> 18, Frame -> {None, None, {{1, 1} -> True, 

{2, 2} -> True, {1, 3} -> True}}, FrameStyle -> Directive[Thick, Red], 

Background -> Black]

Out[63]=

Figure 6-14.  Multiple box plots

Median is the default specification; it shows the median in the center of the box. 

Basic is to show only the box. Notches show the confidence interval for the median. 

Outliers show and mark the atypical points. The mean marks the average of the 

distribution, and Diamond notes the confidence interval for the mean.

�Distribution Chart
A violin diagram is used to visualize the distribution of the data and the probability 

density. To plot a violin plot (see Figure 6-15), the DistributionChart command is used.

In[64]:= DistributionChart[Table[i^Exp[i],{i,0,1,0.01}]]

Out[64]=
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Figure 6-15.  Violin plot

The graph in the figure combines a box-and-whisker plot and a density plot on each 

side to show how the data is distributed. DistributionChart has different shapes to graph 

(see Figure 6-16).

In[65]:= GraphicsGrid[{{DistributionChart[Table[i^Exp[i], {i, 0, 2, 0.1}], 

ChartElementFunction -> "SmoothDensity", PlotLabel -> "SmoothDensity"],  

DistributionChart[Table[i^Exp[i], {i, 1, 2, 0.1}], ChartElementFunction -> 

"Density", PlotLabel -> "Density",

FrameStyle -> Directive[Red, 12]]}, {DistributionChart[ Table[i^Exp[i], 

{i, 0, 1, 0.09}], ChartElementFunction -> "HistogramDensity", PlotLabel -> 

"HistogramDensity", FrameStyle -> Directive[Red, 12]], DistributionChart 

[Table[i^Exp[i], {i, 0, 1, 0.0112}], ChartElementFunction -> "PointDensity", 

PlotLabel -> "PointDensity"]}}, ImageSize -> Medium, FrameStyle -> 

Directive[Thickness[0.02], LightGray], Dividers -> {2 -> Directive[Black, 

Dotted], 2 -> Directive[Black, Dotted]}, Frame -> {1 -> False, False}]

Out[65]=
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Figure 6-16.  Violin plots in different shapes

�Charts Palette
Another way to add options to charts is through the Chart Element Schemes palette, 

found within the Palettes menu (Palettes ➤ Chart Element Schemes). This palette is 

shown in Figure 6-17.
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Figure 6-17.  Chart Element Schemes palette
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In the palette, you find three categories. Chart Type is where you choose the type 

of chart. This contains four tabs: (1) general, where the graphics are found from bar 

charts, sector, footer, and others; (2) statistical graphs associated with data distributions; 

(3) financial, associated with charts for financial data; and (4) gauges, which are 

diagrams of measures. The second category is to choose the shape of the graph with 

the ChartElementFunction option. The third category is for the preview of the options 

chosen from the previous categories.

To illustrate this, let’s look at the following exercises. First, make the graph of the 

density of a histogram, and later, modify the shape of the graph with the help of the 

palette. To graph the density of a histogram, use the DensityHistogram command (see 

Figure 6-18).

In[66]:= DensityHistogram[Flatten[Table[{x^2+y^2,x^2-y^2}, 

{x,0,2,0.1},{y,0,2,0.1}],1],ChartBaseStyle->Red,ColorFunction-> 

"SolarColors",Background->Black,FrameStyle->Directive[White,Thick], 

FrameLabel->{"X","Y"},ImageSize->300]

Out[66]=

Figure 6-18.  Density histogram
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Once the graph is done, add an option with the pallet head and open the Chart 

Element Schemes palette. Within the chart type, you click the statistical tab and choose 

the DensityHistogram chart. Once the chart has been selected, go to Chart Element and 

select that the type of form is Bubble. Then go to Options Preview to see how the graph 

would look; if you click Shape, a pop-up menu appears with other shapes; you choose 

hexagon. Figure 6-19 shows how the preview of the selected chart elements should look.

Figure 6-19.  Density histogram options selected
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Once you finish selecting, click the insert button so that it inserts the following code: 

ChartElementFunction ➤ ChartElementDataFunction [“Bubble”, “Shape” ➤ “Hexagon”]. 

To graph it correctly, add this code as an option and proceed to plot it (see Figure 6-20) 

to observe the new option added.

In[67]:= DensityHistogram[Flatten[Table[{x^2 + y^2, x^2 - y^2}, {x, 0, 

2, 0.1}, {y, 0, 2, 0.1}], 1], ChartBaseStyle -> Red, ColorFunction -> 

"SolarColors", Background -> Black, FrameStyle -> Directive[White,  

Thick], FrameLabel -> {"X", "Y"}, ImageSize -> 300, ChartElementFunction -> 

ChartElementDataFunction["Bubble", "Shape" -> "Hexagon"]]

Out[67]=

Figure 6-20.  Hexagon density histogram

The DensityHistogram command allows you to choose how to display the data 

distribution along the axes; it can be the dimensions, box plots, or histograms if you 

select the Method type as an option (see Figure 6-21).

In[68]:= hist = Flatten[Table[{x^2+y^2,x^2-y^2}, {x,0,2,0.1}, 

{y,0,2,0.1}],1];

densityHistogram[distAxes_, colFunc_, baseStyle_, plotLabel_, 

imgSize_] := DensityHistogram[Hist, Method -> {"DistributionAxes" -> 
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distAxes},ColorFunction -> colFunc, ChartBaseStyle -> baseStyle, PlotLabel  

 -> Style[plotLabel, Bold], ChartLegends -> Automatic,

ChartElementFunction -> ChartElementDataFunction["Bubble", "Shape"  

 -> "Hexagon"],ImageSize -> imgSize] {MenuView[{densityHistogram 

[True, GrayLevel, Directive[FaceForm[Opacity[0.5]], EdgeForm[Red]], 

"Density Histogram 1", 200], densityHistogram["Histogram", 

Automatic,  Directive[EdgeForm[Thick]], "Density Histogram 2", 200], 

densityHistogram["BoxWhisker", "BlueGreenYellow", Automatic, "Density 

Histogram 3", 200]}], GraphicsRow[{densityHistogram[True, GrayLevel, Direct

ive[FaceForm[Opacity[0.5]], EdgeForm[Red]],

"Density Histogram 1", 130], densityHistogram["Histogram", Automatic, 

Directive[EdgeForm[Thick]], "Density Histogram 2", 130],

densityHistogram["BoxWhisker", "BlueGreenYellow", Automatic, "Density 

Histogram 3", 130]}]}

Out[70]=

Figure 6-21.  Menu view of the three different method plots

The plots are shown inside as a menu, so to access the different graphs, you have 

to select each graph within the menu. Even so, you show the plots on a small scale 

to demonstrate how they should look (see Figure 6-21). The first graph shows the 

dimensions of the data distribution along the axes. The second shows the distribution of 

the data in the form of histograms, and the third shows the box plots.
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�Ordinary Least Squares Method
The ordinary least squares method finds the best-fitting line through data points. This 

method is used to study the relationship between the dependent variable and the 

independent variable. The process is based on the expression of finding a line of the 

form y = mx + b, where x is the independent variable, y is the dependent variable, m is 

the slope, and b is the y-intercept. The slope and the sorted to origin b are calculated 

from the following equations.

	
m

n x y x y
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The summation is denoted by the Greek capital letter sigma (∑); n is the amount of 

data in the sample. The method is calculated for measured data pairs and slope values, 

and y-intercept sources are calculated to create the best data fit to a line. By substituting 

in the general equation, you get the equation of the line for the dataset.

To illustrate the method, let’s look at the following example using the points for the 

dependent and the independent variables.

In[71]:= data={{-1,10},{0,9},{1,7},{2,5},{3,4},{4,3},{5,0},{7,-1}};

Grid[Transpose[Prepend[data,{"X","Y"}]],Dividers->{2->True,2-> 

True},Alignment-> Center]

Out[72]=

X | -1 0 1 2 3 4 5 7

__|______________________

Y | 10 9 7 5 4 3 0 -1

Next, calculate the data needed to get the slope and y-intercept.

In[73]:=n = Length[data];

sumX = Total@data[[All, 1]];

sumY = Total@data[[All, 2]];

sumXY = Total[data[[All, 1]]*data[[All, 2]]];

sumXSqr = Total@(data[[All, 1]]^2);
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m = N@((n*sumXY-sumX*sumY)/n*sumXSqr-Abs[sumX]^2);

b = N@((sumY*sumXSqr-sumX*sumXY)/n*sumXSqr-Abs[sumX]^2);

Use the Solve command to solve the equation of the shape y = mx + b. The first 

argument is the equation, and the second is for the variable to solve. You must use the 

same double notation to enter the equation since a single equal is for set instruction.

In[80]:= Solve[SetPrecision[y==m*x+b,3],y]

Out[80]= {{y->8.47-1.47 x}}

This results in the equation of the line being y = 1.47 x + 8.47. Given this equation, 

you plot the points and the line that best fits these points (see Figure 6-22).

In[81]:= Show[Plot[b + m*x,{x,-1,8}, PlotLegends->Placed["Linear Fit: y=-

1.47x+8.47",{0.6,0.8}],PlotRange->Automatic], ListPlot[data, PlotStyle  

 -> Red]]

Out[81]=

Figure 6-22.  Plot of data and fitted curve

Having obtained the equation, you observe that this is a model with a negative slope, 

corroborated by the equation graph shown in blue.
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�Pearson Coefficient
The measure that tells you that both the points fit the equation is the Pearson correlation 

coefficient named r. When the points are found with a positive slope, r has a positive 

value. When the points are negatively sloped, r has a negative value. The coefficient 

value determines the correct setting, ranging from –1 to 1. When the r value is 1 or –1, it 

tells you that the points are adjusted exactly to the line. The closer r is to –1 or 1 indicates 

that there appears to be a linear relationship between the study variables. Otherwise, 

when r is equal to 0, it tells you that the setting is not correct, and therefore, it can be 

concluded that there is no apparent linear relationship.

The equation for determining the coefficient is as follows.

	
r

x y

x y

=
∗( )Cov

σ σ
,

	

Cov represents the covariance of x, y. The symbols 𝜎x and 𝜎y represent the standard 

deviations of x and y.

Now, you proceed to calculate the coefficient r for the created adjustment. For this, 

you must introduce only the points of x and y, for calculating covariance and standard 

deviations.

In[82]:= r= N@(Covariance@@{data [[All,1]],data [[All,2]]} /

(StandardDeviation@data[[All,1]]*StandardDeviation@data[[All,2]]))

Out[82]= -0.987814

The result is close to 1; therefore, the straight is adequately fair to the data. Although 

it is possible to calculate it through the equation, Mathematica has a function for this 

calculation. Correlation calculates the coefficient from two lists, so you need to enter 

only the x data in one list and the data from y in another list.

In[83]:= N@Correlation[data[[All,1]],data[[All,2]]]

Out[83]= -0.987814

And you get the same result as the previous one.
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�Linear Fit
Mathematica has functions that specialize in finding the best linear model using 

LinearModelFit. Given the dataset, you write the LinearModelFit command with the 

data to work and the variable to write the equation. In addition, you can specify the level 

of precision for adjustment with WorkingPrecision.

In[84]:= model=LinearModelFit[data,x,x,WorkingPrecision->10]

Out[84]= FittedModel[8.473684211-1.466165414 x]

The same equation returns to you but with better precision. Within the model, you 

can access different properties related to the data, the model, and other adjustment 

parameters, as well as measures of the goodness of the fit, among others. To illustrate 

this, you see how to do it for the BestFit, BestFitParameters, and Function options, which 

return the best-fit equation as a list, the best parameters, and model construction for a 

pure function, respectively.

A critical aspect is that trying to make predictions about a future value using 

the fitted equation (8.47 – 1.47 x), with values of x outside the range, could generate 

abnormal values since you have not established whether the relation of the equation 

outside the range of x is met. Figure 6-23 shows the fitted curve calculations.

In[85]:= {"\n" Framed["Best Fit Parameters b and m: " <>

ToString[model["BestFitParameters"]], Background -> LightYellow], "\n" 

Framed["Equation: " <> ToString[model["BestFit"]],  Background -> 

LightYellow], "\n" Framed["Pure Function:" <> ToString[SetPrecision[model[

"Function"], 3]], Background -> LightYellow], "\n" Framed["r coeficcient:" 

<> ToString[r], Background -> LightYellow]}

Out[85]=

Figure 6-23.  Fitted parameters, equation, and Pearson coefficient

Chapter 6  Statistical Data Analysis



266

Since you have the line that best fits, you should consider whether a relationship 

exists between x and y. How do you know if the adjustment adequately describes the 

linear relationship between the x and y variables? To solve this problem, there is the 

concept of residual.

�Model Properties
Residuals can be used as a measure to know how good the fit of the line is to the study 

points. Residuals are vertical deviations, either positive or negative. A residual point 

is the difference between the observed value of the dependent variable and the value 

that predicts the adjustment. To get the residual points, write the FitResiduals property 

within the model.

In[86]:= model["FitResiduals"]

Out[86]= {0.06015038,0.52631579,-0.00751880,-0.54135338,-0.07518797, 

0.39097744,-1.14285714,0.78947368}

With these points, you can get the residual plot (see Figure 6-24), which is the x 

variable vs. the residual points.

In[87]:= ListPlot[model["FitResiduals"],PlotStyle->{Red,Thick}, 

PlotLabel->"Residual Plot",AxesLabel-> {Style["X",Bold], Style["residual 

points",Bold]},Filling->Axis]

Out[87]=
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Figure 6-24.  Residual plot of the fitted data

To show only the observed and predated values for the single prediction, use the 

SinglePredictionConfidenceIntervalTable option.

In[88]:= model["SinglePredictionConfidenceIntervalTable"]

Out[88]=

Observed Predicted Standard Error Confidence Interval

10 9.93984962 0.78481739 {8.0194706,11.8602286}

9 8.47368421 0.74856412 {6.6420138,10.3053546}

7 7.00751880 0.72287410 {5.2387096,8.7763280}

5 5.54135338 0.70889670 {3.8067456,7.2759611}

4 4.07518797 0.70732661 {2.3444221,5.8059538}

3 2.60902256 0.71824519 {0.8515399,4.3665052}

0 1.14285714 0.74110068 {-0.6705509,2.9562652}

-1 -1.78947368 0.81811053 {-3.7913180,0.2123707}

In addition to the residual points, you can extract the table from the parameters of 

the model adjusted with the ParameterTable property.

In[89]:= model["ParameterTable"]

Out[89]=

Chapter 6  Statistical Data Analysis



268

Estimate Standard Error t-Statistic P-Value

1 8.473684211 0.34167121 24.800697 2.8278226*10^-7

x -1.466165414 0.094310214 -15.5461996 4.4832546*10^-6

The coefficients are shown in the table. The first coefficient is the ordinate to 

the origin, and the coefficient associated with the e variable is the slope. The two 

coefficients have their respective standard errors. To know the confidence interval for the 

parameters, you write the ParameterConfidenceIntervalTable property.

In[90]:= model["ParameterConfidenceIntervalTable"]

Out[90]=

Estimate Standard Error Confidence Interval

1 8.473684211 0.34167121 {7.63764488,9.30972355}

x -1.466165414 0.094310214 {-1.69693419,-1.23539663}

The default confidence interval is 95%. With these confidence values, you can plot 

the points inside or outside this range (see Figure 6-25), extracting the values from the 

predictions and setting the option for the confidence interval to 0.95.

In[91]:= model[x];

model["SinglePredictionBands", ConfidenceLevel -> 0.95]; Show[

ListPlot[data, PlotStyle -> Red], Plot[{Model[x], 

Model["SinglePredictionBands", ConfidenceLevel -> 0.95]}, {x, -1, 10}, 

Filling -> {2 -> {1}}], PlotRange -> {Automatic, {-1, 10}}, Frame -> True, 

ImageSize -> 400]

Out[92]=
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Figure 6-25.  The filled region denotes the 95% confidence interval

Finally, to obtain the properties related to the sum of the squared errors, you use the 

ANOVATable property.

In[93]:= model["ANOVATable"]

Out[93]=

DF SS MS F-Statistic P-Value

X 1 107.213346 107.213346 241.68432 4.48325*10^-6

Error 6 2.6616541 0.44360902

Total 7 109.8750000

�Summary
This chapter covered the concepts and techniques for conducting statistical analysis 

using the Wolfram Language and how to perform linear adjustments (least squares, 

linear fit) through equations and implement specialized statistical functions—

demonstrating that the Wolfram Language is an effective statistical tool. In addition, 

you also view the reference functions available in Mathematica for numerical and 

approximate calculations of descriptive statistics, random distributions, numbers, and 

sampling methods.
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CHAPTER 7

Data Exploration
This chapter looks at the basics of data management through the Wolfram Data 

Repository online platform and its use in Mathematica. You also learn how data is 

viewed inside datasets and how to apply user functions and query commands.

�Wolfram Data Repository
The Wolfram Data Repository is a data repository in the cloud. This data repository 

contains information from different categories, such as computer science, meteorology, 

agriculture, sports, text and literature education, and many more. Although 

this repository belongs to Wolfram Research, it is characterized by being in the 

public domain.

The Wolfram Data Repository consists of computable data selected, structured, and 

cured for direct use to perform numerical calculations, estimates, analysis, statistics, 

or demonstrations. The content hosted in this repository is data from many sources, 

globally known datasets, and publication data. All this information is designed so that 

any individual can access it globally. The Wolfram Data Repository system provides a 

data source that, in turn, also enables the storage of new information. The information 

stored in the repository is designed to directly implement the Wolfram Language.

As you saw in the data import section, you know whether the website is active by 

receiving an HTTP-type response, as shown in Figure 7-1.

In[1]:= URLRead["https://datarepository.wolframcloud.com/"]

Out[1]=

https://doi.org/10.1007/979-8-8688-0348-2_7#DOI
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Figure 7-1.  HTTP response object of the Wolfram Data Repository. As you can see, 
you have received a successful response.

�Wolfram Data Repository Website
To access this website, enter the following URL address in your favorite browser: 

https://datarepository.wolframcloud.com. Figure 7-2 shows the welcome page of the 

Wolfram Data Repository.

Figure 7-2.  Wolfram Data Repository website

Note  The images that appear are links that redirect to the dataset associated 
with that image.

Once the site is loaded, you see a menu of options to navigate the site, either by 

categories or data type. Within that menu, you find the different categories and data 

types: text, numerical data, images, and so forth. You also find the contact option, 
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custom searches, and Submit New Data among the menu options. The latter is the 

option that redirects to another page that displays the instructions for publishing 

and uploading new data to this repository. Scrolling down, you also see the existing 

categories and the data types. If so, there is the possibility to browse all resources by 

clicking the Browse All Resources link (bottom of the web page). To browse categories, 

you can choose the category from the menu or by clicking the category name at the 

initial site. Figure 7-3 shows what the site looks like once you have selected a category—

in this case, Life Science.

Figure 7-3.  Life Science category of the Wolfram Data Repository

Note  The same process is for navigating by data type. As new data is added, 
content is updated regularly.
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�Selecting a Category
Each category shows the title, the number of elements in that category, and the option 

to filter the category’s contents by the data type. Regarding the content, each sample 

data type is displayed with its title, a small description of the data it contains, and the 

different tags associated with that sample data. For example, the image shows Fisher’s 

Irises’ known dataset. Once you select a sample dataset, it takes you to the site where the 

relevant information about that dataset is contained, as shown in Figure 7-4, where the 

Fisher’s Irises dataset is selected.

Figure 7-4.  Fisher’s Irises dataset

When a sample dataset is selected, a brief description of the dataset is shown, as 

well as the different calculations that can be made and different formats to download 

the data or the notebook. Besides this, it also includes relevant information such as the 
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bibliographic citation, data resource history, and data source. In some instances, the 

data can be downloaded for different types of formats, such as comma-separated value 

(CSV), tab-separated value (TSV), JavaScript object notation (JSON), and others. Before 

starting to download data from the Wolfram Data Repository, it is necessary to have a 

Wolfram ID. This ID is an account that gives you access to the content of the Wolfram 

Data Repository in addition to other benefits, such as Wolfram One and Wolfram Alpha. 

To log in from Mathematica, head to the menu in Help ➤ Sign in, and a window appear 

like the one in Figure 7-5.

Figure 7-5.  Wolfram Cloud sign-in prompt

In the new window, you enter your email and password to access the contents of the 

Wolfram Data Repository from Mathematica.

�Extracting Data from the Wolfram Data Repository
Let’s start by looking at the information and properties of the Fisher’s dataset; for this, 

you must retrieve the information through a ResourceObject. With ResourceObject (see 

Figure 7-6), you can now view the different properties of the published data by clicking 

the plus icon. Detailed information about the data is displayed, such as sample name, 

type, version, size of the data, and many more.
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In[2]:= ResourceObject["Sample Data: Fisher's Irises"]

Out[2]=

Figure 7-6.  ResourceObject Fisher’s Irises

If you want to look at the properties of the resource object, enter the following 

code. This code gives you a list of properties that can be accessed and related to the 

data sample.

In[3]:= ResourceObject["Sample Data: Fisher's Irises"]["Properties"]

Out[3]= {AllVersions, AutoUpdate, Categories, ContentElementLocations, 

ContentElements, ContentSize, ContentTypes, ContributorInformation, 

DatedElementVersions, DefaultContentElement, Description, Details, 

Documentation, DocumentationLink, DOI, DownloadedVersion, ExampleNotebook, 

ExampleNotebookObject, Format, InformationElements, Keywords, 

LatestUpdate, Name, Originator, Properties, PublisherUUID, ReleaseDate, 

RepositoryLocation, ResourceLocations, ResourceType, SeeAlso, ShortName, 

SourceMetadata, UUID, Version, VersionInformation, VersionsAvailable, 

WolframLanguageVersionRequired}

Knowing the list of properties related to information, you can now download from 

Mathematica the exercise notebook of the data sample.

In[4]:=ResourceObject["Sample Data: Fisher's Irises"]["ExampleNotebook"]

Out[4]= NotebookObject[Sample Data: Fisher's Irises | Example Notebook]
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Once you finish evaluating the code, it automatically opens the new notebook. If you 

want to operate the notebook from the cloud, you can type NotebookObject. This output 

gives you back a cloud-like object associated with a hyperlink.

In[5]:= ResourceObject["Sample Data: Fisher's Irises"] 

["ExampleNotebookObject"]

Out[5]= CloudObject[https://www.wolframcloud.com/obj/5e59b79e-d95e-4f6f- 

a7c8-f1276ba17be2]

If you press the link of the new notebook, it opens the Internet browser and shows 

you that it is in the Wolfram Cloud. Figure 7-7 shows this.

Figure 7-7.  Fisher’s Irises data sample, open from the Wolfram Cloud
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To access the original sample data site from Mathematica, enter Documentation, 

which gives you a URL object that you can enter by clicking the double chevron icon.

In[6]:= ResourceObject["Sample Data: Fisher's Irises"] ["Documentation"]

Out[6]=URL[https://datarepository.wolframcloud.com/resources/

b7f632f7-9c5f-4ad4-a73e-446cc2656f64/]

�Accessing Data Inside Mathematica
The same initiative is applied to downloading the data using the ResourceData to the 

object resource. With ResourceData, you access the contents of the specified resource; in 

this case, it is the Fisher’s Irises data sample (see Figure 7-8).

In[7]:= ResourceData[ResourceObject["Sample Data: Fisher's Irises"]]

Out[7]=
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Figure 7-8.  Fisher’s Irises dataset object

As shown in Figure 7-8, the returned object is a ResourceData to use with a head 

of the dataset. Performing a visual inspection of the data sample, you observe that it 

is a dataset of 150 values containing five columns: Species, SepalLength, SepalWidth, 

PetalLength, and PetalWidth. If you pay attention, you can see how the values of the 

SepalLength, SepalWidth, PetalLength, and PetalWidth columns are quantities. Moving 

further down the entire dataset, the species are divided into three categories: setosa, 

versicolor, and virginica. If you want to access the information related to the dataset, 
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you must do it through the resource object and retrieve it through a ResourceData form, 

as shown.

In[8]:=ResourceObject["Sample Data: Fisher's Irises"]

["ContentElements"]

Out[8]= {ColumnDescriptions, ColumnTypes, Content, DataType, Dimensions, 

ObservationCount, RawData, Source, TrainingData,

TestData}

With the ContentElements property, you are accessing the elements of the data 

sample, which are the ones that appear within the resource object. ContentElements 

shows you the information associated with the sample data, such as column 

information, data source, training data, and test data—not to be confused with the 

properties of the resource object created, as it is not the same since you can construct 

a resource object for another associated name. To retrieve the information from the 

ContentElements, you must do it with ResourceData. This command gives you access to 

the contents of the data sample—in this case, the Fisher’s Irises. Now, let’s get the data 

type of the columns.

In[9]:= ResourceData[ResourceObject["Sample Data: Fisher's 

Irises"],"ColumnTypes"]

Out[9]= {Numeric,Numeric,Numeric,Numeric,Categorical}

The second argument of the ResourceData command is the element you are looking 

for. Running the code mentioned above shows you that there are four data types: three 

numeric and one categorical. Using a pure function, you can obtain information in a 

single expression. If you add the Column command, it is possible to have a better view of 

the information.

In[10]:= Column[ResourceData[ResourceObject["Sample Data: Fisher's 

Irises"],#]&/@{"ColumnDescriptions","Dimensions","Source"}]

Out[10]= {Sepal length in cm.,Sepal width in cm.,Petal length in cm.,Petal 

width in cm.,Species of iris}

{150,4}

Fisher,R.A. "The use of multiple measurements in taxonomic problems" 

Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to 

Mathematical Statistics" (John Wiley, NY, 1950).
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This way, you get to know the type of information in the columns, such as 

dimensions, which are 150 rows per four columns, and the data source.

�Data Observation and Querying
This section explains how to observe data inside a dataset. You use the Iris dataset, 

which has been extracted from the Wolfram Data Repository. Let’s start by naming the 

data sample Fisher; this variable contains the dataset with quantities included.

In[11]:= fisher=ResourceData[ResourceObject["Sample Data: Fisher's 

Irises"]];

In the dataset, the numbers have units and magnitude. Having a dataset, you can 

perform endless processes, such as grouping the content by the category variable, which 

is the type of species. (This example accessed the dataset contained in the Fisher’s 

variable.) Let’s look at the data that includes each column grouped by species (see 

Figure 7-9).

In[12]:= fisher[GroupBy["Species"]]

Out[12]=
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Figure 7-9.  Iris data grouped by species

Let’s look at how the data is divided into three categories: setosa, versicolor, and 

virginica. Each category contains a number 50 at the end of the Species column of each 

category. This means that there are 50 more rows in addition to those shown, making a 

total of 50 for each category, which is 150 rows in total, which matches the number of 150 

you review the dimensions of the sample data.

In the meantime, clicking one of the categories shows you the columns for that 

category alone, as shown in Figure 7-10. The same happens if you select a specific column 

within a category—it shows only that column for that category; try it to see what happens. 

There is also the possibility to click any column, and this shows you only the chosen 

column for the three categories. This means that if you choose SepalLength, for example, 

you see the contents of that column for the three species, as shown in Figure 7-10.
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Figure 7-10.  SepalLength column selected

It is possible to group by species and choose only the columns that contain 

numeric values. This helps if, for example, you want to visually inspect the dataset (see 

Figure 7-11).

In[13]:= Query[GroupBy[ Key["Species"] -> KeyTake[{"SepalLength", 

"SepalWidth", "PetalLength",  "PetalWidth"}]]][fisher]

Out[13]=
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Figure 7-11.  Dataset with the species column suppressed

In the latter code, you use the Key command to access the keys of the species 

column. Once these keys are accessed, you write a transformation rule so that 

each extracted key is assigned the associations extracted (KeyTake) from columns 

(SepalLength, SepalWidth, PetalLength, PetalWidth), then grouped and applied to 

Fisher’s dataset.

If you wanted to count the data elements in Fisher’s dataset, you could add an ID 

column as a label (see Figure 7-12) to list the data it contains. To achieve this, first, create 

an association with keys and values that go from 1 to the length of the dataset. Then, 

this instruction is applied to the dataset object Fisher’s, which adds the IDs as labels for 

the rows.

In[14]:= Query[AssociationThread[Range[Length@#]→Range[Length@#]]] 

[fisher]&[fisher]

Out[14]=
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Figure 7-12.  IDs added to the Fisher’s dataset

If you drag down the bar, you see that the counter reaches 150 elements.

You can use the Counts command if you don’t want to add an enumerated column 

to count the elements (see Figure 7-13).

In[15]:= Fisher[Counts,"Species"]

Out[15]=
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Figure 7-13.  Counted elements on the dataset

This results in 50 data belonging to setosa, versicolor, and virginica. If you add 

them up, you get 150. You can also use the Query command, Query[Counts, “Species”] 

[Fisher].

Now, let’s look at how to get the average of the three categories for each column. It 

would be possible if you knew the average of SepalLength, SepalWidth, PetalLength, and 

PetalWidth for the species, setosa, versicolor, and virginica, as exhibited in Figure 7-14.

In[16]:=Query[GroupBy[Key["Species"]→KeyTake[{"SepalLength","SepalWidth", 

"PetalLength","PetalWidth"}]],Mean][fisher]

Out[16]=

Figure 7-14.  Mean for the four columns, divided by species

But, if you want to get the average of the columns for all categories, one way to get it 

would be by applying Mean as a query to the number of columns in the entire dataset 

(see Figure 7-15).

In[17]:= Query[Mean][fisher[[All,2;;5]]]

Out[17]=

Figure 7-15.  Average values for the four columns of all species
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Note  The Mean command works with the quantities and returns the average to 
use as a quantity.

�Descriptive Statistics
This section demonstrates how to perform descriptive statistics of the Irises data and 

computations inside the dataset format and how to create custom grid formats. Let’s 

start by building the function that calculates the maximum, minimum, mean, median, 

first, and third quartile.

In[18]:

stats[data_]:=

{{#[{"Max: ",Max@data}]},

{#[{"Min: ",Min@data}]},

{#[{"Mean: ",Mean@data}]},

{#[{"Median: ",Median@data}]},

{#[{"1st quartile: ",Quantile[data,0.25]}]},

{#[{"3rd quartile: ",Quantile[data,0.75]}]}

}&[Row]

Now, apply the created function to each of the columns. This function is to get 

overall statistics for SepalLength, SepalWidth, PetalLength, and PetalWidth (see 

Figure 7-16).

In[20]:= {{#1,#2,#3,#4},{Fisher[Stats,#1],Fisher[Stats,#2],Fisher[Stats, 

#3],Fisher[Stats,#4]}}&["SepalLength","SepalWidth","PetalLength", 

"PetalWidth"]//Grid

Out[20]=
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Figure 7-16.  Function Stats applied to each column

This also can be displayed in a compact form in a tab format with TabView (see 

Figure 7-17).

In[21]:= TabView[{#1->Fisher[Stats,#1],#2->Fisher[Stats,#2],#3-> 

Fisher[Stats,#3],#4->Fisher[Stats,#4]},ControlPlacement-> Left]& 

["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Out[21]=

Figure 7-17.  Tabview format

With TabView, you create three tabs with the names of each column, which shows 

the values maximum, minimum, average, median, first, and third quartile; the columns 

are SepalLength, SepalWidth, PetalLength, and PetalWidth.
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�Table and Grid Formats
An alternative is to create a table for each species. In this way, you better present the data 

and thus be able to read it properly. You extract the data by applying the Nest command. 

With this command, you can specify the number of times a command or function is 

applied; in this case, you apply it twice.

In[22]:= Short[Values[Nest[Normal,fisher,2]]]

{sLall,sWall,pLall,pWall}=%[[All,#]]&/@{2,3,4,5};

Out[22]//Short= {{setosa,5.1cm,3.5cm,1.4cm,0.2cm},{setosa,4.9cm,3.cm,1.4cm, 

0.2cm},<<146>>,{virginica,6.2cm,3.4cm,5.4cm,2.3cm},{virginica,5.9cm,3.cm, 

5.1cm,1.8cm}}

Having the values of all species separated by columns, you create a list instead 

of a function, where the statistics are displayed according to each column, adding 

calculations such as variance, standard deviation, skewness, and kurtosis. Then, you 

assign the calculations in the DescriptiveStats variable.

In[23]:={Max[#],Min[#],Median[#],Mean[#],Variance[#],StandardDeviat

ion[#],Skewness[#],Kurtosis[#],Quantile[#,0.25],Quantile[#,.75]}&/@

{sLall,sWall,pLall,pWall};

A table (see Figure 7-18) can be created with these calculations and adding the rows 

and column headings.

In[24]:= tableHeads={Style["Sepal Length",#1,ColorData["HTML"]

["Maroon"],#2,#3],Style["Sepal Width",#1,ColorData["HTML"]["YellowGreen"], 

#2,#3],Style["Petal Length",#1,ColorData["HTML"]["SteelBlue"],#2,#3],Style 

["Petal Width",#1,ColorData["HTML"]["Orange"],#2,#3]}&["Title",Italic,20];

tableRows={Style["Max",#1,#2],Style["Min",#1,#2],Style["Median",#1,#2], 

Style["Mean",#1,#2],Style["Variance",#1,#2],Style["Standard\n Deviati

on",#1,#2],Style["Skewness",#1,#2],Style["Kurtosis",#1,#2],Style["1st 

quartile",#1,#2],Style["3rd quartile",#1,#2]}&["Text",Italic];TableForm 

[descriptiveStats,TableHeadings->{tableHeads,tableRows}]

Out[25]//TableForm=
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Figure 7-18.  Table showing descriptive statistics by the four features

Note that the statistics are calculated with their units, except for skewness and 

kurtosis, since, by definition, they are dimensionless. However, you can create a better 

structure from Grid because it is possible to add dividers like a spreadsheet format. 

To do this, you add the TableRows to the data and then apply a transpose so that each 

calculated statistic is with its respective name. Subsequently, you add the column titles.

In[26]:=

Transpose[Prepend[descriptiveStats,tableRows]];

{" ",Style["Sepal Length",#1, ColorData["HTML"]["Maroon"],#2,#3], 

Style["Sepal Width",#1,ColorData["HTML"]["YellowGreen"],# 

2,#3],Style["Petal Length",#1, ColorData["HTML"]["SteelBlue"],#2, 

#3], Style["Petal Width",#1,ColorData["HTML"]["Orange"], 

#2,#3]}&["Title",Italic,20];

newTable=Prepend[%%,%];

Next, create the table as a spreadsheet (see Figure 7-19).

In[27]:= Grid[newTable,ItemSize->{{None,Scaled[0.11], Scaled[0.11], 

Scaled[0.11]}},Background->{{LightGray},None}, Dividers->{{False}, 

{1,2,3,4,5,6,7,8,9,10,11->True,-2->Blue}}, Alignment->Center]

Out[27]=

Chapter 7  Data Exploration



291

Figure 7-19.  Grid view of the descriptive statistics

To build the table for each species, you must first separate the dataset by species with 

the Cases command. You should use Cases since it allows you to work with patterns. 

First, write the code to extract the raw data. Instead of using Short, use Shallow to 

suppress the 150 values.

In[28]:= Shallow[Values[Nest[Normal,fisher,2]],1]

Out[28]//Shallow= {<<150>>}

Create the table for the versicolor species, extract the values for versicolor, and store 

the values of the columns in the SLVersi, SWVersi, PLVersi, and PWVersi variables.

In[29]:= Shallow[Cases[%,{"versicolor",__}],1]

{sLVersi,sWVersi,pLVersi,pWVersi}=%[[All,#]]&/@{2,3,4,5};

Out[29]//Shallow= {<<50>>}

Next, repeat the process to calculate the statistics, but instead of the white space, 

add the name “Versicolor” in the Style text, to distinguish that the table belongs to the 

versicolor species.

In[30]:= tableRows;

{Max[#],Min[#],Median[#],Mean[#],Variance[#],StandardDeviation[#],Skewness 

[#],Kurtosis[#],Quantile[#,0.25],Quantile[#,.75]}&/@{sLVersi,sWVersi, 

pLVersi,pWVersi};

descriptiveStats2=Prepend[%,%%];
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Transpose[descriptiveStats2];

{Style["Versicolor","Text",Red,Italic,20],Style["Sep

al Length",#1,ColorData["HTML"]["Maroon"],#2,#3],Style["Sepal 

Width",#1,ColorData["HTML"]["YellowGreen"],#2,#3],Style["Pet

al Length",#1,ColorData["HTML"]["SteelBlue"],#2,#3],Style["Petal 

Width",#1,ColorData["HTML"]["Orange"],#2,#3]}&["Title",Italic,20];

newTable2=Prepend[%%,%];

Next, build the table (see Figure 7-20) for the species versicolor.

In[31]:= Grid[newTable2,ItemSize-> {{None,Scaled[0.11],Scaled[0.11], 

Scaled[0.11]}},Background->{{LightGray},None}, Dividers-> {{False}, 

{1,2,3,4,5,6,7,8,9,10,11->True,-2->Blue}},Alignment-> Center]

Out[31]=

Figure 7-20.  Descriptive stats for the versicolor species

You have only done this for the versicolor species; the same process is performed for 

each species. For example, if you choose Cases with the other species, you would change 

the text to the corresponding species.
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�Dataset Visualization
Having viewed the capabilities of the Wolfram Language to perform descriptive statistics 

within the dataset, statistical charts can be implemented inside the dataset format, as 

you see in this fragment.

You can have a better perspective from graphs; you use the dataset format (see 

Figure 7-21) to display the graphs by their species.

In[32]:= fisher[GroupBy["Species"],DistributionChart[#,Plo

tTheme-> "Classic",PlotLabel->"PetalLength cm",GridLines-> 

Automatic]&,"PetalLength"]

Out[32]=

Figure 7-21.  Distribution chart plot

You can perform the same process but for the box whiskers plot (see Figure 7-22), 

but choose another column.

In[33]:= fisher[GroupBy["Species"],BoxWhiskerChart[#,"Outliers",PlotThe

me-> "Detailed",ChartLabels->Placed[{"SepalLength cm"},Above],BarOrigin-> 

Right,ChartStyle->Blue]&,"SepalLength"]

Out[33]=
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Figure 7-22.  Box whiskers plot

If the specie is clicked, it amplify the graph (see Figure 7-23).

Figure 7-23.  Box whiskers plot for virginica species
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The same applies to histograms. When the graph is extensive, it appears suppressed 

within the dataset, but you can still select it, as shown in Figure 7-24.

In[34]:=fisher[GroupBy["Species"], Labeled[Histogram[#, ColorFunction -> 

(Hue[3/5, 2/3, #] &)], {Rotate["Frequency", 90 Degree], "SepalWidth cm"}, 

{Left, Bottom}] &, "SepalWidth"]

Out[34]=

Figure 7-24.  Histogram plot for versicolor

Here, you show the 3D scatter plots for each species (see Figure 7-25) for sepal length 

(x) vs. sepal width (y).

In[35]:=Fisher[GroupBy["Species"], Labeled[ListPlot[{#, #}], {Rotate["Sepal 

width cm", 90 Degree], "Sepal length cm"}, {Left, Bottom}] &, 

{"SepalLength","SepalWidth"}]

Out[35]=
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Figure 7-25.  2D scatter plot

To return to the full dataset, click the dataset icon as with any other.

�Data Outside Dataset Format
The truth is that there is also the possibility of extracting the data crudely, as follows. 

You’ll do this to have better data handling. You use the Short command since the list is 

quite long.

In[36]:= Short[ResourceData[ResourceObject["Sample Data: Fisher's 

Irises"],"RawData"]]

Out[36]//Short= {<|Species->setosa,SepalLength-

>5.1cm,SepalWidth->3.5cm,PetalLength->1.4cm,PetalWidth-

>0.2cm|>,<|<<1>>|>,<<146>>,<|<<1>>|>,<|<<1>>|>}

With the data already extracted, you can get the values with the Values function and 

convert them to normal expressions.

In[37]:= Short[Normal[Values[%]]]

Out[37]//Short= {{setosa,5.1cm,3.5cm,1.4cm,0.2cm},{setosa,4.9cm,3.cm,1.4cm, 

0.2cm},<<146>>,{virginica,6.2cm,3.4cm,5.4cm,2.3cm},{virginica,5.9cm,3.cm, 

5.1cm,1.8cm}}
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With the help of MapAt, you can extract the magnitudes of the quantities. The MapAt 

command lets you choose where to apply the Quantity function. You decided to apply 

it to all rows with All, but only from columns 2 to 4, which is where the quantities are 

located.

In[38]:= Short[iris=MapAt[QuantityMagnitude,%,{All,2;;5}]]

Out[38]//Short={{setosa,5.1,3.5,1.4,0.2},<<148>>,{virginica, 

5.9,3.,5.1,1.8}}

Why remove the units if calculations can be made with them? You extract the 

magnitudes for all quantities because they have the same order of magnitude (cm), so 

each calculation is in the same units, except if you make conversions or transformations 

to the data.

�2D and 3D Plots
On the other hand, it is easier to manipulate lists with Wolfram Language. Having the 

data in the form of lists, you now plot the three columns in a box plot and a distribution 

graph (see Figure 7-26). You only choose the three columns.

In[39]:=

Row[{BoxWhiskerChart[{iris[[All, #1]], iris[[All, #2]], iris[[All,  

#3]], iris[[All, #4]]}, "Outliers", PlotRange -> Automatic, FrameTicks  

 -> True, ChartStyle -> "SandyTerrain", PlotLabel -> "All Species", 

GridLines -> Automatic, ChartLegends -> Placed[{"SepalLength", 

"SepalWidth", "PetalLength", "PetalWidth"}, Bottom], ImageSize -> Small], 

DistributionChart[{iris[[All, #1]], iris[[All, #2]], iris[[All, #3]], 

iris[[All, #4]]}, PlotRange -> Automatic, FrameTicks -> True, ChartStyle -> 

"SouthwestColors", PlotLabel -> "All Species", ChartLegends ->

Placed[{"SepalLength", "SepalWidth", "PetalLength", "PetalWidth"}, Bottom], 

PlotTheme -> "Detailed", GridLines -> Automatic, ImageSize -> Small]}] &[2, 

3, 4, 5]

Out[39]=
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Figure 7-26.  Box whiskers plot and distribution chart for all species

To improve this, let’s graph for each species. You use Cases to separate the list with 

their respective species (see Figure 7-27).

In[40]:= Short[setosa=Cases[iris,{"setosa",__}]];

Short[versi=Cases[iris,{"versicolor",__}]];

Short[virgin=Cases[iris,{"virginica",__}]];

Column@{BoxWhiskerChart[{setosa[[All,#1]],setosa[[All,#2]],setosa[[All,#3]], 

setosa[[All,#4]]},"Outliers",PlotRange->Automatic,FrameTicks->True, 

ChartStyle->"Rainbow",PlotLabel->"Setosa",ChartLegends->Placed 

[{"SepalLength","SepalWidth","PetalLength","PetalWidth"},Bottom], 

GridLines->Automatic],BoxWhiskerChart[{versi[[All,#1]],versi[[All,#2]], 

versi[[All,#3]],versi[[All,#4]]},"Outliers",PlotRange->Automatic, 

FrameTicks->True,ChartStyle->"Rainbow",PlotLabel->"Versicolor",ChartLegends-> 

Placed[{"SepalLength","SepalWidth","PetalLength","PetalWidth"},Bottom], 

GridLines->Automatic],BoxWhiskerChart[{virgin[[All,#1]],virgin[[All,#2]],v 

irgin[[All,#3]],virgin[[All,#4]]},"Outliers",PlotRange->Automatic,FrameTicks-> 

True,ChartStyle->"Rainbow",PlotLabel->"Virginica",ChartLegends-> Placed 

[{"SepalLength","SepalWidth","PetalLength","PetalWidth"},Bottom],GridLines-> 

Automatic]

}&[2,3,4,5]

Out[40]=
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Figure 7-27.  Box whiskers plot for every species with the four features

In addition, you can join the scatter plots of sepal width vs. sepal length for all 

species (see Figure 7-28).

In[41]:= ListPlot[{setosa[[All, {2, 3}]], versi[[All, {2, 3}]],

virgin[[All, {2, 3}]]}, FrameTicks -> All, Frame -> True,

AspectRatio -> 1, PlotStyle -> {Blue, Red, Green},

FrameLabel -> {Style["Sepal length (cm)", FontSize -> 20],

Style["Sepal width (cm)", FontSize -> 20]}, PlotLegends -> {"Setosa", 

"Versicolor", "Virginica"}]

Out[41]=
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Figure 7-28.  2D scatter plot for all species of the first two features

Or you can make a 3D scatter plot with three features (see Figure 7-29).

In[42]:= ListPointPlot3D[{setosa[[All, {2, 3, 4}]], versi[[All, {2, 3, 

4}]], virgin[[All, {2, 3, 4}]]}, Ticks -> All, AspectRatio -> 1,

PlotStyle -> {Blue, Red, Green}, AxesLabel -> {Style["Sepal length cm", 

FontSize -> 13], Style["Sepal width cm", FontSize -> 13],

Style["Petal Length cm", FontSize -> 13]}, PlotLegends -> {"Setosa", 

"Versicolor", "Virginica"}, PlotTheme -> "Detailed", ViewPoint -> 

{0, -3, 3}]

Out[42]=
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Figure 7-29.  3D scatter plot of three features for every species

Now, when you have finished working with the resource object, you need to delete it 

so that the local cache of the resource is removed correctly.

In[43]:=Clear[fisher]

DeleteObject[ResourceObject["Sample Data: Fisher's Irises"]]

�Summary
This chapter explored data exploration using the Wolfram Language. It starts by covering 

the Wolfram Data Repository, where instructions to navigate the website and select 

appropriate data categories effortlessly are addressed. The chapter continues to guide by 

showing how to extract data from the repository, offering insights on accessing, filtering, 

and observing the data within Mathematica. Additionally, the descriptive statistics 

section provides the reader with an understanding of table and grid formats. By the end 

of the chapter, it assists in mastering the visualization of datasets for 2D and 3D plots.
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CHAPTER 8

Machine Learning 
with the Wolfram 
Language
This chapter introduces the gradient descent algorithm as an optimization method 

for linear regression; the corresponding computations are shown, as well as the 

concept of the learning curve of the model. Later, you see how to use the specialized 

functions of the Wolfram Language for machine learning, such as Predict, Classify, 

and ClusterClassify, in the case of linear regression, logistic regression, and cluster 

search. The different objects and results generated by these functions and the metrics to 

measure the model are shown for these functions. In each case, the parts of the model 

that are fundamental for the correct construction using the Wolfram Language are 

explained. This part of the book uses examples of known datasets such as the Fisher’s 

Irises, Boston Homes, and Titanic datasets.

�Gradient Descent Algorithm
The gradient descent is an optimization algorithm that finds the minimum of a function 

through an iterative process. To build the process, the squared error loss function is 

minimized with the linear model hypothesis of the shape of (xj) = θ0 + θ1 ∗ xj , around the 

point xj. The following expression gives the loss function.
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J(θ) is the cost function, N is the number of observations, f (xj) is the predicted output 

for observation j, and yj is the actual output for observation j. The iterative process of 

the algorithm consists of calculating the coefficients until convergence is obtained. The 

following expressions give the coefficients.
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Here, �
0

1i�  and �1
1i�  represent the updated parameters after the 𝑖+1 th iteration. 

θ0
i and θ1

i indicate their current values at the 𝑖th iteration, 𝛼 is the learning rate, a 

hyperparameter for updating θ0 and θ1, that minimizes error during the learning process. 

At the same time, N is the total number of dataset observations. xj and yj are the 𝑗th 

observations of the independent and dependent variables in the dataset, respectively. 

The summations are obtained from partial derivatives concerning θ0 and θ1. For more 

mathematical depth about the method and demonstrations, see Artificial Intelligence: A 

Modern Approach by Stuart Russell and Peter Norvig (Prentice Hall, 2010).

�Getting the Data
First, you define the data with the RandomReal function and establish a seed. This is to 

maintain the reproducibility of the data in case of practicing the same example.

In[1]:=

SeedRandom[888];

x=RandomReal[{0,1},50];

y=-1-x+0.6*RandomReal[{0,1},50];

Therefore, let’s observe the data with a 2D scatter plot Figure 8-1.

In[4]:= ListPlot[Transpose[{x,y}],AxesLabel->{"X axis","Y 

axis"},PlotStyle->Red]

Out[4]=
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Figure 8-1.  2D scatter plot of the randomly generated data

�Algorithm Implementation
Let’s now proceed to implement the algorithm with the Wolfram Language. The 

algorithm defines the constants, the number of iterations, and the learning rate. 

Then, you create two lists containing initial values of zero, in which the values of the 

coefficients for each iteration are stored. Later, you calculate the coefficients through 

a loop with Table, which does not end until you reach the number of iterations. In this 

case, you establish several iterations of 250 with a learning rate of 1.

In[5]:=

itt=250;(*Number of iterations*)

\[Alpha]=1;(*Learning rate*)

\[Theta]0=Range@@{0,itt};(* Array for values of Theta_0*)

\[Theta]1=Range@@{0,itt};(* Array for values of Theta_1*)

Table[{\[Theta]0[[i+1]]=\[Theta]0[[i]]-\[Alpha]/Length@x* Sum[(\

[Theta]0[[i]]+\[Theta]1[[i]]* x[[j]]-y[[j]]),{j,1,Length@x}];

\[Theta]1[[i+1]]=\[Theta]1[[i]]-\[Alpha]/Length@x*Sum[( \[Theta]0[[i]]+\

[Theta]1[[i]]*x[[j]]- y[[j]])* x[[j]],{j,1,Length@x}];},{i,1,itt}];
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Since you have determined the calculation of the coefficients, you build the linear 

adjustment equation by constructing a function and using the coefficient values of the 

last iteration, which are in the previous position of the lists θ0 y θ1.

In[10]:= F[X_] := \[Theta]0[[Length@\[Theta]0]] + \[Theta]1[[Length@\

[Theta]1]]*X

To know the shape of the best fit, you add the X variable as an argument. This gives 

you the form F(X) =  θ0 + θ1 * X.

In[11]:= F[X]

Out[11]= -0.707789-0.923729 X

Look at how the line fits the data in Figure 8-2.

In[12]:= Show[{Plot[F[X],{X,0,1},PlotStyle->Blue,AxesLabel->{"X axis", 

"Y axis"}],ListPlot[Transpose[{x,y}],PlotStyle->Red]}]

Out[12]=

Figure 8-2.  Adjusted line to the data

Since you have built the linear model, you can make a graphical comparison of the 

variation of the learning rate with the number of iterations and the loss value given by 

the function J. But first, you must declare the loss function J. For the summation, you can 

either use the special symbols of sigma (∑) or write Sum [expr, {i,imax}].

In[13]:=  J[Theta0_, Theta1_] :=  1/(2*Length[x])* Sum[ (Theta0 + 

(Theta1*x[[i]]) - y[[i]])^2, {i, 1, Length@x}]
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�Multiple Alphas
Having seen the previously constructed process, you can repeat the process for different 

alphas. Following is the graph of loss vs. each interaction for learning rate values of α1=1, 

α2=0.1, α3=0.01, α4=0.001, and α5=0.001, when repeating the process.

In[14]:=\[Alpha]1=Transpose[{Range[0,itt],J[\[Theta]0,\[Theta]1]}];

In[20]:=\[Alpha]2=Transpose[{Range[0,itt],J[\[Theta]0,\[Theta]1]}];

In[26]:=\[Alpha]3=Transpose[{Range[0,itt],J[\[Theta]0,\[Theta]1]}];

In[32]:=\[Alpha]4=Transpose[{Range[0,itt],J[\[Theta]0,\[Theta]1]}];

In[38]:=\[Alpha]5=Transpose[{Range[0,itt],J[\[Theta]0,\[Theta]1]}];

Graph with ListLinePlot and visualize the learning curve for different alphas (see 

Figure 8-3). When changing the alpha value, check how the adjusted line changes.

In[39]:=ListLinePlot[{\[Alpha]1,\[Alpha]2,\[Alpha]3,\[Alpha]4,\

[Alpha]5},FrameLabel->{"Number of Iterations","Loss Function"},Frame-

>True,PlotLabel->"Learning Curve",PlotLegends-> SwatchLegend[{Style["\

[Alpha]=1",#],Style["\[Alpha]=0.1",#],Style["\[Alpha]=0.01",#],Style["\

[Alpha]=0.001",#],Style["\[Alpha]=0.0001",#]},LegendLabel->Style["Learning 

rate",White],LegendFunction->(Framed[#,RoundingRadius->5,Background-

>Gray]&)]]&[White]

Out[39]=

Figure 8-3.  The learning curve for the gradient descent algorithm
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In the previous graph (see Figure 8-3), you can visualize the size of iterations 

concerning cost and how it varies depending on the alpha value. With a high learning 

rate, you can cover more ground at each step but risk exceeding the lowest point. To 

know whether the algorithm works, you must see that each new iteration’s loss function 

is decreasing. The opposite case would indicate that the algorithm is not working 

correctly; this can be attributed to various factors, such as a code error or an incorrect 

learning rate value. As the graph shows, adequate alpha values correspond to small 

values between a scale of 1 to 10-4. It is not necessary to use these exact values; you can 

use values within this range. Depending on the form of the data, the algorithm may or 

may not converge with different alpha values as the same for the iteration steps. If you 

choose minimal alpha values, the algorithm can take a long time to converge, as you can 

see for alpha values 10-3 or 10-4.

�Linear Regression
Despite being able to build the algorithms to perform a linear regression, the Wolfram 

Language has a specialized function for machine learning. In the case of linear 

regression problems, there is the Predict function. The Predict function can also work 

with different algorithms, not only regression task algorithms.

�Predict Function
The Predict function helps you predict values by creating a predictor function using the 

training data. It also allows you to choose different learning algorithms, the purpose 

of which is to predict a numerical, visual, categorical value or a combination. The 

methods to choose from are decision tree, gradient boosted tree, linear regression, 

neural network, nearest neighbors, random forest, and Gaussian process. Each method 

has options within it; the options vary depending on the algorithm chosen to train the 

predictor function. Let’s look at the linear regression method. The input data for Predict 

can be in the form of a list of rules, associations, or a dataset.
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�Boston Dataset
Let’s look at the first example of loading the Boston Homes data from the Wolfram 

Data Repository (see Figure 8-4). This dataset contains information about housing in 

the Boston, Massachusetts, area. For more in-depth information, refer to the article 

“Hedonic Housing Prices and the Demand for Clean Air,” by David Harrison and Daniel 

Rubinfeld, in the Journal of Environmental Economics and Management (1978; 5[1], 

81–102. https://doi.org/10.1016/0095-0696(78)90006-2) or Regression Diagnostics: 

Identifying Influential Data and Sources of Collinearity: 546 by David Belsley, Edwin Kuh, 

and Roy Welsch, (Wiley-Interscience, 2013).

In[40]:= bstn=ResourceData[ResourceObject["Sample Data: Boston Homes"]]

Out[40]=

Figure 8-4.  Boston Homes price dataset

Try using the scroll bars to have a complete view of the dataset. Let’s look at the 

descriptions of the columns and show them in TableForm.
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In[41]:= ResourceData[ResourceObject["Sample Data: Boston 

Homes"],"ColumnDescriptions"]//TableForm

Out[41]//TableForm= Per capita crime rate by town

Proportion of residential land zoned for lots over 25000 square feet

Proportion of non-retail business acres per town

Charles River dummy variable (1 if tract bounds river, 0 otherwise)

Nitrogen oxide concentration (parts per 10 million)

Average number of rooms per dwelling

Proportion of owner-occupied units built prior to 1940

Weighted mean of distances to five Boston employment centers

Index of accessibility to radial highways

Full-value property-tax rater per $10000

Pupil-teacher ratio by town

1000(Bk-0.63)^2 where Bk is the proportion of Black or African-American 

residents by town

Lower status of the population (percent)

Median value of owner-occupied homes in $1000s

�Model Creation
You create a model capable of predicting housing prices in the Boston area through the 

number of rooms in the dwelling. To achieve this, the columns of interest correspond 

to RM (average number of rooms per dwelling) and MEDV (median value of owner-

occupied homes) since you want to find out if there is a linear relationship between the 

number of rooms and the price of the house. Applying some common sense, the houses 

with the most significant number of rooms are more extensive and, therefore, can store 

more people, increasing the price.

Look at the MEDV and RM scatter plots in Figures 8-5.

In[42]:= MEDVvsRM=Transpose[{Normal[bstn[All,"RM"]],Normal[bstn[All,"

MEDV"]]}];

ListPlot[MEDVvsRM,PlotMarkers->"OpenMarkers",Frame->True,FrameLabel-> 

{Style["RM",Red],Style["MEDV",Red]},GridLines->All,PlotStyle-> 

Black,ImageSize->Medium]

Out[43]=
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Figure 8-5.  2D scatter plot of MEDV vs. RM

As seen in Figure 8-5, the house price increases as the average number of rooms 

increases. This suggests that there is a direct proportional relationship between these 

two variables. Given what is seen in the graph, let’s know the correlation value between 

these variables. You show this through a correlation matrix by first computing the 

correlation of the values, assigning the ticks’ names, and plotting it with MatrixPlot (see 

Figure 8-6).

In[44]:=correLat=SetPrecision[Correlation[Transpose[{Normal[bstn[All,"RM"]], 

Normal[bstn[All,"MEDV"]]}]],2];

xTicks={{1,"RM"},{2,"MEDV"},{1,"RM"},{2,"MEDV"}};

yTicks={{1,"RM"},{2,"MEDV"},{1,"RM"},{2,"MEDV"}};

postionsValues={Text[#1,{0.5,1.5}],Text[#1,{1.5,0.5}],Text[#2,{1.5,1.5}], 

Text[#2,{0.5,0.5}]}&[correLat[[1,1]],correLat[[1,2]]];

MatrixPlot[correLat,ColorFunction->"DarkRainbow",FrameTicks->{  xTicks, 

yTicks,xTicks,yTicks},Epilog->{White,postionsValues},PlotLegends-> 

BarLegend[{"DarkRainbow",{0,1}},4],ImageSize->180]

Out[48]=
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Figure 8-6.  A matrix plot combined with a correlation matrix

By observing the matrix plot (see Figure 8-6), it can be concluded that there is an 

excellent linear relationship between RM and MEDV.

Let’s now shuffle the dataset randomly and establish a list of rules with Thread 

because the data to be entered in the predictor function must be as follows: {x → y}—in 

other terms, input, and target value.

In[49]:= newData =  RandomSample[Thread[Normal[bstn[All, "RM"]] -> 

Normal[bstn[All, "MEDV"]]]];

Once randomly sampled, you select the first 354 elements (70%); this is the training 

set, and the remaining 152 (30%) is the test set. When splitting, common ratios include 

70/30 (training/testing), 80/20, and 60/40. Where the training set is used to train the 

model and usually the majority of the data. The remaining portion, the test set, is an 

independent dataset to assess the model performance on unseen data. The choice 

depends on factors like the size of the dataset and the detailed conditions of the 

machine-learning task you want to do.

In[50]:= {training, test} = {newData[[;; 354]], newData[[355 ;;]]};

You train the model, a predictor for the average values of owner-occupied homes 

(MEDV) as a target. As a method, you choose linear regression. When training a model, 

specification of the option of training report includes Panel (dynamical updating of 

the Panel), Print (periodic information including time, training example, best method, 

current loss), ProgressIndicator (simple progress bar), SimplePanel (dynamic update 

panel with no plots), and None. Panel is the default option (see Figure 8-7).

In[51]:=pF=Predict[training,Method->"LinearRegression",TrainingProgress 

Reporting->"Panel"]

Out[51]=
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Figure 8-7.  PredictorFunction object of the trained model

When entering the code, depending on the option added to 

TrainingProgressReporting, a progress bar and panel report should appear (see 

Figure 8-8). The time of the panel displayed depends on the training time of the model. 

To set a specific time for the training, add TimeGoal as an option, which specifies how 

long the training should last for the model. Time values are seconds of CPU time—that 

is, the number with no units. With units of time (seconds, minutes, and hours), the use 

of Quantity command is needed, like TimeGoal ➤ Quantity [“time magnitude,” #] & / @ 

{“Second,” “Minute,” “Hour”}.

Figure 8-8.  Progress report of the PredictorFunction
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Let’s go back to the model. Figure 8-7 shows that the return object is a predictor 

function (try using Head to verify it). When assigning a name to the predictor function, 

additional information about the model can be obtained; the command Information 

is used (see Figure 8-9). The information works for every other expression, not just for 

machine learning purposes.

Figure 8-9.  Information report of the trained model

Note I f you want fixed results involving random data, you need to set the seed 
before every random operation; this ensures consistent outputs.

In[52]:= Information[pF]

Out[52]=
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The information panel in Figure 8-9 includes data type, root mean squared 

(StandardDeviation), method, batch evaluation speed, loss, model memory, number of 

examples for training, and training time. The graphics at the bottom of the panel are for 

standard deviation, model learning curve, and learning curve for the other algorithms. 

Hovering the cursor pointer over the numerical parameters shows the confidence 

intervals and units. If the method’s name is correct, it shows the parameters of the linear 

regression method. Since you did not select a specific optimization algorithm within 

the LinearRegression method, Mathematica tries to search through the algorithms for 

the best one (this can be viewed in the learning curve for all algorithms). You see how to 

access these options further down the line.

Note E very method used in the predict function has options and suboptions; for 
full customization, use the Wolfram Language Documentation Center.

Table 8-1 shows the standard options that can be used for model training, as well as 

their definition and possible values for the training process of a PredictorFunction.

Table 8-1.  Most Common Options for Predict Function

Option Definition

Method AlgorithmPossible values: DecisionTree, GradientBoostedTrees, 

LinearRegression, NearestNeighbors, RandomForest and 

GaussianProcess

PerformanceGoal Performance optimizationPossible values: DirectTraining, Memory, 

Quality, Speed, TrainingSpeed, Automatic Combination of values 

supported (PerformanceGoal -> {val1, val2})

RandomSeeding Seed for the pseudorandom number generatorPossible values: 

Automatic, “custom seed,” Inherited (random seed used in previous 

computations)

TargetDevice Specifies a device to perform the training or test processPossible values: 

CPU or GPU. If a GPU is installed, the automatic target device is the GPU.

TimeGoal Time spent on the training process

TrainingProgressReporting Progress reportPossible values: Panel, Print, ProgressIndicator, 

SimplePanel, None
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�Model Measurements
Once the model is built, you must observe and analyze the performance of the predictor 

function in the test set. To carry out this, you must do it within the PredictorMeasurments 

command. The predictor function goes in the argument (see Figure 8-10), followed by the 

test set and the property or properties to add. Since the latest version, the final model features 

predictions are presented instead of just the model of the PredictorMeasurements object.

In[53]:= pRM=PredictorMeasurements[pF,test]

Out[53]=

Figure 8-10.  PredictorMeasurements object of the tested model
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The returned object is called PredictorMeasurementsObject. You can add the 

properties from the PredictorMeasurements command. You can assign a variable to 

the object to access it more simply. Since the new version of 13, the report is given in 

the output, so the model report of the test set is suppressed as it returns the same as in 

Figure 8-10.

In[54]:= pRM["Report"];

The report in Figure 8-10 shows different parameters, such as the standard deviation 

and mean cross-entropy. It shows a graph of the model’s fit and the current and 

predicted values. The model is suitable for most cases, except that some outliers still 

affect performance.

To better understand the precision of the model, let’s look at the root mean squared 

error (RMSE) and RSquared (coefficient of determination) shown in Figure 8-11. 

To display the associated uncertainties, use the option ComputeUncertainty with 

True value.

In[57]:=Dataset[AssociationMap[pRM[#,ComputeUncertainty-> True]&, {"Standard 

Deviation","RSquared"}]]

Out[57]=

Figure 8-11.  Standard deviation and r-squared values of the linear model

This gives you a slightly high RMSE value, not an excellent r-squared value. 

Remember that the r-squared value indicates how good the model is for making 

predictions. These two values indicate that although there may be a linear relationship 

between the number of rooms and prices, a linear regression does not necessarily 

explain this. These observations are also consistent, remembering that you obtained a 

correlation value of 0.7.
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�Model Assessment
The graphs made within the model are the model graph and the target variable 

(ComparisonPlot). To check the distribution of the variance, use the ResidualHistogram 

function, and to check the residual plot, use ResidualPlot. These are shown in 

Figure 8-12.

In[58]:=pRM[#]&/@{"ResidualHistogram", "ResidualPlot", "ComparisonPlot"} /. 

plot_Graphics:>Show[plot,ImageSize->Small]

Out[58]=

Figure 8-12.  ResidualHistogram, ResidualPlot, and ComparisonPlot

You write Properties as an argument to find out all the properties of the Predictor 

Measurements object. These properties can vary between methods.

In[59]:= pRM["Properties"]

Out[59]={BatchEvaluationTime,BestPredictedExamples,ComparisonPlot, 

EvaluationTime,Examples,FractionVarianceUnexplained,GeometricMeanProbabili

tyDensity,ICEPlots,LeastCertainExamples,Likelihood,LogLikelihood,MeanCross

Entropy,MeanDeviation,MeanSquare,MostCertainExamples,Perplexity,PredictorFu

nction,ProbabilityDensities,ProbabilityDensityHistogram,Properties,Rejectio

nRate,Report,ResidualHistogram,ResidualPlot,Residuals,RSquared,SHAPPlots,SH

APValues,StandardDeviation,StandardDeviationBaseline,TotalSquare,WorstPredi

ctedExamples}

If you are not satisfied with the chosen methods or hyperparameters, retraining the 

model can be done by configuring the new values for the hyperparameters. You access 

the values of the current method with the help of the Information command and add 

the properties of Method (shows you the Method used to train the model), method 

description (description of the Method used), and MethodOption (method options).
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In[60]:= Information[pF,"MethodOption"]

Out[60]=Method->{LinearRegression,L1Regularization->0,L2Regularization-> 

1.*10^-6,OptimizationMethod->NormalEquation}

You see terms such as L1Regularization, L2Regularization, and OptimizationMethod. 

The first two terms are associated with regularization methods, and L1 refers to the 

Lasso regression name and L2 to the Ridge regression name. Regularization is used to 

minimize the complexity of the model and reduce the variation; it also improves the 

precision of the model, solving overfitting problems. This is accomplished by adding a 

penalty to the loss function; this penalty is added to the sum of the absolute value of the 

coefficient � �
1 0
�

�� ii

N , whereas for L2, it is given by the expression � �
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more mathematical depth, refer Artificial Intelligence: A Modern Approach by Stuart 

Russell and Peter Norvig (Prentice Hall, 2010) and An Introduction to Statistical 

Learning: With Applications in R by Gareth James, Trevor Hastie, Robert Tibshirani, 

and Daniela Witten (Springer, 2017). The third term is which optimization method you 

want to choose; the existing methods are NormalEquation, StochasticGradientDescent, 

and OrthanWiseNewton. That said, it must be emphasized that using the vector of 

coefficients with the L1 and L2 standards is known as an Elastic Net regression model. 

Elastic Net might be used when there is a correlation in the parameters. For more theory, 

reference The Elements of Statistical Learning: Data Mining, Inference, and Prediction by 

Trevor Hastie, Robert Tibshirani, and Jerome Friedman (Springer, 2009).

�Retraining Model Hyperparameters
As discussed later, let’s retrain the model but with the values of L1 → 12, L2 → 100 

and the optimization algorithm OptimizationMethod → StochasticGradientDescent, 

TrainingProgressReporting → None, PerformanceGoal → “Quality,” RandomSeeding → 

10000, TargetDevice → “CPU.”

In[61]:= pF2 = Predict[training, Method -> {"LinearRegression", 

"L1Regularization" -> 12, "L2Regularization" -> 100, "OptimizationMethod" 

-> Automatic}, TrainingProgressReporting -> None, PerformanceGoal -> 

"Quality", RandomSeeding -> 10000, TargetDevice -> "CPU"];
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To see the properties related to an example, type properties after the input data 

for the PredictorFunction—for instance, PF2[“example,” “Properties”]. Let’s compare 

the new model’s performance by showing the graphs and metrics like before (see 

Figures 8-13 and 8-14).

Note  Standard deviation refers to the root mean square of the residuals, root 
mean square error (RMSE).

In[62]:= pRM2=PredictorMeasurements[pF2,test];

pRM2[#]&/@{"ResidualHistogram","ResidualPlot","ComparisonPlot"}/.  

plot_Graphics:>Show[plot,ImageSize->Small]

Dataset[AssociationMap[pRM2[#,ComputeUncertainty->True]&,{"StandardDeviation", 

"RSquared"}]]

Out[63]=

Out[64]=

Figure 8-13.  Plots of the retrained model

Figure 8-14.  New values for standard deviation and r-squared
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Observing the graphs and data, you see the model merely decreases to a certain 

degree; this agrees with the new r-squared value. However, it is still a poor model for 

making future predictions. The poor performance may be due to the optimization 

choice, the L1 and L2 parameters. Try to explore different L1 and L2 values for potential 

improvement.

�Logistic Regression
Logistic regression is a technique commonly used in statistics but also used within 

machine learning. The logistic regression works considering that the values of the 

response variable only take two values, 0 and 1; this can also be interpreted as a false or 

true condition. It is a binary classifier that uses a function to predict the probability of 

whether or not a condition is met, depending on how the model is constructed. Usually, 

this model type is used for classification since it can provide you with probabilities and 

classifications since the values of the logistic regression oscillate between two values. In 

logistic regression, the target variable is a binary variable that contains encoded data. For 

more information, refer to Introduction to Data Science: A Python Approach to Concepts, 

Techniques and Applications by Laura Igual, Santi Seguí, Jordi Vitrià, Eloi Puertas, Petia 

Radeva, Oriol Pujol, Sergio Escalera, Francesc Dantí, and Lluis Garrido (Springer, 2017).

�Titanic Dataset
For the following example, you use the Titanic dataset, which is a dataset that describes 

the survival status of the passengers. The variables used are class, age, sex, and survival 

condition. You load the data directly as a dataset (see Figure 8-15) from the ExampleData 

and enumerate the rows of the dataset.

Note T his section is constructed using Query language so the reader can 
understand how to use it more deeply inside datasets.

In[65]:= titanic=Query[AssociationThread[Range[Length@#]->Range[Length@#]]] 

[ExampleData[{"Dataset","Titanic"}]]&[ExampleData[{"Dataset","Titanic"}]]

Out[65]=
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Figure 8-15.  New values for Standard deviation and r-squared

Let’s look at the dimensions of the data using the Dimensions command.

In[66]:= Dimensions@titanic

Out[66]= {1309,4}

Interpreting the result, you see that the dataset comprises 1309 rows and four 

columns. The dataset has four columns classified by class, age, sex, and survived status. 

Using the space bar shows that some elements do not register data entry. To see which 

columns contain missing data, execute the following code by counting the components 

corresponding to the pattern missing in each column.
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In[67]:=Query[Count[_Missing],#]@titanic&/@{"class","age","sex","survived"}

Out[67]= {0,263,0,0}

This shows 263 missing values within the age column and zero for the others. Let’s 

remove the rows that contain this missing data. First, you extract the row numbers from 

the missing data by selecting the elements from the age column equal to missing and 

then extracting the row IDs.

In[68]:= Query[Select[#age==Missing[]&]][titanic];

Normal@Keys@%

Out[68]={16,38,41,47,60,70,71,75,81,107,108,109,119,122,126,135,148,153, 

158,167,177,180,185,197,205,220,224,236,238,242,255,257,270,278,284,294, 

298,319,321,364,383,385,411,470,474,478,484,492,496,525,529,532,582,596, 

598,673,681,682,683,706,707,757,758,768,769,776,790,796,799,801,802,803, 

805,806,809,813,814,816,817,820,836,843,844,853,855,857,859,866,872,873, 

875,877,880,883,887,888,901,902,903,904,919,921,922,923,924,927,928,929, 

930,931,932,941,943,945,946,947,949,955,956,957,958,959,962,963,972,974, 

977,983,984,985,988,989,990,992,994,995,998,999,1000,1001,1002,1003,1004, 

1005,1006,1007,1010,1013,1014,1015,1017,1019,1023,1024,1028,1029,1030,1031, 

1033,1034,1035,1036,1037,1038,1039,1040,1042,1043,1044,1045,1053,1054,1055, 

1056,1070,1071,1072,1073,1074,1075,1077,1078,1079,1081,1082,1086,1096,1110, 

1115,1116,1117,1122,1123,1124,1125,1129,1133,1136,1137,1138,1139,1150,1151, 

1152,1155,1156,1160,1163,1164,1165,1167,1168,1169,1171,1173,1174,1175,1176, 

1177,1178,1179,1180,1181,1185,1186,1187,1194,1195,1196,1198,1199,1200,1201, 

1203,1213,1214,1215,1216,1217,1220,1222,1242,1243,1244,1246,1247,1248, 

1250,1251,1254,1256,1263,1269,1283,1284,1285,1292,1293,1294,1298,1303, 

1304,1306}

These numbers represent the rows containing the age column’s missing data. You 

use the DeleteMissing command to eliminate them, considering there is missing data at 

level 1. The final dataset is seen in (see Figure 8-16).

In[69]:= titanic=DeleteMissing[titanic,1,1]

Out[69]=
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Figure 8-16.  Titanic dataset without missing values

To corroborate that there is no missing data, you could apply the same code with 

counts or by looking at the keys of the removed rows, for example.

In[70]:= titanic[Key[16]]

Out[70]= Missing[KeyAbsent,Key[16]]

This means that there is no content associated with key number 16. If you want to 

check all keys, use the row list of the missing data.
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�Data Exploration
Once you have removed the missing data, you can count the elements of each class, sex, 

and survival status (see Figure 8-17).

In[71]:= Dataset@<|"Class" -> Query[Counts, "class"]@titanic, "Sex" 

-> Query[Counts, "sex"]@titanic, "Survival status" -> Query[Counts, 

"survived"]@titanic|>

Out[71]=

Figure 8-17.  Basic elements count for class, sex, and survival status

After eliminating the rows with the missing elements, the dataset consists of 284 

elements in the first class, 261 in the second class, and 501 in the third class (see 

Figure 8-18). Also, note that more than half of the registered passengers were male and 

that there were more deaths than survivors. It is possible to verify this graphically by 

showing the percentages. The same approach is applied to the column’s class and sex.

In[72]:= Row[{PieChart[{N@(#[[1]]/Total@#),N@(#[[2]]/Total@#)}&[Counts 

[Query[All,"survived"][titanic]]], PlotLabel->Style["Percentage of 

survival",#3,#4], ChartLegends-> {"Survived", "Died"}, ImageSize->#1, 

ChartStyle->#2,LabelingFunction->(Placed[Row[{SetPrecision[100#,3],"%"}], 

"RadialCallout"]&)],
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PieChart[{N@(#[[1]]/Total@#),N@(#[[2]]/Total@#)}&[Counts[Query[All,"sex"]

[titanic]]], PlotLabel->Style["Percentage by sex",#3,#4], ChartLegends-> 

{"Female", "Male"}, ImageSize->#1,ChartStyle->#2,LabelingFunction->(Placed 

[Row[{SetPrecision[100#,3],"%"}],"RadialCallout"]&)],

PieChart[{N@(#[[1]]/Total@#),N@(#[[2]]/Total@#),N@(#[[3]]/Total@#)}& 

[Counts[Query[All,"class"][titanic]]], PlotLabel->Style["Percentage by 

class",#3,#4], ChartLegends->{"1st", "2nd","3rd"}, ImageSize-> 

#1,ChartStyle->#2,LabelingFunction->(Placed[Row[{SetPrecision[100#,3],"%"}], 

"RadialCallout"]&)]},"----"]&[200,{ColorData[97,20],ColorData[97,13], 

ColorData[97,32]},Black,20]

Out[72]=

Figure 8-18.  Pie charts for class, sex, and survival status

This example looks at the survival status of Titanic passengers. It builds a model that 

classifies whether a given class, age, and sex survived and which did not. The features 

are class, age, and sex; the target is survival status. These variables are the features, 

which the model then uses to classify whether a class, age, and sex survived, which is the 

target variable. The dataset is divided into 80% training (837 elements) and 20% test (209 

elements). To split the dataset, first do a random sampling; afterward, extract the keys of 

the IDs and create a new dataset divided by the train and test sets (see Figure 8-19).

In[73]:= BlockRandom[SeedRandom[8888];

RandomSample[titanic]];

Keys@Normal@Query[All][%];

{train,test}={%[[1;;837]],%[[838;;1046]]};

dataset=Query[<|"Train"->{Map[Key,train]},"Test"->{Map[Key,test]} |> ]

[titanic]

Out[77]=
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Figure 8-19.  Titanic dataset divided by train and test set

�Classify Function
The Classify command is another super function used in the Wolfram Language 

machine learning scheme. This function can be used in tasks that solve a classification 

problem. The data that this function accepts are numerical, textual, sound, and image 

data. This function’s input data can be the same as the Predict function {x → y}. However, 

entering data as a list of elements, an association of elements, or a dataset is also 

possible. In this case, you introduce it as a dataset.

In this case, you extract the data from the dataset format by specifying that 

the columns’ input (class, age, sex) points to the target (survived). Now, let’s build 

the classifier function (see Figure 8-20) with the following options: Method → 

{LogisticRegression, L1 → Automatic, L2 → Automatic}. When choosing Automatic, 
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you let Mathematica choose the best combination of L1 and L2 parameters. For the 

OptimizationMethod, set the StochasticGradientDescent method. And for performance 

goal set Quality. Finally, you choose a seed with a value of 100,000 and the CPU unit as 

the target device. The optimization methods for the logistic regression are the limited 

memory Broyden-Fletcher-Goldfarb-Shanno algorithm, StochasticGradientDescent, 

and Newton method. These are for estimating the parameters of the logistic function. 

The rule construction is done from the data inside the dataset using the Query language.

In[78]:= cF = Classify[Flatten[Values[Normal[Query["Train", All,  

All, {#class, #age, #sex} -> #survived &][dataset]]]], Method ->  

{"LogisticRegression", "L1Regularization" -> Automatic, 

"L2Regularization" -> Automatic,  "OptimizationMethod" -> 

"StochasticGradientDescent"},  PerformanceGoal -> "Quality", RandomSeeding  

 -> 100000, TargetDevice -> "CPU", TrainingProgressReporting -> None]

Out[78]=

Figure 8-20.  ClassifierFunction object

After training, like with the Predict function, the Classify function returns a classifier 

function object (see Figure 8-21) instead of a predictor function. Inspecting the 

classifier function, you can see the two input data types—nominal and numerical—

and the classes, which are the survival status—true or false. The method used (logistic 

regression) and the number of examples (837). To obtain information on the model, use 

the Information command. Let’s look at the model report.

In[79]:= Information[cF]

Out[79]=
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Figure 8-21.  Information about the trained classifier function

Note I f you click the arrows above the graphs, three plots are shown: Learning 
curve, accuracy, and Learning curve for all algorithms. If you hover the pointer over 
the line of the last one, a tooltip appears with the corresponding parameters along 
with the method used, as shown in Figure 8-22.
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Figure 8-22.  Algorithm specifications tooltip from the method logistic regression

You see that the model’s accuracy is approximately 79%. You also observe by clicking 

the arrows of the plots that the learning curve and accuracy curve both experience 

variation at 500 training examples used. To access all the properties of the trained model, 

add Properties as an option in Information.

In[80]:= Information[cF,"Properties"]

Out[80]={AcceptanceThreshold,Accuracy,AnomalyDetector,BatchEvaluationSpeed, 
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BatchEvaluationTime,Calibrated,Classes,ClassNumber,ClassPriors,Evaluation 

Time,ExampleNumber,FeatureExtractor,FeatureNames,FeatureNumber,FeatureTypes, 

FunctionMemory,FunctionProperties,IndeterminateThreshold,LearningCurve,Max 

TrainingMemory,MeanCrossEntropy,Method,MethodDescription,MethodOption,Method 

Parameters,MissingSynthesizer,PerformanceGoal,Properties,TrainingClassPriors, 

TrainingTime,UtilityFunction}

Note  Depending on the method used, properties may vary.

Let’s examine the probabilities for the data: class = 3rd, age = 23, and sex = male. 

Probability → name or number of class or TopProbabilities → number of most likely 

classes.

In[81]:= cF[{"3rd",23,"male"},{"Probability"-> 

False,"TopProbabilities"-> 2}]

Out[81]= {0.676982,{False->0.676982,True->0.323018}}

The probabilities of the latter example show that the passenger’s survival status may 

be more inclined to the False status.

To see the complete properties of a new classification, type the example followed 

by Properties. The properties included are Decision (best choice of class according to 

probabilities and its utility function) and Distribution (categorical distribution object). 

Probabilities of each class are displayed as associations: ExpectedUtilities (expected 

probabilities), LogProbabilities (natural logarithm probabilities), Probabilities (all 

classes), and TopProbabilities (most likely class). This is displayed in the following 

dataset (see Figure 8-23).

In[82]:= Dataset@

AssociationMap[cF[{"3rd",23,"male"},#]

&,{"Decision","Distribution","ExpectedUtilities","LogProbabilities", 

"Probabilities","TopProbabilities"}]

Out[82]=
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Figure 8-23.  Properties for the classifier function of the trained model

Note T o check the logarithm result, use the Log command, Log[base, number].

�Testing the Model
You now test the model on the test data using the ClassifierMeasurements command, 

adding the function and the test set as arguments and the uncertainty computation. 

Like PredictionMeasurement, the output returned shows details about the model (see 

Figure 8-24).

In[83]:= cM = ClassifierMeasurements[cF,Flatten[Values[Normal[Query[

"Test", All, All, {#class, #age, #sex} -> #survived &][dataset]]]], 

ComputeUncertainty -> True, RandomSeeding -> 8888]

Out[83]=
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Figure 8-24.  ClassifierMeasurements object of the classifier function

The object returned is called a ClassifierMeasurementsObject (see Figure 8-25), 

which is used to look for the properties of the ClassifierFunction after testing the test 

set. Just like with the linear regression model, the report of the test set is suppressed as it 

returns the same as in Figure 8-24.

In[84]:=cM["Report"];
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The report in Figure 8-24 shows information such as the number of test examples, the 

accuracy, and the accuracy baseline, among others. It also shows you the confusion 

matrix, which shows you the prediction results for the classification model, showing the 

number of correct and incorrect predictions; these being broken down by class, in this 

case, return either false or true, which gives you an idea of the errors the model is making 

and the type of error it is making. It shows you the true positives and true negatives and 

false positives and false negatives for each class.

Let’s look at the graph (confusion matrix) concretely (see Figure 8-25).

In[85]:= cM["ConfusionMatrixPlot"]

Out[85]=

Figure 8-25.  Confusion matrix plot of the tested model

To get the values of the confusion matrix, use CM[“ConfusionMatrix”] or class 

CM[“ConfusionFunction”].

Looking at the plot, you see that the model classified, starting from left to right at the 

top, 106 examples of false correctly classified, 21 examples of false as true, 34 examples of 

true as false, and 48 examples of true correctly. To better visualize the performance, look 

at each class’s ROC curves (see Figure 8-26), their respective values, and the Matthews 

correlation coefficient and AUC values.

In[86]:= {cM["ROCCurve"],Dataset@<|{"AUC"->cM["AreaUnderROCCurve"]}, 

{"MCC"->cM["MatthewsCorrelationCoefficient"]}|>}

Out[86]=
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Figure 8-26.  ROC curves for each class, along with AUC and MCC values

The two classes have different values in the AUC, but comparing the ROC curve; 

the class False has better classification than the True class. Let’s look at which class has 

worse examples. You can show the less accurate results of the model, which has the 

highest entropy distribution and mean cross-entropy for each class.

In[87]:= cM[{"LeastCertainExamples","ClassMeanCrossEntropy"}]

Out[87]= {{{1st,4,male}->True, {1st,19,male}->False, {1st,22,male}-> 

False, {1st,24,male}->False, {1st,25,male}->False, {1st,27,male}-> 

False, {1st,29,male}->False, {1st,30,male}->False, {1st,33,male}->False, 

{1st,35,male}->True}, <|False->0.552204,True->0.611137|>}

To get the values of the MCC coefficient, use the following properties: 

FalseDiscoveryRate, FalsePositiveRate, FalseNegativeRate (for each class), 

FalseNegativeExamples, FalseBegativeNumber (true negatives), FalsePositive and 

FalsePositiveNumber (true positive). These are shown in a short form here.

In[88]:= cM[#] & /@ {"FalseDiscoveryRate", "FalseNegativeRate", 

"FalsePositiveRate"}

Out[88]= {<|False->0.242857,True->0.304348|>,<|False->0.165354,True-> 

0.414634|>,<|False->0.414634,True->0.165354|>}

Another way to see if the model behaves consistently in predictions is to look at key 

metric values like accuracy, recall, F1 score, precision, and the accuracy rejection plot 

(see Figure 8-27). Let’s look at these metrics for the model.

In[89]:= cM[{"Accuracy", "Recall", "F1Score", 

"Precision",  "AccuracyRejectionPlot"}] // TableForm

Out[89]//TableForm=
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Figure 8-27.  TableForm for the values of Accuracy, Recall, F1Score, Precision, and 
AccuracyRejectionPlot

To see related metrics about the accuracy, type the following properties: Accuracy 

(number of correctly classified examples), AccuracyBaseline (accuracy of predicting 

the standard class), and AccuracyRejectionPlot (ARC plot, accuracy rejection curve). 

However, to find information about probability and the predicted class of the test set, 

use the following properties: DecisionUtilities (value of the utility function for every 

example in the test set), Probabilities (probabilities for every example in the test set), and 

ProbabilityHistogram (histogram of class probabilities). Let’s look at how the probability 

behaves by plotting the probability of a passenger’s survival status (see Figure 8-28), 

remembering that the false state means that a passenger did not survive, and True 

means that a passenger did survive.

In[90]:= plotClass[class1_, class2_, class3_, gender_, prob_, 

frame_, ticks_,

  imgSize_] :=  Plot[{cF[{class1, age, gender}, "Probability" -> 

prob],    cF[{class2, age, gender}, "Probability" -> prob],    cF[{class3, 

age, gender}, "Probability" -> prob]}, {age, 0, 90},   PlotLegends ->  

{gender <> " in 1st class",     gender <> " in 2nd class", gender 

<> " in 3rd class"},   FrameLabel -> {Style["Age in years", Bold, 

15],     Style["Probability", Bold, 15]}, Frame -> frame,   FrameTicks -> 
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ticks, GridLines -> {{20, 40, 60, 80}},   ImageSize -> imgSize]

truPlot = {plotClass["1st", "2nd", "3rd", "male", True, True, 

All,     Medium],    plotClass["1st", "2nd", "3rd", "female", True, True, 

All,     Medium]};

falsePlot = {plotClass["1st", "2nd", "3rd", "male", False, True, 

All,     Medium],    plotClass["1st", "2nd", "3rd", "female", False, True, 

All, Medium]};

headings = {Style["True class", Black, 20,     FontFamily -> "Arial 

Rounded MT"],    Style["False class", Black, 20, FontFamily -> "Arial 

Rounded MT"]};

Grid[{{headings[[1]], headings[[2]]}, {truPlot[[1]],    falsePlot[[2]]}, 

{truPlot[[2]], falsePlot[[1]]}},  Alignment -> {{Center, Center}, {None, 

None}},  Dividers -> {False, 1}]

Out[92]=

Figure 8-28.  Probabilities of each class, depending on the class, age, and sex

The graphs shown in Figure 8-30 clearly show that males’ probability of survival 

decreases as age increases, even to hit values below 20% of chance, whether 1st, 2nd, or 

3rd class. This is contrary to the probability of survival for females, where it starts with 

values above 80% of chance and decreases as age increases, too, hitting values above 

50% for 1st class.
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�Data Clustering
The data clustering method is unsupervised learning, as referenced by M. Emre Celebi, 

and Kemal Aydin in Unsupervised Learning Algorithms (Springer, 2018). It is generally 

used to find structures and characteristics of data clusters, where the points to be 

observed are divided into different groups by which they are compared based on unique 

characteristics.

The following example creates a bivariate data series and plot the list of points (see 

Figure 8-29). To find clusters, there is the Find Clusters command; this command makes 

a partition of the points according to their similarities.

In[93]:= BlockRandom[

SeedRandom[321];

rndPts=Table[{i,RandomReal[{0,1}]},{i,1,450}];]

ListPlot[rndPts,PlotRange->All,PlotStyle->Directive[Thick,Blue],Frame-> 

True,FrameTicks->All]

Out[93]=

Figure 8-29.  2D scatter plot of random data

�Clusters Identification
The FindClusters function is used to detect partitions within a set of data with 

similar characteristics. This function gathers the cluster elements into subgroups 

that the function finds. When you do not add options to the Find Clusters command, 
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Mathematica automatically sets the cluster identification parameters. Options for 

other machine learning methods can also be used for this command; for example, 

PerformanceGoal, Method, and RandomSeeding.

In[94]:= clusters=FindClusters[rndPts,PerformanceGoal->"Speed",Method-

>Automatic,DistanceFunction->Automatic,RandomSeeding->1234];

Short[clusters,1]

Out[95]//Short={{{1,0.924416},{8,0.951038},<<162>>,{443,0.824999}},{<<1>>}, 

{<<1>>}}

Let’s look at how many clusters were identified. You use the Length command; this 

way, you obtain the general form of the list.

In[96]:= Length[clusters]

Out[96]= 3

You see that the result is three. This can be interpreted as follows: the list contains 

three elements (that is, three sublists), each list represents a cluster, and within each 

cluster, there is a sublist, which includes the points of each identified cluster. To 

determine how many elements are included in each cluster, use the Map command and 

apply the Dimension command at the specification level.

In[97]:= Map[Dimensions,clusters,1]

Out[97]= {{165,2},{143,2},{142,2}}

This tells you that the first cluster contains 165 elements, the second cluster contains 

143 components, and the third cluster contains 142 elements; these are the same 

number of points you created earlier, totaling 450. Each cluster consists of a two-point 

coordinate system. The FindClusters command returns the points where it identifies the 

clusters. Figure 8-30 exhibits the plot of the clusters generated.

In[98]:= ListPlot[clusters,PlotStyle->{Red,Blue,Green},PlotLegends-> 

Automatic,Frame->True,FrameTicks->All,PlotLabel->Style["Cluster Plot", 

Italic,20,Black],Prolog-> {LightYellow,Rectangle[Scaled[{0,0}], 

Scaled[{1,1}]]}]

Out[98]=
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Figure 8-30.  2D scatter plot of the three clusters identified

Find Clusters automatically colors the clusters. To explicitly establish the number of 

clusters to search, you add the desired number as the second argument—that is, in the 

form FindCluster [“points,” “a number of clusters”]. In the previous example, you set the 

method option to automatic. The different methods for finding the clusters are shown 

here. Agglomerate (which is the algorithm of single linkage clustering), density-based 

spatial clustering of applications with noise (DBSCAN), NeighborhoodContraction 

(nearest-neighbor chain algorithm), JarvisPatrick (Jarvis\[Dash]Patrick clustering 

algorithm), KMeans (k-means clustering), MeanShift (mean-shift clustering), KMedoids 

(k-medoids partitioning), SpanningTree (minimum spanning tree clustering), Spectral 

(spectral clustering), and GaussianMixture (Gaussian mixture model).

�Choosing a Distance Function
In addition to the method option, there is also the DistanceFunction, which was given 

the value of Automatic. This option defines how the distance between the points is 

calculated. In general, when you choose automatic, the square Euclidean distance is 

used (∑(yi − xi)2). There are also other values for the distance function,

Euclidean distance (� �� �y xi i
2 ), Manhattan distance (∑ ∣ xi − yi∣), Chessboard 

distance, or Chebyshev distance ((|xi − yi|) ), among others. Now that you know how the 

clusters are identified, you want to know the centroid of each one. For this it is necessary to 
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calculate the mean of the points of the clusters. The centroid of a series of points is obtained 

from the expression � � ��
�
�

�
�
�

x
n
i , which can be interpreted as the average of the points. For 

the calculation, you extract the data from each cluster and calculate its arithmetic mean.

In[79]:={cluster1Centroid,cluster2Centroid,cluster3Centroid}={N@Mean@

clusters[[1,All]],N@Mean@clusters[[2,All]],N@Mean@clusters[[3,All]]}

Out[79]= {{224.806,0.810328},{105.14,0.331805},{347.514,0.31097}}

Let’s plot the clusters with their centroids to visualize how the points are classified 

for each centroid (see Figure 8-31).

In[99]:= clusterPlot=ListPlot[clusters,PlotStyle->{Red,Blue,Green}, 

PlotLegends->{"Cluster 1","Cluster 2","Cluster 3"}];

centroidPlot=ListPlot[{cluster1Centroid,cluster2Centroid,cluster3Centroid},

PlotStyle->Black];

Show[{clusterPlot,centroidPlot},Prolog->{LightYellow,Rectangle[Scaled[{0,0

}],Scaled[{1,1}]]},Frame-> True,FrameTicks-> All,PlotLabel->Style["Cluster 

Plot",Italic,20,Black]]

Out[100]=

Figure 8-31.  2D scatter plot of the three clusters identified with their respective centroids
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To make sure the first cluster corresponds to the red points, try using ListPlot to plot 

the points contained in clusters[[1, All]], as well as those in the second cluster (blue) and 

third cluster (green). Alternatively, you can highlight the area of the centroids by adding 

the Epilog option to the plot. Epilog is another graphic option like Prolog, but you can 

use it to highlight the location of the centroid points (see Figure 8-32).

In[101]:= Show[{clusterPlot, centroidPlot},  Prolog -> {LightYellow, 

Rectangle[Scaled[{0, 0}], Scaled[{1, 1}]]},  Frame -> True, 

FrameTicks -> All, Epilog -> {Opacity[0.2], PointSize[0.1], 

Point[cluster1Centroid],    Point[cluster2Centroid], 

Point[cluster3Centroid]}]

Out[101]=

Figure 8-32.  2D scatter plot of the three clusters identified with their respective 
centroids

�Identifying Classes
Once the clusters are identified by the command FindClusters, you can use 

the ClusteringComponents command to label or identify the different classes 

found. You must specify the number of clusters and where to look for the clusters 

within the ClusteringComponents command since there are several ways to use 

ClusteringComponents.
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In[102]:= classes=ClusteringComponents[clusters,3,2,Method->Automatic, 

DistanceFunction->Automatic,RandomSeeding-> 1234,PerformanceGoal->"Speed"] 

//Shallow

Out[102]={{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,2,1,2,

1,2,2,1,1,1,1,2,1,1,2,1,1,2,1,2,2,2,2,1,1,2,2,1,2,2,2,2,2,2,1,1,2,2,2,2,1,

2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2},{1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,3,1,3,1,1,1,1,1,1,1,1,3,1,3,3,1,

3,1,1,3,1,1,1,1,3,1,3,1,1,1,3,3,1,3,3},{3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,

3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,

3,3,3,3,3,3,2,2,3,3,3,3,3,2,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,2,

2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,

2,3,3,3,3,3,2,3,3,3,3,2,3,3}}

In this way, numbers that correspond to the three classes appear. The command 

only identifies three types of classes; it does not mention what each class means. This is 

because cluster methods are often performed on unlabeled data, so interpretation is part 

of the analysis. Let’s count how many elements of each class you have.

In[103]:= Flatten[classes]//Counts

Out[103]= <|1->174,2->132,3->144|>

The command returns that class one contains 174, class two contains 132, and class 

three contains 144. One point to clarify is why the clusters identified with FindClusters 

and ClusteringCompnents defer. This is because by setting the automatic option in the 

distance function, you are telling Mathematica to find the optimal distance function. 

Depending on the data, one function might gather elements in different forms, as you 

see later.

�K-Means Clustering
Thus far, you have seen how to search for clusters in a generic way. This section focuses 

on the k-means method. The k-means is a technique to find and classify data groups 

(k) so that the elements that share similar characteristics are grouped similarly for the 
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opposite case (not similar characteristics). The method calculates the distance between 

the data for a centroid to distinguish whether the data contain similarities. The elements 

that have less distance between them is those that share similarities. This technique is 

an iterative process in which the groups are adjusted until they reach a convergence. 

The k-means method, a simple algorithm, makes a classification employing specific 

partitions in different groups, where each point or observation belongs to the group. 

Clustering is done by minimizing the sum of the distances between each object and 

the centroid of its group. The k-means clustering technique tries to build the clusters 

to have the least variation within a group. This is done by minimizing the expression 

C xi j ix Cj i
� � � �

�� �
2

, where Ci represents the ith cluster, xj represents the points, and 

μi represents the centroid of each cluster. The square term of the function is the distance 

function; the most used is the square Euclidean distance, as in this case.

To learn more about the mathematical foundation behind this technique, consult the 

reference An Introduction to Statistical Learning: With Applications in R by Gareth James, 

Daniela Witten, Trevor Hastie, and Robert Tibshirani. (1st ed. 2013, Corr. 7th printing 

2017 ed.: Springer).

The Fisher’s Irises dataset in ExampleData is used in the following example. 

Recalling the dataset’s features, execute the following code.

In[104]:= ExampleData[{"Statistics","FisherIris"},"ColumnDescriptions"]

Out[104]= {Sepal length in cm.,Sepal width in cm.,Petal length in cm.,Petal 

width in cm.,Species of iris}

Let’s extract the dataset and assign the variable iris to it.

In[105]:= iris=ExampleData[{"Statistics","FisherIris"}];

Short[iris,6]

Out[106]//Short= {{5.1,3.5,1.4,0.2,setosa},{4.9,3.,1.4,0.2,setosa},{4.7,3.2

,1.3,0.2,setosa},{4.6,3.1,1.5,0.2,setosa},{5.,3.6,1.4,0.2,setosa},{5.4,3.9,

1.7,0.4,setosa},{4.6,3.4,1.4,0.3,setosa},<<136>>,{6.8,3.2,5.9,2.3,virginica

},{6.7,3.3,5.7,2.5,virginica},{6.7,3.,5.2,2.3,virginica},{6.3,2.5,5.,1.9, 

virginica},{6.5,3.,5.2,2.,virginica},{6.2,3.4,5.4,2.3,virginica},{5.9,3., 

5.1,1.8,virginica}}
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�Dimensionality Reduction
Since the iris dataset consists of four features classified into three species types, you use 

the PCA method, as this method is used to reduce high-dimensionality problems. In 

this case, you want to represent these features through two main components. For this, 

you proceed to standardize the data—that is, they have zero mean and one standard 

deviation since the variables with larger variance are more likely to affect the PCA.

In[107]:= sT=Standardize[iris[[All,{1,2,3,4}]]];(*Showing only the first 

4 terms*)

%[[1;;4]]//TableForm

Out[108]//TableForm= -0.897674    1.0156    -1.33575    -1.31105

-1.1392    -0.131539     -1.33575    -1.31105

-1.38073    0.327318     -1.3924     -1.31105

-1.50149    0.0978893    -1.2791     -1.31105

There are two ways to do the process, either using the DimensionReduce command 

or the DimensionReduction command, which are used to reduce the dimensions of 

the data. The difference between the two is that the first returns the values as a list. The 

second returns a DimensionReducerFunction (see Figure 8-33) as output, as in the 

case of Predict and Classify. Both belong to the Wolfram Language special functions for 

machine learning. For this case, you use the DimensionReduction command. Since you 

have the data, you introduce the standardized data as arguments, followed by specified 

target dimensions (2), with the PrincipalComponentAnalysis method. This gives you the 

DimensionReducerFunction that assigns the name DR.

In[109]:= dR=DimensionReduction[sT,2,Method->"PrincipalComponentsAnalysis"]

Out[109]=

Figure 8-33.  DimensionReductionFunction object
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The properties of the function are “ReducedVectors” (list of reduced vectors), 

“OriginalData” (deduction from the original data list given the reduced vectors), 

“ReconstructedData” (data reconstruction by reduction and inversion), “ImputedData” 

(missing values replaced by imputed ones). You call the standardized data values 

function, showing the first five. The coordinates x and y are for the principal components 

1 and 2, respectively.

In[110]:= pCA=dR[sT,"ReducedVectors"]; TableForm[%[[1;;5]],TableHeadings 

->{None, {"First principal component","Second Principal component"}}, 

TableAlignments->Center]

Out[111]//TableForm= First principal component    Second Principal component

2.2647    -0.480027

2.08096    0.674134

2.36423    0.341908

2.29938    0.597395

2.38984   -0.646835

This calculates the variance of each component, followed by the total to find the 

proportion of variance explained. PC1 represents 76% of the data dispersion, and 

PC2 represents 23%. To obtain the accumulated percentage, you add the variations 

of each component. To view more depth about the proportion of variation, refer to 

An Introduction to Statistical Learning: With Applications in R by G. James, D. Witten, 

T. Hastie, and R. Tibshirani (Springer, 2017).

In[112]:= Variance@pCA[[All, All]]/Total@Variance@pCA[[All, All]] 

//  TableForm[#,    TableHeadings -> {{"First PC variation", "Second PC 

variation"}, None}] &

Out[112]//TableForm=

First PC variation    | 0.761507

Second PC variation   | 0.238493

You look at the plot (see Figure 8-34) of the main components made by the previous 

process. If you look over the complete iris data from the ExampleData, the first 50 

elements correspond to the setosa species, the next 50 to versicolor, and the last 50 to 

virginica.
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In[113]:= labels={Style["First principal component", Black, Bold], 

Style["Second Principal component",Black,Bold]};ListPlot[{pCA[[1 ;; 50]], 

pCA[[51 ;; 100]], pCA[[100 ;; 150]]},PlotLegends->Placed 

[{Placeholder["setosa"], Placeholder["versicolor"], Placeholder 

["virginica"]}, Right], PlotMarkers -> "OpenMarkers",  GridLines -> All, 

Frame -> True, Axes -> False, FrameTicks -> All,  FrameLabel -> labels]

Out[114]=

Figure 8-34.  Scatter plot of the two principal components

�Applying K-Means
Now, let’s find the clusters with k-means using the Manhattan distance. You assume 

that the data can be divided into three clusters by specifying to look for three clusters. 

You know the original data belongs to three species (setosa, versicolor, and virginica). 

The plot of the clusters is shown here (see Figure 8-35), with their respective centroids. 

When choosing the k-means method, suboptions can be added, like InitialCentroids. 

Costum start centroids (a list of centroid coordinates) can be typed, or you can leave the 

automatic option. To enter the centroids coordinates, you use the following form Method 

→ {“KMeans,” InitialCentroids” → {{x1, y1}, {x2,y2}, {x3,y3} ... }}, where x1, y1 represent 

the centroid of the C1 (cluster 1). Initial centroids are not given to the command 

FindClusters to keep some randomness.
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In[115]:= clstr = FindClusters[pCA, 3, Method -> 

"KMeans",    DistanceFunction -> SquaredEuclideanDistance,    RandomSeeding  

 -> 8888];ListPlot[clstr, PlotRange -> All, Frame -> True, AspectRatio -> 

0.8,  Axes -> False,  PlotStyle -> {ColorData[97, 1], ColorData[97, 2], 

ColorData[97, 3]},  PlotLabel ->   Style["K- 

means clustering for K=3", FontFamily -> "Times", Black,    20, Italic], 

FrameTicks -> All,  PlotLegends ->   Placed[{Placeholder[Style["Cluster 1", 

Bold, Black, 10]],     Placeholder[Style["Cluster 2", Bold, Black, 10]],     

Placeholder[Style["Cluster 3", Bold, Black, 10]]}, Right],  PlotMarkers  

 -> "OpenMarkers", FrameLabel -> labels, GridLines -> All,  Epilog -> 

{Opacity[1], PointSize[0.01], Point[Mean@clstr[[1, All]]],    Point[Mean@

clstr[[2, All]]], Point[Mean@clstr[[3, All]]]}]

Out[115]=

Figure 8-35.  3 clusters identified of the two principal components

In Figure 8-35, the method identifies the left points as a single cluster (setosa specie), 

whereas some points between clusters 2 and 3 might be misclassified.
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�Changing the Distance Function
Changing the DistanceFunction can modify how the clusters are arranged; the following 

code shows the plot for k = 3 and choosing a different distance function. In the next 

block of code, the computation of the clusters is made for the same k (3), with a different 

distance function, and stored into their respective variables. Then, the clusters are 

plotted (see Figure 8-36) for each of the different distance functions, and finally, they are 

displayed within a graphic grid.

In[116]:= clusteringPlot[distanceName_, distanceFunction_] 

:=  Module[{clusters, pltTitles, points},   clusters =    FindClusters[pCA, 

3, PerformanceGoal -> "Quality",     Method -> "KMeans", DistanceFunction  

 -> distanceFunction,     RandomSeeding -> 8888];  points = Point[Mean[#]] 

& /@ clusters;  pltTitles = distanceName;  ListPlot[clusters, Frame -> 

True, AspectRatio -> 0.8,    PlotMarkers -> "OpenMarkers",    PlotStyle -> 

{ColorData[97, 1], ColorData[97, 2],      ColorData[97, 3]}, GridLines -> 

All, PlotRange -> Automatic,    ImageSize -> 300, FrameLabel -> labels, 

Axes -> False,    FrameTicks -> All, Epilog -> {Opacity@1, PointSize@0.03, 

points},    PlotLabel -> Style[pltTitles, Black]]]

eDplt = clusteringPlot["Euclidean Distance", EuclideanDistance];

mhDplt = clusteringPlot["Manhattan Distance", ManhattanDistance];

chDplt = clusteringPlot["Chessboard Distance", ChessboardDistance];

cosDplt = clusteringPlot["Cosine Distance", CosineDistance];

legendsText = {Placeholder[Style["Cluster 1", Bold, 

Black, 10]],    Placeholder[Style["Cluster 2", Bold, 

Black, 10]], Placeholder[Style["Cluster 3", Bold, Black, 

10]]};Labeled[Legended[  GraphicsGrid[{{eDplt, mhDplt}, 

{chDplt, cosDplt}},Frame->All,Background->White,Spacings->1], 

PointLegend[{ColorData[97,1], ColorData[97,2], ColorData[97,3]}, 

legendsText, LegendMarkers -> "OpenMarkers"]],  Style["K-means clustering 

for K=3", FontFamily -> "Times", Black, 20,   Italic], Top]

Out[117]=
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Figure 8-36.  K-means clustering for K = 3, for different distance functions

The clusters can have different arrangements with different distance functions; one 

thing to note also is that the cluster’s centroids change in each of the subfigures.

�Different k’s
Having seen that for different distance functions, the clusters can vary, let’s now 

construct the process but with different k’s—that is, for k= 2, 3, 4, and 5, as exhibited in 

Figure 8-37.

In[117]:= findKClusters[k_, PCA_] := FindClusters[PCA, k, 

PerformanceGoal -> "Speed", Method -> "KMeans",DistanceFunction -> 

SquaredEuclideanDistance, RandomSeeding -> 8888];

plotKClusters[k_, clusters_] := ListPlot[clusters, Frame -> True, 
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AspectRatio -> 0.8, PlotMarkers -> "OpenMarkers", PlotStyle -> 

ColorData[97, "ColorList"][[;; k]], GridLines -> All, PlotRange -> 

Automatic, ImageSize -> 260, FrameLabel -> labels, Axes -> False, 

FrameTicks -> All, Epilog -> {Opacity@1, PointSize@0.015, Point[Mean  

/@ clusters]}, PlotLabel -> Style["K=" <> ToString[k], Black]];

kValues = {2, 3, 4, 5};

kClusters = findKClusters[#, pCA] & /@ kValues;

kPlots = plotKClusters[#, kClusters[[#2]]] & @@@ Transpose[{kValues, Range@

Length@kValues}];

legendsText2 = {Placeholder[Style["Cluster " <> ToString[#], Bold, Black, 

10]]} & /@ Range@5;

Labeled[Legended[  GraphicsGrid[Partition[kPlots, 2], Frame -> 

All,    Background -> White, Spacings -> 1],   PointLegend[ColorData[97, 

"ColorList"][[;; 5]], legendsText2,    LegendMarkers -> 

"OpenMarkers"]],  Style["K-means clustering for K=2,3,4,5", FontFamily -> 

"Times",   Black, 20, Italic], Top]

Out[120]=
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Figure 8-37.  K-means for K from 2 to 5

The arrangement of the clusters also depends on the number of ks. Complementing 

with ClusteringComponents, you can count the number of labels registered for a k = 3.

In[120]:= ClusteringComponents[clstr,3,2,Method->"KMeans",DistanceFunction 

->SquaredEuclideanDistance,RandomSeeding->8888]

Counts[Flatten[%]]

Out[121]={{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},{2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2},{3,3,3,3,2,3,3,3,

3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,2,3,2,

3,3,3,3,3,3,2,3,3,2}}

Out[122]= <|1->50,2->51,3->49|>

Chapter 8  Machine Learning with the Wolfram Language



353

Given a clustering problem, the k-means technique is meant to be used for 

unlabeled data—that is, data without defined categories. Some factors that can alter the 

operation of the method include the following.

•	 The spread, or how far apart the points are. This is reflected if 

the data contains outliers or are in various scales, which can be 

erroneously classified as part of a cluster when the opposite is 

observed visually.

•	 The dimensionality of the data. Given that more information and 

features are often added to the model, the number of dimensions 

grows, leading to the “curse of dimensionality.” This type of problem 

can be solved using data transformation methods, as in the example 

seen from PCA, but with some restrictions since the PCA method can 

lose sensitive information on the features.

•	 The value of k is determined manually, but when there are high-cost 

function values, it can be interpreted that the intra-cluster variation is 

high. With low-cost function values, the intra-cluster variation is low. 

The last two assumptions can also be attributed to the fact that for lower 

values of k, many observations can be grouped into large individual 

clusters. For high values of k observations, they can be a proper group.

�Cluster Classify
Another command that belongs to the cluster functions is called ClusterClassify (see 

Figure 8-38). This command works in the same way as Classify does. The following 

example uses this command to see how the k-means cluster classifies the species based 

on Sepal length and Sepal width. Split the data into halves when you randomly sample.

In[122]:= BlockRandom[

SeedRandom[88888];

RandomSample[iris[[All,{1,2}]]];]

trainingSet=%[[1;;75]];

testSet=%%[[76;;150]];

In[123]:= cC=ClusterClassify[trainigSet,3,Method->"KMeans", 

DistanceFunction->Automatic,PerformanceGoal->"Speed",RandomSeeding->8888 ]

Out[123]=
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Figure 8-38.  ClassifierFunction of the cluster classification model

Figure 8-38 shows the details of the cluster classification model. The input vector is a 

numerical vector, the number of classes (three), the method, and the number of training 

examples.

Note T o correctly use the k-means method, the number of clusters needs to be 
specified; otherwise, the command does not execute correctly.

Use the Information command to see the classifier information (see Figure 8-39).

In[124]:= Information[cC]

Out[124]=

Figure 8-39.  Classifier information for k-means
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More detailed information about the classifier function is shown in Figure 8-39. 

To get the complete list of properties, type “Properties” as a second argument. Many 

metrics, such as BatchEvaluationSpeed, BatchEvaluationTime, and TrainingTime, can 

compare times with different methods.

In[125]:= Information[cC,"Properties"]

Out[125]={AcceptanceThreshold,AnomalyDetector,BatchEvaluationSpeed,BatchEv

aluationTime,Calibrated,Classes,ClassNumber,ClassPriors,DistanceFunction,

EvaluationTime,ExampleNumber,FeatureExtractor,FeatureNames,FeatureNumber, 

FeatureTypes,FunctionMemory,FunctionProperties,IndeterminateThreshold, 

LearningCurve,MaxTrainingMemory,Method,MethodDescription,MethodOption, 

MethodParameters,MissingSynthesizer,PerformanceGoal,Properties,Training 

ClassPriors,TrainingTime,UtilityFunction}

Let’s now get the information about the classes identified from the cluster classifier, 

the number of classes, distance function, feature names, and the training class 

probabilities.

In[126]:=Information[cC,#]&/@{"Classes","ClassNumber","DistanceFunction", 

"FeatureNames","TrainingClassPriors"}

Out[126]= {{1,2,3},3,EuclideanDistance,{f1},<|1->0.333333,2->0.293333, 

3->0.373333|>}

There are three classes: class 1, class 2, and class 3. The distance function used is 

EuclideanDistance, and the name f1 refers to the numeric vector features. A simple 

example is chosen by choosing a sepal length of 1 and a sepal width of 2 to show the 

different properties that can be used when testing the data, shown in the dataset form 

(see Figure 8-40). The example is first written, followed by the properties Decision 

(cluster that belongs to the example), Distribution (categorical distribution object 

for histogram plots), ExpectedUtilities (expected probabilities and indeterminate 

threshold), LogProbabilities (log probabilities), Probabilities (probabilities of the test 

data based on classes), and TopProbabilities (best probabilities for the test data).

In[127]:=Dataset[AssociationMap[cC[{1,2},#]&,{"Decision","Distribution", 

"ExpectedUtilities","LogProbabilities","Probabilities","TopProbabilities"}]]

Out[127]=
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Figure 8-40.  The dataset of the simple Iris example

The example belongs to the third cluster and that the associated probability is 3 → 

0.976148. Look at the rest of the data and plot the cluster classification. The classified 

data plot is shown in Figure 8-41.

In[128]:= ListPlot[Pick[testSet,cC[testSet],#]&/@{1,2,3}, 

PlotMarkers->"OpenMarkers",GridLines->Automatic,PlotLegends-> 

{Placeholder[Style["Cluster 1",Bold,Black,10]],Placeholder[Style["Cluster  

2",Bold,Black,10]],Placeholder[Style["Cluster 3",Bold,Black,10]]}, 

Frame->True,FrameTicks->All,FrameLabel->{"Sepal Lenght","Sepal Width"}]

Out[128]=

Figure 8-41.  Cluster classification on the example of the iris data for the first 
two features
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As a complement, a probability restriction for values below an established 

probability value can be added with IndeterminateThreshold, as depicted in Figure 8-42.

In[129]:= ListPlot[Pick[testSet,CC[testSet,IndeterminateThreshold-> 

0.6],#]&/@{1,2,3,Indeterminate},PlotMarkers-> "OpenMarkers",PlotLegends-> 

{Placeholder[Style["Cluster 1",Bold,Black,10]],Placeholder[Style["Cluster 

2",Bold,Black,10]],Placeholder[Style["Cluster 3",Bold,Black,10]],Placeholder 

[Style["Indeterminate",Bold,Black,10]]},Frame->True,FrameTicks-> 

All,FrameLabel->{"Sepal Lenght","Sepal Width"},GridLines->Automatic]

Out[129]=

Figure 8-42.  Cluster classification on the example of the iris data for the first two 
features with a probability restriction

�Summary
The first part of the chapter discussed machine learning, the gradient descent algorithm, 

and its comprehensive implementation. Then, the linear regression model was 

introduced by exploring the Boston dataset and the guide to creating, measuring, and 

refining the created model. This previous process is also carried out for the logistic 

regression but with the Titanic dataset. As the chapter concluded, you learned about 

data clustering and k-means clustering.
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CHAPTER 9

Neural Networks with 
the Wolfram Language
This chapter starts with the basic foundations of the neural network framework in the 

Wolfram Language. The chapter begins with the concepts of layers, how to use the 

commands for different layers, and the most common layers. You learn how to enter 

data into the layers by the net port and the different forms of equivalent expression of the 

layers. This topic is followed by how to distinguish different layers by their symbol. You 

see that layers can have multiple options that enable them to have various specifications 

by viewing the concept of a layer in the Wolfram Language scheme, comparing different 

layers with different purposes, and performing different computations. You also achieve 

this by looking at the various activation functions supported by the Wolfram Language 

and inspecting the plots of each function in addition to different syntax forms. Next, 

you learn about encoders and decoders and how these tools are used to construct a 

neural network model, depending on the task to be fulfilled. You then learn how these 

encoders and decoders are used to convert different data types to numeric arrays and 

how to convert the numeric arrays back to the initial data. You introduce the concept 

of a container, what it means for the created models, and what types exist. You see how 

to handle and build containers with different commands and graphically visualize the 

created model. You see how the Wolfram Neural Net Framework supports MXNet- 

related operations and how to export a network to the format of the MXNet operation.

https://doi.org/10.1007/979-8-8688-0348-2_9#DOI
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�Layers
It is necessary to understand that neural networks, in general and in the Wolfram 

Language, are built from layers. A layer is a term that can be applied to a collection of 

nodes that operate together at a specific level within the neural network. The layer is an 

essential and straightforward member for constructing a neural network.

�Input Data
The data handled by the layers is of a numeric type and not of another kind. Input 

variables can be vectors, a unidimensional list, matrixes, a two-dimensional list, arrays, 

a list of lists, or any other numeric tensor. These input variables can be either features or 

attributes of the dataset of study, with a known or multidimensional shape. These types 

of input attributes are associated with the input layer, for which the feature size, in turn, 

must be equal to the input size of a layer, but not every layer receives the same input and 

returns the same output; every input varies depending on the type of layer to be used. 

This definition is one of the most basic ideas in neural networks since they are a crucial 

component of the whole structure that involves the term neural network. A remark here 

is to distinguish input from input layer since they do not mean the same.

�Linear Layer
A linear layer is the most common and widely used layer in a neural network. To build 

the simplest layer in the Wolfram Language, use the LinearLayer command.

In[1]:= LinearLayer["Input"->1,"Output"->2]

Out[1]=

Figure 9-1 represents the LinearLayer object in the Wolfram Language. Clicking the 

plus icon shows the internal parameters, including details about the layer port’s input 

and output and array rank of the weights and biases of the linear layer, as shown in 

Figure 9-2.

Figure 9-1.  LinearLayer object
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Figure 9-2.  Expanded LinearLayer object

Each layer has an input port and an output port. Each port has an associated size of 

what is entering the layer and what is going out. In the latter case, a vector of size one is 

entering, and the layer returns a vector of size two.

�Weights and Biases
The general form of a linear layer is given by the following expression of the dot product 

w⋅x + b, where x is the data vector, w represents the matrix of the weights, and b is the 

vector of the biases. Linear layers have other associated names, like fully connected 

layers, as in the MXnet framework. The input of the layers in the Wolfram Language 

receives numerical tensors as input—that is, they only act on numerical arrays. To 

explicitly enter the size of input and output, you write the form of the input port and 

the output port followed by different options: “Input” or “Output” → {size, Options.}. 

Options include defining a real number (Real), a vector of form n (single number n), 

an array ({n1 * n2 * n3} ...), or a NetEncoder, which you see later. Following are some 

equivalent ways to write layers, as depicted in Figure 9-3.

In[2]:= LinearLayer["Input"->{2,"Real"},"Output"->{3,1}]

Out[2]=

Figure 9-3.  LinearLayer with different input and output rank arrays
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As shown in Figure 9-3, the layer receives a vector of size two (list of length 2), 

comprised of real numbers, and the output is a matrix of the shape 3×2. When a real 

number is specified within the Wolfram Neural Network Framework, it works with the 

precision of a Real32. When no arguments are added to the layer, the input and output 

shapes are inferred. To manually assign the weights and biases, write “Weights” → 

number, “Biases” → number; None is also available for no weights or biases. This is 

shown in the following example, where weights and biases are set to a fixed value of 1 

and 2 (see Figure 9-4).

In[3]:= LinearLayer["Input"-> 1,"Output"-> 1,"Weights"-> 1,"Biases"-> 2]

Out[3]=

Figure 9-4.  Initialized linear layer, with fixed biases and weights

�Initializing a Layer
Another command allows you to initialize the layer with random values: 

NetInitialize. So, to establish hold values of weights or biases, you can also use the 

LearningRateMultipliers option (see Figure 9-5). Besides this, LearningRateMultipliers 

also mark the rate at which a layer learns during the training phase.

In[4]:= NetInitialize[LinearLayer["Input"-> "Real","Output"-> 

"Real",LearningRateMultipliers->{"Biases"->1}]]

Out[4]=
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Figure 9-5.  LinearLayer with training parameters

When a layer is initialized, the uninitialized text disappears. If you observe the properties 

of the new layer, they appear within the training parameters where fixed biases have been 

established, and a learning rate has been set. The options for NetInitialize are Method and 

RandomSeeding. The available methods are Kaiming, Xavier, Orthogonal (orthogonal 

weights), and Random (weights selection from a distribution). For example, you can use the 

Xavier initialization sampling from a normal distribution, as seen in Figure 9-6.

In[5]:= NetInitialize[LinearLayer["Input"-> "Real","Output"-> 

"Real",LearningRateMultipliers->{"Biases"->1}],Method-> 

{"Xavier","Distribution"->"Normal"},RandomSeeding->888]

Out[5]=

Figure 9-6.  LinearLayer initialized with the Xavier method

Note T he Option command is recommended to see the options set for a layer.

Despite being able to establish the weights and biases manually, it is advisable to 

start the layer with random values to maintain a certain level of complexity in the overall 

structure of a model since, on the contrary, this could have an impact on the creation of 

a neural network that does not make accurate predictions for non-linear behavior.

Chapter 9  Neural Networks with the Wolfram Language



364

�Retrieving Data
NetExtract retrieves the value of the weights and biases in the form NetExtract [net, 

{level1, level2, ...}. The weights and bias parameters of the linear layers are packed in 

NumericArray objects (see Figure 9-7). This object has the values, dimensions, and 

type of the values in the layer. NetExtract also serves to extract layers of a network with 

many layers. NumericArrays are used in the Wolfram Language to reduce memory 

consumption and computation time.

In[6]:= linearL=NetInitialize[LinearLayer[2, "Input"-> 

1],RandomSeeding->888];

NetExtract[linearL,#]&/@{"Weights","Biases"}//TableForm

Out[7]//TableForm=

Figure 9-7.  Weights and biases of a linear layer

With Normal, you convert them to lists.

In[8]:=TableForm[SetPrecision[{{Normal[NetExtract[linearL,"Weights"]]}, 

{Normal[NetExtract[linearL,"Biases"]]}},3],TableHeadings->{{"Weights  

 ->","Biases ->"},None}]

Out[8]//TableForm=

Weights ->    -0.779

0.0435

Biases  ->    0

0

For instance, a layer can receive a length of one vector to produce an output vector 

of size 2.

In[9]:= linearL[4]

Out[9]= {-3.11505,0.174007}
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The layer can only be evaluated when input is introduced in the appropriate shape.

In[10]:= linearL[{88,99}]

During evaluation of In[10]:= LinearLayer::invindata1: Data supplied 

to port "Input" was a length-2 vector of real numbers, but expected a 

length-1 vector.

Out[10]= $Failed

The weights and biases are the parameters that the model must learn from, which 

can be adapted based on the input data that the model receives, which is why it is 

initialized randomly since if you try to extract these values without initializing, you 

cannot because they have not been defined.

Layers have the property of being differentiable. It is achieved with NetPortGradient, 

which can represent the gradient of a net output for a port or a parameter. For example, 

give the derivative of the output concerning the input for a particular input value.

In[11]:= linearL[2,NetPortGradient["Input"]]

Out[11]= {-0.735261}

�Mean Squared Layer
Until now, you have seen the linear layer, which has various properties. Layers with the 

icon of a connected rhombus (see Figure 9-8), by contrast, do not contain any learnable 

parameters, like MeanSquaredLossLayer, AppendLayer, SummationLayer, DotLayer, 

ContrastiveLossLayer, and SoftmaxLayer, among others.

In[12]:= MeanSquaredLossLayer[]

Out[12]=

Figure 9-8.  MeanSquaredLossLayer
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MeanSquaredLossLayer[] has more than one input because this layer computes the 

mean squared loss, which is the following expression (1/n) ∑ (Input - Target)2, and has 

the property that compares two numeric arrays. With the MeanSquaredLossLayer, the 

input/output ports’ dimensions are entered in the same form as a linear layer, and the 

input and target values are entered as Associations.

In[13]:= MeanSquaredLossLayer["Input"->{3, 2},"Target" -> {3, 2}][ 

Association["Input" -> {{1, 2}, {2, 1}, {3, 2}},  "Target" -> {{2, 2},  

{1, 1}, {1, 3}}]]

Out[13]= 1.16667

The latter example computes a MeanSquaredLossLayer for input/output dimensions 

of three rows and two columns or by defining first the layer and then applying the layer 

to the data.

Note U se the Matrixform[{{1, 2}, {2, 1}, {3, 2}}] command to verify the matrix 
shape of the data.

In[14]:= lossLayer=MeanSquaredLossLayer["Input"->{3,2},"Target"->{3,2} ];

lossLayer@<|"Input"->{{1,2},{2,1},{3,2}},"Target"->{{2,2},{1,1},{1,3}}|>

Out[15]= 1.16667

To get more details about a layer (see Figure 9-9), use the Information command.

In[16]:= Information[lossLayer]

Out[16]=
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Figure 9-9.  Information about the loss layer To know the layer options, use the 
following

To know the layer options, use the following.

In[17]:= MeanSquaredLossLayer["Input"->"Real","Target"->"Real"]//Options

Out[17]= {BatchSize->Automatic,NetEvaluationMode->Test,RandomSeeding-> 

Automatic,TargetDevice->CPU,WorkingPrecision->Real32}

The input port and target port options are similar to that of the linear layer with the 

different forms, Input → Real, n (a form of a vector n), {n1 × n2 × n3} ... (an array of n 

dimensions), Varying (a vector or varying form) or a NetEncoder, but with the exception 

that the input and target must have the exact dimensions. A few forms of layers are 

shown in Figure 9-10.

In[18]:= {MeanSquaredLossLayer["Input"->"Varying","Target"->"Varying"], 

MeanSquaredLossLayer["Input"-> NetEncoder["Image"],"Target"-> NetEncoder["I

mage"]],MeanSquaredLossLayer["Input"->1,"Target"->1]}//Dataset

Out[18]=
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Figure 9-10.  Loss layers with different input and target forms

�Activation Functions
Activation functions are a crucial part of the construction of a neural network. The role 

of an activation function is to return an output from an established range, given an 

input. In the Wolfram Language, activation functions are treated as layers. The layer that 

is frequently used for activation function definition in the Wolfram Language neural 

net framework is the ElementwiseLayer. With this layer, you can represent layers that 

can apply a unary function to the input data elements—in other words, a function that 

receives only one argument. These functions are also known as activation functions. For 

example, one of the most common functions used is the hyperbolic tangent (Tanh[x]), 

shown in Figure 9-11.

In[19]:= ElementwiseLayer[Tanh[#]&](* Altnernate form 

ElementwiseLayer[Tanh]*)

Out[19]=
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Figure 9-11.  Tanh[x] function layer

Elementwise layers do not have learnable parameters. The pure function is used 

because layers cannot receive symbols. If the plus icon is clicked, detailed information 

about the ports and the parameters with the associated function, Tanh, are shown. 

Having defined an ElementwiseLayer, it can receive values like the other layers.

In[20]:= ElementwiseLayer[Tanh[#]&];

Table[%[i],{i,-5,5}]

Out[21]= {-0.999909,-0.999329,-0.995055,-0.964028,-0.761594,0.,0.761594, 

0.964028,0.995055,0.999329,0.999909}

When no input or output shape is given, the layer infers the type of data it receives 

or returns. For instance, by specifying only the input as real, Mathematica infer that the 

output is real (see Figure 9-12).

In[22]:= tanhLayer=ElementwiseLayer[Tanh,"Input"-> "Real"]

Out[22]=

Figure 9-12.  ElementwiseLayer with the same output as the input

Or, this can be inferred by entering only the output (see Figure 9-13) for a rectified 

linear unit (ReLU).

In[23]:= rampLayer=ElementwiseLayer[Ramp,"Output"-> {1}](*or ElementwiseLay

er["ReLU","Output" -> "Varying"]*)

Out[23]=

Figure 9-13.  Ramp function or ReLU
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Note  Clicking the plus icon shows the elementwise layer’s established function 
and the layer ports’ details.

Every layer in the Wolfram Language can be run through a graphics processor unit 

(GPU) or a central processing unit (CPU) by specifying the TargetDevice option. It is 

essential to ensure your computer supports the specified functionality, so if you do not 

have a GPU, the compulsory target device is the CPU. For example, plot the previously 

created layers with the TargetDevice on the CPU (see Figure 9-14).

In[24]:= GraphicsRow@{Plot[tanhLayer[x, TargetDevice -> "CPU"], {x, -12, 

12}, PlotLabel -> "Hiperbolic Tangent", AxesLabel -> {Style["x", Bold,  

12], Style["f(x)", Italic]}, PlotStyle -> ColorData[97, 25], Frame -> 

True], Plot[rampLayer[x, TargetDevice -> "CPU"], {x, -12, 12}, PlotLabel  

 -> "ReLU",AxesLabel -> {None, Style["f(x)", Italic]},FrameLabel -> {{None, 

None}, {Style["x", Bold, 12], None}}, PlotStyle -> ColorData[97, 25], Frame  

 -> True]}

Out[24]=

Figure 9-14.  Tanh[x] and Ramp[x] activation functions

Other functions can be used by their name or Wolfram Language syntax—for 

instance, the SoftPlus function, as demonstrated in Figure 9-15.
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In[25]:= GraphicsRow@{Plot[ElementwiseLayer["SoftPlus"][x, TargetDevice  

 -> "CPU"], {x, -12, 12}, PlotLabel -> "SoftPlus", AxesLabel -> {None, 

Style["f(x)", Italic]},FrameLabel -> {{None, None}, {Style["x", Bold, 12], 

None}}, PlotStyle -> ColorData[97, 25], Frame -> True], Plot[Log[Exp[x] 

+ 1], {x, -12, 12}, PlotLabel -> "Log[Exp[x]+1]", AxesLabel -> {None, 

Style["f(x)", Italic]}, FrameLabel -> {{None, None}, {Style["x", Bold, 12], 

None}}, PlotStyle -> ColorData[97, 25], Frame -> True]}

Out[25]=

Figure 9-15.  SoftPlus function generated by the associated name and pure function

Other standard functions are shown in the next plots, such as the scaled exponential 

linear unit, sigmoid, hard sigmoid, and hard hyperbolic tangent (see Figure 9-16). To 

view the functions supported, visit the documentation and type ElementwiseLayer in the 

search box.

In[26]:= GraphicsGrid@Partition[Table[If[Or[activation == "Sigmoid", 

activation == "HardSigmoid"], Plot[ElementwiseLayer[activation] 

[x, TargetDevice -> "CPU"], {x, -10, 10}, FrameLabel -> {Style["x",  

Bold], None}, AxesLabel -> {None, Style["f(x)", Italic]}, PlotStyle  

 -> ColorData[97, 25], Frame -> True, PlotLabel -> activation],  

Plot[ElementwiseLayer[activation][x, TargetDevice -> "CPU"], {x, -10, 10},  

AxesLabel -> {Style["x", Bold], Style["f(x)", Italic]}, PlotStyle -> 

ColorData[97, 25], Frame -> True, PlotLabel -> activation]], {activation, 

{"ScaledExponentialLinearUnit", "Sigmoid", "HardSigmoid", "HardTanh"}}], 2]

Out[26]=
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Figure 9-16.  Plot of four different activation functions

�Softmax Layer
SoftmaxLayer is a layer that uses the expression S x
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a vector and xi the components of the vector. This expression is known as the Softmax 

function. The functionality of this layer consists of converting a vector to a normalized 

vector, which consists of values in the range of 0 to 1. This layer is generally used to 

represent a partition of the classes based on the probabilities of each one, and it is used 

for tasks that involve classification. The input and output forms in the SoftmaxLayer can 

be entered as the other common layers except for the shape of “Real.”

In[27]:= sFL=SoftmaxLayer["Input"-> 4,"Output"-> 4];

Now, the layer can be applied to data.

In[28]:= SetAccuracy[sFL[{9,8,7,6}],3]

Out[28]= {0.64,0.24,0.09,0.03}
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The total of the latter equals 1. SoftmaxLayer allows you to specify the level depth 

of normalization, which is seen in the parameter’s properties of the layer. A level 

of –1 produces the normalization of a flattened list. Also, SoftmaxLayer can receive 

multidimensional arrays, not just flattened lists.

In[29]:= SoftmaxLayer[1,"Input"->{3,2}];

SetPrecision[%[{{7,8},{8,7},{7,8}}],3]//MatrixForm

Out[30]//MatrixForm=

	

0 212 0 422

0 576 0 155

0 212 0 422
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Summing the elements of the first columns gives the same for the second column. 

Another practical layer is called CrossEntropyLossLayer. This layer is widely used as a 

loss function for classification tasks. This loss layer measures how well the classification 

model performs. Entering the string Probabilities as an argument of the loss layer 

computes the cross-entropy loss by comparing the input class probability to the target 

class probability.

In[31]:= CrossEntropyLossLayer["Probabilities","Input"->3 ];

Now, the target form is set to the probabilities of the classes; the inputs and targets 

are entered the same way as with MeansSquaredLoss.

In[32]:= %[<|"Input"->{0.2,0.5,0.3},"Target"->{0.3,0.5,0.2}|>]

Out[32]= 1.0702

Setting the Binary argument in the layer is used when the probabilities constitute a 

binary alternative.

In[33]:= CrossEntropyLossLayer["Binary","Input"-> 1];

%[<|"Input"-> 0.1,"Target"-> 0.9|>]

Out[34]= 2.08286

To summarize the properties of layers in the Wolfram Language, the inputs and 

outputs of the layers are always scalars and numeric matrixes. Layers are evaluated using 

lower number precision, such as single-precision numbers. Layers have the property 

of being differentiable; this helps the model to perform efficient learning since some 
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learning methods go into convex optimization problems. The Wolfram Language has 

many layers, each with specific functions. To display all the layers within Mathematica, 

check the documentation or write ?* Layer, which gives you the commands with the 

word layer associated at the end. Each layer has different behaviors, operations, and 

parameters, although some may resemble other commands, such as Append and 

AppendLayer. It is important to know the different layers and what they can do to best 

use them.

�Function Layer
Another recently introduced (version 12.2) and updated (version 13) layer is the 

FunctionLayer. Unlike the ElementwiseLayer, this layer allows users to apply custom 

functions that do not come by default in the documentation library. This makes 

it a flexible tool for more complex operations, where the function to be applied is 

determined by the user (see Figure 9-17).

In[35]:= FunctionLayer[#*4&]

Out[35]=

Figure 9-17.  A function layer that multiplies the input (#) by 4, and & is the pure 
function

The input and output definitions are similar to the previous layers you have seen. It 

can be an arbitrary array of input with no shape specification. However, the output shape 

is determined based on the function used within the layer; for instance, in the previous 

example, the input is a scalar (represented as a one-element array) and returns a scalar.

In[36]:= FunctionLayer[1/(1+Exp[-#])&];

%[{2,-3,4}]

Out[37]= {0.880797,0.0474259,0.982014}

With FunctionLayer, built-in functions can also be used instead of user-defined 

functions, for instance, the logistic sigmoid function, which returns the same as the 

latter code.
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In[38]:= FunctionLayer[LogisticSigmoid];

%[{2,-3,4}]

Out[39]= {0.880797,0.0474259,0.982014}

A difference between FunctionLayer and ElemewiseLayer is that you can apply a 

function to each element independently in the first. On the other hand, it performs 

element-wise operations, ensuring shape consistency.

�Encoder and Decoders
Suppose audio, images, or other types of variables are intended to be used. In that case, 

this type of data needs to be converted into a numeric array to be introduced as input 

into a layer. This is where encoders and decoders come into play.

�Encoder
Layers must have a NetEncoder attached to the input to perform a correct construction. 

The NetEncoders interpret the image, audio, and data to a numeric value to be used 

inside a net model. Different names are associated with the encoding type. The most 

common are Boolean (True or False, encoding as 1 or 0), Characters (string characters 

as one-hot vector encoding), Class (class labels as integer encoding), Function (custom 

function encoding), Image (2D image encoding as a rank 3 array), and Image3D (3D 

image encoding as a rank 4 array). The arguments of the encoder are the name or the 

name and the corresponding features of the encoder (see Figure 9-18).

In[40]:= NetEncoder["Boolean"]

Out[40]=

Figure 9-18.  Boolean type NetEncoder To test the encoder, you use the following.

To test the encoder, you use the following.

In[41]:= Print["Booleans:",{%[True],%[False]}]

Out[40]=  Booleans:{1,0}
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A NetEncoder can have classes with different index labels. Like a classification of 

class X and class Y, this corresponds to an index of the range from 1 to 2 (see Figure 9-19).

In[42]:= NetEncoder[{"Class",{"Class X","Class Y"}}]

Out[42]=

Figure 9-19.  Class type NetEncoder

In[43]:= Print["Classes:", %[Table[RandomChoice[{"Class X", "Class Y"}], 

{i, 10}]]]

Out[43]= Classes:{1,1,2,2,2,2,2,1,1,1}

The following is used for a unit vector.

In[44]:= NetEncoder[{"Class",{"Class X","Class Y","Class Z"}, 

"UnitVector"}]; Print["Unit Vector:",%[Table[RandomChoice[{"Class X", 

"Class Y","Class Z"}],{i,5}]]] Print["MatrixForm:",%%[Table[RandomChoice[{"

Class X","Class Y","Class Z"}],{i,5}]]//MatrixForm[#]&]

Out[47]= Unit Vector:{{0,1,0},{0,1,0},{0,1,0},{1,0,0},{0,0,1}}

MatrixForm: 

0 0 1

0 0 1

0 1 0

1 0 0

1 0 0
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Depending on the name used inside NetEncoder, properties related to the encoder 

may vary. This is depicted in the different encoder objects that are created. To attach a 

NetEncoder to a layer, the encoders are entered at the input port—for example, for an 

ElementwiseLayer (see Figure 9-20). In this case, the input port of the layer has the name 

Boolean; the layer recognizes that this is a NetEncoder of a Boolean type. Clicking the 

name Boolean shows the relevant properties.

In[47]:= ElementwiseLayer[Sin,"Input"->NetEncoder["Boolean"]]

Out[47]=
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Figure 9-20.  Layer with an encoder attached to the input port

For a LinearLayer, use the following form.

In[48]:= LinearLayer["Input"->NetEncoder[{"Class",{"Class X","Class Y"}}], 

"Output"->"Scalar"]

Out[48]=

Clicking the input port shows the encoder specifications, as Figure 9-21 shows.

Figure 9-21.  Class encoder attached to a Linear Layer

A NetEncoder is also used to convert images into numeric matrixes or arrays by 

specifying the class, the size or width, and height of the output dimensions, and the color 

space, which can be grayscale, RGB, CMYK, or HSB (hue, saturation, and brightness); 

for example, encoding an image that produces a 1×28×28 array in grayscale, or 3×28×28 

array in an RGB scale (see Figure 9-22), no matter the size of the input image. The first 

rank of the array represents the color channel, and the other two represent the spatial 

dimensions.

In[49]:= Table[NetEncoder[{"Image",{28,28},"ColorSpace"-> Color}], 

{Color,{"Grayscale","RGB"}}]

Out[49]=
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Figure 9-22.  NetEncoders for grayscale and RGB scale images

Once the encoder has been established, it can be applied to the desired image; then, 

the encoder creates a numeric matrix with the specified size. Creating a NetEncoder 

for an image shows relevant properties such as type, input image size, and color space, 

among others. Applying the encoder generates a matrix in the size previously established.

In[50]:=I imgEncoder = NetEncoder[{"Image", {3, 3}, "ColorSpace" -> 

"CMYK"}]; Print["Numeric Matrix:", SetPrecision[%[ExampleData[{"TestImage", 

"House"}]], 3] // MatrixForm]

Out[50]=
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The output generated is a numeric matrix that is now ready to be implemented in 

a network model. If the input image shape is in a different color space, the encoder 

reshapes and transforms the image into the established color space. The image used in 

this example is obtained from the ExampleData[{“TestImage,” “House”}].
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�Pooling Layer
Encoders can be added to the ports of single layers or containers by specifying the 

encoder to the port—for instance, a PoolingLayer. These layers are used primarily on 

convolutional neural networks (see Figure 9-23).

In[52]:= poolLayer=PoolingLayer[{3,3},{2,2},PaddingSize->0,"Function"-> 

Max,"Input"-> NetEncoder[{"Image",{3,3},"ColorSpace"-> "CMYK"}](*Or 

ImgEncoder*)]

Out[52]=

Figure 9-23.  PoolingLayer with a NetEncoder

The latter layer has a specification for a two-dimensional PoolingLayer with a 

kernel size of 3×3 and a stride of 2×2, which is the step size between kernel applications. 

PaddingSize adds elements at the beginning and the end of the input matrix. This is 

done so that the division between the matrix and kernel sizes is an integer, preventing 

the loss of information between layers. Function indicates the pooling operation 

function, which is Max; this calculates the maximum value in each filter patch. It can 

also compute the mean and total for the average and summation of the filter values, 

respectively. Sometimes, they might be known as max, average, and sum pooling layers.

In[53]:=SetPrecision[poolLayer[ExampleData[{"TestImage","House"}]],3] 

//MatrixForm

Out[53]//MatrixForm=
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�Decoders
Once the net operations are finished, it return numeric expressions. On the other hand, 

in some tasks, you do not want numeric expressions, such as in classification tasks where 

classes can be given as outputs, where the model can tell that a particular object belongs 

to a class A and another object belongs to a class B, so a vector or numeric array can 

represent a probability of each class. To convert the numeric arrays into other forms of 

data, a NetDecoder is used (see Figure 9-24).

In[54]:= decoder=NetDecoder[{"Class",CharacterRange["W","Z"]}]

Out[54]=

Figure 9-24.  NetDecoder for four different classes

The dimension of the decoder is equal to class construction. You can apply a vector 

of probabilities, and the decoder interprets it and tells you the class to which it belongs. 

It also displays the probabilities of the classes.

In[55]:= decoder@{0.3,0.2,0.1,0.4}(*This is the same as Decoder[{0.3,0.2,0.

1,0,4},"Decision"] *)

Out[55]= Z

TopDecisions, TopProbabilites, and uncertainty of the probability distribution are 

displayed as follows.

In[56]:= TableForm[{decoder[{0.3, 0.2, 0.1, 0.4}, 

"TopDecisions" -> 4](*   or {"TopDecisions", 4} the same is for 

TopProbabilities*),  decoder[{0.3, 0.2, 0.1, 0.4}, "TopProbabilities"  
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 ->  4],  decoder[{0.3, 0.2, 0.1, 0.4}, "Entropy"]},  TableDirections  

 -> Column,  TableHeadings -> {{Style["TopDecisions", Italic], 

Style["TopProbabilities", Italic], Style["Entropy", Italic]},

None}]Out[56]//TableForm=

TopDecisions        Z        W         X         Y

TopProbabilities    Z->0.4   W->0.3    X->0.2    Y->0.1

Entropy             1.27985

Given the list of values, input depth is added to define the class’s application level.

In[57]:= NetDecoder[{"Class",CharacterRange["X","Z"],"InputDepth"→2}];

Applying the decoder to a nested list of values produces the following.

In[58]:= TableForm[{%[{{0.1, 0.3, 0.6}, {0.3, 0.4, 0.3}}, "TopDecisions" -> 

3](* or {"TopDecisions", 4} the same is for TopProbabilities*),  %[{{0.1, 

0.3, 0.6}, {0.3, 0.4, 0.3}}, "TopProbabilities" ->  3],  %[{{0.1, 

0.3, 0.6}, {0.3, 0.4, 0.3}}, "Entropy"]},  TableDirections -> 

Column,  TableHeadings -> {{Style["TopDecisions", Italic], 

Style["TopProbabilities", Italic], Style["Entropy", Italic]}, None}]

Out[58]//TableForm=

TopDecisions        Z         Y

                    Y         X

                    X         Z

                    Z->0.6    Y->0.4

TopProbabilities    Y->0.3    X->0.3

                    X->0.1    Z->0.3

Entropy             0.897946  1.0889

A decoder is added to the output port of a layer, container, or network model.

In[59]:=SoftmaxLayer["Output"→NetDecoder[{"Class",{"X","Y","Z"}}]];

Applying the layer to the data produce the probabilities for each class.

In[60]:= {%@{1,3,5},%[{1,3,5},"Probabilities"],%[{1,3,5},"Decision"]}

Out[60]= {Z,<|X->0.0158762,Y->0.11731,Z->0.866813|>,Z}
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�Applying Encoder and Decoders
You are ready to implement the whole process of encoding and decoding in Figure 9-25. 

First, the image is resized by 200 pixels in width to show how the original image looks 

before encoding.

In[61]:= Img=ImageResize[ExampleData[{"TestImage","House"}],200]

Out[61]=

Figure 9-25.  Example image of a house when the encoder and decoder are defined

In[62]:= encoder=NetEncoder[{"Image",{100,100},"ColorSpace"-> "RGB"}];

decoder=NetDecoder[{"Image",ColorSpace-> "Grayscale"}];

Then, the encoder is applied to the image, and the decoder is applied to the numeric 

matrix. The dimensions of the decoded image are checked to see if they match the 

encoder output dimensions (see Figure 9-26).

In[64]:=encoder[img];

decoder[%]
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Figure 9-26.  Example of the decoded house

Figure 9-26 shows that the image has been converted into a grayscale image with 

new dimensions.

In[66]:= ImageDimensions[%]

Out[66]= {100,100}

As seen, the picture has been resized. Try to look at the steps in the process, like 

viewing the numeric matrix and the objects corresponding to the encoder and decoder. 

Using the encoders and decoders involves the data type you use because every net 

model receives different inputs and generates different outputs.

�NetChains and Graphs
Neural networks consist of different layers, not individual layers on their own. The 

NetChain command or the NetGraph command is used to construct more complex 

structures with more than one layer.

�Containers
Containers are valuable for properly operating and constructing neural networks in the 

Wolfram Language. In the Wolfram Language, containers are structures that assemble 

the infrastructure of the neural network model. Containers can have multiple forms. 

NetChain is useful for creating linear and non-linear structures’ nets. This helps the 

model to learn non-linear patterns. You can think that each layer in a network has a 

level of abstraction that detects complex behavior, which could not be recognized if you 
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only worked with one single layer. As a result, you can build networks in a general way, 

starting from three layers: the input layer, the hidden layer, and the output layer. When 

there are more than two hidden layers, it is deep learning; for more information, refer to 

Introduction to Deep Learning: From Logical Calculus to Artificial Intelligence by Sandro 

Skansi (Springer, 2018).

NetChain can join two operations. They can be written as a pure function instead of 

just the function’s name (see Figure 9-27).

In[67]:=NetChain[{ElementwiseLayer[LogisticSigmoid@#&],ElementwiseLayer[S

in@#&]}]

Out[67]=

Figure 9-27.  NetChain containing two elementwise layers

The object returned is a NetChain, and the icon of three colored rectangles appears. 

This means that the object created (NetChain) or referred to is a net chain and contains 

layers. If the chain is examined, it shows the input, first (LogisticSigmoid), second (Sin), 

and output layers. The operations are in order of appearance, so the first layer is applied 

and then the second. The input and output options of other layers are supported in 

NetChain, such as a single real number (Real), an integer (Integer), an “n”-length vector, 

and a multidimensional array (see Figure 9-28).

In[68]:= NetInitialize@NetChain[{3,4,12,Tanh},"Input"->1]

Out[68]=

Figure 9-28.  NetChain with multiple layers
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NetChain recognizes the Wolfram Language function names and associates them with 

their corresponding layers, like 3, 4, and 12. They represent a linear layer with outputs of 

sizes 3, 4, and 12 (see Figure 9-28). The Tanh function represents the elementwise layer.

Let’s append a layer to the chain created with NetAppend (see Figure 9-29) or 

NetPrepend. Many of the original commands of the Wolfram Language have the same 

meaning—for example, to delete in a chain would be NetDelete[net_ name, #_of_layer].

In[69]:=NetInitialize@NetChain[{1,ElementwiseLayer[LogisticSigmoid@#&]},"In

put"-> 1];

netCH2=NetInitialize@NetAppend[%,{1,ElementwiseLayer[Cos[#]&]}]

Out[70]=

Figure 9-29.  NetChain object with different added layers

Different options are available when a net is applied to data, such as 

NetEvaluationMode (mode of evaluation, either train or test), TargetDevice, and 

WorkingPrecision (numeric precision).

In[71]:= netCH2[{{0},{2},{44}},NetEvaluationMode-> "Train",TargetDevice-> 

"CPU",WorkingPrecision-> "Real64",RandomSeeding-> 8888](*use N@Cos[Sin[Logi

sticSigmoid[{0,2,44}]]] to check results*)

Out[71]= {{0.967873},{0.990894},{1.}}

Another form is to enter the explicit names of layers in a chain, which is typed as an 

association (see Figure 9-30).

In[72]:= NetInitialize@NetChain[<|"Linear Layer 1"->LinearLayer[3],

"Ramp"-> Ramp,"Linear Layer 2"->LinearLayer[4],"Logistic"-> ElementwiseLayer 

[LogisticSigmoid]|>,"Input"-> 3]

Out[72]=
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Figure 9-30.  NetChain object with custom layer names

Inspecting the layer’s contents should appear after clicking the layer’s name or the 

layer. If a layer wants to be extracted, then NetExtract is used along with the name of 

the corresponding layer. The output is suppressed, but the layer should pop out if the 

semicolon is removed.

In[73]:=NetExtract[%,"Logistic"];

To extract all of the layers in one line of code, Normal does the job (see Figure 9-31).

In[74]:= Normal[netCH2]//Column

Out[74]=

Figure 9-31.  Layers of the NetChain NetCH2

�Multiple Chains
Chains can be joined with a nested chain (see Figure 9-32).

In[75]:= chain1=NetChain[{12,SoftmaxLayer[]}];

chain2=NetChain[{1,ElementwiseLayer[Cos[#]&]}];
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nestedChain=NetInitialize@NetChain[{chain1,chain2},"Input"-> 12]

Out[77]=

Figure 9-32.  Chain 1 selected of the two chains available

This chain is divided into two NetChains, each representing a chain. In this case, you 

see chain1 and chain2, and each chain shows its corresponding nodes. To flatten the 

chains, use NetFlatten (see Figure 9-33).

In[78]:= NetFlatten[nestedChain]

Out[78]=

Figure 9-33.  Flattened chain

�NetGraphs
The NetChain command only joins layers in which the output of a layer is connected 

to the input of the next layer. NetChain does not work in connecting inputs or outputs 

to other layers; it only works with one layer. To work around this, the use of NetGraph 

is required. Besides allowing more inputs and layers, NetGraph represents the neural 

network’s structure and process with a graph (see Figure 9-34).
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In[79]:= NetInitialize@NetGraph[{ LinearLayer["Output"-> 1,"Input"-> 1], 

Cos,SummationLayer[]},{}]

Out[79]=

Figure 9-34.  Expanded NetGraph

The object crafted is a NetGraph, represented by the figure of the connecting 

squares, as seen in Figure 9-35. The input goes to three different layers, each with its 

output. NetGraph accepts two arguments: the first is for the layers or chains, and the 

second is to define the graph vertices or connectivity of the net. For example, the net has 

three outputs in the latter code because the vertices were not specified. SummationLayer 

is a layer that sums all the input data.

In[80]:= net1=NetInitialize@NetGraph[{ LinearLayer["Output"-> 2,"Input"-> 

1],Cos,SummationLayer[]},{1-> 2-> 3}]

Out[80]=
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Figure 9-35.  Unidirectional NetGraph

The vertex notation means that the output of a layer is given to another layer, and so 

on. In other words, 1 → 2 → 3 means that the output of the linear layer is passed to the 

next layer until it is finally summed up in the last layer with the summation layer (see 

Figure 9-35), thus preserving the order of appearance of the layers. However, you can 

alter the order of each vertex. The net can be modified so that outputs can go to other 

layers of the net, such as 1 to 3 and then to 2 (see Figure 9-36). With NetGraph, layers and 

chains can be entered as a list or an association. The vertices are typed as a list of rules.

In[81]:= net2=NetInitialize@NetGraph[{ LinearLayer["Output"-> 2,"Input"-> 

1],Cos,SummationLayer[]},{1-> 3->2}]

Out[81]=

Figure 9-36.  NetGraph structure of Net2

The inputs and outputs of each layer are marked by a tooltip that appears when 

passing the cursor over the graph lines or vertices. Because input and output are not 

specified, NetGraph infers the data type in the input and output port; this is the case for 

the capital R in the input and output of the layer used, which stands for real.
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With NetGraph, layers can be entered as a list or association. The connections are 

typed as a list of rules (see Figure 9-37).

In[82]:= NetInitialize@NetGraph[<|"Layer 1"-> LinearLayer[2,"Input"-> 

1],"Layer 2"-> Cos,"Layer 3"-> SummationLayer[]|>,{"Layer 2"-> "Layer 1"-> 

"Layer 3"}]

Out[82]=

Figure 9-37.  NetGraph initialized with named layers

It is possible to specify how many inputs and outputs a structure can have from the 

NetPort command (see Figure 9-38).

In[83]:= NetInitialize@ NetGraph[{ LinearLayer[3, "Input" -> 

1],  LinearLayer[3, "Input" -> 2], LinearLayer[3, "Input" -> 1] , 

TotalLayer[]}, {NetPort["1st Input"] -> 1, NetPort["2nd Input"] -> 

2, NetPort["3rd Input"] -> 3, {1, 2, 3} ->   4}] (*Or NetInitialize@

NetGraph[<|"L1"\[Rule]  LinearLayer[3,"Input"\[Rule] 1],"L2"\[Rule]   

LinearLayer[3,"Input"\[Rule] 1], "L3"\[Rule] LinearLayer[3,"Input"\

[Rule] 1] ,"Tot L"\[Rule] TotalLayer[]|>,{NetPort["1st Input"]\

[Rule] "L1", NetPort["2nd Input"]\[Rule] "L2",NetPort["3rd Input"]\

[Rule]"L3",{"L1","L2","L3"} -> "Tot L"}]*)

Out[83]=
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Figure 9-38.  NetGraph with multiple inputs and a single output

If you have more than one input, each input is entered in the specified port.

In[84]:= %[<|"1st Input"-> 32.32,"2nd Input"-> {2,\[Pi]},"3rd Input"-> 1|>]

Out[84]= {82.4758,-42.202,-37.4852}

If having more than one output, the results are displayed for every different output 

(see Figure 9-39).

In[85]:= NetInitialize[NetGraph[{LinearLayer[1,"Input"-> 

1],LinearLayer[1,"Input"-> 1],LinearLayer[1,"Input"-> 1],Ramp,El

ementwiseLayer["ExponentialLinearUnit"],LogisticSigmoid},{1->4-> 

NetPort["Output1"],2->5-> NetPort["Output2"],3-> 6-> NetPort["Output3"]}], 

RandomSeeding->8888] %[{1}]

Out[85]=
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Figure 9-39.  NetGraph with single input and three outputs

Out[86]= <|Output1->{0.},Output2->{-0.289052},Output3->{0.860635}|>

NetChain containers can be treated as layers with NetGraph (see Figure 9-40). Some 

layers, such as the CatenateLayer, accept zero arguments.

In[87]:= NetInitialize@NetGraph[{LinearLayer[1,"Input"-> 1], NetChain[{L

inearLayer[1,"Input"-> 1], ElementwiseLayer[LogisticSigmoid[#]&]}],NetCh

ain[{LinearLayer[1,"Input"-> 1],Ramp}], ElementwiseLayer["ExponentialLin

earUnit"],

CatenateLayer[]},{1->4,2->5,3-> 5,4-> 5}]

Out[87]=
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Figure 9-40.  NetGraph with multiple containers

Clicking the chain or the layer shows the relevant information, and clicking the layer 

inside a chain gives the information about the layer on the selected chain.

�Combining Containers
NetChains, and NetGraphs can be nested to form different structures, as seen in the 

following example (see Figure 9-41), where a NetGraph and vice versa can follow a 

NetChain.

In[88]:= n1=NetGraph[{1,Ramp,2,LogisticSigmoid},{1-> 2,2-> 3,3-> 4}];

n2=NetChain[{3,SummationLayer[]}];

NetInitialize@NetGraph[{n2,n1},{2-> 1},"Input"-> 22]

Out[90]=
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Figure 9-41.  Nested NetGraph and NetChain

From the graph in Figure 9-40, it is clear that the input goes to the NetGraph, and the 

output of the NetGraph goes to the NetChain. A NetChain or NetGraph that has not been 

initialized appears in red. A fundamental quality of the containers (NetChain, NetGraph) 

is that they can behave as a layer. With this in mind, you can create nested containers 

involving only NetChains, NetGraphs, or both.

Just as a demonstration, more complex structures can be created with NetGraph, like 

those in Figure 9-42. Once a network structure is created, properties about every layer or 

chain can be extracted. For instance, with SummaryGraphic, you can obtain the graphic 

of the network graph.

In[91]:= net = NetInitialize@   NetGraph[{LinearLayer[10], Ramp, 10, 

SoftmaxLayer[], TotalLayer[], ThreadingLayer[Times]}, {1 -> 2 -> 3 -> 4, 

{1, 2, 3} -> 5, {1, 5} -> 6}, "Input" -> "Real"];

Information[net, "SummaryGraphic"]

Out[92]=
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Figure 9-42.  Compound graph net structure

�Network Properties
The properties related to the numeric arrays of the network are Arrays (gives each array 

in the network), ArraysCount (the number of arrays in the net), ArraysDimensions 

(dimensions of each array in the net), and ArraysPositionList (position of each array in 

the net), as depicted in Figure 9-43.

In[93]:={Dataset@Information[net,"Arrays"],Dataset@Information[net,"Arrays 

Dimensions"],Dataset@Information[net,"ArraysPositionList"]}

Out[93]=

Figure 9-43.  Datasat containing various properties
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Information related to the variable type in the input and output ports are shown with 

InputPorts and OutputPorts.

In[94]:= {Information[net,"InputPorts"],Information[net,"OutputPorts"]}

Out[94]= {<|Input->Real|>,<|Output1->10,Output2->10|>}

You can see that the input is a real number, and the net has two output vectors of  

size 10. The most used properties related to layers are Layers (returns every layer of 

the net), LayerTypeCounts (number of occurrences of a layer in the net), LayersCount 

(number of layers in the net), LayersList (a list of all the layers in the net), and 

LayerTypeCounts (number of occurrences of a layer in the net). Figure 9-44 shows for 

Layers and LayerTypeCounts.

In[95]:=Dataset@{Information[net,"Layers"],Information[net,"LayerType

Counts"]}

Out[95]=
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Figure 9-44.  Information about the layers contained in the symbol Net

Visualization of the net structure (see Figure 9-45) is achieved with the properties 

LayersGraph (a graph showing the connectivity of the layers), SummaryGraphics 

(graphic of the net structure), MXNetNodeGraph (MXNeT raw graph operations), and 

MXNetNodeGraphPlot (annotated graph of MXNet operations). MXNet is an open- 

source deep learning framework that supports a variety of programming languages, 

and one of them is the Wolfram Language. In addition, the Wolfram Neural Network 

Framework works with MXNet structure as backend support.
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In[96]:= Grid[{{Style["Layers Connection",Italic,20,ColorData[105,4]],Style

["NetGraph",Italic,20,ColorData[105,4]]},{Information[net,"LayersGraph"],In

formation[net,"SummaryGraphic"]},{Style["MXNet Layer Graph",Italic,20,Color

Data[105,4]],Style["MXNet Ops Graph",Italic,20,ColorData[105,4]]},{Informat

ion[net,"MXNetNodeGraph"],Information[net,"MXNetNodeGraphPlot"]}},Dividers-

>All,Background-> {{{None,None}},{{Opacity[1,Gray],None}}}]

Out[96]=

Figure 9-45.  Grid showing multiple graphics

Passing the cursor pointer over a layer or node in the MXNet symbol graph, a tooltip 

shows the properties of the MXNet symbols like ID, name, parameters, attributes, 

and inputs.
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�Exporting and Importing a Model
Because of the interoperability of the Wolfram Language and MXNet, the Wolfram 

Language supports the import and export of neural nets, initialized or uninitialized. You 

create a folder on the desktop with the MXNet Nets name and export the network found 

in the Net variable.

In[97]:= fileDirectory="/Users/macosx/Desktop";

Export[FileNameJoin[{dileDirectory,"MxNet.json"}],net,"MXNet","ArrayPath"-> 

Automatic,"SaveArrays"-> True]

Out[98]= /Users/macosx/Desktop/MxNet.json

Exporting the network to the MXNet format generates two files: a JSON file that 

stores the topology of the neural network and a file of type .params that contains 

the required parameters (numeric arrays used in the network) data for the exported 

architecture; once it has been initialized. With ArrayPath set to Automatic, the params 

file is saved in the same net folder. Otherwise, it can have a different path. SaveArrays 

indicate whether the numeric arrays are exported (True) or not (False). Let’s check the 

two files created in the MXNets Nets folder.

In[99]:= FileNames[All,File@fileDirectory]

Out[99]= {/Users/macosx/Desktop/MxNet.json,

/Users/macosx/Desktop/MxNet.params}

To import an MXNet network, the JSON and params files are recommended to be 

in the same folder because the Wolfram Language assumes that a certain JSON file 

matches the pattern of the params file. There are various ways to import a net, including 

Import[file_name.json, “MXNet”] and Import[file_name.json,{“MXNet,” element}] (the 

same as with .param files). Since version 13, nets are no longer imported as net chains or 

net graphs but can now be imported as net external objects. However, if you don’t intend 

to use the neural network outside of the Wolfram Language, it’s much simpler to store 

it as a WLNet, which facilitates easier saving and retrieval within the Wolfram Language 

environment. To export the net to the WLNet format, you can use the following code: 

Export[“file_name.wlnet”, <net_symbol or variable_name>]. Then, you can import the 

net using Import[“file_name.wlnet”]

In[100]:=Import[FileNameJoin[{fileDirectory,"MxNet.json"}],{"MXNet", 

"NetExternalObject"},InputPorts-><|"Input"->{1}|>,"ArrayPath"->None];
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The latter net was imported with the .params file automatically. To import the net 

without the parameters, use ArrayPath set to None or set the params file path. Importing 

the net parameters can be done with a list (ArrayList), the names (ArrayNames), or an 

association (ArrayAssociation), as shown in Figure 9-46.

In[101]:= Row[Dataset[Import[FileNameJoin[{fileDirectory,"MxNet.

json"}],{"MXNet",#}]]&/@{"ArrayAssociation","ArrayList","ArrayNames"}]

Out[101]=

Figure 9-46.  Different import options of the MXNet format

The elements of the net to import are InputNames, NetExternalObject, NodeDataset 

(a dataset of the nodes of the MXNet), NodeGraph (nodes graph of the MXNet), 

NodeGraphPlot (plot of nodes of the MXNet). The following dataset shows a few options 

listed before Figure 9-47.

In[102]:= {Import[FileNameJoin[{fileDirectory,"MxNet.json"}],{"MXNet","Node

Dataset"}],Import[FileNameJoin[{ileDirectory,"MxNet.json"}],{"MXNet","NodeG

raphPlot"}]}//Row

Out[102]=
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Figure 9-47.  Node dataset and MXNet ops plot

Some operations between the Wolfram Language and MXNet are not reversible. 

If you pay attention, the network input, exported to MXNet format, was set as a real 

number, unlike the network input imported in MXNet format, which marks that the 

input is an array with specifying dimensions.

When constructing a neural network, there is no restriction on how many net 

chains or net graphs a net can have. For instance, the following example is a neural 

network from the Wolfram Neural Net Repository, which has a deeper sense of 

construction (see Figure 9-48). This net is called CapsNet, which is used to estimate 

the depth map of an image. To consult the net, enter NetModel[“CapsNet Trained 
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on MNIST Data,” “DocumentationLink”] for the documentation web page; for the 

notebook on the Wolfram Cloud, enter NetModel[“CapsNet Trained on MNIST Data,” 

“ExampleNotebookObject”] or just ExampleNotebook for the desktop version.

In[103]:= NetModel["CapsNet Trained on MNIST Data"]

Out[103]=

Figure 9-48.  CapsNet neural net model

�Summary
This chapter introduced the neural network scheme in the Wolfram Language and 

covered basic layers components: data input, weight, and biases. Additionally, the 

chapter focuses on the encoders and decoders, explaining its structure.
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CHAPTER 10

Neural Networks 
Framework
This chapter explores training a neural network model in the Wolfram Language, how 

to access the results and the trained network. You review the basic commands to export 

and import a net model. You end the chapter by exploring the Wolfram Neural Net 

Repository and reviewing the LeNet network model.

�Training a Neural Network
The Wolfram Language contains a very useful command that automates neural 

network model training. This command is NetTrain. Training a neural network 

consists of fine-tuning the internal parameters of the neural network. The whole point 

is that the parameters can be learned during training. This general process is done 

by an optimization algorithm called gradient descent, which is computed with the 

backpropagation algorithm.

�Data Input
With NetTrain, data can be entered in different forms. First, the net model goes as the 

first argument, followed by the input → target, {inputs, ...} → {target, ...} or the name 

of the data or dataset. Once the net model is defined, the next argument is the data, 

followed by an optional argument of All. The All option creates a NetTrainResultsObject, 

which shows the NetTrain results panel after the computation and stores all relevant 

information about the trained model. The options for training the model are entered 

as the last arguments. Standard options used in layers and containers are available in 

NetTrain.
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The next example uses the perceptron model to build a linear classifier. The data to 

be classified is shown in the following plot (see Figure 10-1).

In[1]:= plt=ListPlot[{{{-1.8,-1.5},{-1,-1.7},{-1.5,-1},{-1,-1},{-0.5,-1.2}, 

{-1,-0.7}}, {{1,1}, {1.7,1}, {0.5,2}, {0.1,0.3}, {0.5,1}, {0.6,1.3}}}, 

PlotMarkers->"OpenMarkers",Frame->True,PlotStyle->{Green,Red}]

Out[1]=

Figure 10-1.  ListPlot showing two different plot points

Let’s define the data, target values, and the training data.

In[2]:=data={{-1.8,-1.5},{-1,-1.7},{-1.5,-1},{-1,-1},{-0.5,-1.2},{-1,-0.7}, 

{1,1},{1.7,1},{0.5,2},{0.1,0.3},{0.5,1},{0.6,1.3}};

target={-1,-1,-1,-1,-1,-1,1,1,1,1,1,1};

trainData=MapThread[#1->]{#2}&,{Standardize[data],target},1];

The Standardize function is crucial in the latter code because it normalizes the input 

data before training the neural network. This step ensures that each feature contributes 

equally to the learning process during the training phase, preventing any single feature 

from dominating the others. This process can lead to faster convergence during training 

and improves the overall performance of the net model. Next, let’s define the net model.
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In[3]:= model=NetChain[{LinearLayer[1,"Input"->2], 

ElementwiseLayer[Ramp[#]&]}];

�Training Phase
Having prepared the data and the model, you proceeded to train the model. Once the 

training begins, a progress information panel appears with four main results.

•	 Summary: contains relevant information about the batches, rounds, 

and time rates

•	 Data: involves processed data information

•	 Method: shows the method used, batch size, and device used for 

training

•	 Round: the current state of loss value

In[6]:=net=NetTrain[model,trainData,All,LearningRate->0.01, 

PerformanceGoal->"TrainingSpeed",TrainingProgressReporting->"Panel", 

TargetDevice->"CPU", RandomSeeding->88888,WorkingPrecision->"Real64"]

Out[6]=
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Figure 10-2 shows the loss plot against the training rounds.

Figure 10-2.  NetTrainResultsObject

The Adam optimizer is a variant of the Stochastic gradient descent, which you see 

later. The object generated is called NetTrainResultsObject.

�Model Implementation
Once the training is done, getting the trained net and model implementation is as 

follows in Figure 10-3.

In[7]:= trainedNet1=net["TrainedNet"]

Out[7]=

Figure 10-3.  Extracted trained net
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Let’s look at how the trained net identifies each point by plotting the boundaries with 

a density plot (see Figure 10-4).

In[8]:= Show[DensityPlot[trainedNet1[{x,y}],{x,-2,2},{y,-3,3},PlotPoints-> 

50,ColorFunction->(RGBColor[1-#,2*#,1]&)],Plt]

Out[8]=

Figure 10-4.  Net classification plot

The graphic shows that the boundaries are not well defined and that points near zero 

might be misclassified. This result can be attributed to the ramp function, which gives 

0 if it receives any negative number, but for any positive value, it returns that value. This 

model can still be improved, perhaps by changing the activation function to a hyperbolic 

tangent to have robust boundaries.
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�Batch Size and Rounds
If the batch size is not indicated, it has an automatic value, almost always a value of 

64 or powers of two. Remember that the batch size indicates the number of examples 

the model uses in training before updating the internal parameters of the model. The 

number of batches is the division of the examples within the training dataset by the 

batch size. The processed examples are the number of rounds (epochs) multiplied by the 

number of training examples. The batch size is generally chosen to divide the training 

set’s size evenly. The MaxTrainingRounds option determines the number of times the 

training dataset is passed through during the training phase. When you go through the 

entire training set just once, it’s called an epoch. To better understand this, a batch size 

of 12 was automatically chosen in the earlier example, which is equal to the number of 

examples in the training set. This means that it enters a batch of 12/12 -> 1 for epoch 

or round. Now, the number of epochs was automatically chosen to 10000; this tells you 

that there are 1 * 10000 batches. Also, the number of processed examples is 12 * (10000), 

which is equal to 120000. If the batch size does not evenly divide the training set, the 

final batch has fewer examples than the other batches.

Furthermore, adding a loss function layer to the container or the loss with the 

LossFunction -> Loss Layer option has the same effect. In this case, you use the 

MeanSquaredLossLayer as the loss function option, change the activation function to 

Tanh[x], set the Batchsize to 5, and adjust MaxTrainingRounds to 1000.

In[9]:= net2=NetTrain[NetChain[{LinearLayer[1,"Input"->2], ElementwiseLayer

[Tanh[#]&]}],trainData,All,LearningRate->0.01, PerformanceGoal-> 

"TrainingSpeed",TrainingProgressReporting->"Panel", TargetDevice-> 

"CPU",RandomSeeding->88888,WorkingPrecision->"Real64", LossFunction-> 

MeanSquaredLossLayer[],BatchSize->5,MaxTrainingRounds->1000]

Out[9]=

Figure 10-5 shows that the loss has dropped considerably.
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Figure 10-5.  Training results of the Net2

Let’s determine the classification.

In[10]:= trainedNet2=net2["TrainedNet"];

Show[DensityPlot[trainedNet2[{x,y}],{x,-2,2},{y,-3,3}, PlotPoints->50, 

ColorFunction->(RGBColor[1-#,2*#,1]&)],Plt]

Out[11]=
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Figure 10-6 shows how the two boundaries are better denoted.

Figure 10-6.  Net2 classification plot

The previous models represent a prediction of a linear layer, in which this 

classification is compared with the targets so that the error is less and less.

To obtain the graph that shows the value of the error according to the number 

of rounds carried out in the training, you do it through the properties of the trained 

network. You can also see the network model’s appearance once the loss function 

is added.

In[12]:= Dataset[{Association["LossPlot"->net2["LossPlot"]], 

Association["NetGraph"->net2["TrainingNet"]]}]

Out[12]=

Figure 10-7 shows the loss graph as it decreases rapidly according to the number 

of rounds.
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Figure 10-7.  LossPlot contained in the dataset

To see the network used for training, execute the next code. Mathematica 

automatically adds a loss function to the neural network (see Figure 10-8) based on the 

model’s layers.

In[13]:= net2["TrainingNet"]

Out[13]=
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Figure 10-8.  Network model before the training phase

To see the model’s properties, you add the string Properties as an argument.

In[14]:= net2["Properties"]

Out[14]= {ArraysLearningRateMultipliers,BatchesPerRound,BatchesPerSecond,Ba

tchLossList,BatchMeasurements,BatchMeasurementsLists,BatchSize,BestValidati

onRound,CheckpointingFiles,ExamplesProcessed,FinalLearningRate,FinalPlots,I

nitialLearningRate,InternalVersionNumber,LossPlot,MeanBatchesPerSecond,Mean

ExamplesPerSecond,NetTrainInputForm,OptimizationMethod,ReasonTrainingStoppe

d,RoundLoss,RoundLossList,RoundMeasurements,RoundMeasurementsLists,RoundPos

itions,SkippedTrainingData,TargetDevice,TotalBatches,TotalRounds,TotalTrain

ingTime,TrainedNet,TrainingExamples,TrainingNet,TrainingUpdateSchedule,Vali

dationExamples,ValidationLoss,ValidationLossList,ValidationMeasurements,Val

idationMeasurementsLists,ValidationPositions}

�Training Method (NetTrain)
Let’s look at the training method for the previous network with OptimizationMethod. 

Some variants of the gradient descent algorithm are related to batch size. The first one 

is the stochastic gradient descent (SGD). The SGD takes a single training batch at a 

time before taking another step. This algorithm goes through the training examples in 

a stochastic form—without a sequential pattern and only one instance at a time. The 
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second variant is the batch gradient descent, meaning that the batch size is set to the 

size of the training set. This method utilizes all training examples and makes only one 

update of the internal parameters. The third variant is the mini-batch gradient descent, 

which consists of dividing the training set into partitions smaller than the whole dataset 

to update the model’s internal parameters to achieve convergence frequently. To see 

a mathematical of the SGD and mini-batch SGD, visit the article “Efficient Mini-Batch 

Training for Stochastic Optimization,” by Mu Li, Tong Zhang, Yuqiang Chen, and 

Alexander J. Smola (2014, August: pp. 661-670; In Proceedings of the 20th ACM SIGKDD 

international conference on Knowledge discovery and data mining).

In[15]:= net2["OptimizationMethod"]

Out[15]= {ADAM, Beta1->0.9, Beta2->0.999, Epsilon->1/100000, 

GradientClipping->None, L2Regularization->None, LearningRate->0.01, 

LearningRateSchedule->None, WeightClipping->None}

The method automatically chosen is the Adam optimizer, which uses the SGD 

method with an adapted learning rate. The other available methods are the RMSProp, 

SGD, and the SignSGD. Within the available methods, there are also options to indicate 

the learning rate, when to scale, when to use the L2 regularization, the gradient, and 

weight clipping.

�Measuring Performance
In addition to the methods, you can establish what measures to consider during the 

training phase. These options depend on the type of loss function used and which is 

intrinsically related to the task, like classification, regression, and clustering. In the 

case of MeanSquaredLossLayer or MeanAbsoluteLossLayer, the common option is 

MeanDeviation, which is the absolute value of the average of the residuals. MeanSquare 

is the mean square of the residuals, RSquared is the coefficient of determination, 

and standard deviation is the root mean square of the residuals. After completing the 

training, the measure appears in the net results (see Figure 10-9). The soft sign activation 

function is used in this example to try out a different activation function and observe 

its use.

In[16]:= net3 = NetTrain[ NetChain[{LinearLayer[1, "Input" -> 2], 

ElementwiseLayer["SoftSign"]}], trainData, All, LearningRate -> 0.01, 

PerformanceGoal -> "TrainingSpeed", TrainingProgressReporting -> "Panel", 
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TargetDevice -> "CPU", RandomSeeding -> 88888, WorkingPrecision -> 

"Real64", Method -> "ADAM", LossFunction -> MeanSquaredLossLayer[], 

BatchSize -> 5, MaxTrainingRounds -> 1000, TrainingProgressMeasurements -> 

{"MeanDeviation", "MeanSquare", "RSquared", "StandardDeviation"}]

Out[16]=

Figure 10-9.  Net results with new measures added
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�Model Assessment
To access the values of the measures chosen, use the NetResultsObject. In the case 

of the training set values, these are found in the properties of RoundLoss (gives the 

average value of the loss), RoundLossList (returns the average values of the loss during 

training), RoundMeasurements (the measurements of the training of the last round), 

and RoundMeasurementsLists (the specified measurements for each round). This result 

is depicted in Figure 10-10.

In[17]:= net3[#]&/@{"RoundMeasurements"}//Dataset[#]&

Out[17]=

Figure 10-10.  Dataset with the new measures

To get all the plots, use the FinalPlots option.

In[18]:= net3["FinalPlots"]//Dataset;

To replicate the plots of the measurements, extract the values of the measurements 

of each round with RoundMeasurementsLists.

In[19]:= measures=net3[#]&/@{"RoundMeasurementsLists"};

Keys[measures]

Out[20]= {{Loss,MeanDeviation,MeanSquare,RSquared,StandardDeviation}}

Let’s plot the values for each round, starting with Loss and finishing with 

StandardDeviation. You can also see how the network model makes the classification 

boundaries (see Figure 10-11).

In[21]:= trainedNet3 =

 net3["TrainedNet"]; Grid[{{ListLinePlot[{measures[[1, 1]]

(*Loss*), measures[[1, 2]] (*MeanDeviation*), measures[[1, 3]]

(*MeanSquare*), measures[[1, 4]] (*RSquared*), measures[[1, 5]]
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(*StandardDeviation*)},  PlotStyle -> Table[ColorData[101, i], {i, 

1, 5}], Frame -> True, FrameLabel -> {"Number of Rounds", None}, 

PlotLabel -> "Measurements Plot", GridLines -> All, PlotLegends -> 

SwatchLegend[{Style["Loss", #], Style["MD", #], Style["MS", #], 

Style["RS", #], Style["STD", #]}, LegendLabel -> Style["Measurements", #], 

LegendFunction -> (Framed[#, RoundingRadius -> 5, Background -> LightGray] 

&)], ImageSize -> Medium] &[Black], Show[DensityPlot[trainedNet3[{x, y}], 

{x, -2, 2}, {y, -3, 3}, PlotPoints -> 50, ColorFunction -> (RGBColor[1 - #, 

2*#, 1] &)], plt, ImageSize -> 200]}}]

Out[21]=

Figure 10-11.  Round measures plot and density plot

The Loss and MeanSquared have the same values (since the loss is a mean squared 

error loss function), which is why the two graphics overlap. The mean deviation and 

standard deviation have similar values but not the same. Three models are constructed, 

and the activation function changes in each process. Looking at the plots, you see how 

each function changes how the neural network model learns from the training data. 

In the previous examples, the graphics were the loss plot for the training process and 

other measurements related to the means squared loss layer. Make sure to consult 

the documentation to confirm the measurements’ names; remember that not all 

measurements apply to all loss functions.

In the subsequent section, you see how to generate the loss plot and the validation 

plot during the training phase to validate that the LeNet model is learning during 

training and how well the model can perform in data never seen before (validation set).
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�Exporting a Neural Network
Once a net model has been trained, you can export this trained net to a WLNet format so 

that the net can be used without the need for training in the future. The export method 

also works for uninitialized network architectures.

In[22]:= Export["/Users/macosx/Desktop/TrainedNet3.

wlnet",net3["TrainedNet"]]

Out[22]= /Users/macosx/Desktop/TrainedNet3.wlnet

Importing them back is done precisely as any other file, but imported elements can 

be specified. Net imports the net model and all initialized arrays; UninitializedNet and 

ArrayList imports for the numeric array’s objects of the linear layers; ArrayAssociation 

imports for the numeric arrays in association form, and WLVersion is used to see the 

version of the Wolfram Language used to build the net. The following dataset shows all 

the options (see Figure 10-12).

In[23]:=Dataset@AssociationMap[Import["/Users/macosx/Desktop/TrainedNet3. 

wlnet",#]&,{"Net","UninitializedNet","ArrayList","ArrayAssociation", 

"WLVersion"}]

Out[23]=

Figure 10-12.  Dataset with the available import options
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�Wolfram Neural Net Repository
The Wolfram Neural Net Repository is a free-access website containing a repertoire 

of various pre-trained neural network models. The models are categorized by the 

input and data types, be it audio, image, numeric array, or text. Furthermore, they are 

also categorized by the kind of task they perform, from audio analysis or regression to 

classification. The main page of the website is shown in Figure 10-13.

Figure 10-13.  Wolfram Neural Net Repository home page

Enter https://resources.wolframcloud.com/NeuralNetRepository/ in your 

favorite browser to access the web page, or run SystemOpen from Mathematica, which 

opens the web page in the system’s default browser.

Once the site is loaded, net models can be browsed by either input or task. The 

models in this repository are built in the Wolfram Language, allowing you to use them 

within Mathematica. This leads to the models being found in a form that can be accessed 

from Mathematica or the Wolfram Cloud for prompt execution. If you scroll down, you 

see that the models are structured by name and the data used for training, along with 

a short description. Such is the case, for example, for the Wolfram AudioIdentify V1 
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network, which is trained with the AudioSet Data and identifies sounds in audio signals. 

To browse categories, you can choose the category from the menu. Figure 10-14 shows 

the site’s appearance after an input category is chosen; in this case, the neural networks 

that receive images as inputs.

Figure 10-14.  Category site, based on the input image

�Selecting a Neural Net Model
Once a category is chosen, it shows all the net models associated with the selected input 

category. Like with the Wolfram Data Repository, once the model is selected, it shows 

relevant information, like in Figure 10-15, where the selected net model is the neural 

network Wolfram ImageIdentify Net V1.

Chapter 10  Neural Networks Framework



420

Figure 10-15.  Wolfram ImageIdentify Net V1

It is possible to navigate from the website and download the notebook containing 

the network model, but it is also possible from Mathematica. In other words, search for 

network models through ResourceSearch. The example shows the search if you were 

interested in knowing the models of the networks that contain the word image (see 

Figure 10-16).

In[24]:= ResourceSearch[{"Name"->"Image","ResourceType"-> "NeuralNet"}] 

//Dataset[#,MaxItems->{4,3}]&

Out[24]=
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Figure 10-16.  Resource Dataset

The dataset shown in Figure 10-16 has only three columns for display purposes, but 

you can navigate through the entire dataset using the slider. The columns not shown in 

the image are Description, Location, and DocumentationLink. The last column provides 

the link that leads to the web model page.

�Accessing Inside Mathematica
To access the model architecture, add the object argument; for example, do the following 

for the Wolfram ImageIdentify Net V1 Network (see Figure 10-17).

In[25]:= ResourceSearch[{"Name"->"Wolfram ImageIdentify","ResourceType"-> 

"NeuralNet"},"Object"]

Out[25]=

Figure 10-17.  Wolfram ImageIdentify Net V1 resource

Note T o avoid problems accessing the Wolfram Net Repository from 
Mathematica, ensure you are logged in to the Wolfram Cloud or your Wolfram 
account.
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The following code is suppressed here to access the pre-trained model, but removing 

the semicolon returns the NetChain object of the pre-trained neural network.

In[26]:= ResourceSearch[{"Name"->"Wolfram ImageIdentify","ResourceType"-> 

"NeuralNet"},"Object"][[1]]//ResourceData;

Out[26]=

�Retrieving Relevant Information
Information about the model is accessed from ResourceObject. The following is the 

relevant information from the ImageIdentify model in a dataset (see Figure 10-18). To 

see all information in the dataset format, type ResourceObject [“Wolfram ImageIdentify 

Net V1”][All]//Dataset [#] &.

In[27]:= Dataset[AssociationMap[ResourceObject["Wolfram ImageIdentify Net V1"],

{"Name","RepositoryLocation","ResourceType","ContentElements","Version", 

"Description","TrainingSetInformation","InputDomains","TaskType","Keywords", 

"Attributes","LatestUpdate","DownloadedVersion","Format", 

"ContributorInformation","DOI","Originator","ReleaseDate","ShortName", 

"WolframLanguageVersionRequired"}]]

Out[27]=

Figure 10-18.  Dataset of some properties of the Wolfram ImageIdentify Net V1
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Here, in a few steps, is the way to access the trained neural network and much 

relevant information associated with the neural network. It should be noted that the 

process is also used to find other resources in the Wolfram Cloud or local resources, not 

only neural networks, since, in general, ResourceSearch looks for an object within the 

Wolfram Resource System. Such is the case of the neural network models in the Wolfram 

Neural Net Repository.

�LeNet Neural Network
The following example examines a neural network model named LeNet. Despite being 

able to access the model from a Wolfram resource, as you saw previously, performing 

operations with networks found in the Wolfram Neural Net Repository with the 

NetModel command is possible. To get a better idea of how this network is used, let’s 

first look at the description of the network, its name, how it is used, and where it was 

proposed for the first time.

�LeNet Model
The neural network LeNet is a convolutional neuronal network within the deep learning 

field. The neural network LeNet is recognized as one of the first convolutional networks 

that promoted deep learning. This network was used for character recognition to identify 

handwritten digits. Today, architectures are based on LeNet neural network architecture, 

but you focus on the Wolfram Neural Net Repository version. This architecture consists 

of four key operations: convolution, non-linearity, subsampling, or pooling and 

classification. To learn more about the LeNet convolutional neural network, see Neural 

Networks and Deep Learning: A Textbook by Charu C. Aggarwal (Springer, 2018). With 

NetModel, you can obtain information about the LeNet network that has been previously 

trained.

In[28]:= NetModel["LeNet Trained on MNIST Data",#]&/@{"Details","ShortName"

,"TaskType","SourceMetadata"}//Column

Out[28]= This pioneer work for image classification with convolutional 

neural nets was released in 1998. It was developed by Yann LeCun and his 

collaborators at AT&T Labs while they experimented with a large range of 

machine learning solutions for classification on the MNIST dataset.
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LeNet-Trained-on-MNIST-Data

{Classification} <|Citation->Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 

"Gradient-Based Learning Applied to Document Recognition," Proceedings of 

the IEEE, 86(11), 2278-2324 (1998),Source->http://yann.lecun.com/exdb/

lenet,Date->DateObject[{1998},Year,Gregorian,-5.]|>

Note T o access all the properties of a model with NetModel, add properties as 
the second argument—NetModel[“LeNet Trained on MNISt Data,” “Properties”].

The input this model receives consists of images in grayscale with a size of 28 x 28, 

and the model’s performance is 98.5% on the MNIST dataset.

In[29]:= NetModel["LeNet Trained on MNIST Data",#]&/@{"TrainingSetInformati

on","InputDomains","Performance"}//Column

Out[29]= MNIST Database of Handwritten Digits, consisting of 60,000

training and 10,000 test grayscale images of size 28x28.

{Image}

This model achieves 98.5% accuracy on the MNIST dataset.

�MINST Dataset
This network is used for rating, just as it appears in TaskType. The digits are in a database 

known as the MNIST database. The MNIST database is an extensive database of 

handwritten digits (see Figure 10-19) that contains 60,000 images for training and 10,000 

for testing, the latter being used to get a final estimate of how well the neural net model 

works. To observe the complete dataset, you load it from the Wolfram Data Repository 

with ResourceData and ImageDimensions to verify that the dimensions of the pictures 

are 28 x 28 pixels.

In[30]:= (*This is for seven elements randomly sampled, but you can check 

the whole data set.*)

TableForm[

 SeedRandom[900];

 RandomSample[ResourceData["MNIST", "TrainingData"], 7],

 TableDirections -> Row]
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Map[ImageDimensions, %[[1 ;; 7, 1]]]

(*Test set : ResourceData["MNIST","TestData"] *)

Out[30]//TableForm=

Figure 10-19.  A random sample of the MNIST training set

Out[31]= {{28,28},{28,28},{28,28},{28,28},{28,28},{28,28},{28,28}}

Figure 10-19 shows the images of the digits, the class to which they apply, and the 

dimensions of each image. You extract the training sets and test sets, which you use later.

In[32]:= {trainData,testData}={ResourceData["MNIST","TrainingData"],  

ResourceData["MNIST","TestData"] };

�LeNet Architecture
Let’s start by downloading the neural network from the NetModel command, which 

extracts the model from the Wolfram Neural Net Repository. The next exercise loads 

the network that has not been trained since you do the training and validation process. 

It should be noted that the LeNet model in the Wolfram Language is a variation of the 

original architecture (see Figure 10-20).

In[33]:= uninitLeNet=NetModel["LeNet Trained on MNIST Data", 

"UninitializedEvaluationNet"](*To work locally with the untrained  

model: NetModel["LeNet"]*)

Out[33]=
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Figure 10-20.  LeNet architecture

The LeNet network in the Wolfram Neural Net Repository is built from 11 layers. The 

layers that appear in red are layers with learnable parameters: two convolutional layers 

and two linear layers.

�MXNet Framework
With the MXNet framework, let’s first visualize the process of this network through the 

MXNet operation graph (see Figure 10-21).

In[34]:= Information[uninitLeNet,"MXNetNodeGraphPlot"]

Out[34]=
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Figure 10-21.  MXNet graph of the LeNet architecture

LeNet architecture starts at the input with the operation that converts the image to 

a numeric array, followed by the first operation. This convolution returns a 20-feature 

map with a rectified linear unit (ReLU) activation function immediately following 

nodes 3 and 4. Then, the first max-pooling operation (subsampling layers) selects the 

maximum value in the pooling node 5. Then, the second convolutional operation 

returns a 50-feature map with a ReLU activation function immediately following nodes 

8 and 9. The last convolution operation is followed by another max-pooling operation 

(node 10), followed by a flattening operation (node 11), which flattens the output of the 

pooling operation into a single vector. The last pooling operation gives an array of 50*4*4, 

and the flatten operation returns an 800-vector that is the input of the next operation. 

Next, you see the first fully connected layer (node 14); the first fully connected layer 

has a ReLU function (node 15), and the second fully connected layer has the softmax 

function (node 19). The last fully connected layer can be interpreted as a multilayer 

perceptron (MLP) that normalizes the output into a probability distribution to indicate 

the probability of each class. Finally, the tensor is converted to a class with the decoder. 

Nodes 4, 9, and 15 are the layers for non-linear operations (ReLU), and node 19 applies 

the softmax function for output classification. In summary, the architecture is as follows: 

Tensor (input), Convolution, ReLU, Pooling, Convolution, ReLU, Pooling, Flatten, Fully 

Connected (with ReLU), Fully Connected (with softmax), and Class output.
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�Preparing LeNet
Since LeNet is a neural network for image classification, an encoder and decoder must 

be used. The NetEncoder is inserted in the input NetPort, and the NetDecoder is on 

the output NetPort. Looking into the NetGraph (see Figure 10-22) might be useful in 

understanding the process inside the Wolfram Language. Clicking the input and output 

shows the relevant information.

In[35]:= NetGraph[uninitLeNet]

Out[35]=

Figure 10-22.  NetGraph of the LeNet model

You can extract the encoder and decoder to inspect their infrastructure. The encoder 

receives an image of the dimensions of 28 x 28 of any color space and encodes the image 

into a color space set to grayscale, returning then an array of the size of 1 x 28 x 28. On 

the other hand, the decoder is a class decoder that receives a 10-size vector, which tells 

the probability for the class labels that are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

In[36]:={enc=NetExtract[uninitLeNet,"Input"],dec=NetExtract[uninitLeNet,

"Output"]}//Row;

First, let’s look at how the net model works with NetInitialize; for example, use an 

image of 0 in the training set.

In[37]:= testNet=NetInitialize[uninitLeNet,RandomSeeding->8888];

testNet@trainData[[1,1]](*TrainData[[1,1]] belongs to a zero*)

Out[38]= 9

The net returns that the image belongs to class 9, which means that the image is 

a number 9; clearly, this is wrong. Let’s try NetInitialize again but with the different 

methods available. Writing all, as the second argument to NetInitialize, overwrites any 

pre-existing learning parameters on the network.
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In[39]:= {net1, net2, net3, net4} =   Table[NetInitialize[uninitLe

Net, All, Method -> i,     RandomSeeding -> 8888], {i, {"Kaiming", 

"Xavier", "Orthogonal",      "Identity"}}]; {net1[trainData[[1, 1]]], 

net2[trainData[[1, 1]]], net3[trainData[[1, 1]]], net4[trainData[[1, 1]]]}

Out[40]= {9,9,7,3}

Every net model fails to classify the image in the correct class. This result is 

because the neural network has not been trained, unlike NetInitialize, which only 

randomly initializes the learnable parameters without proper training. This is why, with 

NetInitialize, the model fails to classify the image given correctly. But first, let’s establish 

the network graph to better illustrate the model, as seen in Figure 10-23.

In[41]:= leNet=NetInitialize[NetGraph[<|"LeNet NN" -> uninitLeNet,  "LeNet 

Loss" -> CrossEntropyLossLayer@"Index"|>, {NetPort@"Input" -> "LeNet NN", 

"LeNet NN" -> NetPort@{"LeNet Loss", "Input"}, NetPort@"Target" -> NetPort@

{"LeNet Loss", "Target"}}], RandomSeeding -> 8888]

Out[41]=

Figure 10-23.  LeNet ready graph
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Before you train the net, you must make the validation set suited for the 

CrossEntropyLossLayer in the target input because the classes start at 0 and end at 9, 

and the Index target begins at 1 and goes on. So, the target input needs to be between 

1 and 10.

In[42]:= trainDts=Dataset@Join[AssociationThread["Input"->#]& /@Keys[train 

Data],AssociationThread["Target"-> #]&/@Values[trainData]+1,2];

testDts=Dataset@Join[AssociationThread["Input"->#]& /@Keys[testData], 

AssociationThread["Target"-> #]&/@Values[testData]+1,2];

The training set and validation set have the form of a dataset. Only four random 

samples are shown in Figure 10-24.

In[44]:= BlockRandom[SeedRandom[999];

{RandomSample[trainDts[[All]],4],RandomSample[testDts[[All]],4]}]

Out[44]=

Figure 10-24.  The dataset of the training and test set

�LeNet Training
Now that you have grasped the process of this neural net model, you can proceed to train 

the neural net model. With NetTrain, you gradually modify the learnable parameters of 

the neural network to reduce the loss. The next training code is set with the options seen 

in the previous section, but here, you add new options also available for training. The 

first one is TrainingProgressMeasurements. TrainingProgressMeasurements can specify 

measures such as accuracy and precision. These are measured during the training phase 
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by round or batch. The ClassAveraging is used to specify to get the macro-average or 

the micro-average of the measurement specified <|”Measurement” -> “measurement” 

(Accuracy, RSquared, Recall, MeanSquared, etc.), “ClassAveraging”->”Macro”|>.

The second option is the TrainingStoppingCriterion, which is used to add an early 

stopping to avoid overfitting during the training phase based on different criteria, such as 

stopping the training when the validation loss is not improving, measuring the absolute 

or relative change of a measurement (accuracy, precision, loss, etc.), or stopping the 

training when the loss or other criteria does not improve after a certain number of 

rounds <|Criterion->”measurement” (Accuracy, Loss, Recall, etc.), “Patience”-> # of 

rounds|>.

In[45]:= netResults =  NetTrain[leNet, trainDts, All, ValidationSet -> 

testDts,   MaxTrainingRounds -> 15, BatchSize -> 2096,   LearningRate -> 

Automatic, Method -> "ADAM", TargetDevice -> "CPU",   PerformanceGoal  

 -> "TrainingMemory", WorkingPrecision -> "Real32",   RandomSeeding  

 -> 99999,   TrainingProgressMeasurements -> {<|"Measurement" -> 

"Accuracy",      "ClassAveraging" -> "Macro"|>,    <|"Measurement"  

 -> "Precision", "ClassAveraging" -> "Macro"|>    , <|"Measurement"  

 -> "F1Score", "ClassAveraging" -> "Macro"|>    , <|"Measurement"  

 -> "Recall", "ClassAveraging" -> "Macro"|>    , <|"Measurement" -> 

"ROCCurvePlot", "ClassAveraging" -> "Macro"|>    , <|"Measurement"  

 -> "ConfusionMatrixPlot",      "ClassAveraging" -> "Macro"|>    }, 

TrainingStoppingCriterion -> <|"Criterion" -> "Loss", "AbsoluteChange" -> 

0.001|>]

Out[45]=

Chapter 10  Neural Networks Framework



432

The final results of the training phase are depicted in Figure 10-25.

Figure 10-25.  Net results of LeNet training

Extracting the trained model and appending the net encoder and decoder is done 

because the trained net does not come with an encoder and decoder at the input and 

output ports.

In[46]:=NetExtract[netResults["TrainedNet"],"LeNet NN"];

trainedLeNet=NetReplacePart[%,{"Input"->enc,"Output"->dec}];

�LeNet Model Assesment
The following grid (see Figure 10-26) shows the tracked measurements and plots of 

the training set. The measurements of the training set are in the RoundMeasurements 

property. To get the list of the values in each round, use RoundMeasurementsLists. 
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The performance of the training set is assessed with the round measurements, and the 

test set is evaluated with the validation measurements. Also, the ROC curves and the 

confusion matrix plot are shown in both cases.

In[48]:= netResults["RoundMeasurements"][[1 ;; 5]];

Normal[netResults["RoundMeasurements"][[6 ;; 7]]];

Grid[{{Style["RoundMeasurements", #1, #2], Style[%[[1, 1]], #1, #2],

     Style[%[[2, 1]], #1, #2]}, {Dataset[%%], %[[1, 2]], %[[2, 2]]}}, 

Dividers -> Center] &[Bold, FontFamily -> "Alegreya SC"]

Out[50]=

Figure 10-26.  Training set measurements

To see how the model performed on the validation set (see Figure 10-27), 

see ValidationMeasurements. To get the list of the values in each round, use 

ValidationMeasurementsLists.

In[51]:= netResults["ValidationMeasurements"][[1 ;; 5]];

Normal[netResults["ValidationMeasurements"][[6 ;; 7]]];

Grid[{{Style["ValidationMeasurements", #1, #2],

Style[%[[1, 1]], #1, #2], Style[%[[2, 1]], #1, #2]}, {Dataset[%%], %[[1, 

2]], %[[2, 2]]}}, Dividers -> Center] &[Bold, FontFamily -> "Alegreya SC"]

Out[53]=
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Figure 10-27.  Validation set measurements

�Testing LeNet
Having finished the training and reviewed the round and validation measures, you are 

now ready to test the trained LeNet neural network with some difficult images to see how 

it performs (see Figure 10-28).

In[54]:=expls=Keys[{testData[[2150]],testData[[3910]],testData[[6115]],test

Data[[6011]],testData[[7834]]}]

Out[54]=

Figure 10-28.  Difficult examples from the MNIST test set

The selected images belong to the numbers 2, 3, 6, 5, and 7.

In[55]:= trainedLeNet[expls,"TopProbabilities"]

Out[55]= {{2->0.999397},{3->0.999856},{6->0.906024},{6->0.990975},{7-> 

0.999853}}
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Write all of the results with the top probabilities with TableForm.

In[66]:= TableForm[Transpose@{trainedLeNet[ expls,{"TopDecisions",

2}],TrainedLeNet[ expls,{"TopProbabilities",2}]},TableHeadings-> 

{Map[ToString,{2,3,6,5,7},1],{"Top Decisions","Top Probabilities "}}, 

TableAlignments->Center]

Out[66]//TableForm=

    |Top Decisions  Top Probabilities

____|___________________________________

2   |3              3->0.000580186

    |2              2->0.999397

    |

3   |9              9->0.0000792077

    |3              3->0.999856

    |

6   |0              0->0.0904324

    |6              6->0.906024

    |

5   |5              5->0.00699159

    |6              6->0.990975

    |

7   |3              6->0.990975

    |7              7->0.999853

The trained net has misclassified the image of the number 5 because the top 

decisions are either a 5 or a 6, being 6 with top probability, which is wrong. Also, you 

can see the probabilities of the top decisions. Another form to evaluate the trained net 

in the test set is using NetMeasurements to set the net model, test set, and the interested 

measure. In the example, the measure of interest is the ConfusionMatrixPlot (see 

Figure 10-29).

In[67]:= NetMeasurements[trainedLeNet,testData,"ConfusionMatrixPlot"]

Out[67]=
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Figure 10-29.  ConfusionMatrixPlot from NetMeasurements

�GPT and LLM Basics
This section explores the neural network GPT models available in the Wolfram 

Language. You learn the basics of generative pre-trained transformers (GPT), the 

architecture of some GPT models inside Mathematica, and new LLM (large language 

model) Mathematica features.
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�A Brief Overview
GPT is a series of AI models that uses deep learning and transformer architecture 

to generate human-like text by analyzing preceding text. LLM is a broader category 

encompassing models trained to understand and generate human-readable text. GPT 

models fall under the LLM category, representing just one kind of model within the 

broader LLM framework.

�LLM in the Wolfram Language
The Wolfram Language offers several new LLM-based functionalities, including the 

following.

•	 Chat Notebooks: a new feature enabling efficient and accessible 

conversations with LLM (GPT-3, among others) like a traditional 

Mathematica notebook

•	 Wolfram Prompt Repository: a collection of useful prompts made by 

a community for easy access to LLM scope applications

•	 LLM Function Integration: seamless incorporation of LLM functions 

within Mathematica

•	 GPT-1 and GPT-2: available from the Wolfram Neural Net Repository

Note  For LLM services in Mathematica, external API access is needed. Ensure 
your API key is valid; for example, for OpenAI, an active Chat GPT account 
with billing details is required. Be aware that API costs are separate from their 
subscription plans and vary based on the model used. Make sure to read OpenAI 
documentation for pricing and account details.

To connect to OpenAI GPT services, you first need to establish a connection. The 

most direct path to connect is through the settings or preferences section. Select the AI 

settings option from there, which shows various tabs related to chat notebooks, services, 

personas, and tools. The default tab has the general setting for the persona, LLM service, 

and temperature (model creativity), among other settings. To proceed, go to the Services 

tab and click Authentication, followed by Connect. This triggers a WolframConnector 

pop-up that requests the key access, as shown in Figure 10-30.
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Figure 10-30.  AI settings to connect LLM service from Mathematica

To get started, enter the key, save it by clicking the checkbox, and agree on the terms 

of use. Once linked, a checkmark appears under Authentication, like Figure 10-30. If a 

valid API is not linked, LLM services won’t work. To remove the key, click Disconnect 

and repeat the previous steps.

Note  For quick API and LLM support, visit https://support.wolfram.com/

�Chat Notebooks
New types of notebooks have been developed apart from regular notebooks. These 

notebooks are specialized for LLM tasks. These are Chat-Enabled and Chat-Driven 

Notebooks. To create a new one, go to File ➤ New, then select Chat-Enabled or Chat-
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Driven Notebook. By default, chat-enabled use input chat cells with the code assistant 

persona (sets the LLM’s response style), while chat-driven cells use PlainChat (basic 

dialog, no Wolfram code execution), as seen in Figure 10-31.

Figure 10-31.  Multiple Chat cells and OpenAI available models

Apart from the different cells, Figure 10-31 show the various personas and GPT 

models for use. You can select the one that fits your needs. The base model version used 

in the following examples is with GPT-3.5 Turbo.
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To create a new chat cell, press (‘) once. Press it twice for a side chat and three times 

for chat system input. To enable it in a regular notebook, click the chat cell icon in the 

top right corner (see Figure 10-31). Select “Enable AI chat features” to activate. Select 

the “Do automatic result analysis” option for LLM tips on output code. Try the example 

shown in Figure 10-32 to see if everything is working.

Figure 10-32.  Sample prompt and output for CodeAssistant, PlainChat, and 
RawModel
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In Figure 10-32, a chat icon is visible in the right cell bracket; this option lets you use 

LLM with Wolfram code like you use it in Mathematica. The chat history is sequential, 

and the conversation history output can also be accessed using the chat arrows. 

Side chat cells or blocks/delimiters separate chats. Distinct personas yield different 

responses; the CodeAssistant chat implies prompts in Wolfram code, whereas the Plain 

and RawChat yield output but do not imply that it’s related to Wolfram code (unless 

specified in the prompt), resulting in Python code being used instead. Hovering over the 

code part allows you to either insert it as a newly evaluated cell, insert it, or copy it.

Note K eep your prompts concise; always verify the chosen model to avoid 
unexpected fees since models have different costs based on token count.

Chat cells can rerun the prompt and regenerate the response. But remember that the 

LLM prompts are not run by Mathematica kernel, so history is saved on the notebook. 

So, closing the notebook does not erase the conversation.

�Wolfram Prompt Repository
The Wolfram Prompt Repository gives you access to a large, curated base of prompts, 

from LLM prompts, personas, and costume functions. Navigating is similar to other 

repositories. Select from the accessible sections to find your desired prompts or persona 

for costume-style conversations. Once a prompt is selected various options are available, 

like chat samples and how to use it inside Mathematica. The platform further supports 

uploading, downloading, and utilizing various LLM components, as Figure 10-33 shows.
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Figure 10-33.  Wolfram Prompt Repository with the MockInterviewer prompt page

For instance, you can format output with different personas; select the persona from 

the drop-down menu (see Figure 10-31). To download a persona, go to the Personas 

tab in the AI setting and install via the prompt repository (see Figure 10-33) or enter the 

persona URL. Once installed, it should be available as depicted in Figure 10-34; this can 

also be done via Add & Manage Personas.
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Figure 10-34.  The Add & Manage Personas screen shows the R2D2 persona 
selected

Apart from personas, a combination of prompt modifiers can be used. These act 

on the input or output of a prompt. So, to invoke an input persona, use the character 

‘@persona.’ To call for a function input modifier, use ‘!prompt’; to call an output 

modifier, use ‘#param ‘; input and output modifiers go at the beginning and end of the 

prompt. To insert parameters to function modifiers, use the vertical bar to separate, like 

‘#prompt|param ‘ as defined in Figure 10-35.
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Figure 10-35.  R2D2 code comment in Haiku style

�LLM Functionalities
Chat objects are used along with chat evaluate to manage LLM conversations within 

Mathematica. The chat object provides a convenient interface for interacting with the 

LLM and managing conversations in a notebook environment. What happens is that 

internally, LLM commands work as synthetic functions, which allows the LLM model to 

access the Wolfram tools (see Figure 10-36).

In[68]:= ChatEvaluate[ ChatObject[], "Break down this code in 3 simple 

points?  For[i=1,i<=5,i++,Print[i]", LLMEvaluator -> <|"Prompts" -> 

{LLMPrompt["ELI5"]}|>] (*Explain Like I'm Five*)

Out[68]=

Figure 10-36.  Chatobject for an LLM text prompt
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To retrieve the chat contents and tokens, use the words “Messages” and “Usage”.

In[69]:=

%["Messages"]

%%["Usage"]

Out[2]= {<|"Role" -> "User", "Content" ->    "Answer questions as if the 

listener is a five year old child. Break down this code in 3 simple points? 

For[i=1,i<=5,i++,Print[i]",   "Timestamp" ->    DateObject[{2024, 2, 22, 

11, 22, 5.627397}, "Instant",     "Gregorian", -6.], "Annotations" -> <|{1, 

129} -> "Prompt"|>|>, <|"Role" ->    "Assistant",   "Content" ->

"1. This code is telling the computer to count from 1 to 5.

2. It is using the \"for\" loop to make this happen.

3. Every time it counts a number, it will print that number on the \

screen.", "Timestamp" ->    DateObject[{2024, 2, 22, 11, 22, 6}, "Instant", 

"Gregorian", -6.],   "Annotations" -> <|{1, 184} -> "Completion"|>|>}

Out[70]= 92 tokens

Like the previous example, you can set a prompt with a specific configuration with 

LLMConfiguration evaluated with LLMEvaluator, like the base model, temperature, stop 

tokens, and so forth. It can also be used to generate text (LLMSynthesize), retrieve text 

(LLMPrompt), or use a template function (LLMFunction), as the following code shows.

In[70]:= llmConfig = LLMConfiguration[<|"Prompts" -> LLMPrompt["ELI5"], 

"Model" -> "GPT-3.5-Turbo", "Temperature" -> 0.1,  "MaxTokens" 

-> 5|>]; LLMSynthesize["Break down this code in 3 simple points? 

For[i=1,i<=5,i++,Print[i]", LLMEvaluator -> llmConfig]

Out[71]= Sure! Here's a

Note T he default LLM configuration is in $LLMEvaluator but can be overridden.

In[72]:= $LLMEvaluator=LLMConfiguration[<|"Prompts"-> LLMPrompt["ELI5"], 

"Model"->"GPT-3.5-Turbo", "Temperature"->0.1,"MaxTokens"-> 5|>]

Out[72]= LLMConfiguration[Model: <|Service->Automatic,Name-

>GPT-3.5-Turbo|>]
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�GTP-1 and GPT-2 Models
Besides external LLM services, open models like GPT-1 and GPT-2 are accessible in 

Mathematica. These models are predecessors to recent GPT models. GPT –1 is one of 

the initial models trained on a large book dataset, and GPT-2 is an improved version of 

GPT-1, trained on the WebText dataset. Let’s look at some information about GPT-1 and 

GPT-2; note that the output here is truncated, given the large text.

In[72]:= Row[{Short[NetModel[ "GPT Transformer Trained on BookCorpus 

Data", #] & /@ {"Details", "ShortName"} // Column, 4],   Short[NetModel[       

"GPT2 Transformer Trained on WebText Data", #] & /@ {"Details","ShortName"} 

// Column, 4]}]

Out[72]= Released in 2018, this Generative Pre-Training Transformer (GPT) 

model is pre-trained in an unsupervised fashion on a large corpus of 

English text. This model can be further fine-tuned with additional output 

layers to create highly accurate NLP models for a wide range of tasks. 

It uses bi-directional causal self-attention, often referred to as a 

transformer decoder.

GPT-Transformer-Trained-on-BookCorpus-Data

Released in 2019, this model improves and scales up its predecessor 

model. It has a richer vocabulary and uses BPE tokenization on UTF-8 

byte sequences and additional normalization at the end of all of the 

transformer blocks.

GPT2-Transformer-Trained-on-WebText-Data

You can try to retrieve other data, like in the LeNet example. Let’s look at model 

variants and task types examples.

In[73]:= NetModel["GPT Transformer Trained on BookCorpus Data", #] & /@ 

{"ParametersAllowedValues", "Variants"}

NetModel["GPT2 Transformer Trained on WebText Data", #] & /@ 

{"ParametersAllowedValues", "Variants"}

Out[73]= {<|Task->{FeatureExtraction,LanguageModeling}|>,{{GPT Transformer 

Trained on BookCorpus Data,Task->FeatureExtraction},{GPT Transformer 

Trained on BookCorpus Data,Task->LanguageModeling}}}

Out[74]= {<|Task->{FeatureExtraction,LanguageModeling},Size-

>{117M,345M,774M}|>,
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{{GPT2 Transformer Trained on WebText Data,Task->FeatureExtraction,Size->117M},

{GPT2 Transformer Trained on WebText Data,Task->FeatureExtraction,Size->345M},

{GPT2 Transformer Trained on WebText Data,Task->FeatureExtraction,Size->774M},

{GPT2 Transformer Trained on WebText Data,Task->LanguageModeling,Size->117M},

{GPT2 Transformer Trained on WebText Data,Task->LanguageModeling,Size->345M},

{GPT2 Transformer Trained on WebText Data,Task->LanguageModeling,Size->774M}}}

As seen in the output, variants have different task types and a specific number of 

parameter sizes, like 117M, 354M, and 774M million parameters. You can pick a model 

by specifying the parameters, for instance, picking the language-trained model and 

trying to generate text based on the prediction of the next token (see Figure 10-37).

In[75]:= gpt1=NetModel[{"GPT Transformer Trained on BookCorpus 

Data","Task"-> "LanguageModeling"}]

gpt2=NetModel[{"GPT2 Transformer Trained on WebText Data","Task"-> 

"LanguageModeling"}]

Out[75]=

Figure 10-37.  GPT-1 and GPT-2 embedded architectures
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For the token function, the input parameters are the initial text, token count (default 

10), and temperature (default 1). In simple terms, this function samples predictions. It 

attaches each new token to the original string for the fixed token count and returns the 

initial text plus the generated tokens text.

In[76]:= generateText[LLmodel_][initialText_, tokenCount_ : 

10,  temperature_ : 1] := Fold[StringJoin[#1,  LLmodel[#1, {"RandomSample", 

"Temperature" -> temperature}]] &,  initialText, Range[tokenCount]]

Where a token refers to a unit of text that the model reads. It can be as short as one 

character or as long as one word, like “a” or “app.” The model looks at these tokens 

individually to understand and generate text based on them. So, for GPT-2, BPE 

tokenization is a method used to break down words into smaller parts.

In[77]:= generateText[gpt1]["Alan Turing was a British mathematician 

and logician who is considered a pioneer in the field of computer 

science.",20,0.5]

Out[77]= Alan Turing was a British mathematician and logician who is 

considered a pioneer in the field of computer science.he is a physicist and 

is a very good scientist .

 he is also a friend of george w.

In[78]:= generateText[gpt2]["Alan Turing was a British mathematician 

and logician who is considered a pioneer in the field of computer 

science.",20,1]

Out[78]= Alan Turing was a British mathematician and logician who is 

considered a pioneer in the field of computer science. At the time of his 

independence he was selected to pen one of the first (173) contributions to

As seen comparing both responses, there is still room for improvement. GPT-1 

output seems incoherent with unrelated elements. In contrast, GPT-2 shows more 

context talking about Turing’s career but still lacks clear, complete sentences.

�Final Remarks
In summary, the following road map for the general schematics, construction, testing, 

and implementation of a machine learning or a neural network model within the 

Wolfram Language scheme are in Figure 10-38.
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Figure 10-38.  Model overview for training and testing

The diagram shows a route that can be followed directly; despite this, there may be 

intermediate points between each process within the route since the route may vary 

depending on the type of task or problem being solved. However, the route focuses on 

exposing the important and general points to construct a model using the Wolfram 

Language. Within the data preparation phase are previous processes, such as data 

integration, the type of data collected (structured or unstructured), transformations in 

the data, cleaning in data modules, and so on. So before moving on to the next phase, 

there must be a pre-processing of the data, to have data ready to be fed to the model.

Model preparation covers aspects such as the choice of the algorithm or the methods 

to use, depending on the type of learning; establishing or detecting the structure of the 

model; and defining the characteristics, input parameters, and type of data that is used, 

whether it be text, sound, numerical data, and tools to be used. All this is linked to a 

process called feature engineering, whose primary goal is to extract valuable attributes 

from data. This is needed to move on to the next point, the training phase.

The evaluation phase and model assessment consists of defining the evaluation 

metrics, which vary according to the task or problem being solved, and preparing the 

validation used later. The model’s output is converted back to a clear, interpretable 

format at the decoding phase, readying for practical use. At this point, it is necessary to 
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emphasize that the preparation of the model, training, evaluation, and assessment can 

be an iterative process, including tuning of hyperparameters, adjustments on algorithm 

techniques, and model configurations such as internal model features. The purpose is 

to establish the best possible model capable of delivering adequate results and finally 

reaching the model deployment phase, which defines the model chosen and tested on 

new data.
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LeNet, 423, 446

architecture, 425–427
MNIST dataset, 424
NetModel command, 423
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Insert function, 81
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Grid command, 67
identifier/symbol, 65
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Reverse command, 82
Select command, 84
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Table functions, 65–67
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Logical operators, 30
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DeleteMissing command, 323
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curve, 330
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M
Machine learning, 314, 327, 357
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hyperparameter, 304
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Wolfram Language, 303
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Mathematica, 218, 264, 265, 275, 301, 315, 

369, 411, 441
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expression, 19
input, 7
interface, 6
kernel, 6
notebook, 5, 7, 8
precision, 18
preferences window, 8
structure

cells, 5
input types, 5, 6
notebook, 4
welcome screen, 3

suggestion bar, 7
uses, 2

Mathematica version, 198
Matrix

definition, 73
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list of lists, 74
MatrixQ, 74
operations, 75
restructuring, 76
transpose, 74

MatrixPlot, 311, 312
Max and Min functions, 64
Mean function, 240
MeanSquare, 413
Mean squared layer

MeanSquaredLossLayer, 366
NetEncoder, 367
parameters, 365

MeanSquaredLossLayer,  
366, 413

MeansSquaredLoss, 373
Median function, 240
MersenneTwister method, 235
Mesh option, 192

MethodOption, 318
MNIST database, 424
Model deployment phase, 450
Model preparation, 449
MultiAxisArrangement, 210
Multiple plots, 197, 207
MXNet format, 400
MXNet framework, 361, 426
MXNet network, 399
MXNet operation, 359
MXNet ops plot, 401
MXNet symbols, 398

N
National Oceanic and Atmospheric 

Administration (NOAA), 156
Negation operator, 32
Nest command, 289
Nested chain, 386
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NetChain, 384–387, 392, 393
NetChain NetCH2, 386
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NetDecoder, 380
NetEncoder, 376, 377
NetEvaluationMode, 385
NetExtract, 364
NetFlatten, 387
NetGraph command, 383, 388–394
NetInitialize, 429
NetMeasurements, 435
NetPort, 390
NetPortGradient, 365
NetResultsObject, 415
NetTrainResultsObjec, 406
Neural network

batch size, 408
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containers, 383
data, 360
layers, 359
LeNet, 423
linear layer, 360
MaxTrainingRounds, 408
model implementation, 406
MXNet operation, 359
Net2, 409
NetChain, 384
NetTrain, 403
perceptron model, 404
progress information panel, 405
ResourceSearch, 420
Standardize function, 404
training data, 404
WLNet format, 417
Wolfram Language, 360, 403

N function, 59
NormalEquation, 319
Notches, 254
Notebook, 1, 4, 12

feature, 15–17
security, 53
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UI, 9
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application toolbar menu, 11
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options, 10
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O
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OR operator, 32, 36
OrthanWiseNewton, 319
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PlotTheme, 227, 228
Plotting commands, 196
Plotting graphs, 191
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PredictorFunction, 313
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PredictorMeasurementsObject, 317
Prefix notation, 59
Probability density functions (PDFs), 248
ProbabilityHistogram, 336
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Q
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Query command, 286
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R
Ramp function, 369
Random data, 338
RandomInteger function, 233, 234
Random numbers, 123

BlockRandom function, 235
functions, 233
MersenneTwister method, 235
sublist, 234

RandomReal function, 23
Random sampling

expression, 236
RandomChoice function, 235
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RandomSeeding, 339, 363
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ReducedVectors, 346
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ReLU activation, 427
ResidualHistogram, 318
ResidualPlot, 318
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ResourceData command, 278, 280
Resource Dataset, 421
ResourceObject, 275, 422
ResourceObject Fisher’s Irises, 276
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plots, 320

Root mean squared error (RMSE), 317
Round function, 63

RoundLossList, 415
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S
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SectorChart command, 251
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SemanticImport

comparison, 164
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CSV file, 157
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SoftmaxLayer, 372, 373
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Solve function, 35
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Mathematica, 242
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data analysis, 239

StatsFun function, 124
StochasticGradientDescent method, 

319, 328
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Stochastic gradient  
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Adam optimizer, 413
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3D plot figure, 218
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plot expression, 199
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U
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V
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W
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