

Beginning Mathematica
and Wolfram for Data

Science
Applications in Data Analysis,

Machine Learning,
and Neural Networks

Second Edition

Jalil Villalobos Alva

Beginning Mathematica and Wolfram for Data Science: Applications in Data
Analysis, Machine Learning, and Neural Networks

ISBN-13 (pbk): 979-8-8688-0347-5		 ISBN-13 (electronic): 979-8-8688-0348-2
https://doi.org/10.1007/979-8-8688-0348-2

Copyright © 2024 by Jalil Villalobos Alva

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Duffy
Development Editor: James Markham
Editorial Project Manager: Gryffin Winkler
Copyeditor: Kim Burton

Cover designed by eStudioCalamar

Cover image designed by Mathew Schwartz on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub. For more detailed information, please visit https://www.apress.com/gp/services/
source-code.

If disposing of this product, please recycle the paper

Jalil Villalobos Alva
Mexico City, Mexico

https://doi.org/10.1007/979-8-8688-0348-2

To my family, who supported me in all aspects

v

Table of Contents

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

Chapter 1: �Introduction to Mathematica��� 1

Why Mathematica?�� 1

The Wolfram Language�� 2

Structure of Mathematica�� 3

Design of Mathematica�� 6

Mathematica Environment��� 9

Notebook Interface��� 9

Text Processing�� 12

Palettes��� 14

Notebook Style and Features��� 15

Expression in Mathematica�� 18

Assigning Values�� 19

Built-in Functions��� 22

Dates and Time��� 23

Strings�� 25

Basic Plotting�� 27

Logical Operators and Infix Notation�� 30

Algebraic Expressions�� 33

Solving Algebraic Equations��� 34

Using Wolfram Alpha Inside Mathematica�� 37

Delayed and Immediate Expressions�� 40

https://doi.org/10.1007/979-8-8688-0348-2_1
https://doi.org/10.1007/979-8-8688-0348-2_1
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec1
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec2
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec3
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec4
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec5
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec6
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec7
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec8
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec9
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec10
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec11
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec12
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec13
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec14
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec15
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec16
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec17
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec18
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec19
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec20

vi

Improving Code�� 41

Code Performance�� 42

Handling Errors��� 43

Debugging Techniques��� 45

How Mathematica Works��� 47

How Computations are Made (Form of Input)��� 47

Searching for Assistance�� 50

Notebook Security�� 53

Summary��� 54

Chapter 2: �Data Manipulation�� 55

Lists��� 55

Types of Numbers��� 56

Working with Digits�� 60

A Few Mathematical Functions�� 61

Numeric Function��� 63

Lists of Objects�� 64

List Representation�� 65

Generating Lists�� 65

Arrays of Data��� 68

Nested Lists�� 71

Vectors�� 72

Matrixes�� 73

Matrix Operations��� 75

Restructuring a Matrix�� 76

Manipulating Lists�� 77

Retrieving Data��� 77

Assigning or Removing Values��� 79

Structuring List�� 82

Criteria Selection�� 84

Summary��� 87

Table of Contents

https://doi.org/10.1007/979-8-8688-0348-2_1#Sec21
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec22
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec23
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec24
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec25
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec26
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec27
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec28
https://doi.org/10.1007/979-8-8688-0348-2_1#Sec29
https://doi.org/10.1007/979-8-8688-0348-2_2
https://doi.org/10.1007/979-8-8688-0348-2_2
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec1
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec2
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec3
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec4
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec5
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec6
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec7
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec8
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec9
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec10
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec11
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec12
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec13
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec14
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec15
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec16
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec17
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec18
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec19
https://doi.org/10.1007/979-8-8688-0348-2_2#Sec20

vii

Chapter 3: �Working with Data and Datasets�� 89

Operations with Lists��� 89

Arithmetic Operations to a List��� 90

Applying Functions to a List��� 91

Defining Own Functions��� 93

Pure Functions�� 95

Indexed Tables��� 96

Tables with the Wolfram Language�� 96

Associations��� 101

Dataset Format�� 103

Constructing Datasets�� 103

Accessing Data in a Dataset��� 109

Adding Values��� 113

Dropping Values�� 117

Filtering Values��� 119

Applying Functions��� 122

Functions by Column or Row�� 127

Joining and Merging Datasets�� 132

Customizing a Dataset�� 134

Generalization of Hash Tables�� 138

Summary��� 145

Chapter 4: �Import and Export�� 147

Importing Files��� 148

CSV and TSV Files��� 148

XLSX Files��� 150

JSON Files�� 153

Web Data�� 156

Semantic Import�� 157

Quantities��� 159

Datasets with Quantities�� 160

Costume Import (Dealing with Large Datasets)�� 164

Table of Contents

https://doi.org/10.1007/979-8-8688-0348-2_3
https://doi.org/10.1007/979-8-8688-0348-2_3
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec1
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec2
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec7
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec8
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec9
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec10
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec11
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec12
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec13
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec14
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec15
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec16
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec17
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec18
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec19
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec20
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec21
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec22
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec23
https://doi.org/10.1007/979-8-8688-0348-2_3#Sec24
https://doi.org/10.1007/979-8-8688-0348-2_4
https://doi.org/10.1007/979-8-8688-0348-2_4
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec1
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec2
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec3
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec4
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec5
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec6
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec7
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec8
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec9

viii

Export��� 166

Other Formats��� 169

XLS and XLSX Formats��� 173

JSON Formats��� 174

Content File Objects��� 177

Searching Files with Wolfram Language�� 178

Connecting to External Services�� 179

External Connections�� 179

External Resources��� 181

Database and File Operations (SQL)��� 184

Summary��� 186

Chapter 5: �Data Visualization�� 187

Basic Visualization��� 187

2�D Plots�� 187

Plotting Data��� 191

Plotting Defined Functions��� 196

Customizing Plots�� 197

Adding Text to Charts�� 197

Frame and Grids��� 200

Filled Plots�� 202

Filling Patterns and Gradient�� 204

Combining Plots��� 206

Multiple Plots�� 207

Multiaxis Plots�� 210

Coloring Plot Grids�� 211

Colors Palette��� 216

3�D Plots�� 218

Customizing 3D Plots�� 219

Hue Color Function and List3D��� 220

Table of Contents

https://doi.org/10.1007/979-8-8688-0348-2_4#Sec10
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec11
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec12
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec13
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec14
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec15
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec16
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec17
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec18
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec19
https://doi.org/10.1007/979-8-8688-0348-2_4#Sec20
https://doi.org/10.1007/979-8-8688-0348-2_5
https://doi.org/10.1007/979-8-8688-0348-2_5
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec1
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec2
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec3
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec4
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec5
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec6
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec7
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec8
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec9
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec10
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec11
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec12
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec13
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec14
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec15
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec16
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec17

ix

Contour Plots�� 222

3�D Plots and 2D Projections��� 226

Plot Themes��� 227

Summary��� 231

Chapter 6: �Statistical Data Analysis�� 233

Random Numbers�� 233

Random Sampling�� 235

Systematic Sampling�� 237

Commons Statistical Measures��� 239

Measures of Central Tendency��� 239

Measures of Dispersion�� 240

Statistical Charts�� 242

Bar Charts��� 242

Histograms��� 245

Pie Charts and Sector Charts�� 250

Box Plots��� 252

Distribution Chart��� 254

Charts Palette��� 256

Ordinary Least Squares Method��� 262

Pearson Coefficient�� 264

Linear Fit�� 265

Model Properties�� 266

Summary��� 269

Chapter 7: �Data Exploration��� 271

Wolfram Data Repository��� 271

Wolfram Data Repository Website�� 272

Selecting a Category�� 274

Extracting Data from the Wolfram Data Repository��� 275

Accessing Data Inside Mathematica�� 278

Data Observation and Querying�� 281

Table of Contents

https://doi.org/10.1007/979-8-8688-0348-2_5#Sec18
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec19
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec20
https://doi.org/10.1007/979-8-8688-0348-2_5#Sec21
https://doi.org/10.1007/979-8-8688-0348-2_6
https://doi.org/10.1007/979-8-8688-0348-2_6
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec1
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec2
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec3
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec4
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec5
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec6
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec7
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec8
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec9
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec10
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec11
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec12
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec13
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec14
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec15
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec16
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec17
https://doi.org/10.1007/979-8-8688-0348-2_6#Sec18
https://doi.org/10.1007/979-8-8688-0348-2_7
https://doi.org/10.1007/979-8-8688-0348-2_7
https://doi.org/10.1007/979-8-8688-0348-2_7#Sec1
https://doi.org/10.1007/979-8-8688-0348-2_7#Sec2
https://doi.org/10.1007/979-8-8688-0348-2_7#Sec3
https://doi.org/10.1007/979-8-8688-0348-2_7#Sec4
https://doi.org/10.1007/979-8-8688-0348-2_7#Sec5
https://doi.org/10.1007/979-8-8688-0348-2_7#Sec6

x

Descriptive Statistics��� 287

Table and Grid Formats�� 289

Dataset Visualization�� 293

Data Outside Dataset Format��� 296

2�D and 3D Plots�� 297

Summary��� 301

Chapter 8: �Machine Learning with the Wolfram Language������������������������������������ 303

Gradient Descent Algorithm��� 303

Getting the Data�� 304

Algorithm Implementation�� 305

Multiple Alphas��� 307

Linear Regression�� 308

Predict Function��� 308

Boston Dataset��� 309

Model Creation��� 310

Model Measurements��� 316

Model Assessment��� 318

Retraining Model Hyperparameters�� 319

Logistic Regression�� 321

Titanic Dataset�� 321

Data Exploration��� 325

Classify Function�� 327

Testing the Model��� 332

Data Clustering�� 338

Clusters Identification��� 338

Choosing a Distance Function�� 340

Identifying Classes��� 342

K-Means Clustering�� 343

Dimensionality Reduction��� 345

Applying K-Means�� 347

Changing the Distance Function��� 349

Table of Contents

https://doi.org/10.1007/979-8-8688-0348-2_7#Sec7
https://doi.org/10.1007/979-8-8688-0348-2_7#Sec8
https://doi.org/10.1007/979-8-8688-0348-2_7#Sec9
https://doi.org/10.1007/979-8-8688-0348-2_7#Sec10
https://doi.org/10.1007/979-8-8688-0348-2_7#Sec11
https://doi.org/10.1007/979-8-8688-0348-2_7#Sec12
https://doi.org/10.1007/979-8-8688-0348-2_8
https://doi.org/10.1007/979-8-8688-0348-2_8
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec1
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec2
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec3
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec4
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec5
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec6
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec7
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec8
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec9
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec10
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec11
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec12
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec13
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec14
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec15
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec16
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec17
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec18
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec19
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec20
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec21
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec22
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec23
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec24

xi

Different k’s�� 350

Cluster Classify��� 353

Summary��� 357

Chapter 9: �Neural Networks with the Wolfram Language������������������������������������� 359

Layers�� 360

Input Data��� 360

Linear Layer�� 360

Weights and Biases�� 361

Initializing a Layer�� 362

Retrieving Data��� 364

Mean Squared Layer�� 365

Activation Functions��� 368

Softmax Layer�� 372

Function Layer�� 374

Encoder and Decoders��� 375

Encoder�� 375

Pooling Layer�� 379

Decoders�� 380

Applying Encoder and Decoders��� 382

NetChains and Graphs��� 383

Containers�� 383

Multiple Chains��� 386

NetGraphs��� 387

Combining Containers�� 393

Network Properties��� 395

Exporting and Importing a Model��� 399

Summary��� 402

Chapter 10: �Neural Networks Framework��� 403

Training a Neural Network��� 403

Data Input��� 403

Training Phase�� 405

Table of Contents

https://doi.org/10.1007/979-8-8688-0348-2_8#Sec25
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec26
https://doi.org/10.1007/979-8-8688-0348-2_8#Sec27
https://doi.org/10.1007/979-8-8688-0348-2_9
https://doi.org/10.1007/979-8-8688-0348-2_9
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec1
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec2
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec3
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec4
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec5
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec6
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec7
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec8
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec9
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec10
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec11
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec12
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec13
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec14
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec15
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec16
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec17
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec18
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec19
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec20
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec21
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec22
https://doi.org/10.1007/979-8-8688-0348-2_9#Sec23
https://doi.org/10.1007/979-8-8688-0348-2_10
https://doi.org/10.1007/979-8-8688-0348-2_10
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec1
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec2
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec3

xii

Model Implementation�� 406

Batch Size and Rounds��� 408

Training Method (NetTrain)��� 412

Measuring Performance��� 413

Model Assessment��� 415

Exporting a Neural Network��� 417

Wolfram Neural Net Repository�� 418

Selecting a Neural Net Model��� 419

Accessing Inside Mathematica��� 421

Retrieving Relevant Information��� 422

LeNet Neural Network�� 423

LeNet Model��� 423

MINST Dataset�� 424

LeNet Architecture�� 425

MXNet Framework�� 426

Preparing LeNet�� 428

LeNet Training��� 430

LeNet Model Assesment��� 432

Testing LeNet�� 434

GPT and LLM Basics��� 436

A Brief Overview��� 437

LLM in the Wolfram Language�� 437

Chat Notebooks�� 438

Wolfram Prompt Repository��� 441

LLM Functionalities�� 444

GTP-1 and GPT-2 Models�� 446

Final Remarks�� 448

�Index�� 451

Table of Contents

https://doi.org/10.1007/979-8-8688-0348-2_10#Sec4
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec5
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec6
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec7
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec8
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec9
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec10
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec11
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec12
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec13
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec14
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec15
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec16
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec17
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec18
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec19
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec20
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec21
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec22
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec23
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec24
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec25
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec26
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec27
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec28
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec29
https://doi.org/10.1007/979-8-8688-0348-2_10#Sec30

xiii

About the Author
Jalil Villalobos Alva is a Wolfram Language programmer and Mathematica user. He

graduated with a degree in engineering physics from the Universidad Iberoamericana

in Mexico City. His research background comprises quantum physics, bioinformatics,

proteomics, and protein design. His academic interests cover the topics of quantum

technology, bioinformatics, machine learning, artificial intelligence, stochastic

processes, and space engineering. During his idle hours, he likes playing soccer,

swimming, and listening to music. 

xv

About the Technical Reviewer
Andrew Yule is a co-founder and managing partner of

Pontem Analytics, a global consulting company in the

energy industry specializing in combining domain expertise

with data-driven solutions. Andrew has over 13 years of

professional experience leveraging the Wolfram Language

and was the recipient of the Wolfram Innovator Award in

2017. He is an editor for the Society of Petroleum Engineers,

The Way Ahead magazine, and is also currently a member

of the Young Entrepreneurial Council. His technical

background includes a bachelor’s degree in chemical

engineering from the Colorado School of Mines and a

master’s degree in data science from Southern Methodist

University. 

xvii

Acknowledgments

I want to thank the collective support and guidance received throughout the

development of this project’s second edition. The contributions of numerous past and

present individuals have played an integral role in shaping this work. Their assistance,

feedback, and mentorship have been invaluable, enriching the content and presentation

of this edition. I also want to thank the technical and staff reviewers for their valuable

comments and feedback during this manuscript. They both helped me improve the

material’s presentation and theoretical work. And finally, I would like to thank Las Des

Nestor and “Los Betos” for teaching me great mastery.

xix

Introduction

Welcome to Beginning Mathematica and Wolfram for Data Science.

Why is data science important nowadays? Data science is an active topic that is

evolving daily; new methods, techniques, and data are created daily. Data science

is an interdisciplinary field involving scientific methods, algorithms, and systematic

procedures to extract data sets and thus better understand the data in its different

structures. It is a continuation of some theoretical data analysis fields such as statistics,

data mining, machine learning, and pattern analysis. With a unique objective, to extract

quantitative and qualitative information of value from the data being recollected from

various sources, and thus be able to objectively count an event for decision-making,

product development, pattern detection, or identification of new business areas.

�Data Science Roadmap
Data science carries out a series of processes to solve a problem, which includes data

acquisition, data processing, model construction, communication of results, and

data monitoring or model improvement. The first step is to formalize an objective in

the investigation. From the object of the investigation, you can proceed to the data

acquisition sources. This step focuses on finding the right data sources. The product of

this path is usually raw data, which must be processed before it can be handled. Data

processing includes transforming the data from a raw form to a state in which it can

be reproduced to construct a mathematical model. Proceeding to the construction

of the model, a stage that intends to obtain the information by making predictions in

accordance with the conditions established in the early stages. Here, the appropriate

techniques and tools, which consist of different disciplines, are used. The objective is

to obtain a model that provides the best results. The next step is to present the outcome

of the study. Which consists of reporting the results obtained and whether they are

congruent with the established research objective. Finally, it comes to data monitoring,

with the intention of keeping the data updated because data can change constantly and

in different ways.

xx

�Data Science Techniques
Data science includes analysis techniques from different disciplines, such as

mathematics, statistics, computer science, and numerical analysis. The following are

some disciplines and techniques used.

•	 Statistics (linear, multiple regressions, least squares method,

hypothesis testing, analysis of variance (ANOVA), cross-validation,

resampling methods)

•	 Graph theory (network analysis, social network analysis)

•	 Artificial intelligence

•	 Machine learning

•	 Supervised learning (natural language processing, decision trees,

naive bayes, nearest neighbors. support vector machine)

•	 Unsupervised learning (cluster analysis, anomaly detection, K-means

cluster)

•	 Deep learning (artificial neural networks, deep neural networks)

•	 Stochastic processes (Monte Carlo methods, Markov chains, time

series analysis, nonlinear models)

Even though many techniques exist, this list only shows a part of it since research on

data science, machine learning, and artificial neural networks is constantly increasing.

�Prerequisites
This book is intended for readers who want to learn about Mathematica / Wolfram

Language and implement it in data science; it focuses on the basic principles of data

science as well as for programmers outside of software development, that is, people who

write code for their academic and research projects, including students, researchers,

teachers, and many others. The general audience is not expected to be familiar with

Wolfram Language or with the front-end program Mathematica, but little or any

experience is welcome. Previous knowledge of the syntax would be an advantage in

Introduction

xxi

understanding how the commands work in Mathematica. If this is not the case, the

book provides the basic concepts of the Wolfram Language syntax. The fundamental

structure of expressions in the Wolfram Language. Basic handling and understanding of

Mathematica notebooks.

Prior knowledge or some experience with programming, mathematical concepts

such as numbers, trigonometric functions, and basic statistics are useful, along

with some understanding of mathematical modeling, which is also helpful but not

compulsory.

Wolfram Language is different from many other languages but very intuitive and

user-friendly to learn.

The book aims to teach the general structure of the Wolfram Language, data

structures, objects, and rules for writing efficient code, and at the same time, teach data

management techniques that allow them to solve problems in a simple and effective

way. Provide the reader with the basic tools of the Wolfram Language, such as creating

structured data, to support the construction of future practical projects.

For this new version, all the programming was carried out on a MacBook Air M1

with Sonoma 14 environment with the installation of version 13.3.1.0 and 14 of Wolfram

Mathematica. Wolfram Mathematica is currently supported in other environments such

as Linux, Windows, and macOS. The code found in the book works with both the Pro and

Student versions.

�Book Conventions
Throughout the book, you may come across different words written distinctly from

others. Throughout the book, the words command, built-in functions, and functions may

be used as synonyms that mean Wolfram Language commands written in Mathematica.

So, a function will be written in the form of the real name; for example, RandomInteger.

The evaluation of expressions appears in the Mathematica In/Out format; the same

applies to blocks of code.

In[#]:= “Hello World!”

Out[#]= “Hello World!”

Introduction

xxii

�The Layout
The book is written in a compact and focused way to cover the basic ideas behind the

Wolfram Language and cover details on more complex topics. Some chapters have been

revised and redesigned in this new version to focus on novice and advanced topics.

Chapter 1 discusses the starting topics of the Wolfram Language, basic syntax,

and basic concepts with some example application areas, followed by an overview of

the basic operations and debugging techniques, and concludes by discussing security

measures within a Mathematica session.

Chapter 2 provides the key concepts and commands for data manipulation,

sampling, types of objects, and some concepts of linear algebra—the introduction to

lists, an important concept to understand in the Wolfram Language.

Chapter 3 discusses how to work properly with data and the initiation of the core

structures for creating a dataset object, introducing concepts like associations and

association rules are discussed with a conclusion remarking how associations and

dataset constructions can be interpreted as a generalization of a hash table aiming to

expose a better understanding of internal structures inside the Wolfram Language,

including an overview of performing operations on a list and between lists and then

discussing various techniques applied to dataset objects.

Chapter 4 exposes the main ideas behind importing and exporting data with

examples throughout the chapter with common and newly added file formats. It also

presents a very powerful command known as SemanticImport, which can import data

elements that are natural language.

Chapter 5 covers the topic areas for new data visualization, common data plots, data

colors, data markers, and how to customize a plot. Basic commands for 2D plots and 3D

plots are presented, too.

Chapter 6 introduces the statistical data analysis. Starting with random data

generation begins by introducing some standard statistical measures, followed

by a discussion on creating statistical charts and performing an ordinary least

square method.

Chapter 7 exposes the basis for data exploration and reviews a central discussion on

the Wolfram Data Repository. Performing descriptive statistics and data visualization

inside Fisher’s Irises dataset objects is also covered.

Introduction

https://doi.org/10.1007/979-8-8688-0348-2_1
https://doi.org/10.1007/979-8-8688-0348-2_2
https://doi.org/10.1007/979-8-8688-0348-2_3
https://doi.org/10.1007/979-8-8688-0348-2_4
https://doi.org/10.1007/979-8-8688-0348-2_5
https://doi.org/10.1007/979-8-8688-0348-2_6
https://doi.org/10.1007/979-8-8688-0348-2_7

xxiii

Chapter 8 starts with machine learning concepts and techniques, such as gradient

descent, linear regression, logistic regression, and cluster analysis, including examples

from various datasets like the Boston and Titanic datasets and newly implemented

features.

Chapter 9 introduces the key ideas and the basic theory to understand the

construction of neural networks in the Wolfram Language, such as layers, containers,

and graphs. The MXNet framework in the Wolfram Language scheme is also discussed.

Chapter 10 concludes the book by discussing training neural networks in the

Wolfram Language. In addition, the Wolfram Neural Net Repository is discussed with

an example application, examining how to access data inside Mathematica and the

retrieval of information, such as credit risk modeling fraud detection, and concluding

with the example of the LeNet neural network, reviewing the idea behind this neural

network and exposing the main points on the architecture with the help of the MXNet

graph operations and a final road map on the creation, evaluation, and deployment of

predictive models with the Wolfram Language. In this new version, LLM (large language

model) features are introduced with the connection to GPT services, use of chat cells,

and presentation of the GPT-1 and GPT-2 models.

Introduction

https://doi.org/10.1007/979-8-8688-0348-2_8
https://doi.org/10.1007/979-8-8688-0348-2_9
https://doi.org/10.1007/979-8-8688-0348-2_10

1
© Jalil Villalobos Alva 2024
J. Villalobos Alva, Beginning Mathematica and Wolfram for Data Science,
https://doi.org/10.1007/979-8-8688-0348-2_1

CHAPTER 1

Introduction
to Mathematica
The chapter begins with a preliminary introduction to why Mathematica is a useful and

practical tool. It explores the core concepts of the Wolfram Language and its syntax.

It starts by explaining the internal structure of Mathematica and how to add code

effectively. The concept of a notebook is introduced, which is important to understand

the type of format that Mathematica handles. The chapter examines this interface class

and demonstrates how notebooks simultaneously support code and text. In this way,

a notebook is a computable text file. Next, you inspect various add-ons that can be

employed within a notebook to help the user maximize their code’s capabilities.

The next section demonstrates how to write expressions in Mathematica, examining

topics such as arithmetic, algebra, symbols, global and local variables, built-in functions,

date and time formats, plotting functions, logical operators, performance measures,

delayed expressions, and accessing Wolfram Alpha. You then look at how Mathematica

performs code computations, including its accepted varieties of inputs and the

evaluation of these inputs. This chapter concludes with tips for seeking support within

Mathematica, managing and handling errors, searching for solutions, and safely dealing

with security concerns in notebooks that incorporate dynamic content.

�Why Mathematica?
Mathematica is a mathematical software package created by Stephen Wolfram more

than 35 years ago. Its first official version (Mathematica 1.0) emerged in 1988 and

was created as an algebraic computational system capable of handling symbolic

computations. However, Mathematica has established itself as a tool capable of

performing complex tasks efficiently, automatically, and intuitively. Mathematica is

https://doi.org/10.1007/979-8-8688-0348-2_1#DOI

2

widely used in many disciplines like engineering, optics, physics, graph theory, financial

engineering, game development, and software development.

Mathematica provides a complete, integrated platform to import, analyze, and

visualize data. Mathematica does not require plug-ins. It also has a mixed syntax,

performing both symbolic and numerical calculations. It provides an accessible way

to read the code with the implementation of notebooks as a standard format, which

also serves to create detailed reports of the processes carried out. Mathematica can

be characterized as a powerful platform enabling efficient and concise forms of work.

Among computer languages, the Wolfram Language falls into the group of programming

languages classified as a high-level, multi-paradigm interpreted language. Unlike

conventional programming languages, the Wolfram Language adheres to unique rules,

facilitating order and clear, compact code composition.

�The Wolfram Language
Mathematica is powered by the Wolfram Language, an interpreted high-level

programming language that covers both symbolic and numeric capabilities. To

understand the Wolfram Language, it is necessary to remember that the language’s

core nature resembles a normal mathematical text, as opposed to other programming

languages’ syntax. The following describes some remarkable features of the Wolfram

Language.

•	 The first letter of a built-in function word is uppercase and is also

human-readable.

•	 Any element introduced in the language is taken as an expression.

•	 Expressions take values consisting of the Wolfram Language atomic

expressions.

–– A symbol made up of letters, numbers, or alphanumeric contents

–– Four types of numbers: integers, rational, real, and complex

–– The default character string is written within the quotation marks (“ ”)

Chapter 1 Introduction to Mathematica

3

•	 In Mathematica, there are three ways to group expressions.

–– Parentheses group terms within an expression (expr1 + expr2) + (expr3).

–– Command entries are enclosed by brackets []. Also, square brackets enclose

the arguments of a built-in function, F[x].

–– Mathematica uses curly braces {} (e.g., {a, b, c}) to represent lists, arrays,

matrixes, and other collections.

�Structure of Mathematica
Before entering code, you need to get the layout of Mathematica. To launch

Mathematica, go to your Applications folder and select the Mathematica icon. This

action brings up the new welcome screen, illustrated in Figure 1-1.

Figure 1-1.  The default welcome screen for Mathematica’s latest version

Chapter 1 Introduction to Mathematica

4

Tip T he startup window offers valuable information for new and adept users,
including the Mathematica version, access to documentation, resources, and the
Wolfram community, among other things.

After the startup screen appears, you can create a new notebook by selecting the New

Document button, and a blank page should appear like the one shown in Figure 1-2.

New documents can also be created by selecting File ➤ New ➤ Notebook or with the

⌘+N (macOS) or Ctrl+N (Win) keyboard shortcut command.

Figure 1-2.  A blank notebook ready to receive input

The blank document that appears is called a notebook, and it’s the core interaction

between the user and Mathematica. Notebooks can be saved locally from the menu bar

by selecting File ➤ Save (or Save as). Initializing Mathematica always exhibits an untitled

notebook. Notebooks serve as the standard document format. They can be customized

to display text alongside computations. However, the key feature of Mathematica lies

in its capacity to perform computations, extending beyond numerical calculations,

regardless of the notebook’s purpose.

Chapter 1 Introduction to Mathematica

5

Note  Mathematica version 13.1 introduced a new default assistant toolbar.

Mathematica’s notebooks are separated into input spaces called cells. Cells are

represented by the square brackets on the notebook’s right side. Each input and output

cell has its bracket. Brackets enclosed by larger brackets are related computations,

whether input or output. Grouped cells are represented by nested brackets that contain

the whole evaluation cell. Other cells can be grouped by selecting and grouping them

with the right-click option. Cells can also have the capability to show or hide input by

simply double-clicking the cells. To add a new cell, move the text cursor down, and a flat

line should appear, marking the new cell ready to receive input expressions. The plus

tab in the line is the assistant input tab, showing the various types of input supported by

Mathematica. Figure 1-3 displays grouped input (In[-]) and output (Out[-]) cells.

Figure 1-3.  Expression cells are grouped by input and output

There are four main input types. The default input is the Wolfram Language code

input. Free-form input is involved with Wolfram knowledge-base servers, and the results

are shown in Wolfram Language syntax. Wolfram Alpha query is associated with results

explicitly shown on the Wolfram Alpha website. External Language Input is built-in

support for common external programming supported by Mathematica.

There are four main input types.

•	 Default input: Wolfram Language code input

•	 Free-form input: involved with Wolfram knowledge-base servers and

the results are shown in Wolfram Language syntax

•	 Wolfram Alpha query: associated with results explicitly shown on the

Wolfram Alpha website

•	 External language input: built-in support for common external

programming supported by Mathematica

These are illustrated in Figure 1-4.

Chapter 1 Introduction to Mathematica

6

Figure 1-4.  Main input types in Mathematica

Tip  Keyboard shortcuts for front-end instruction commands are shown on the
right or left side of each panel.

�Design of Mathematica
Now that you have the lay of the land of Mathematica’s basic format, you can learn

the internal structure of how Mathematica works. Inside Mathematica, there are

two fundamental processes: the Mathematica kernel and the graphical interface.

The Mathematica kernel is the one that takes care of performing the programming

computations; it is where the Wolfram Language is interpreted and is associated with

each Mathematica session. The Mathematica interface allows the user to interact with the

Wolfram Language functions and, at the same time, document your progress.

Chapter 1 Introduction to Mathematica

7

Each notebook contains cells, where the commands that the Mathematica kernel

receives are written and then evaluated. Each cell has an associated number. There are

two types of cells: the Input cell and the Output cell. These are associated with each other

and have the following expressions: In[n]:= Expression and Out [n]: = Result or (“new

expr”). The evaluations are listed according to which cell is evaluated first and continue

in ascending order. When quitting the kernel session, all the information, computations

made, and stored variables are relinquished, and the kernel is restarted, including the

cell expressions. To quit a kernel session, select Evaluation ➤ Quit Kernel ➤ Local.

Tip T o start a new kernel session, click Evaluation ➤ Start Kernel ➤ Local.

To begin, try typing the following computation.

In[1] := (11*17) + (4/2)

Out[1] = 189

The computation shows that In and Out have a number enclosed. This number is the

number associated with the evaluated expression.

A suggestion bar appears after every expression is evaluated (see Figure 1-5).

The suggestion bar in Mathematica is always visible unless the user hides it. But the

suggestion bar offers suggestions for possible new commands or functions to be applied

to the generated output. The suggestion bar can sometimes be helpful if you are unsure

what to code next; if used wisely, it might be helpful.

Figure 1-5.  Suggestion bar for more possible evaluations

The input form of Mathematica is intuitive; to write in a Mathematica notebook,

you just have to put the cursor in a blank space, and the cursor indicates that you are

inside a cell that has not been evaluated. To evaluate a cell, click the keys [Shift + Enter],

instructing Mathematica kernel to evaluate the expression written. The next chapter

looks at the new form to evaluate expressions using the new toolbar.

To evaluate the whole notebook, go to the Evaluation tab on the toolbar and

select Evaluate Notebook. If the execution of calculations takes more time than

expected, you make a wrong execution of code, or if you want to seize a computation,

Mathematica provides several ways to stop calculations. To abort a computation, go to

Chapter 1 Introduction to Mathematica

8

Evaluation ➤ Abort Evaluation. Alternatively, use the keyboard shortcut in Windows

[Alt + .] or macOS [⌘ + .].

When a new notebook is created, the default settings are applied to every cell (input

style). Nevertheless, preferences can be edited in Mathematica with various options. To

access them, go to Edit ➤ Preferences. On macOS, the Preferences (settings) menu is

located in the application menu, go to Mathematica ➤ Settings.

Once opened, a pop-up window appears (see Figure 1-6) with multiple tabs

(Interface, Appearance, AI Settings, etc.). Basic customizations involve magnification,

language settings, and other general instructions. The Appearance tab is related to code

syntax color (i.e., symbols, strings, comments, errors, etc.). The AI Settings tab is the new

tab associated with the LLM (large language model) evaluator. Other options belong to

advanced settings that are not used in this book. Feel free to navigate each option.

Figure 1-6.  Preferences window

Chapter 1 Introduction to Mathematica

9

Later, you learn about in-depth settings and customization options for the notebook

interface that allow you to tailor preferences.

�Mathematica Environment
This section explores the user interface of Mathematica, with a focus on the notebook

interface, as well as the other user experience functionalities.

�Notebook Interface
Mathematica is always on the quest to improve user experience and boost productivity.

In version 13.1, a big enhancement has been introduced—the seamless integration of a

default toolbar (see Figure 1-7) across all standard notebook user interfaces (UIs).

Figure 1-7.  The new UI default toolbar showcases essential tools and
functionalities for efficient code development. Toolbar icons may vary by
Mathematica version

This new toolbar (described left to right) includes several new features to enhance

user experience. Evaluate allows users basic and costume code evaluation. Abort

lets users cancel queued cells and remove chosen ones; both options are shown

in Figure 1-8. These features can also be accessed via the keyboard, as previously

mentioned.

Chapter 1 Introduction to Mathematica

10

Figure 1-8.  Extensive options for code evaluation and abort options in a notebook
interface; the double arrow-like shape hides the toolbar

The other options integrate text cell formatting, offering styling options like cell style

(title, subtitle, etc.) and cell color background. Users also benefit from the convenient

cell management functions, such as grouping, dividing, merging cells, and inserting

input/output of cells, all reduced to simple buttons. Continuing to options like extend

selection, convert natural language into Wolfram Language code, collapse cells, insert

comment, math form input, and LATEX rendering, users also have access to drawing

canvas and hyperlink features. Finally, the rightmost section of the toolbar includes

buttons for chat notebooks (utilizing LLM features), saving or publishing to the Wolfram

Cloud, accessing documentation (local or web-based), and searching within the

notebook.

Note D ifferent buttons may appear based on the selected cell type where the
cursor resides, ranging from text to code formatting. Figure 1-7 shows for Wolfram
Language code input cell. Figure 1-9 shows for text display cell.

Figure 1-9.  Text cell options for bold, italic, and underline and insert code text
evaluation and abort options in a notebook interface

Chapter 1 Introduction to Mathematica

11

This essential addition provides a coherent user experience and fosters a more

streamlined, productive programming environment within Mathematica. For example,

Figure 1-10 shows a code input cell with a colored background.

Figure 1-10.  Light-green code input cell, with a 2pt black top margin

Besides the default toolbar, more improvements were made to the other toolbars,

Ruler, Formatting, Templating, and Testing, as Figure 1-11 shows. The last two are not

shown since they are more associated with a specific type of programmatic notebook,

which is beyond the scope of this book.

Figure 1-11.  Notebook application toolbar menu showcasing three distinct
toolbars: formatting (upper), default (central), and ruler (lower)

Note T o show or hide any toolbar, go to Window ➤ Toolbar. Toolbar availability
varies by version.

Chapter 1 Introduction to Mathematica

12

The prominent toolbar Ruler indicates and adjusts the text margins of specified cells

using draggable marks, offering control over the text format. The Formatting toolbar

brings advanced textual design options, while the Templating and Testing toolbars

(not shown in the image) facilitate the efficient creation of new templates and testing

programmatic notebooks.

�Text Processing
Notebooks can include explanatory text, titles, sections, and subsections. The

Mathematica notebook resembles a computable document rather than a programming

command line. Text is useful for describing code and can be inserted into cells as text

cells, which often relate to the corresponding computations. Mathematica allows you to

work with multiple forms of text cells, including lines of text, chapters, formulas, items,

bullets, and more. Like a word-processing tool, notebooks can have titles, chapters,

sections, and subsections. By selecting Format ➤ Style, additional options become

available. For more control over style cells, use the formatting toolbar (see Figure 1-12)

found by navigating to Window ➤ Toolbar Formatting in the menu bar. The formatting

toolbar streamlines cell styling, allowing users to justify text left, center, right, or fully.

Figure 1-12.  The Style Format toolbar has a user-friendly interface for
customizing text appearance

The cell types can be arranged in different forms, depending on the notebook’s

format. There are numerous forms to add text in a cell; the most straightforward is

to type the text in the input cell, and the Assistant tab input automatically suggests

converting it to text. Another alternative is to choose the cell type from the toolbars, with

the input chooser or the shortcut (⌘+7 or Ctrl+7).

Styled text can be created with the formatting toolbar or by selecting the desired style

in Format ➤ Style ➤ (title, chapter, text, code, input, etc.). In the Style menu, note the

keyboard shortcuts for all the available text styles. It can be used instead of going into

the menu bar every time. Plain text can also be converted into input text by formatting

the cell in the Input style. There is no restriction in converting text; text can be converted

into whatever style is supported in the format menu.

Chapter 1 Introduction to Mathematica

13

Note T o convert text, highlight the text or select the cell that contains the text.

As shown in Figure 1-13, styled cells look different from others. Each style has

a unique order by which a notebook is organized into cell groups. A title cell has a

higher order in a notebook, so the other cells are anchored to the title cell, as shown

in Figure 1-13, but it does not mean that if another title cell is added, both titles are

grouped. If the title cell is collapsed, the title is the only displayed text.

Figure 1-13.  A notebook with different format styles; this includes title, subtitle,
section, subsections, plain text, item list, and subitem list

Text can be given a particular style, changed, and different formats applied

throughout the notebook. By selecting Font or Show Fonts (macOS users) from the

Format menu, a pop-up window appears, allowing you to change the font, font style,

size, and other characteristics.

Chapter 1 Introduction to Mathematica

14

Tip T o clear the format style of a cell, select the cell and then the right-click
button and choose Clear Formatting.

�Palettes
Palettes show different ways to enter various commands into Mathematica. A

diverse quantity of special characters and typesetting symbols are used in the

Wolfram Language, which can be typed within expressions to more closely resemble

mathematical text. The best way to access these symbols is by using the pallets built

into Mathematica. To select a simple pallet, go to Pallets ➤Basic Math Assistant. Each

pallet has different tabs that stand for different categories with distinct commands and a

variety of characters or placeholders that can be inserted using the pallets. To enter the

symbol, type ESC followed by the name of the symbol, then ESC again. Try typing (ESC a
ESC) to type the lowercase alpha Greek letter. Figure 1-14 shows the basic math assistant

pallet in Mathematica.

Chapter 1 Introduction to Mathematica

15

Figure 1-14.  The Basic Math Assistant palette

Note H overing the mouse cursor over a symbol or character, an information tip
pops up, showing the keyboard shortcut. This also applies to placeholders.

�Notebook Style and Features
In the new versions comprising version 13.0 and beyond, Mathematica has been

refining and polishing its notebook interface by adding new features for a smoother user

experience. One considerable enhancement involves the handling of extensive outputs

within the user interface. Users can efficiently manage and interpret sizable outputs

without overwhelming the notebook display or causing memory issues. The following

Chapter 1 Introduction to Mathematica

16

example generates a large amount of data, which can be suppressed, displayed, or even

stored in the notebook (see Figure 1-15).

In[2]:= Table[i^12,{i,1,10^4}]

Out[2]=

Figure 1-15.  Large output menu displaying additional user control

Figure 1-15 shows that the input code returns a responsive output. Users can expand,

show, iconize, or select to store the whole data expression. Additionally, the data can

be fully stored in the notebook, preserving the entire output for future manipulation

and consuming 0.7MB of memory. If you iconize large outputs, a summary of the data

structure, length, and size is displayed. See Figure 1-16.

Figure 1-16.  List structure with 10,000 items and a byte count of 682,696

Another aspect that has been renewed is the preference settings. The whole settings

display has undergone notable refreshment in terms of customization options, as

illustrated in Figure 1-6. Specifically, regarding the notebook front end, by selecting

the Appearance tab (see Figure 1-17), users can tailor their choices to optimize their

notebook code style, resulting in a more personalized experience.

Chapter 1 Introduction to Mathematica

17

Figure 1-17.  Notebook settings customization

Figure 1-17 shows Appearance Settings window. The Syntax Coloring tab is related

to the visual representation of code elements (variables, errors, automatic coloring,

highlighting, etc.). The Debugger tab includes coloring options about debugger

highlights, breakpoints, and evaluation points. The Numbers tab offers multiple choices

based on formatting and configuration choices, a few mentions are digits control

numerical notation, among others. The Graphics tab allows you to choose the render of

2D and 3D graphics, from lowest to highest quality.

Note T o change the colors of the code syntax options in the Appearance
windows. Select the variables checkbox and click the green square. A color wheel
pops up, allowing you to change the color. This process is the same for the three
code setting options. Also, as you can see, there are different tabs.

Chapter 1 Introduction to Mathematica

18

�Expression in Mathematica
Basic arithmetic operations can be performed in Mathematica with a common,

intuitive form.

In[3]:= (3*3) + (4/2)

Out[3] = 11

Mathematica also provides the capability to use a traditional mathematical notation.

To insert a placeholder in the form, click [Ctrl + 6]. To indicate the product operation, use

a space between expressions or add an asterisk (*) between.

In[4]:= 1002 ∗ 10

Out[4]= 100000

In[5]:= 2 1

Out[5]= 2

The standard Mathematica format aims to deliver the value closest to its regular

form, so when dealing with decimal numbers or general math notation, Mathematica

always gives you the best precision (involving, in some circumstances, infinite

precision). However, it allows you to manipulate expressions numerically, to display

numeric values, you use the N function. To insert the square root, type [Ctrl + 2].

In[6]:= 1/2 + 2
Out[6]= 1/2 + 2

In[7]:= N[1/2+ 2]
Out[7]= 1.91421

You can manage the number precision of a numeric expression. In this case, you

establish 10 decimal places.

In[8]:= N[77/13,10]

Out[8]= 5.923076923

For a shortcut to work with the decimal point, just type a dot (.) anywhere in the

expression, and with this, you are telling Mathematica to calculate the value with

machine precision.

Chapter 1 Introduction to Mathematica

19

In[9]:=
4

2

2

13

.
+

Out[9]= 2.15385

Mathematica performs the sequence of operations from left to right, in line with the

written expression, while adhering to the standard order of mathematical operations. To

evaluate an expression without showing the result, you add a semicolon (;) after the end

of the first term. In the following example, the 11/7 is evaluated but not shown, and the

other term is displayed.

In[10]:= 11/7; Sqrt[4]

Out[10]= 2

The last form of code is called a compound expression. Expressions can be written in

a single line of code, and with compound expressions, they are evaluated in the intended

sequence. If you write the semicolon in each expression, Mathematica does not return

the values, but they are evaluated.

In[11]:= 3*4; 100*100; Sqrt[4];Power[2,2];

Out[11]=

There is no output, but all the expressions have been evaluated. Later, you use

compound expressions to understand the concept of delayed expressions. This basic

feature of the Wolfram Language makes it possible for expressions to be evaluated but

not displayed to save memory.

�Assigning Values
In the Wolfram Language, each variable requires a unique identifier that distinguishes

it from the others. A variable in the Wolfram Language can be a union of more than one

letter and digits; it must also not coincide with protected words—reserved words that

refer to commands or built-in functions. Keep in mind that the Wolfram Language is

case-sensitive. User variables are advised to be lowercase to avoid confusion with built-

in symbols.

Note  Mathematica supports assigning values to variables, which enables the
effective handling of algebraic variables.

Chapter 1 Introduction to Mathematica

20

Undefined variables or symbols appear in blue font, while defined or recognized

built-in functions appear in black. It is also true that the previously mentioned

characteristics can be changed in the preferences window.

Use the keyboard shortcut Esc pi Esc (pi number) to write special constants and

Greek letters. A symbol of a vertical ellipsis (⋮) should appear every time Esc is typed.

Another choice is to write the first letter of the name, and a sub-menu showing a list of

options should appear.

In[12]:= a=Pi

x=11

z+y

Out[12]= π
Out[13]= 11

Out[14]= y+z

In the previous example, Mathematica expresses each output with its cell, even

though the input cell is just one. That is because Mathematica gives each cell a unique

identifier. To access previous evaluations, the symbol (%) is used. Additionally,

Mathematica lets you retrieve previous values using the cell input/output information by

the % # command and the number of the cell or by explicitly writing the command with

In [# of cell] or Out [# of cell]. As demonstrated in the next example, Mathematica gives

the same value for each expression.

In[15]:=

%12

In[12]

Out[12]

Out[15]= π
Out[16]= π
Out[17]= π

To determine whether a word is reserved within the Wolfram Language, use the

Attributes command; this displays the attributes to the associated command. Attributes

are general aspects that define functions in the Wolfram Language. When the word

“Protected” appears in the attributes, it means that the word of the function is reserved.

The next example shows whether the word “Power” is reserved.

Chapter 1 Introduction to Mathematica

21

In[18]:= Attributes[Power]

Out[18]= {Listable,NumericFunction,OneIdentity,Protected}

As seen in the attributes, “Power” is a protected word. Importantly, most of the built-

in functions in Mathematica are listable—that is, the function is interleaved to the lists

that appear as arguments to the function.

Variables can be presented in a notebook in the following ways: (1) global variables,

or those that are defined and can be used throughout the notebook, like the ones in

the earlier examples; and (2) local variables, which are defined in only one block that

corresponds to what is known as a module, in which they are only defined within

a module. A module has the following form: Module [symbol1, symbol 2... body of

module].

In[19]:= Module[{l=1,k=2,h=3},h Sqrt[k+l] + k + l]

Out[19]= 3 + 3 3

Variables inside a module turn green by default; this is a handy feature for seeing the

code inside a module block. A local variable only exists inside the module, so if you try to

access them outside their module, the symbol is unassigned, as shown in the following

example.

In[20]:= {l,k,h}

Out[20]= {l,k,h}

Variables can be cleared with multiple commands, but the most suitable command

is the Clear[symbol], which removes assigned values from the specified variable or

variables. So, if you evaluate the variable after Clear, Mathematica treats it as a symbol,

and you can check it with the command Head; Head always gives you the head of the

expression, which is the type of object in the Wolfram Language.

In[21]:= Clear[a,x]

And if you check the head a, you see that “a” is a symbol.

In[22]:= Head[a]

Out[22]= Symbol

Symbols or variables assigned during a session remain in the memory unless they

are removed or the kernel session ends.

Chapter 1 Introduction to Mathematica

22

Note R emove is an alternative to Clear.

�Built-in Functions
Built-in commands or functions are written in common English with the first letter

capitalized. Some functions have abbreviations, while others employ PascalCase

notation with two capital letters. Here, different examples of functions are presented.

Built-in functions and group expressions often require arguments, which are values that

the function needs to execute the correct operation. Functions may or may not accept

arguments; they are separated by commas.

In[23]:= RandomInteger[]

Out[23]= 0

Note R andomInteger, with no arguments, returns a random integer from the
interval of 0 to 1, so do not panic if the result is not the same.

In[24]:= Sin[90 Degree] + Cos[0 Degree]

Out[24]= 2

In[25]:= Power[2,2]

Out[25]= 4

Built-in functions can also be assigned symbols.

In[26]:= d=Power[2,2]

 F=Sin[π] + Cos[π]
Out[26]= 4

Out[27]= -1

In[28]:= Clear[d,F]

Some commands or built-in functions in Mathematica have options that can be

specified in a particular expression. To see whether a built-in function has available

Chapter 1 Introduction to Mathematica

23

options, use Option. In the next example, the RandomReal function creates a pseudo-

random real number between an established interval.

In[29]:= Options[RandomReal]

Out[29]= {WorkingPrecision → MachinePrecision}

RandomReal has only one option for specifying specific instructions within the

WorkingPrecision command. The default value for this option is MachinePrecision.

WorkingPrecision defines the number of digits of precision for internal computations,

while MachinePrecision is the symbol used to approximate real numbers, denoted by

$MachinePrecision. To see the value of MachinePrecision, type $MachinePrecision. The

next example observes the difference between using default values for an option and

employing custom values.

In[30]:= RandomReal[{0,1},WorkingPrecision->MachinePrecision]

RandomReal[{0,1},WorkingPrecision->30]

Out[30]= 0.19858

Out[31]= 0.451259323577871140781571594337

Tip  In the Wolfram Language, global constants, which can be considered
environmental variables, always start with a dollar sign (e.g., $MachinePrecision).

The first one returns a value with six digits after the decimal point, and the other

returns a value with 30 digits after the decimal point. However, some built-in functions,

such as Power, do not have any options associated with them.

In[32]:= Options[Power]

Out[32]= {}

�Dates and Time
The DateObject command provides results for concretely manipulating dates and times

(see Figure 1-18). Date and time input and basic words are supported.

In[33]:=DateObject[]

Out[33]=

Chapter 1 Introduction to Mathematica

24

Figure 1-18.  The date of Wed 13 Sept 2023 and time zone

DateObjects with no arguments give the current date, as shown in Figure 1-19.

Natural language is supported in Mathematica—for instance, getting the date after Wed

13 Sept 2023.

In[34]:= Tomorrow

Out[34]=

Figure 1-19.  The date of Thu 14 Sep 2023

The date format is entered as year, month, and day. It also supports string date

formats and different calendars, as the next code dates show.

In[35]:= DateString[DateObject[{2020,6,10}]]

Out[35]= Wed 10 Jun 2020

In[36]:= DateString[DateObject[Today,CalendarType->"Julian"]]

DateString[DateObject[Today,CalendarType->"Jewish"]]

Out[36]= Wed 31 Aug 2023

Out[37]= Yom Revi'i 27 Elul 5783

The command also supports options that are related to a time zone.

In[38]:= DateString[DateObject[{2010,3,4},TimeZone->"America/Belize"]]

Out[38]= Thu 4 Mar 2010

Your current location’s sunrise and sunset times can be calculated (support data is

downloaded).

In[39]:= DateString[Sunset[Here,Now]]

DateString[Sunrise[Here,Yesterday]]

Out[39]= Wed 13 Sep 2023 18:41:27

Out[40]= Tue 12 Sep 2023 06:23:34

Chapter 1 Introduction to Mathematica

25

To get the current time, use TimeObject with zero arguments (see Figure 1-20). It can

be entered in the format of 24h or 12h. To introduce the time, enter the hour, minute,

and second.

In[41]:= TimeObject[]

Out[41]=

Figure 1-20.  Wed 13 Sep GMT-6 time

Time zone conversion is supported; convert 5 p.m. from GMT-5 Cancun time to

Pacific Time Los Angeles. You can also use DatesString to use pure string objects.

In[42]:=

DateString[TimeZoneConvert[TimeObject[{17,0,0},TimeZone-> "America/

Cancun"],"America/Los_Angeles"]]

Out[42]= 15:00:00

�Strings
Text can be useful when a description of the code is needed. Mathematica allows you to

input text into cells and create a text cell related to your computations. Mathematica has

different forms to work with text cells. Text cells can have lines of text, and depending on

the purpose of the text, you can work with different text formats, like creating chapters,

sections, or just general text. In contrast, to text cells, you can introduce comments to

expressions that need an explanation of their purpose or just a description. For that, you

simply write the comment within the symbols (* *). And the comments are shown with

different colors; comments also always remain as unevaluated expressions. Comments

can be single-line or multiline.

Mathematica can work with strings. To input a string, enclose the text in quotation

marks “text”; Mathematica knows that it is dealing with text. Characters can be whatever

you type or enter into the cells.

In[43]:= "Hello World" (*This is a comment*)

Out[43]= Hello World

Chapter 1 Introduction to Mathematica

26

Mathematica assumes that what you enter is text by being enclosed in quotation

marks, although you can always impel it to explicitly treat it as text using the ToString

command. You can check the head of the expression to make sure you are dealing with

strings.

In[44]:= ToString[23.423563]

Out[44]= 23.4236

In[45]:= % // Head(*We use Head to know what type of object is*)

Out[45]= String

Strings appear without apostrophes when entered because it is the default format.

In[46]:= "Welcome to Mathematica"

Out[46]= Welcome to Mathematica

Whenever you put the type cursor over a string in Mathematica and enter input, it

automatically appears surrounded by apostrophes. In this way, you can know you are

working with strings.

Later, you learn about the functionality of AtomQ. The following demonstrates that

strings cannot have subexpressions in the Wolfram Language. The output, true, indicates

that the string input is a single, indivisible unit.

In[47]:= AtomQ["The sky is blue and tomorrow is expected to rain"]

Out[47]= True

You can also separate a string by characters.

In[48]:= Characters["Hello World"] (*Function that breaks the string into

its characters*)

Out[48]= {H,e,l,l,o, ,W,o,r,l,d}

Replace particular characters in a string with a rule operator (→ or ->, in plain text).

In[49]:= StringReplace["Hello this is a string ",{"h","H"}->"4"] (*This

function replaces the string each time it appears for rule of the

pattern,that is 4*)

Out[49]= 4ello t4is is a string

Chapter 1 Introduction to Mathematica

27

Convert a text string to uppercase or lowercase.

In[50]:= ToUpperCase["hello my name is"]

Out[50]= HELLO MY NAME IS

In[51]:= ToLowerCase["HELLO MY NAME IS"]

Out[51]= hello my name is

Join a text string.

In[52]:= StringJoin["Nice","to","have","you","back"]

Out[52]= Nicetohaveyouback

Or with the string join symbol (<>).

In[53]:= "Nice"<>"to"<>"have"<>"you"<>"back"

Out[53]= Nicetohaveyouback

�Basic Plotting
The Wolfram Language offers a basic description to easily create two-dimensional

and three-dimensional graphics. It has a wide variety of graphics, such as histograms,

contour, density, and time series. To graph a simple mathematical function, use the Plot

command, accompanied by the variable symbol and the interval where you want to

graph (see Figure 1-21).

In[54]:= Plot[x^3,{x,-20,20}]

Out[54]=

Chapter 1 Introduction to Mathematica

28

Figure 1-21.  A cubic plot

The plot function also supports handling more than one function; simply gather the

functions inside curly braces. Figure 1-22 shows the two functions in the same graph;

each with a unique color.

In[55]:= Plot[{Tan[x],x},{x,0,10}]

Out[55]=

Figure 1-22.  Multiple functions plotted

Chapter 1 Introduction to Mathematica

29

You can also customize graphics in color if the curve is thick or dashed; this is done

with the PlotStyle option (see Figure 1-23).

In[56]:= Plot[Tan[x],{x,0,10},PlotStyle->{Dashed,Purple}]

Out[56]=

Figure 1-23.  Dashed tangent function

The PlotLabel option allows you to add basic descriptions to your graphics by adding

a title. On the other hand, the AxesLabel option lets you add names to axes, both x and y,

as depicted in Figure 1-24.

In[57]:= Plot[E^x,{x,0,10},PlotStyle->{Blue}, PlotLabel -> "ex" ,AxesLabel->

{"x-axis","y-axis"}]

Out[57]=

Chapter 1 Introduction to Mathematica

30

Figure 1-24.  A plot with title and labeled axes

�Logical Operators and Infix Notation
Infix notation and logical operators are commonly used in logical statements or

comparisons of expressions, and the result values are either true or false. Table 1-1

shows the relation operators of the Wolfram Language.

Table 1-1.  Operators and Their Definitions

Definition Operator Form

Greater than >

Less than <

Greater than or equal ≥

Less than or equal ≤

Equal =

Unequal != or ≠

Structural Equality ===

Relational operators, also called comparison operators and logical binary operators,

check the veracity or falsity of certain relationship proposals. The expressions that

contain them are called relational expressions. They accept various types of arguments,

Chapter 1 Introduction to Mathematica

31

and the result can be true or false—that is, they are Boolean results. As you can see, they

are all binary operators, of which two are of equality condition == and !=. These serve to

verify the equality or inequality of expressions.

In[58]:= 6*1>2

Out[58]= True

In[59]:= 6*1<2

Out[59]= False

In[60]:=
1

2
>=1/2

Out[60]= True

In[61]:= 1/4<=
1

2

Out[61]= True

In[62]:= 3.12 == 2.72

Out[62]= False

In[63]:= π != −1
Out[63]= True

In[64]:= 2===2.

Out[64]= False

Boolean operands produce a true or false result or test whether a condition is

satisfied. Table 1-2 shows Boolean operators of the Wolfram Language.

Table 1-2.  Boolean Operators and Their

Definitions

Definition Operator Form

AND && or ∧

OR || or ∨

XOR ⊻

Equivalent ⇔

Negation ¬

Chapter 1 Introduction to Mathematica

32

The AND operator returns a true value if both expressions are true. Otherwise, the

result is false.

In[65]:= 2==1 && 3.12==2

Out[65]= False

The OR operator returns true if any of the expressions is true. Otherwise, it returns

false. This operator has an analogous operation to the previous one.

In[66]:= 2*2==3||23*2==1

Out[66]= False

The XOR operator is an exclusive “or” operator that returns true when both

expressions differ. Otherwise, it returns false when the expressions have the same value.

In[67]:= 2==1 \[Xor] 2==2

Out[67]= True

The equivalent operator returns true if expressions are powered from each other.

Otherwise, it returns false.

In[68]:= Power[1,2] \[Equivalent] 1^2

Out[68]= True

The negation operator, also called logical negation, returns a value that can be an

expression that evaluates to a result. The result of this operator is always a Boolean type.

In[69]:= \[Not]2==1

Out[69]= True

Another approach, instead of using Boolean operators, is to use different functions

with postfix (Q), which consists of testing whether an object meets the condition of the

built-in function. A few honorable mentions are SameQ, UnsameQ, AtomQ, IntegerQ,

and NumberQ. The next example tests whether a number is a float expression or an

integer.

In[70]:=

IntegerQ[1]

IntegerQ[1.]

Out[70]= True

Out[71]= False

Chapter 1 Introduction to Mathematica

33

The valuable application of the AtomQ function can tell you whether an expression

is subdivided into subexpressions. Later, you are shown how to deal with subexpressions

with lists. If the result is true, then the expression cannot be subdivided into subterms,

and if it is false, then the expression has subterms.

In[72]:= AtomQ[12]

Out[72]= True

As shown, numbers cannot be subdivided because a number is a canonic

expression; the same applies to strings, as seen before.

�Algebraic Expressions
The Wolfram Language can work with algebraic expressions. For instance, perform

symbolic computations, algebraic expansions, and simplifications. Many words used

in common language in algebra are preserved in Mathematica. To expand an algebraic

expression, use Expand.

In[73]:= Expand[((x^2)+y^2)*(x+y)]

Out[73]= x^3+x^2 y+x y^2+y^3

Adding a space between variables is the same as adding the multiplication operator.

This can be checked by a*x==a x.

In[74]:= Expand[a x^2*(a x)^3]

Out[74]= a^4 x^5

But be careful when writing algebraic expressions because the ax symbol is not

the same as an x. This also is checked using the SameQ[ax, a x] or the short notation a

x === ax.

To simplify an expanded expression, use Simplify or FullSimplify.

In[75]:= Simplify[x^3+x^2 y+x y^2+y^3]

FullSimplify[x^3+x^2 y+x y^2+y^3]

Out[75]= x^3+x^2 y+x y^2+y^3

Out[76]= (x+y) (x^2+y^2)

Chapter 1 Introduction to Mathematica

34

The difference is that the latter tries transformations to simplify the expression more

broadly. To unite terms over a repeated denominator, use Together. To expand into

partial fraction decomposition, use Apart.

In[77]:=

Together[1 1

1

1

2z z z
�

�
�

�
]

Apart[
2 4

1 2

2� �
�� � �� �

z z
z z z

]

Out[77]= (2+4 z+z^2)/(z (1+z) (2+z))

Out[78]= 1/z+1/(1+z)-1/(2+z)

�Solving Algebraic Equations
Various functions are accessible for finding solutions to algebraic equations. The most

common is the Solve function. The first argument is the equation or expression to be

solved, and the second is for the variable to be solved.

In[79]:= Solve[z^2+1==2,z]

Out[79]= {{z → -1},{z → 1}}

Note A s you might remember, equal is expressed as double equal (==); do not
use one equal (=) because that means assigning a value to a symbol or variable.

The result means that z has two solutions: one is –1, and the other is 1. Each result is

expressed in the form of a rule. A rule expression changes the assignment of the left side

to the one on the right side (left → right) whenever it applies. For example, z → 1 is the

same as Rule [z, 1].

To verify the solution, the values of z (–1, 1) must be replaced in the original

equation. For this, you can use the ReplaceAll operator (/.) along with the rule command

→ or Rule, which is used to apply a transformation to a variable or a pattern with other

expressions.

In[80]:= z^2+1 /.Rule[z,{1,-1}]

Out[80]= {2,2}

Chapter 1 Introduction to Mathematica

35

The other option is to type the solutions explicitly in the equation.

In[81]:= {1^2+1==2, (-1)^2+1==2}

Out[81]= {True,True}

Multiple equations can be solved, too, given a system of equations and a list of

interested variables. To solve the equations, place the system of equations in one list and

the variables in another.

For example, solve the next system of equations.

x + y + z == 2

6x - 4y + 5z == 3

5x +2y +2z ==1

The solution is

In[82]:= Solve[{x+y+z == 2, 6x-4y+5z == 3, x+2y+2z == 1},{x,y,z}]

Out[82]= x y z� � ���
�
�

�
�
�

�
�
�

�
�
�

3
10

9

19

9
, ,

Note T he results are listed. Lists are essential structures in the Wolfram
Language and are discussed in the next chapter.

The latter process is also applicable to equations assigned to variables. You can write

this with the use of compound expressions.

In[83]:=

EQ1=x+y+z==2;

EQ2=6 x-4 y+5 z==3;

EQ3=x+2 y+2 z==1;

Solve[{EQ1,EQ2,EQ3},{x,y,z}]

Out[83]= x y z� � ���
�
�

�
�
�

�
�
�

�
�
�

3
10

9

19

9
, ,

The Solve function also works with pure algebraic equations.

In[84]:= Solve[{x + y + z == a, 6 x - 4 y + 5 z == b, x + 2 y + 2 z == c},

{x, y, z}]

Out[84]= x a c y a b c z a b c� � � � �� � � � � �� ��
�
�

�
�
�

�
�
�

�
�
�

2
1

9
7

1

9
16 10, ,

Chapter 1 Introduction to Mathematica

36

The Solve function supports expressions with a mixture of logical operators,

expressing y and x in terms of z.

In[85]:= Solve[EQ1 && EQ2, {x, y}]

Out[85]= x z y z
� �� � �

��
�
�

�
�
�

�
�
�

�
�
�

1

10
11 9

9

10
,

It also uses the OR operator.

In[86]:= Solve[x^2 + y^2 == 0 || x - 2 y == 1, x]

Out[86]= {{x → − ⅈy}, {x → ⅈy}, {x → 1 + 2y}}

The Solve function returns the solution for each of the equations entered.

Establishing a condition with the AND operator lets you return solutions that satisfy

a condition; for example, the following equation has two solutions 1 and –1, but you can

solve the equation with the condition that z must be different from 1.

In[87]:= Solve[z^-2 + 1 == 2 && z != 1, z]

Out[87]= {{z → -1}}

To obtain more general results, Reduce is used, as shown in the following example.

In[88]:= Reduce[Cos[x]==-1,x]

Out[88]= c1 ∈ Z & & (x = = − π + 2πc1 ‖  x = = π + 2πc1)

Here, the alternative solutions are separated by the OR operator, and the condition

is established by the AND. So this means that there are two possible solutions −π + 2πc1

or π + 2πc1 and that the constant c1 must be a number that belongs to the integers (Z). In

addition, Reduce can also solve inequalities.

In[89]:= Reduce[h^2+k2<11,{h,k}]

Out[89]= � � � � � � � �11 11 11 11
2 2h h k h&&

Here, the simultaneous equations are for h and k. Furthermore, Reduce can show the

combination of equations with certain conditions.

In[90]:= Reduce [α + β ∗ α ^ 2 = = E, α]

Out[90]= � � � �
�

�
�

�
�

�� ��� � � ��
� � �

��
� � ��

�
��

�

�
��

�

�
�
�

�

�
�0 0

1 1 4

2

1 1 4

2
&& &&e

e e

��

Chapter 1 Introduction to Mathematica

37

The first solution is that α and β must be the number e and zero. The second solution

is in terms of α and the condition that β must differ from zero.

�Using Wolfram Alpha Inside Mathematica
A really good application inside Mathematica uses the Wolfram Alpha computable

knowledge base. Wolfram Alpha can be called from Mathematica with the Wolfram

Alpha query. To enter the Wolfram Alpha query, type the double equal sign before typing

any expression; an orange asterisk with a white equal sign should appear, meaning that

the input typed is a query with natural language. To execute the cell, click the Enter key.

So, for example, algebraic equations can be solved using the Wolfram Alpha query.

Type the double equal sign (==) in an input cell, and the Wolfram Alpha query symbol

should appear (see Figure 1-25). Alternatively, select Wolfram Alpha query as a new

input from the + menu (left of the horizontal line) for a new cell.

In[91]:=

Figure 1-25.  Wolfram Alpha query input

 Out[91]=

Figures 1-25 and 1-26 show the input and output of the Wolfram Alpha query.

Chapter 1 Introduction to Mathematica

38

Figure 1-26.  Wolfram Alpha query output

As shown, the system returns the solutions for x and other calculations. The cell

represents the calculations in the Wolfram Alpha form. Clicking the plus icon shows a

list of different forms of input. To see the equivalent in the Wolfram Language, select the

Input option. The other related way to use Wolfram Alpha is with free-form input. It is

worth mentioning that words associated with Mathematica commands, like Reduce, can

be used too. Figure 1-27 shows the input cell in the free-form input. Clicking the plus

Chapter 1 Introduction to Mathematica

39

icon shows more calculations, like in the Wolfram Alpha query. The following code is the

equivalent in the Wolfram Language of input typed. Clicking the code, replace it with the

Wolfram Language syntax.

Figure 1-27.  Input code in the free-form input

In[91]:=

Out[91]= x x y x�� � ��
�

�
�

�

�
� �� �

1

5

1

5

2|| &&

A clarification here, not just calculations can be made. With Wolfram Alpha, access

to curated data for various topics is available; for example, getting the financial data for a

particular stock in March (see Figure 1-28) or the population of Australia, as depicted in

Figure 1-29.

In[93]:=

Out[93]=

Figure 1-28.  Input and output of the Tesla stock in March 2023. Identified by the
financial entity and returns a TimeSeries object, made possible by the latest version
of Mathematica

In[94]:=

Out[94]=

Figure 1-29.  Input for the population of Australia

Chapter 1 Introduction to Mathematica

40

Both free-form input and Wolfram Alpha queries can be useful and practical tools.

For example, if you do not know the appropriate syntax of a function or command, try

using the free-form input in natural language so that, when evaluated, you can get the

equivalent Wolfram Language syntax of that function. Nevertheless, a downside of the

Wolfram Alpha query is that the computations are done outside Mathematica, meaning

that the computations are made on the Wolfram Alpha servers. In contrast, calculations

with free-form input can be reproduced inside Mathematica. Sometimes it is preferable

to work directly with the Wolfram Language to better manage the results, as extracting

results from Wolfram Alpha can be tedious. It should be noted that to access these two

features from Mathematica, it is necessary to have access to Wolfram servers via an

online network.

�Delayed and Immediate Expressions
The Wolfram Language has two important features. First, let’s look at how the Set

mechanism works. The symbol = is the script for Set, and := is for SetDelayed. The Set

mechanism is represented by W = expr. W is the variable you are assigning a value to,

and expr is the expression or value you are assigning to W. This means that Mathematica

evaluates the expression straightaway, then each time the variable or defined function is

called, the value of W is written, and the result is shown. On the contrary, using W:= expr

means that the expression is not evaluated until called, so each time the W is called, it

evaluates the stored expression every time.

In[95]:= W=RandomReal[]

Out[95]= 0.536369

Test whether W equals W.

In[96]:= W==W

Out[96]= True

The condition is true in this case because Set is used for declaring the W variable

with the RandomReal function, which returns a pseudo-random choice from 0 to 1.

The same approach is used for SetDelayed, and the result is false because every time

W appears, the function is called for a new evaluation. You can write the code as a

compound expression.

Chapter 1 Introduction to Mathematica

41

In[97]:= Clear[W];W:=RandomReal[];W

Out[97]= 0.550058

Let’s check.

In[98]:= W==W

Out[98]= False

The result is false since the RandomReal function is evaluated again each time

W is called. So, the first W evaluates RandomReal, and the second W again evaluates

RandomReal, even though they are the same symbol.

The same approach applies to Rule (→) for immediate evaluation and RuleDelayed

(:>) for evaluation only when used. Consider the following example.

In[99]:=

z=2; (*Assigning 2 to z*)

R=z->z^3; (*Rule example*)

RD=z:>z^3; (*RuleDelayed example*)

R

RD

Out[102]= 2 → 8

Out[103]= 2 ⧴ z3

The expression returns 2 → 8 since z is evaluated immediately, while the expression

z ⧴ z^3 delays the evaluation of z^3 until it is applied. These operators can be used with

the ReplaceAll operator (/.) as previously seen with algebraic equations.

�Improving Code
Code efficiency is essential to achieve performance and decrease resource consumption,

leading to faster execution times and improved maintenance. One specific context where

these matters are improving code for increased efficiency and reliability in Mathematica

and Wolfram Language. As a developer, you can achieve greater readability and facilitate

easier troubleshooting by using the built-in functions. Also, built-in symbols are

optimized for efficiency, making them preferable to defining your own.

Chapter 1 Introduction to Mathematica

42

�Code Performance
In Mathematica, there are many ways to write an expression in the same form. However,

when you carry out long code operations, there may be a better notation to improve the

performance of the code and thus not consume too many computational resources. This

can be achieved by the relative performance of different functions for the development

of the same result. The Wolfram Language provides a measure of this. The timing

function shows the performance in units of seconds to each process in relation to the

value of $TimeUnit, which is the CPU time it takes for the Wolfram Language kernel

to carry out the process. $TimeUnit varies from system to system, so you might get

something different—such as 1/1000.

Note A lower value of $TimeUnit would be considered more precise than using it,
as it provides a higher granularity or resolution in the time measurements.

The following example shows how long it takes to calculate the expression with

a built-in function and a common power expression. Timing returns two values: the

unit time and the calculation result, but the output is suppressed because it is a very

big value.

In[104]:= Timing[Power[10,10^8];]

Out[104]= {1.1401,Null}

In[105]:= Timing[10^10^8;]

Out[105]= {1.54863,Null}

As you see, there is a difference between each; this has to do with how the Wolfram

Language processes each computation and your computer specs. To look at the absolute

In[106]:= AbsoluteTiming[10^10^8;];]

Out[106]= {1.13833,Null}

In[107]:= AbsoluteTiming[Power[10,10^8];]

Out[107]= {1.13189,Null}

There is a difference, too, as in the case with Timing. To restrain a computation by

time, use TimeConstrained. With this command, time constraints can be added to a

Chapter 1 Introduction to Mathematica

43

calculation. The evaluation is aborted if the code is still running and the time limit has

been reached. For example, abort the evaluation after 1 second has passed.

In[108]:= TimeConstrained[10^10^8,1]

Out[108]= $Aborted

The EchoTiming function has been improved and can display the timing information

of an evaluated expression. EchoTiming supports the latter methods of Timing and

AbsoluteTiming.

In[109]:=

EchoTiming[Power[10,10^8];,"Time in seconds:",Method->Timing]

EchoTiming[Power[10,10^8];,"Time in seconds:",Method->AbsoluteTiming]

Out[109]= Time in seconds: 1.13813

Out[110]= Time in seconds: 1.12619

�Handling Errors
Mistakes may be commonplace, as you most commonly develop code as you continue

to learn. When a function fails, Mathematica displays a message below the written

function. The message form provides the name of the function associated with the error,

along with a possible description of the cause of the error.

Next, let’s look at how this works (see Figure 1-30).

In[111]:= StringJoin["hello","I am ",Jeff]

Out[111]= helloI am <>Jeff

Figure 1-30.  Error message for the code entered

The associated function in the message appears in red (see Figure 1-20). What

happens here is that the StringJoin function works only for strings, and you are writing a

Jeff variable, not a string, hence the error.

To learn more about the error, click the red ellipsis icon. A menu appears, listing the

different options available to handle the error. To review the error in the documentation,

you must click the error option, which is the option that has an open book icon. This

option takes you to the documentation of the associated function.

Chapter 1 Introduction to Mathematica

44

Another option from the pop-up menu that appears is Show Stack Trace. This

option shows you graphically and in blocks how the function and its expressions are

being evaluated. This option is analogous to the Trace command. Let’s look at the next

example error and Figure 1-31.

In[112]:= Power[x/0,2]

Out[112]= ComplexInfinity

Figure 1-31.  Error message for infinite expression

Here, the error is that Mathematica encounters a division by zero, which is

undefined, and you can see the trace of the function with Stack Trace in Figure 1-32.

Figure 1-32.  Show Trace Stack pop-up window

Chapter 1 Introduction to Mathematica

45

�Debugging Techniques
In Mathematica, debugging practices help programmers identify, diagnose, and

fix errors or unusual behavior in their written segments of code. Traditional code

operations using the Wolfram Language built-in functions like Trace, Echo, and Print,

among others, let you follow each step of your code as it runs. This makes it easier to

focus on the specific implementation details and not the whole abstract operations

that the code does, providing a flexible and robust sense of what the code or code block

should do.

Since version 13, a few improved built-in functions, like EchoLabel and

EchoEvaluation, have been added to the repertoire, as seen in the following example.

In[113]:=

x=2;

Echo[x];x=x^2+1;

Echo[x];x=x^2+1;

Echo[x];

Out[114]=

>> 2

>> 5

>> 26

Let’s go over what happened here. Initially, the value 2 is assigned to x. The first Echo

prints the value of x, which is 2. Then, in the 2nd operation, x is updated based on its

original form. Subsequently, the second Echo prints the new value, 5, which continues

until the final value of 26 is reached (5^2 + 1).

The same can be achieved using EchoLabel and EchoEvaluation but tagging

costume messages.

In[117]:=

x=2;

Echo[x,"Initial Value: "];

x=x^2+1;

EchoLabel["First Iteration: "][x];

x=x^2+1;

EchoEvaluation[x=x^2+1,"Second Iteration: "->"Output :"];

Chapter 1 Introduction to Mathematica

46

Out[118]=

>> Initial Value: 2

>> First Iteration: 5

<< Second Iteration: x=x^2+1

<< Output : 677

The previous example performs three iterations of the same operation on the same

initial value. The first Echo prints the value of x. The second EchoLabel prints the output

of the first iteration with a costume label and finalizes with the last evaluation and label

association. Before evaluation, the initial label is printed, followed by the second label

being printed once the evaluation is complete. Throughout the process, it displays

results next to symbols with different colors: orange (>>) and blue (<<). The first symbol

represents output, and the second symbol represents input.

Now, by utilizing operations to measure the time, as seen before, you can combine

them to pinpoint which stages demand more time to compute, as exemplified in the

following example.

In[123]:=

x=2;

EchoTiming[Echo[x,"Initial Value: "]];

x=x^2+1;

EchoTiming[EchoLabel["First Iteration: "][x]];

x=x^2+1;

EchoTiming[EchoEvaluation[x=x^2+1,"Second Iteration: "->"Output :"]];

Clear[x];

Out[124]=

>> Initial Value: 2

⌚ 0.013603
>> First Iteration: 5

⌚ 0.018695
<< Second Iteration: x=x^2+1

>> Output : 677

⌚ 0.031909

Chapter 1 Introduction to Mathematica

47

As seen, the last evaluation took the longest time (0.031909 seconds), while the initial

value estimation was the fastest (0.013603 seconds). These techniques are useful when

program flow is broken into small chunks of digestible code, like visualizing variable

values at key points and gauging computation time for performance breakdown.

�How Mathematica Works
This section explores the internal workings of computations and discovers ways to

visualize data using multiple basic yet powerful commands.

�How Computations are Made (Form of Input)
Each time Mathematica receives a computation in the input cell, it uses the

StandardForm, which is the output representation of expressions in the Wolfram

Language and has many aspects of common mathematical notation. Input can be

written in various forms, but to know how the expression is written in the Wolfram

Language, StandardForm is used.

In[130]:= StandardForm[1/x+x^2]

Out[130]//StandardForm=

1 2

x
x+

InputForm works similarly but produces the output acceptable to be entered as

Wolfram Language input.

In[131]:= {InputForm[
1 2

x
x+], InputForm[ax], InputForm[ax], InputForm[2]}

Out[131]= {x^(-1) + x^2,a^x, Subscript[a, x], Sqrt[2]}

Every type of format has its equivalent in one line of code text, like the square root

symbol (√), which means the same as Sqrt[]. To convert input into StandardForm,

InputForm, and other forms, select the cell block and head to Cell ➤ Convert To ➤

StandardFrom, and InputForm, among others. StandardForm and InputForm apply to

every expression in the Wolfram Language. Try using InputForm on the previous plots

to see how the expression is written completely. To understand better how Mathematica

works, you want to know how symbolic or numeric computations are performed or

written. The FullForm and TreeForm commands can be applied to view how expressions

Chapter 1 Introduction to Mathematica

48

are represented symbolically. TreeForm represents the command in a graphical format,

while FullForm represents the form of the expression managed internally by the Wolfram

Language.

In[132]:= FullForm[
t
2

2 2+ ^]

Out[132]//FullForm= Plus[4,Times[Rational[1,2],t]]

FullForm also represents the input as a one-line output code, like InputForm. But

even if InputForm also returns a one-line output code, why not use InputForm? The

reason is that FullForm represents what Mathematica understands as input. With this in

mind, FullForm is useful because it lets you know what Mathematica interprets about

the written input. In Mathematica, the mathematical order of operations is preserved.

So the previous output is as follows: first, Mathematica detects the rational number 1/2

(Rational[1,2]) and the symbol t, followed by the multiplication of these two elements

(Times[Rational[1,2],t]) followed by the addition of 22 (Plus[4, Times[Rational[1,2],t]]).

Another type of command that helps in creating a visualization of how Mathematica

manipulates expressions is TreeForm. TreeForm returns the expression as a tree plot

(see Figure 1-33). Alternatively, you can apply commands using the postfix form ‘expr //

function’, rather than writing in the canonical form ‘F[expression]’.

In[133]:= t
2

2 2+ ^ //TreeForm

Out[133]//TreeForm=

Figure 1-33.  Tree plot representation

Chapter 1 Introduction to Mathematica

49

In short terms, Mathematica detects the multiplication of 1/2 times t and then proceeds

to add the result of the product with the result of two squared. The tree graph is read

from bottom to top until you reach the top of the tree.

One more helpful command is Trace. Trace returns individual forms corresponding

to the evaluation line, which contains the sequence of forms of the evaluated expression.

In[134]:= Trace[Plus[4,Times[Rational[1,2],t]]]

Out[134]= {{{Rational[1,2], 1

2

}, t
2
},4+ t

2
}

So here, the sequence of operations is as follows: first use the term Rational [1, 2],

followed by 1/2, then 1/2 is multiplied by t, and the result is added to 4. Using FullForm

in Trace lets you see how the internal structure changes.

In[135]:= FullForm[Trace[Plus[4,Times[Rational[1,2],t]]]]

Out[135]//FullForm= List[List[List[HoldForm[Rational[1,2]],HoldForm[Rationa

l[1,2]]],HoldForm[Times[Rational[1,2],t]]],HoldForm[Plus[4,Times[Rational[

1,2],t]]]]

It can be seen that the terms change each step. The HoldForm command is

used to see the output in an unevaluated form. As a complement to Trace, FullForm

and TreeForm can be combined to see the hierarchy of operations in an expression

internally, as seen in Figure 1-34.

In[136]:= Trace[
t
2

2 2+ ^]//TreeForm

Out[136]//TreeForm=

Chapter 1 Introduction to Mathematica

50

Figure 1-34.  TreeForm and Trace combined

Here, the tree shows how changes are made and read from left to right. Reading the

tree, you see that Mathematica recognizes that 1/2 is 2^-1; this is followed by t times 1/2,

followed by 2^2, which is 4, and so on until the end. Moving the cursor over each block

displays a representation of the operation being held. There may be occasions when you

encounter operations or expressions you do not understand. A solution to this would be

using the previous commands, which allow you to see the expression’s inner structure

and thus understand how the operation is performed.

�Searching for Assistance
The Wolfram Documentation Center contains the registry of all built-in functions.

Documentation of functions can be accessed through the front end by opening a new

window, clicking the Help tab on the toolbar, or entering expressions. Since version 13.1,

the documentation can also be accessed through the toolbar’s rightmost icon, which is

an open book icon. The Input Assistant is displayed as an autocomplete or suggestion

bar when a command or related sensible options are written. When writing a built-in

function or command, Mathematica tries to automatically complete the phrase.

Like in Figure 1-35, type the word Random, and different associated commands

appear as suggestions. If the desired command is listed, you can select it with the cursor

pointer.

Chapter 1 Introduction to Mathematica

51

Figure 1-35.  Autocomplete pop-up menu

To access the documentation for a particular command, click the “i” document icon

next to the command name, and the documentation windows should appear.

Note A utocomplete also works for assigned symbols.

When writing the built-in function or command followed by the left square bracket,

the completion menu appears; if you click the double-down arrow, it displays the input

forms supported by that command, as shown in Figure 1-36.

Figure 1-36.  Built-in function RandomPolygon with different input forms

As seen in the example, the RandomPolygon function has four types of input forms;

also, in the menu, you can see text related to the different forms of the input.

Chapter 1 Introduction to Mathematica

52

To learn how a function works or how built-in functions are written, the best

resource is to consult the Wolfram Documentation Center. You can also check if an

alternative input expression can be used. So, if you need help understanding how the

Head function works, you input a question mark (?) before the function’s name, giving

you a simple understanding of how the command works (see Figure 1-37). If you want

additional information related to the attributes of the function, a double question mark

(??) can be employed. As a piece of advice, the Wolfram Documentation Center can be

used for more in-depth options. Use the F1 shortcut, which opens the Documentation

Center. If you highlight the symbol name and press F1, you are taken directly to the

documentation page for that symbol.

In[137]:= ?Head

Out[137]=

Figure 1-37.  Output information for the Head command

The previous command showed how to show information related to a specific

function. But if you don’t recall the exact spelling, you can write the first letters of the

name followed by an asterisk (*), and Mathematica provides a list that matches your

query. In the following example, the output is the functions whose names start with

“Hea” (see Figure 1-38). The Wolfram documentation can be used in a scenario that

needs more in-depth knowledge.

In[138]:= ?Hea*

Out[138]=

Chapter 1 Introduction to Mathematica

53

Figure 1-38.  Output information for the commands starting with the letters Head

�Notebook Security
The Wolfram Language provides creation and the ability to run dynamic content. These

contents allow the user to create programs that can perform useful and complex tasks;

on certain occasions, unwanted content may be executed or code misused. A notebook

may or may not contain dynamic content as part of its code. Notebooks containing

dynamic content can be instantly downloaded without any user action. Sometimes,

Mathematica alerts the user when a notebook contains dynamic content, displaying a

message like that shown in Figure 1-39.

Figure 1-39.  Warning message of dynamic content

If the notebook is not found in a trusted directory, a message warns the user that

the notebook contains unreliable dynamic content. The dynamic content is executed

without displaying a previous message to the user if the notebook is located in a

Chapter 1 Introduction to Mathematica

54

reliable directory. To find out if a notebook is located in a trusted directory with the

name TrustedPath, check out the trusted math directories, which are found in (1) $

BaseDirectory, (2) $ UserBaseDirectory, and (3) $ InitialDirectory.

In[139]:= $BaseDirectory

Out[139]= /Library/Mathematica

In[140]:= $UserBaseDirectory

Out[140]= /Users/macosx/Library/Mathematica

In[141]:= $InitialDirectory

Out[141]= /Users/macosx

In this case, these are the trusted directories; yours may defer. By default, the

directories called UntrustedPath are those from which you can store files that can

be potentially harmful, such as files downloaded from the Internet. For this, in the

Wolfram Language, the user’s writing directories and configuration directories are called

UntrustedPath. To add, change, or remove the trusted and untrusted directories, go to

the Preferences menu and then to the Security tab. There are options to edit unreliable

and trusted directories.

�Summary
This chapter served as an introduction to Mathematica, a comprehensive software used

for mathematical computation and analysis. The chapter also introduced the unique

Wolfram Language used within the software, focusing on its notebook interface, text

processing, palettes, and various styles and features. It also delved into expressions

in Mathematica and concluded with topics related to code performance, error and

debugging management, and ensuring security.

Chapter 1 Introduction to Mathematica

55
© Jalil Villalobos Alva 2024
J. Villalobos Alva, Beginning Mathematica and Wolfram for Data Science,
https://doi.org/10.1007/979-8-8688-0348-2_2

CHAPTER 2

Data Manipulation
This chapter reviews the basics of data creation and data handling in the Wolfram

Language. The chapter begins with the concept of lists and structures within the

language. Numbers, digits, and simple ways to use them with common math functions

are discussed. Next, you are introduced to lists of objects, representing, and generating

lists, delving into data arrays and examining nested lists, vectors, matrixes, and relevant

operations for various purposes. The chapter ends with study list manipulation

techniques—retrieving, assigning, or removing data—and structuring lists to offer a

general guide to understanding list manipulation in the Wolfram Language.

�Lists
Lists are the core of data construction in the Wolfram Language. Lists can gather objects,

construct data structures, create tables, store values or variables, make elementary to

complex computations, and characterize data. A list can represent any expression in

the Wolfram Language (numbers, text, data, images, graphics, etc.)—that is, any set of

whichever data.

If you access the information structure of a list, as demonstrated in Figure 2-1, you

can see the typical format to form a list. Lists are represented by curly braces or the List

command. In the Wolfram Language, almost every data object result can be listable; in

other words, lists allow you to group data that maintain some type of relationship, even

if they are of a different type, by manipulating all together (using the same identifier) or

each separately.

In[1]:= ??List

Out[1]=

https://doi.org/10.1007/979-8-8688-0348-2_2#DOI

56

Figure 2-1.  List definition in the Wolfram Language

As seen in the evaluation, commas separate elements, and the whole list is between

curly braces. Also, List is a protected variable, meaning you cannot assign values to the

name List.

�Types of Numbers
The fundamental number types in the Wolfram Language are represented by integers,

rational, real, and complex numbers.

First, the integers have an exact result since they are numbers that cannot be

represented by a decimal point.

In[2]:= {10, InputForm[10]}

Out[2]= {10,10}

Therefore, integers in the Wolfram Language are handled with infinite precision and

infinite accuracy.

In[3]:= {10//Accuracy, InputForm[10]//Precision}

Out[3]= {∞, ∞}

Second, rational numbers can be represented as a quotient of two integers.

In[4]:= {5/10,InputForm[10/12]}

Out[4]= {1/2, 5/6}

Mathematica treats rational numbers exactly as with integers, so whenever

Mathematica deals with rational numbers, it returns the minimum expression in which

that number is represented.

In[5]:= {5/10 //Accuracy,InputForm[10/12] //Precision}

Out[5]= {∞, ∞}

Chapter 2 Data Manipulation

57

Third, real numbers—typically known as floating-point numbers—are represented

in the Wolfram Language by any number with a decimal point.

In[6]:= {2.72 //Precision, InputForm[2.72]}

Out[6]= {MachinePrecision,2.72}

Since real numbers are approximate, they do not have an exact precision.

These numbers are considered machine numbers, which have the precision of the

$MachinePrecision variable. It should be noted that in the Wolfram Language, numbers

1 and 1.0 are treated differently. Although Mathematica recognizes that they are

equivalent expressions, it must be taken into account that they are not the same object

within the Wolfram Language.

To corroborate this, let’s look at the following example, where you use SameQ to test

if the expressions are the same for 1 and 1.0.

In[7]:= SameQ[1,1.0]

Out[7]= False

The heads of the expressions are different because one is an integer and the other a

real number.

In[8]:= {Head[1],Head[1.0]}

Out[8]= {Integer, Real}

Complex numbers are numbers that contain a real part and an imaginary part. The

form of a complex number is a + bi, where “a” is the real part and “b” is the imaginary

part. The symbol “i” represents the square root of the negative number –1.

In[9]:= 10+19I

Out[9]= 10+19I

The type of precision in these numbers can be exact or approximate since these

numbers can be built from the numbers described previously.

In[10]:= {Precision[I], Precision[1 + 0.3I], FullForm[11+1I]}

Out[10]= {∞, Machineprecision, Complex[11, 1]}

Though complex numbers appear as a single atomic expression, these numbers

can be subdivided into different expressions, such as when extracting the real or

imaginary parts.

Chapter 2 Data Manipulation

58

In[11]:= 1+I //AtomQ

Out[11]= True

In[12]:= {ReIm[1+3I],Re[1+0.3I],Im[Complex[1,0.2]]}

Out[12]= {{1,3},1.,0.2}

When you deal with transcendental numbers like pi and the golden ratio, these

numbers are treated as symbols—that is, Mathematica has reserved these symbols since

they are important numerical constants. Therefore, they have an exact precision despite

being real numbers.

In[13]:= {Accuracy[\[Pi]],Precision[E],Accuracy[I],Precision[GoldenRatio]}

//NumberQ

Out[13]= False

To determine whether a given value is considered a number within the Wolfram

Language, use the NumberQ command. It returns “True” if the expression is a number

and “False” if not. This can be observed in the previous command (for transcendental

numbers) and the following examples.

In[14]:= {NumberQ[1/2],NumberQ[1],NumberQ[E]}

Out[14]= {True,True,False}

As a result, you can see how a rational number and an integer are numbers, but the

number E is not. In fact, E is a type of symbol.

In[15]:= {Head[E],FullForm[E]}

Out[15]= {Symbol,E}

Generally speaking, there is no restriction on combining the different types

of numbers within the Wolfram Language. You can perform operations between

different types.

In[16]:= {1+0.2+1/2+1+11+1I}

Out[16]= {13.7 +1. I}

Conversion between approximate numbers to exact numbers is carried out with

Rationalize.

In[17]:= Rationalize[2.72]

Out[17]= 68/25

Chapter 2 Data Manipulation

59

Also, alternative number notations like scientific notation are supported. Scientific

notation is a useful tool to represent large numbers in powers of ten.

In[18]:= {ScientificForm[N@E/1000000],2.71828*^-6}

Out[18]={2.71828 × 10−6, 2.71828 × 10−6}

You know that the N function is used to calculate approximate numbers. It converts

an exact expression to an approximate one, keeping in mind that the desired precision

can also be specified.

Different forms can generally be extrapolated to all the built-in function notations of

the Wolfram Language.

•	 Employing the direct application of the N function [] to the

expression

In[19]:= N[13/7]

Out[19]= 1.85714

•	 Utilizing the infix notation, ~N~

In[20]:= E~N~E

Out[20]= 2.72

•	 Through the postfix notation, // N

In[21]:= E//N

Out[21]= 2.71828

•	 Using the prefix notation, N@

In[22]:= N@E

Out[22]= 2.71828

When the precision is not defined, Mathematica uses the value of $MachinePrecision

to determine the standard precision of the approximate number. The value of

$MachinePrecision varies since it is a float number established by Mathematica

according to the characteristics of each computer.

In[23]:= $MachinePrecision

Out[23]= 15.9546

Chapter 2 Data Manipulation

60

Setting arbitrary precision with SetPrecision or using machine precision.

In[24]:= SetPrecision[E, 17]

Out[24]= 2.7182818284590452

The following uses machine precision.

In[25]:= SetPrecision[E,MachinePrecision]

Out[25]= 2.71828

When precision is not introduced, Mathematica uses MachinePrecision numbers.

In[26]:= SetPrecision[e,MachinePrecision] == N@e

Out[26]= True

Another way to enter approximate numbers with some precision is by adding the

grave accent symbol (‘) after the real number, followed by the precision. For example,

use it for six-digit precision.

In[27]:= 77/3`6

Out[27]= 25.6667

�Working with Digits
To extract digits that make up an exact number, use the IntegerDigits function.

In[28]:= IntegerDigits[234544553]

Out[28]= {2,3,4,5,4,4,5,5,3}

RealDigits for approximate numbers.

In[29]:= {RealDigits[321.4546554],RealDigits[N@E]}

Out[29]={{{3,2,1,4,5,4,6,5,5,4,0,0,0,0,0,0},3},{{2,7,1,8,2,8,1,8,2,8,4,5,9,

0,4,5},1}}

In the case of a complex number, it would consist of extracting its real and imaginary

parts and then extracting the digits of each part, as the case may be.

In[30]:= RealDigits[ReIm[113+2.7213I]]

Out[30]= {{{1,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0},3},{{2,7,2,1,3,0,0,0,0,0,0,0,

0,0,0,0},1}}

Chapter 2 Data Manipulation

61

By default, the two previous functions give results in the decimal base. To define

a base, enter the base you want as the function’s second argument; for example,

using base 2.

In[31]:= RealDigits[321.4546,2]

Out[31]= {{1,0,1,0,0,0,0,0,1,0,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,1,0,1,0,1,0,1,

0,0,1,1,0,0,1,0,0,1,1,0,0,0,0,1,1,0,0,0,0},9}

Specifying the three digits of the number e in base-10 notation.

In[32]:= RealDigits[N@E, 10, 3]

Out[32]= {{2,7,1},1}

Reconstructing a number from the representation of their integers is possible with

the FromDigits function.

In[33]:= FromDigits[{2,7,1,1}]

Out[33]= 2711

Also, it is possible to form a float point number.

In[34]:= N@FromDigits[{{2,7,1,1},1}]

Out[34]= 2.711

and to measure the length of an integer number.

In[35]:= IntegerLength[2711]

Out[35]= 4

�A Few Mathematical Functions
The Wolfram Language offers a wide repertoire of mathematical functions, ranging from

the most basic to the most specialized. These functions can be managed numerically or

symbolically, facilitating pure analytical manipulation.

Trigonometric functions are available either in radians or in degrees. Typing a

number alone calculates and returns the value in radians.

In[36]:= Cos[Pi]

Out[36]= -1

Chapter 2 Data Manipulation

62

Entering the number followed by the Degree unit or the symbol of degrees (°)

calculates and returns the value in degrees.

In[37]:= Sin[90 Degree]==Sin[90\[Degree]]

Out[37]= True

In[38]:= Sin[90\[Degree]]

Out[38]= 1

The same applies to hyperbolic trigonometric functions and inverse trigonometric

functions.

In[39]:= N[Cosh[Pi]]

N[Tanh[45 Degree]]

Out[39]= 11.592

Out[40]= 0.655794

In[41]:= N[ArcTan[Pi]]

N[ArcSinh[45 Degree]]

Out[41]= 1.26263

Out[42]= 0.721225

Logarithmic functions and exponential functions are written like common math

notation. Logarithms with only a number compute the natural logarithm.

In[43]:= Log[E]

Out[43]= 1

To specify a base, type the number as the first argument and the base as the second

argument.

In[44]:= Log[10,10]

Out[44]= 1

Exponentials can be written with Exp or with the constant E.

In[45]:= Exp[2]==E^2

Out[45]= True

Chapter 2 Data Manipulation

63

The factorial is represented by either typing the exclamation mark after the number

or by using Factorial.

In[46]:= 12!

Out[46]= 479001600

In[47]:= Factorial[12]

Out[47]= 479001600

�Numeric Function
In the Wolfram Language, functions are available for manipulating numerical data, these

functions can work with any types of numbers, including real, integer, rational, and

complex. Users can handle precision either exactly or using floating-point precision.

To truncate a number, z, to its closest integer (z), use the Round function with no

arguments. By adding a second argument, the Round function rounds z to the nearest

multiple of the second provided number.

In[48]:=Round[8.9](*Rounds to 9 because it is the closest number*)

Out[48]= 9

In[49]:=Round[8.9,2](*Rounds to 8 because it is the closest multiple of

2, 2^3*)

Out[49]= 8

Other similar functions that can truncate numbers given a number z are Floor and

Ceiling. The Floor function rounds to the largest integer less than or equal to the number

typed. The Ceiling function rounds to the smallest integer larger than or equal to the

typed number.

In[50]:= Floor[Pi]

Out[50]= 3

In[51]:= Ceiling[Pi]

Out[51]= 4

Chapter 2 Data Manipulation

64

The Floor and Ceiling functions can be written in their mathematical notation, ⌊z⌋

for Floor and ⌈z⌉ for Ceiling, by typing the key ESC lf ESC for the left Floor and ESC rf
ESC for the right Floor. The same applies to Ceiling—just change lf for lc (left Ceiling)

and rf for rc (right Ceiling).

In[52]:= ⌊Pi⌋
Out[52]= 3

In[53]:= ⌈Pi⌉
Out[53]= 4

Converting a float point number to a rational approximation can be done with

Rationalize. However, adding the number 0 as the second argument can force the

calculation to find the most exact form of a float point number; for example, a rational

approximation to the number E.

In[54]:= Rationalize[N[E],0]

Out[54]= 325368125/119696244

The Max and Min functions return the maximum and minimum number of a list of

numbers.

In[55]:= Max[{9,8,7,0,3,12}]

Out[55]= 12

In[56]:= Min[{0987,32,9871}]

Out[56]= 32

�Lists of Objects
This section extends the concept of lists in the Wolfram Language, focusing on

techniques for creating and managing lists, nesting them through specialized functions,

and effectively storing data in a variable. The topic covers how to create datasets and

how they can be derived from various functions, as the composition of a list can include

a wide range of elements, such as sets of numbers, text strings, equations, arithmetic

operations, or any expression in Mathematica. Despite this, you explore concepts like

arrays and sparse arrays and their respective object types. Additionally, this section

discusses the nested lists and multiple ways to create data in a nested form.

Chapter 2 Data Manipulation

65

�List Representation
The curly braces denote a list of general objects, with each member separated by a

comma. The simplest form to create a list is to enclose data in curly braces, or by using

the List function. The following examples demonstrate how to assign lists to variables

and gather objects in a list.

In[57]:= {x2+1, "Dog", π}
List[1,P,Power[3,2]] (* Power[3,2] represents 3 raised to the power of 2 *)

Out[57]= {x2+1, "Dog", π}
Out[58]= {1,P,9}

The list identifier or symbol is an optional name to create the structure.

In[59]:= List["23.22","Dog", π,2,4,6,456.,56,2==3 && 3==2]
Out[59] = {23.22,Dog, π,2,4,6,456.,56,False}

Inside a list, between the braces, you can define all the elements that you consider

suitable to be listed.

In[60]:= {1+I, π + π,"number 4",Sin[23 Degree],425+I-413-3I,24,4456., "dog"
+ "cat"}

Out[60]= {1+I, 2π,number 4,Sin[23°],12-2 I,24,4456.,cat+dog}

In Mathematica, there are different types of objects. To identify an object type, you

have to use the Head function. The returning value is the head of the expression, known

as the data type. If you apply Head to a list, you get that the head of the expression

is a list.

In[61]:= % //Head

Out[61]= List

This means that the object you have created is a List object.

�Generating Lists
Lists can be created with costume values, but Mathematica has a variety of functions to

create automated lists, such as Range and Table. Both Range and Table functions create

an equally spaced list of numbers. However, the Table generates a list with specified

Chapter 2 Data Manipulation

66

intervals, like when “i” goes from 1 to 10. Wolfram Language also lets you incorporate

built-in functions inside a list.

In[62]:= Range[10]

Table[i,{i,1,10}]

Table["Soccer",{i,1,15}]

Out[62]= {1,2,3,4,5,6,7,8,9,10}

Out[63]= {1,2,3,4,5,6,7,8,9,10}

Out[64]= {Soccer,Soccer,Soccer,Soccer,Soccer,Soccer,Soccer,Soccer,Soccer,

Soccer,Soccer,Soccer,Soccer,Soccer,Soccer}

The Table function can also be used to create indexed lists. Each interval is specified

within the curly braces { }, as shown in the previous and following examples.

In[65]:= Table["Red and Blue",5]

Range[-5,5]

Out[65]= {Red and Blue,Red and Blue,Red and Blue,Red and Blue,Red and Blue}

Out[66]= {-5,-4,-3,-2,-1,0,1,2,3,4,5}

The Table function can work with or without an inner iterator, but to create

structured lists, using an iterator is recommended.

In[67]:= Table[i^i,{i,1,5}]

Out[67]= {1,4,27,256,3125}

This shows the function without an iterator.

In[68]:= Table[10^3,{5}]

Out[68]= {1000,1000,1000,1000,1000}

Note  When using the iterator, make sure to properly write the expression to avoid
errors. When the table recognizes the iterator, it changes colors because the letter
is no longer a symbol.

You can create a list of lists. This type of structure is considered a nested list.

In[69]:= {Range[5], Table[h, {h, -6, 2}]}

Out[69]= {{1, 2, 3, 4, 5}, {-6, -5, -4, -3, -2, -1, 0, 1, 2}}

Chapter 2 Data Manipulation

67

The iterator can also be an alphanumeric variable.

In[70]:= Table[data2, {data2, 0, 6}]

Out[70]= {0, 1, 2, 3, 4, 5, 6}

Structures of arrays with the same data can also be created, such as an array of 2×2.

In[71]:= Table[11,{2},{2}]

Out[71]= {{11,11},{11,11}}

The Table function supports multiple iterators, which is useful when constructing

tabular data.

In[72]:= Table[i+j+k,{i,1,4},{j,1,4},{k,1,4}]

Out[72]={{{3,4,5,6},{4,5,6,7},{5,6,7,8},{6,7,8,9}},{{4,5,6,7},{5,6,7,8},

{6,7,8,9},{7,8,9,10}},{{5,6,7,8},{6,7,8,9},{7,8,9,10},{8,9,10,11}},

{{6,7,8,9},{7,8,9,10},{8,9,10,11},{9,10,11,12}}}

To display a list in a more structured way using the Grid command.

In[73]:= Table[i-j,{i,1,2},{j,1,2}]//Grid

Out[73]= 0 -1

 1 0

An alternative to the Grid command is the TableForm command, which lets you

display the list created as a table. This command is explained in detail later.

In[74]:= Table[i+j,{i,1,2},{j,4,6}]//TableForm

Out[74]//TableForm= 5 6 7

 6 7 8

There is no limitation on the intervals of the iterators. You can choose that “i” goes

from 0 to 3 and “j” from “i” to 3 and use TableForm to view it.

In[75]:= Table[{i,j},{i,3},{j,i,3}]//TableForm

Out[75]//TableForm= 1 1 1

 1 2 3

 2 2

 2 3

 3

 3

Chapter 2 Data Manipulation

68

You can even use other syntax notations like the increment (++) or decrement (--) in

the interval iterator.

In[76]:= Table[{i,j},{i,2},{j,i++,2}]

Out[76]= {{{2,1},{2,2}},{{3,2}}}

The increment (++) and decrement (--) operators can also be used in assigned

variables; this operator can have precedence or posteriority. When written before the

variable, they are called PreIncrement or PreDecrement.

In[77]:= x=0;x++;x (*applied on the current value and shown next time x is

called*)

Out[77]= 1

In[78]:= Clear[x];x=0;--x (*applied on the current value and shown when x

is called*)

Out[78]= -1

Alternatively, you can apply replacement rules with the symbol (/.). For example,

you create a list of random integers consisting of 0s or 1s, then replace the 1s with 2s

whenever they appear. Add a space between the condition expressions to avoid a typo

error and the correct right arrow (\[Rule]). Another form of Table can also be used with

explicit values for the iterator.

In[79]:= Table[RandomInteger[],{i,1,10}]/. 1->2

Out[79]= {2,0,2,0,2,2,0,0,2,2}

In[80]:= Table[i^2,{i,{1,2,3,4,5}}]

Out[80]= {1,4,9,16,25}

�Arrays of Data
There are different forms to create an array. The most used form is a list, as you saw in

the previous section. But as an alternative to the Table command or Range command,

arrays can be created with the Array command, which generates a list with a specific

function applied to the elements created. The Array, ConstantArray, and SparseArray

functions can also be used to build lists. The form of these functions is analogous to the

previous ones.

Chapter 2 Data Manipulation

69

In[81]:= Array[Cos[90 Degree],{3,3}]//Grid

Out[81]= 0[1,1] 0[1,2] 0[1,3]

 0[2,1] 0[2,2] 0[2,3]

 0[3,1] 0[3,2] 0[3,3]

What happens with Array is that it constructs an array from a function. In the

previous example, you generated an array from the numerical value of the cosine of 90

degrees, followed by the structure of the array, which is 3×3. The indices on the right side

of the array values are the positions of each element in the array.

If you generalize to any function, you can better see how Array works.

In[82]:= Array[F,{2,2}]//Grid

Out[82]= F[1,1] F[1,2]

 F[2,1] F[2,2]

As you can observe, the F function is applied and is respective to each element of the

arrangement.

To create an array of constant values the ConstantArray function is used. To write the

function, first write the value you want to repeat, followed by the times you want it to repeat.

In[83]:= ConstantArray[\[Pi],5]

Out[83]= {π,π,π,π,π}

You can also create arrangements with defined dimensions.

In[84]:= ConstantArray[\[Pi],{4,4}]

Out[84]= {{π,π,π,π},{π,π,π,π},{π,π,π,π},{π,π,π,π}}

To display a data array, there is the MatrixForm command, which, as its name

suggests, shows the array in matrix form.

In[85]:= ConstantArray[\[Pi],{4,4}]//MatrixForm

Out[85]//MatrixForm=

p p p p
p p p p
p p p p
p p p p

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

A sparse arrangement is one in which the elements generally have the same value.

The SparseArray command lets you define the values of the array positions. By standard,

if any position is not defined, the value is 0.

Chapter 2 Data Manipulation

70

The SparseArray command generates an object of type SparseArray, shown in

Figure 2-2, with the name of the command and a gray box that appears.

In[86]:= SparseArray[{{1,1},{2,2}}->{1,2}]

Out[86]=

Figure 2-2.  SparseArray object

If you click the + icon, you see the array’s characteristics and its rules; this is shown

in Figure 2-3.

Figure 2-3.  Specifications of the array

In the Wolfram Language, there is no limitation on the content of a SparseArray.

Furthermore, you can create an array with the same values on its diagonal.

Figure 2-4 illustrates elements of the same values in the array appear in one color,

and different values appear in another.

In[87]:= SpArray=SparseArray[{{1,1}->"A",{2,2}->"A",{3,3}->"A",{4,4}->

"A"},{4,4}]

Out[87]=

Figure 2-4.  Sparse Array with more elements

Chapter 2 Data Manipulation

71

With the help of MatrixForm, you can visualize the arrangement as a matrix.

In[88]:= MatrixForm[%]

Out[88]//MatrixForm=

	

A

A

A

A

0 0 0

0 0 0

0 0 0

0 0 0

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

	

To convert the sparse array object to a list object, use Normal to normalize into

expression form.

In[89]:= Normal[SpArray]

Out[89]= {{A,0,0,0},{0,A,0,0},{0,0,A,0},{0,0,0,A}}

And now you deal with a list.

In[90]:= Head[%]

Out[90]= List

�Nested Lists
A nested list is a list of lists where the elements of the lists correspond to another list,

and so on. Nested lists can be used for ordered or unordered data structures. To create a

nested list, you can use curly braces within curly braces or built-in functions.

In[91]:= {{"This","is","A"},{"Nested","List","."}}

Out[91]= {{This,is,A},{Nested,List,.}}

You can also use the Table function.

In[92]:= Table[Prime[i]+Prime[j],{i,1,3},{j,2,4}]

Out[92]= {{5,7,9},{6,8,10},{8,10,12}}

To measure a list, you must use the Length command.

In[93]:= NestL=Table[Prime[i]+RandomReal[j],{i,1,3},{j,1,3}];

Length[NestL]

Out[93]= 3

Chapter 2 Data Manipulation

72

The length of the list is 3 because Length is properly used with flattened lists. To

properly measure the depth of a nested list, Dimensions is more suited for the task.

In[94]:= Dimensions[NestL]

Out[94]= {3,3}

Dimensions provide a general aspect of the dimensions of the nested list, meaning

that a list of three sublists constitutes your list and that the sublists each have three

elements. Mathematica constructs a list with three elements, in which those three

elements are also a list, and those lists have three elements, and each element

corresponds to a specific value form.

Note  You might want to use TreeForm to explore how Mathematica deals with
nested list expressions; for instance, (*TreeForm[NestL]*).

The ArrayDepth command measures the depth of a nested list or an array.

In[95]:= ArrayDepth[NestL]

Out[95]= 2

Now you know programmatically that NestL has a depth of 2.

�Vectors
Mathematica handles vectors the same way as with lists. Usual calculations of linear

algebra can be symbolic or numeric.

In[96]:= V={6,3,2}

Out[96]= {6,3,2}

A vector is always shown as a list. To see a vector in regular notation, the MatrixForm

command is used.

In[97]:= MatrixForm[V]

Out[97]//MatrixForm=

	

6

3

2

æ

è

ç
ç
ç

ö

ø

÷
÷
÷ 	

Chapter 2 Data Manipulation

73

The VectorQ command can tell you if the list you are dealing with is a vector.

In[98]:= VectorQ[V]

Out[98]= True

To see the rank of the vector, use either ArrayDepth or TensorRank.

In[99]:= {TensorRank[V],ArrayDepth[V]}

Out[99]= {1,1}

Vectors are created with the same commands that create a list: Table, Array, Range,

curly braces, SparseArray, ConstantArray, and so forth. Also, common operations of

vectors are performed like normal lists.

In[100]:=

Print["Addition: "<>ToString[V+V]]

Print["Subtraction: "<>ToString[V-V]]

Print["Scalar product: "<>ToString[2*V]]

Print["Cross product: "<>ToString[Cross[V,{1,3,2}]]]

Print["Norm: "<>ToString[Norm[V]]]

Addition: {12, 6, 4}

Subtraction: {0, 0, 0}

Scalar product: {12, 6, 4}

Cross product: {0, -10, 15}

Norm: 7

�Matrixes
A matrix is a square list or list of lists arranged in n-rows and m-columns, where n and m

are the dimensions of the matrix.

	

A

a a a

a a a

a a a

m n

n

n

m m mn

´ =

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

11 12 1

21 22 2

1 2

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯ 	

Chapter 2 Data Manipulation

74

The easiest form is to create a list of lists.

In[105]:= {{3,3,1},{7,8,7}}//MatrixForm

Out[105]//MatrixForm=

	

3 3 1

7 8 7

æ

è
ç

ö

ø
÷

	

Another way is to go to Insert ➤ Table/Matrix ➤ New. A pop-up menu appears;

select Matrix and specify the rows and columns within this menu. With this option, you

can also specify to fill contents and the diagonal and add a grid or frames, such as in the

next example that has drawn lines between columns.

In[106]:=A =
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

1 0 0

0 1 0

0 0 1

Out[106]:= {{1,0,0},{0,1,0},{0,0,1}}

To test whether a list of lists is a matrix, use MatrixQ.

In[107]:= MatrixQ[A]

Out[107]= True

Transpose returns the transpose of a matrix—that is, changing its rows by columns.

For matrix A, the transpose is denoted by AT.

In[108]:= Transpose[{{0,1,0},{0,1,0},{0,1,0}}]//MatrixForm

Out[108]//MatrixForm=

	

0 0 0

1 1 1

0 0 0

æ

è

ç
ç
ç

ö

ø

÷
÷
÷ 	

Chapter 2 Data Manipulation

75

�Matrix Operations
Common operations between matrixes are performed by the rules of linear algebra:

addition, subtraction, and multiplication. Remember that when multiplying two

matrixes, A and B, the number of columns in A must match the number of rows in B. In

mathematical terms: Am × n × Bn × l = Cm × l.

In[109]:= B={{0,1,0},{0,1,0},{0,1,0}};

Print["Addition: "<>ToString[A+B]]

Print["Subtraction: "<>ToString[A-B]]

Print["Product: "<>ToString[Dot[B,V]]]

Addition: {{1, 1, 0}, {0, 2, 0}, {0, 1, 1}}

Subtraction: {{1, -1, 0}, {0, 0, 0}, {0, -1, 1}}

Product: {3, 3, 3}

To calculate the determinant, use Det.

In[113]:= {Det[A],Det[B]}

Out[113]= {1,0}

To construct a diagonal matrix, use the DiagonalMatrix command; for the identify

matrix, use the IdentityMatrix command. DiagonalMatrix is for costume values, and

IdentityMatrix returns a matrix with a diagonal with the same elements.

In[114]:= DiagonalMatrix[{X,Y,Z}]//MatrixForm

IdentityMatrix[{2,2}]//MatrixForm(*Identity matrix of 2 by 2*)

Out[114]//MatrixForm=

	

X

Y

Z

0 0

0 0

0 0

æ

è

ç
ç
ç

ö

ø

÷
÷
÷ 	

Out[115]//MatrixForm=

	

1 0

0 1

æ

è
ç

ö

ø
÷

	

Chapter 2 Data Manipulation

76

�Restructuring a Matrix
Matrix restructuring is done with the same commands to restructure a list, like replacing

an element with a new value.

In[116]:= ReplacePart[A,{{1,1},{2,2}}-> 3]//MatrixForm

Out[116]//MatrixForm=

	

3 0 0

0 3 0

0 0 1

æ

è

ç
ç
ç

ö

ø

÷
÷
÷ 	

Also, it can be done by assigning the value. To access the elements of a matrix, enter

the symbol followed by the subscript of the element of interest with the double bracket

notation ([[]]). Later, you see the proper functionality of this short notation. In this case,

you change the value of the element in position 1,1 of the matrix.

In[117]:= A[[1,1]] = 2;

MatrixForm[A]

Out[118]//MatrixForm=

	

2 0 0

0 1 0

0 0 1

æ

è

ç
ç
ç

ö

ø

÷
÷
÷ 	

If matrix A is called again, the new value is preserved. To invert a square matrix, use

Inverse.

In[119]:= Inverse[A]//MatrixForm

Out[119]//MatrixForm=

	

1 2 0 0

0 1 0

0 0 1

æ

è

ç
ç
ç

ö

ø

÷
÷
÷ 	

Measuring the dimensions of a matrix is done by using Dimensions.

In[120]:= Dimensions[A]

Out[120]= {3,3}

Chapter 2 Data Manipulation

77

�Manipulating Lists
The previous section demonstrated different ways to create lists, including arrays, nested

lists, and tables. This section describes how to manipulate these lists through referenced

names, functions, and compact notation. You learn how to access the data of a list

depending on its position. You learn how to add and delete elements in a list, replace

single parts, and change the value of a specific element. You also examine restructuring

lists once it has been built, ordering them, and converting nested lists to linear lists

based on their depth. Finally, the section investigates how to see data from a list through

patterns and examine pattern behavior in the Wolfram Language.

�Retrieving Data
Several functions exist for handling elements of a list. The Part [“list”, i] function allows

you to select index parts of a list with index i.

Note T he index in a list starts at 1. Index 0 is for the head of the list.

For example, let you define a list called list1 and use Part to access the elements inside

the list. The Part function works by defining the position of the element you want.

In[121]:= list1={1,2};

Part[{1,2},1]

Out[122]= 1

It also works with index notation.

In[123]:= {1,2}[[1]]

Out[123]= 1

Lists can be fully referenced by using their assigned names. Elements inside the

structure can be accessed using the notation of double square brackets [[i]] or with the

special character notation of double brackets, ⟦ ⟧.

Tip T o introduce the double square bracket character, type Esc [[Esc and
Esc]] Esc.

Chapter 2 Data Manipulation

78

In[124]:= list1[[1]] (*[[i]] gives you access to the element of the list in

the position i.*)

Out[124]= 1

Note  Square brackets ([[]]) are the short notation for part Esc.

To access the elements of the list by specifying the positions, you can use the span

notation, which is with a double semicolon (;;).

In[125]:= list2=List[34,6,77,4,5,6];

Part[list2,1;;4] (*from items 1 to 4*)

Out[126]= {34,6,77,4}

You can also use backward indices, where the counts start from right to left, which is

from the last element to the first. Let you now select from position –6 to –4.

In[127]:= list2[[-6;;-4]]

Out[127]= {34,6,77}

For the nested list, the same process is applied. The concept can be extended into a

more general aspect. The next example creates a nested list with three levels and select a

unique element.

In[128]:= list3=List[2^3,2.72,{\[Beta],ex,{Total[1+2],"Plane"}}];

list3[[3,3,2]]

Out[129]= Plane

In the previous example, you created a nested list of depth three. Next, you select the

third element of the list {8, 2.72, {β, ex, { Total[1 + 2], “Plane”}}, then from that list, select

the third element of the previous list, which is {Total[1 + 2], “Plane”}. Finally, you select

the element in the second position of the last list, which is “Plane”.

If you are dealing with a nested list, use the same concept you saw with the span

notation. The next example selects the third element of the list3 and then display from

position 1 to 2.

In[130]:= list3[[3,1;;2]]

Out[130]= {β, ex}

Chapter 2 Data Manipulation

79

The same is done to a more in-depth list; you use the list’s third element, then

display from position 3 to 3 and select part 1.

In[131]:= list3[[3,3;;3,1]]

Out[131]= {3}

Segments of data can be displayed based on what parts of the data you are interested

in. For example, the Rest function shows the data elements, except for the first. Most

display the whole list except for the last element(s), depending on the type of list.

In[132]:= Rest[list3]

Out[132]= {2.72,{ β,ex,{3,Plane}}}

In[133]:= Most[list3]

Out[133]= {8,2.72}

An alternative to the previous functions is the Take function, which lets you select

more broadly the data in a list. There are three possible ways to accomplish this.

•	 By specifying the first i elements

In[134]:= Take[list3,2]

Out[134]= {8,2.72}

•	 By specifying the last -i elements

In[135]:= Take[list3,-1]

Out[135]= {{ β,ex,{3,Plane}}}

•	 By selecting the elements from i to j

In[136]:= Take[list3,{1,3}]

Out[136]= {8,2.72,{ β,ex,{3,Plane}}}

�Assigning or Removing Values
Once a list is established—if you have defined a name for it—it can be used just like any

other type. This means that elements can be replaced by others. To change a value or

values, select the position of the item, and then set the new value.

Chapter 2 Data Manipulation

80

In[137]:= list4={"Soccer","Basketball",0,9};

list4[[2]]=1 (*position 2 corresponds to the string Basketball and we

change it for the number 1*)

Out[138]= 1

You can check that the new values have been added.

In[139]:= list4

Out[139]= {Soccer,1,0,9}

In addition to using the abbreviated abbreviation notation, you can use the Replace

function part of specific values and choose the list, the new element, and the position.

In[140]:= ReplacePart[list4,Exp[X],4]

Out[140]= Soccer, 1, 0, ⅇX

To add new values, use PrependTo and AppendTo; the first adds the value on the

left side of the list, whereas the second adds it by the right side of the list. Append and

Prepend operate the same but with storing the new value in the original variable.

In[141]:= PrependTo[list4,"Blue"]

Out[141]= {Blue,Soccer,1,0,9}

In[142]:= AppendTo[list4,4]

Out[142]= {Blue,Soccer,1,0,9,4}

In[143]:= list4(*we can check the addition of new values.*)

Out[143]= {Blue,Soccer,1,0,9,4}

To remove the values of the list, you use Drop. Drop can work with the level of the

specification or the number of elements to be erased.

In[144]:= Drop[list4,3];(*first 3 elements,Delete[list3,3]*)

Drop[list4,{5}](*or by position,position, number 5*)

Out[145]:= {Blue,Soccer,1,0,4}

The Delete command can also do the job by defining the particular positions on the

list—for example, deleting the contents in positions 1 and 5.

In[146]:= Delete[list4,{{1},{5}}]

Out[146]= {Soccer,1,0,4}

Chapter 2 Data Manipulation

81

As an alternative to Append and Prepend, there is the Insert function, with which

you can add elements indicating the position where you want the new data. Given the

expression (list4), insert the new element (2/43.23) at the third position. Consequently,

the number 2/43.23 now occupies the list’s third slot.

In[147]:= Insert[list4,2/43.23,3]

Out[147]= {Blue,Soccer,0.0462642,1,0,9,4}

The Insert function allows the use of several positions at the same time; for example,

inserting the number 0.023 at positions –6 (second) and 7 (the last position).

In[148]:= Insert[list4,0.023,{{-6},{7}}]

Out[148]= {Blue,0.023,Soccer,1,0,9,4,0.023}

If you want to add repetitive terms or remove terms to a list or an array, you can use

the ArrayPad function. The standard value is zeros if the term to be added is not defined.

In[149]:= ArrayPad[list4,1](*number 1 means one zero each side*)

Out[149]= {0,Blue,Soccer,1,0,9,4,0}

If you want to add one-sided terms, it is written as follows.

In[150]:= ArrayPad[list4,{1,2}](*1 zero to the left and 2 zeros to

the right*)

Out[150]= {0,Blue,Soccer,1,0,9,4,0,0}

To add values other than zero, you must write the value to the right of the number of

times the value is repeated.

In[151]:= ArrayPad[list4,{0,3},"z"](*Adding the letter z three times only

the right side*)

Out[151]= {Blue,Soccer,1,0,9,4,z,z,z}

With ArrayPad you can add reference lists; for example, add a new list of values

either left or right.

In[152]:= newVal={0,1,4,9}; (*Here we add them on the left side*)

ArrayPad[list4,{4,0},newVal]

Out[153]= {4,9,0,1,Blue,Soccer,1,0,9,4}

Chapter 2 Data Manipulation

82

ArrayPad also can remove elements from a list symmetrically using negative indices.

In[154]:= ArrayPad[list4,-1](*it deletes the first and last elements*)

Out[154]= {Soccer,1,0,9}

Note  With ArrayPad, addition and deletion are symmetric unless otherwise
specified.

�Structuring List
When you work with lists, in addition to the different forms of access and removing its

content, you might encounter cases where a list needs to be accommodated, sectioned,

or restricted. The following explores several forms to achieve these tasks.

To sort a list into a specific order, use Sort followed by the sorting function.

In[155]:= Sort[{1,12,2,43,24,553,65,3},Greater]

Out[155]= {553,65,43,24,12,3,2,1}

Sort by default sorts values from less to greater, either numbers or text.

In[156]:= Sort[{"b","c","zz","sa","t","p"}]

Out[156]= {b,c,p,sa,t,zz}

To reverse a list, use the Reverse command.

In[157]:= Reverse[{1,12,2,43,24,553,65,3}]

Out[157]= {3,65,553,24,43,2,12,1}

To create a nested list in addition to that previously seen, you can generate partitions

to a flat list by rearranging the elements of the list. For example, you create partitions of a

list to subdivide the list into pairs.

In[158]:= Partition[{1,12,2,43,24,553,65,3},2]

Out[158]= {{1,12},{2,43},{24,553},{65,3}}

Chapter 2 Data Manipulation

83

You can choose a partition with successive elements included.

In[159]:= Partition[{1,12,2,43,24,553},3,1]

Out[159]= {{1,12,2},{12,2,43},{2,43,24},{43,24,553}}

Depending on how you want a nested list, you can add an offset to the partition; for

example, a partition in two with an offset of four.

In[160]:= Partition[{"b","c","zz","sa","t","p"},2,4]

Out[160]= {{b,c},{t,p}}

To return to a flat list, the Flatten function is used.

In[161]:= Flatten[{{1,12},{2,43},{24,553},{65,3}}]

Out[161]= {1,12,2,43,24,553,65,3}

Depending on the depth of the list, you can decide how deep the Flatten should be.

In[162]:= Flatten[{{{{1},1},1},1},1] (*here we flatten a list with a level

1 depth.*)

Out[162]= {{{1},1},1,1}

The ArrayReshape function lets you reshape data into a specific rectangular array

with; for example, create an array of 3×3.

In[163]:= ArrayReshape[{1,12,2,43,24,553,65,3},{3,3}]

Out[163]= {{1,12,2},{43,24,553},{65,3,0}}

Elements that complete the array form are zeros. This is shown in the next example

using ArrayShape to create an array of 2×2 from one element in the list.

In[164]:= ArrayReshape[{6},{2,2}]

Out[164]= {{6,0},{0,0}}

When dealing with a nested list, SortBy is also used, but instead of a sorting

function, a built-in function is used. For example, order a list by the result of their

approximate value.

In[165]:= SortBy[{1,4,553,12.52,4.3,24,7/11},N]

Out[165]= {7/11,1,4,4.3,12.52,24,553}

Chapter 2 Data Manipulation

84

�Criteria Selection
Particular values of a list can be selected with certain conditions; conditions can be applied

to lists by using the Select command. The function selects the elements of the list that are

true to the criteria established; the functions used for criteria can be order functions.

In[166]:= nmbrList=List[12,5,6,345,7,3,1,5];

Select[nmbrList,EvenQ] (*only the values that return True are selected, in

this case values that are even*)

Out[167]= {12,6}

Pick is also an alternative to Select.

In[168]:= Pick[nmbrList,PrimeQ @ nmbrList]

Out[168]= {5,7,3,5}

Pattern matching is used in the Wolfram Language to decree whether a given

criterion should be associated with an expression. In the context of the Wolfram

Language, three distinct types of patterns exist.

•	 The underscore symbol (_) represents any expression within the

Wolfram Language.

•	 The double underscore symbol (__) represents a sequence

containing one or more expressions.

•	 The triple underscore symbol (___) represents a sequence containing

zero or more expressions.

Every pattern has its built-in function name. One underscore is Blank, two

underscores are BlankSequence, and three underscores are BlankNullSequence.

To better understand the following examples in the channels, you use the Cases

function, which allows you to select data that corresponds to the pattern.

The following is a list of data pairs where you write the selection pattern (_).

In[169]:= Cases[{{1,1},{1,2},{2,1},{2,2}},{_}]

Out[169]={}

It does not choose any element because it does not have the form of the list pattern;

for example, the form {a, b}. Now if you change this shape, you see that it selects all the

elements that match the shape of the pattern.

Chapter 2 Data Manipulation

85

In[170]:= Cases[{{1,1},{1,2},{2,1},{2,2}},{_,_}]

Out[170]= {{1,1},{1,2},{2,1},{2,2}}

The same result can be obtained if you use the double underscore.

In[171]:= Cases[{{1,1},{1,2},{2,1},{2,2}},{__}]

Out[171]= {{1,1},{1,2},{2,1},{2,2}}

The following example shows how to select data from a list that contains numerical

and categorical data. You use the RandomChoice function, which gives you a random

selection from a list. In this case, it is a random selection between the words Red or Blue.

The next chapter explains how this random function works in the Wolfram Language.

In[172]:= SeedRandom[1234]; (*Employ SeedRandom[s] to ensure the same

sequence of pseudorandom in the following examples.*)

tbl=Table[{i,j,k,RandomChoice[{"Red","Blue"}]},{i,1,3},{j,1,3},{k,1,3}]//

TableForm

Out[173]//TableForm=

1 1 1 Blue 1 2 1 Red 1 3 1 Red

1 1 2 Blue 1 2 2 Red 1 3 2 Red

1 1 3 Blue 1 2 3 Red 1 3 3 Red

2 1 1 Blue 2 2 1 Blue 2 3 1 Blue

2 1 2 Blue 2 2 2 Red 2 3 2 Red

2 1 3 Red 2 2 3 Red 2 3 3 Blue

3 1 1 Blue 3 2 1 Red 3 3 1 Red

3 1 2 Red 3 2 2 Blue 3 3 2 Red

3 1 3 Blue 3 2 3 Red 3 3 3 Red

The numbers on the right side are named Red or Blue. For example, you can use

Cases to choose the values in the Blue or Red category. Since this is a nested list of depth

four, you must specify the level ({4}) at which Cases should search for patterns.

In[174]:= Cases[tbl,{_,_,_,"Blue"},{4}]

Out[174]=

{{1,1,1,Blue},{1,1,2,Blue},

{1,1,3,Blue},{2,1,1,Blue},{2,1,2,Blue},

{2,2,1,Blue},{2,3,1,Blue},{2,3,3,Blue},

{3,1,1,Blue},{3,1,3,Blue},{3,2,2,Blue}}

Chapter 2 Data Manipulation

86

Furthermore, the same result can be obtained using the double underscore. Using

only the number 4, search in levels from 1 through 4.

In[175]:= Cases[tbl,{__,"Blue"},{4}]

Out[175]=

{{1,1,1,Blue},{1,1,2,Blue},

{1,1,3,Blue},{2,1,1,Blue},{2,1,2,Blue},

{2,2,1,Blue},{2,3,1,Blue},{2,3,3,Blue},

{3,1,1,Blue},{3,1,3,Blue},{3,2,2,Blue}}

You can even count how much of the Blue category you have.

In[176]:= Count[Tbl,{__,"Blue"},{4}]

Out[176]= 11

Count works in the next form, Count[“list”, pattern, level of spec].

Now that you understand the underscore function, you can use the Cases function

to check conditions and filter values. To attach a condition, use the form (/; “condition”),

where the symbol /; followed by a rule or pattern indicates that the subsequent

expression is a condition or pattern in Mathematica. In the next example, the x_

represents an arbitrary element x, which represents the list’s elements in this case. The

condition that x is greater than 5 is then applied.

In[177]:= Cases[nmbrList,x_ /;x>5]

(*only the values greater than 5 are selected.*)

(*x can be replaced by any arbitrary symbol try using z_ and z > 5, the

result should be the same *)

Out[177]= {12,6,345,7}

As you saw in the previous example, what happens when you use _ means that the

expression x_ must be applied to the condition > 5 since _ means any expression, which

is the list.

Cases can also select data where the condition is true for the established pattern

or set of rules. The next example selects data that are integers. The pattern objects are

represented by an underscore or a rule of expression.

Chapter 2 Data Manipulation

87

In[178]:=mixList={1.,1.2,"4",\[Pi],{"5.2","Dog"}, 3,66,{Orange,Red}};

Cases[mixList,_Integer]

(*We now select the numbers that are integers*)

Out[179]= {3,66}

The underscore can be applied to patterns that check the head of an expression,

which is an integer. Cases compare each element to see if they are integers.

As for conditional matching, if the blanks of a pattern are accompanied by a question

mark (?) and then the function test, the output is a Boolean value.

In[180]:= MatchQ[mixList,_?ListQ](*we test if mixlist has a head of List*)

Out[180]= True

You can select the level of specification with Cases. The next example selects the

cases that are a string; you write two as a level of specification because mixList is a nested

list with two sublists.

In[181]:= Cases[mixList,_?StringQ,2]

Out[181]= {4,5.2,Dog}

You can include several patterns with alternatives. To test different alternatives, place

a (|) between patterns, so it resembles the form “pattern1” | “pattern2” |”pattern3 “| ...

In[182]:= Cases[mixList, _?NumberQ| _?String] (*We select the numbers and

the strings*)

Out[182]= {1.,1.2,3,66}

�Summary
This chapter serves as an opening to the concept of lists, which are a core structure

employed in Mathematica. It emphasizes the utility of lists and presents the unique

Wolfram Language syntax. The chapter covers diverse types of objects that can be

represented as lists. It concludes with basic functionalities for manipulating lists based

on data requirements.

Chapter 2 Data Manipulation

89
© Jalil Villalobos Alva 2024
J. Villalobos Alva, Beginning Mathematica and Wolfram for Data Science,
https://doi.org/10.1007/979-8-8688-0348-2_3

CHAPTER 3

Working with Data
and Datasets
This chapter reviews the basics of working with data and datasets in the Wolfram

Language. It starts by reviewing how to apply functions to a list, followed by how to

define user functions that can be used throughout a notebook. Next, you are introduced

to how to write code in one of the powerful syntaxes used in the Wolfram Language,

called pure functions. Naturally, you then delve into associations, explaining how to

associate keys with values and why they are fundamental for proper dataset construction

in the Wolfram Language. The chapter concludes with an overview of how associations

are abstract constructions of hierarchical data representations.

�Operations with Lists
Let’s look at how to perform operations on and between lists. This is important since, for

the most part, results in Mathematica can be treated as lists. This section explains how to

perform arithmetic operations, addition, subtraction, multiplication, division, and scalar

multiplication. You also learn how to apply functions to a list using Map and Apply.

These tools are helpful when dealing with linear and nested lists because they allow

you to specify a function’s depth level of application. This section also discusses how to

make user-defined functions, their syntax, term grouping, receive groups, and apply the

function like any other. It reviews an important concept of the Wolfram Language, which

is pure functions, since these are very important for carrying out powerful tasks and

activities and compactly writing code.

https://doi.org/10.1007/979-8-8688-0348-2_3#DOI

90

�Arithmetic Operations to a List
This section discusses how lists support different arithmetic operations between

numbers and between lists. You can perform basic arithmetic operations like addition,

subtraction, multiplication, and division with lists.

�Addition and Subtraction

The following are examples of addition and subtraction operations.

In[1]:= List[1,2,3,4,5,6]+1

Out[1]= {2,3,4,5,6,7}

In[2]:= List[1,2,3,4,5,6]-5

Out[2]= {-4,-3,-2,-1,0,1}

�Division and Multiplication

The following are examples of division and multiplication operations.

In[3]:= List[1,2,3,4,5,6]/ π

Out[3]=
1 2 3 4 5 6

p p p p p p
, , , , ,

ì
í
î

ü
ý
þ

Scalar multiplication operations can also be performed.

In[4]:= List[1,2,3,4,5,6]*2

Out[4]= {2,4,6,8,10,12}

�Exponentiation

The following is an example using exponentiation.

In[5]:= List[1,2,3,4,5,6]^3

Out[5]= {1,8,27,64,125,216}

Lists can also support basic arithmetic operations between lists.

In[6]:= List[1,2,4,5]-List[2,3,5,6]

Out[6]= {-1,-1,-1,-1}

Chapter 3 Working with Data and Datasets

91

You can also use mathematical notation to perform operations.

In[7]:=
" "Dog ,

,

2

2 1

{ }
{ }

Out[7]=
Dog
2

2,
ì
í
î

ü
ý
þ

To perform computations between lists, the length of the lists must be the same;

otherwise, Mathematica returns an error specifying that lists do not have the same

dimensions, like in the following example.

In[8]:= {1,3,-1}+{-1}

During evaluation of In[8]:= Thread::tdlen: Objects of unequal length in

{1,3,-1}+{-1} cannot be combined.

Out[8]= {-1}+{1,3,-1}

�Joining a List

To join one list with another—that is, to join the two lists—there is the Union command,

which joins the elements of the lists and shows it as a new list.

In[9]:= Union[List["1","v","c"],{13,4,32},List["adfs",3,1,"no"]]

Out[9]= {1,3,4,13,32,1,adfs,c,no,v}

In addition to the Union command, there is the Intersection command, which has a

function analogous to what it represents in set theory. This command lets you observe

the common elements in the list or lists.

In[10]:= Intersection[{7,4,6,8,4,7,32,2},{123,34,6,8,5445,8}]

Out[10]= {6,8}

As seen the lists only have in common the numbers 6 and 8.

�Applying Functions to a List
Functions can be concisely applied and automated to a list. The most used functions are

Map and Apply. A short notation is to use the symbol @ instead of the square brackets [];

f@ “expr” is equivalent to f[expr].

Chapter 3 Working with Data and Datasets

92

In[11]:= Max@{1,245.2,2,5,3,5,6.0,35.3}

Out[11]= 245.2

Map has the following form, Map[f, “expr”]; another way of showing it is with the

shorthand notation using the symbol @. f /@ “expr” and Map[f, “expr”] are equivalent.

This function also supports nested lists.

In[12]:= Factorial/@List[1,2,3,4,5,6]

Out[12]= {1,2,6,24,120,720}

Map can be applied to nested lists.

In[13]:= Map[Sqrt,{{1,2},{3,4}}]

Out[13]= {{1,Sqrt[2]},{Sqrt[3],2}}

The Map function is applied to each element of the list. Map can also work with

nested lists, as in the previous example. The next example creates a list of 10 elements

with Table. Those elements are random numbers between 0 and 1, and then you map a

function to convert them to string expressions.

In[14]:= data=Range[RandomReal[{0,1}],10];(*List*)

ToString/@data (*mapping a to convert to string*)

Head/@% (*Checking the data type of every element*)

Out[15]= {0.526418,1.52642,2.52642,3.52642,4.52642,5.52642,6.52642,7.52642,

8.52642,9.52642}

Out[16]= {String,String,String,String,String,String,String,String,String,

String}

Let’s look at how to apply a function to a list with additional functions. Apply has the

form Apply [f, “expr”] and the shorthand notation is f @@ “expr”.

In[17]:= Apply[Plus,data](*It gives the sum of the elements of Data*)

Out[17]= 50.2642

In[18]:= Plus@@data

Out[18]= 50.2642

Also, commands can be applied to a list in the same line of code, which is helpful

when dealing with large lists. For example, if you want to know whether an element

satisfies a condition, instead of going through each value, the element can be gathered

into a list and tested for the specified condition.

Chapter 3 Working with Data and Datasets

93

In[19]:= primelist=Range[100];Map[PrimeQ,primelist]

Out[19]= {False,True,True,False,True,False,True,False,False,False,True,False,

True,False,False,False,True,False,True,False,False,False,True,False,False,

False,False,False,True,False,True,False,False,False,False,False,True,False,

False,False,True,False,True,False,False,False,True,False,False,False,False,

False,True,False,False,False,False,False,True,False,True,False,False,False,

False,False,True,False,False,False,True,False,True,False,False,False,False,

False,True,False,False,False,True,False,False,False,False,False,True,False,

False,False,False,False,False,False,True,False,False,False}

The previous example created a list from 1 to 100 and then tested which of the

numbers satisfies the condition of being a prime number with the PrimeQ function.

Other functions can be used to test different conditions with numbers and strings. Also,

a more specific function for testing logical relations in a list can be used (MemberQ,

SubsetQ).

�Defining Own Functions
User functions can be written to perform repetitive tasks and reduce the size of a

program. Segmenting the code into functions allows you to create pieces of code that

perform a certain task. Functions can receive data from outside when called through

parameters and return a fixed result.

A function can be defined with the set or set delayed symbol, but remember, using

the set symbol assigns the result to the definition. To define a function, first write the

name or symbol, followed by the reference variable and an underscore. As with cases,

the underscore tells Mathematica that you are dealing with a dummy variable. As a

warning, defined functions cannot have space between letters. Functions can also

receive more than one argument.

In[20]:= MyF[z_]:=12+2+z;MyF2[x_,z_]:=z/x

Now, you can call the function with different z values.

In[21]:= List[MyF[1],MyF[324],MyF[5432],MyF2[154,1],MyF2[14,4],MyF2[6,9]]

Out[21]= 15 338 5446
1

154

2

7

3

2
, , , , ,

ì
í
î

ü
ý
þ

Chapter 3 Working with Data and Datasets

94

Also, another way to write functions is to write compound functions. This concept is

similar to compound expressions; expressions of different classes are written within the

definition. Each computation can or cannot be ended with a semicolon. The following

example shows the concept.

In[22]:= StatsFun[myList_]:={Max@myList,Min@myList,Mean@myList,Median

@myList,Quantile@@{myList,1}(*25 percent*)(*to write a function with

multiple arguments with shorthand notation use curly braces*)}

You can also send a list as an argument.

In[23]:= myList=Table[m-2,{m,-2,10}];

StatsFun[myList]

Out[24]= {8,-4,2,2,8}

You can have multiple operations within a function, with the option to create

conditions for the arguments to meet. To write a condition, use the dash and semicolon

(/;) symbols. When the condition is true, the function is evaluated; otherwise, if the

condition is not true, the function is not evaluated. Compound functions need to be

grouped; otherwise, Mathematica treats them as though they are outside the body of the

whole function.

The next example creates a function that tells you if an arbitrary string is a

palindrome, which is when the word is the same when written backward.

In[25]:= PalindromeWord[string_/;StringQ@string==True]:=(*we can check if

the input is really a string*)

(ReverseWord=StringJoin[Reverse[Characters[string]]];

(*here we separate the characters,reverse the list and join them into a

string*)

ReverseWord==string (*then we test if the word is a palindrome,the output

of the whole function will be True or False*))

Let’s test the new function.

In[26]:= PalindromeWord/@{"hello","room","jhon","kayak","civic","radar"}

Out[26]= {False,False,False,True,True,True}

Chapter 3 Working with Data and Datasets

95

When you have a local assignment on a compound function or functions, the

symbols used are still assigned, so if the symbol(s) are called outside the function, it can

cause coding errors. One thing to consider is that you can clear the function and local

symbols when the function is no longer used. Clearing only the function name does not

remove local assignments. Another solution is to declare variables inside a module since

the variables are only locally treated, as shown in the following form.

In[27]:= MyFunction[a0_,b0_]:=Module[{m=a0,n=b0},(*local variables*)m+n

(*body of the module*)](*end of module*)

In[28]:= Clear[MyF,MyF2,StatsFun,PalindromeWord,ReverseWord] (*To remove

tag names of the functions and local symbols *)

�Pure Functions
Pure functions, also known as anonymous functions, are a powerful feature of the

Wolfram Language. They allow the execution of a function without referencing a name

and can be explicitly assigned to an operation. Arguments within pure functions are

denoted with a hashtag (#). To refer to a specific argument, append a number to the

hashtag (e.g., #1, #2, (#3, ... for the first, second, third, ... argument). An ampersand (&)

is used at the end of the definition to signify the use of the hashtag references. Pure

functions can be constructed with the Function keyword or using the shorthand notation

of hashtag and ampersand.

In[29]:= Function[#^-1][z]==#^-1&[z]

#^-1&[z] (*both expression mean 1/z*)

Out[29]= True

Out[30]= 1/z

Some examples of pure functions.

In[31]:= {#^-1&[77],#1+#2-#3&[x,y,z] (*we can imagine that #1,#2,#3 are the

1st,2nd and 3rd variables*),Power[E,#]&[3]}

Out[31]= {1/77,x+y-z,E^3}

You can use pure functions along with Map and Apply to pass each argument of a list

to a specific function. The # represents each element of the list, and the & represents that

is filled and tested for the elements of the list.

Chapter 3 Working with Data and Datasets

96

In[32]:= N[#]&/@ {1,1,1,12,3,1}

Sqrt[#]&/@{-1,2,4,16}

Out[32]= {1.,1.,1.,12.,3.,1.}

Out[33]= {I,Sqrt[2],2,4}

Code can be written more compactly using Apply and pure functions, as shown in

the next example. You can select the numbers bigger than 10.

In[34]:= Select@@{{1,22,41,7,62,21},#>10&}

Out[34]= {22,41,62,21}

�Indexed Tables
You can create and display results in tables to provide a quick way to observe and

manage a group of related data, which leads to how to create tables in the Wolfram

Language, such as giving titles to columns and names to rows. A series of examples

to help you learn the essentials of using the tables so that you can present your data

properly are featured in this section.

�Tables with the Wolfram Language
Tables are created with nested lists, and those lists are shown with TableForm.

In[35]:= table1={{"Dog","Wolf"},{"Cat","Leopard"},{"Pigeon","Shark"}};

TableForm[table1]

Out[36]//TableForm=

Dog Wolf

Cat Leopard

Pigeon Shark

The format of TableForm is [“list”, options]. Formatting options let you justify the

columns of tables in three ways: left, center, and right. In the next example, the contents

of the table are centered.

Chapter 3 Working with Data and Datasets

97

In[37]:= TableForm[table1,TableAlignments\[RightArrow]Right]

Out[37]//TableForm=

Dog Wolf

Cat Leopard

Pigeon Shark

Titles can be added with the TableHeadings option command and by specifying

whether the rows and column labels are exposed or just one of them. Choosing the

Automatic option gives index labels to the rows and columns. Remember to write strings

between the apostrophes or to use ToString.

In[38]:= TableForm[table1,TableHeadings->{{"Row 1","Row 2","Row

3"},{"Column 1","Column 2"}}]

Out[38]//TableForm=

 | Column 1 Column 2

_______|___________________

Row 1 | Dog Wolf

Row 2 | Cat Leopard

Row 3 | Pigeon Shark

Labeled rows and columns can be customized with desired names.

In[39]:= colname={"Domestic Animals","Wild Animals"};

rowname={"Animal 1","Animal 2","Animal 3"};

TableForm[table1,TableHeadings->{rowname,colname}]

Out[41]//TableForm=

 | Domestic Animals Wild Animals

_______|_________________________________

Row 1 | Dog Wolf

Row 2 | Cat Leopard

Row 3 | Pigeon Shark

The same concept applies to labeling just columns or rows by typing None on the

rows or columns option.

Chapter 3 Working with Data and Datasets

98

In[42]:= TableForm[table1,TableHeadings->{None,{"Domestic Animals","Wild

Animals"}}]

Out[42]//TableForm=

Domestic Animals Wild Animals

Dog Wolf

Cat Leopard

Pigeon Shark

Automated forms of tables can be created with the use of Table and Range. By

applying the Automatic option in the TableHeadings, you can create indexed labels for

the data.

In[43]:=tabData={Table[i,{i,7}],Table[5^i,{i,7}]};TableForm[tabData,TableHe

adings->Automatic]

Out[43]//TableForm=

 | 1 2 3 4 5 6 7

_ |_____________________________________

1 | 1 2 3 4 5 6 7

2 | 5 25 125 625 3125 15625 78125

For exhibit reasons, a table can be transposed too.

In[44]:= TableForm[Transpose[tabData],TableHeadings->Automatic]

Out[44]//TableForm=

 | 1 2

_ |_______

1 | 1 2

2 | 2 25

3 | 3 125

4 | 4 625

5 | 5 3125

6 | 6 15625

7 | 7 78125

Chapter 3 Working with Data and Datasets

99

Another useful tool is Grid, which displays a list or a nested list in tabular format.

Like TableForm, Grid can also be customized to exhibit data more properly.

Note G rid works with any expression.

In[45]:= tabData2=Table[{i,Exp[i],N@Exp[i]},{i,7}];

Grid[tabData2]

Out[46]=

i Expi Numeric approx.

1 e 2.71828

2 e2 7.38906

3 e3 20.0855

4 e4 54.5982

5 e5 148.413

6 e6 403.429

7 e7 1096.63

To add headers, insert them in the original list as strings and in position 1.

In[47]:= Grid[Insert[tabData2,{"i","Expi","Numeric approx."},1]]

Out[47]=

i Expi Numeric approx.

1 e 2.71828

2 e2 7.38906

3 e3 20.0855

4 e4 54.5982

5 e5 148.413

6 e6 403.429

7 e7 1096.63

Chapter 3 Working with Data and Datasets

100

You can add dividers and spacers too. With Dividers and Spacing, you can divide or

space the y and x axes.

In[48]:= Grid[Insert[tabData2,{"i","Expi","Numeric approx."},1],

Dividers->{All,False},Spacings->{1,1}]

Out[48]=

| i | Expi | Numeric approx.

| 1 | e   | 2.71828

| 2 | e2 | 7.38906

| 3 | e3 | 20.0855

| 4 | e4 | 54.5982

| 5 | e5 | 148.413

| 6 | e6 | 403.429

| 7 | e7 | 1096.63

Background can be added with the Background option. This option allows specific

parts of the table or column table to be colored.

In[49]:= Grid[Insert[tabData2,{"i","Exp i","Numeric approx."},1],Dividers ->
{All,False},Spacings -> {Automatic,0},Background -> {{LightYellow,None,LightBlue}}]
Out[49]=
i Expi Numeric approx.

1 e 2.71828

2 e2 7.38906

3 e3 20.0855

4 e4 54.5982

5 e5 148.413

6 e6 403.429

7 e7 1096.63

Chapter 3 Working with Data and Datasets

101

�Associations
Associations are fundamental in developing the Wolfram Language; associations

are used to index lists or other expressions and create more complex data structures.

Associations, much like dictionaries in many other programming languages, are a more

structured construct that allows you to provide a process for creating pairs of keys and

values. Later, you see that they are important for handling datasets in the Wolfram

Language.

Associations are of the form Association[“key_1” → val_1, key_2 →val_2 ...] or <|

“key_1”→ “val_1”, “key_2” → “val_2” ... | >; they associate a key to a value. Keys and

values can be any expression. The Association command is used to construct an

association, or you can use the symbolic entry <| --- |>.

In[50]:= Associt=<|1->"a",2->"b",3->"c"|> (*is the same as Association

[a\[RightArrow]"a",b\[RightArrow]"b",c\[RightArrow]"c"]*)

Associt2=Association[dog->"23","score"->\[Pi]*\[Pi],2*2->Sin[23 Degree]]

Out[50]= < ∣ 1 → a, 2 → b, 3 → c ∣ >
Out[51]= < ∣ dog → 23, score → π2, 4 → Sin[23°] ∣ >

Entries in an association are ordered, so data can be accessed based on the key of the

value or by the position of the entries in the association, like with lists. The position is

associated with the values (position of the entries), not the keys, as the order of the keys

is not always preserved.

In[52]:= Associt[1](*this is key 1 *)

Associt2[[2]] (*this is position of key 2, which is π2 *)

Out[52]= a

Out[53]= π2

As seen in the latter example, the position is associated with the values, not the key.

So, if you want to show parts of the association, use the semicolon.

In[54]:= Associt[[1;;2]]

 Associt2[[2;;2]]

Out[54]= <|1→a,2→b|>

Out[55]= <|score→ π2 |>

Chapter 3 Working with Data and Datasets

102

Values and keys can be extracted with the Keys and Values commands.

In[56]:= Keys@Associt2

Values@Associt2

Out[56]= {dog, score, 4}

Out[57]= {23, π2,Sin[23 °]}

You get an error if you ask for a key without a proper reference.

In[58]:= Associt["a"](*there is no "a" key in the association, thus

the error*)

Out[58]= Missing[KeyAbsent,a]

Associations can also be associations. The next example shows how to associate

associations, thus producing an association of associations. This concept is basic for

understanding how a dataset works in the Wolfram Language.

In[59]:= Association[Associt,Associt2]

Out[59]= <| 1 → a, 2 → b, 3 → c, dog → 23, score → π2, 4 → Sin[23°] |>

You can also make different associations with lists using AssociationThread. The

keys correspond to the first argument and the values to the second. AssociationThread

threads a list of keys to a list of values like the next form: < | {“key_1”, “key_2”, “key_3” ...}

→ {“val_1”, “val_2”, “val_3” ... } | >. The latter form can be seen as a list of keys marking

a list of values. When you have defined the lists of keys and values, the command can

associate a list with another list. You can also create a list of associations to read keys as a

row and a column.

In[60]:=AssociationThread[{"class","age","gender","survived"},{"Economy",2

9,"female",True}]

Out[60]= <| class → Economy, age → 29, gender → female, survived → True |>

You can construct the list of keys and values.

In[61]:= keys={"class","age","gender","boarded"};

values={"Economy",29,"female",True};

AssociationThread@@{keys,values}

Out[63]= <| class → Economy, age → 29, gender → female,

boarded → True |>

Chapter 3 Working with Data and Datasets

103

More complex structures can be created with associations. For example, the next

association creates a data structure based on the information about a sports car, with the

model name, engine, power, torque, acceleration, and top speed.

In[64]:= Association@{"Model name" -> "Koenigsegg CCX",

"Engine" -> "Twin supercharged V8",

"Power" -> "806 hp",

 "Torque" -> "5550 rpm",

"Acceleration 0-100 km/h" -> "3.2 sec",

"Top speed" -> "395 Km/h"}

Out[64]= <|Model name→Koenigsegg CCX, Engine→Twin supercharged V8,

Power→806 hp, Torque→5550 rpm, Acceleration 0-100 km/h→3.2 sec, Top

speed→395 Km/h|>

You can see how labels and their elements are created in a grouped way. In addition

to that, it is shown how the curly braces mark how each row can arrange the key/

value pair.

�Dataset Format
Associations are an essential part of making structured forms of data. Datasets in the

Wolfram Language offer a way to organize and exhibit hierarchical data by providing

a method for accessing data inside a dataset. This section features examples of how to

convert lists, nested lists, and associations to a dataset. It also covers how to add values,

access values in a dataset, drop and delete values, map functions over a dataset, deal

with duplicate data, and apply functions by row or column.

�Constructing Datasets
Datasets are for constructing hierarchical data frameworks, where lists, associations, and

nested lists have an order. Datasets are useful for exhibiting large data in an accessible,

structured format. Datasets can show enclosed structures in a sharp format with row

headers, column headers, and numbered elements. Having the data as a dataset allows

you to look at the data in multiple ways.

Chapter 3 Working with Data and Datasets

104

Datasets can be constructed in four forms.

•	 A list of lists; a table with no denomination in rows and columns

•	 A list of associations, a table with labeled columns; a table with

repeated keys and different or same values

•	 An association of lists, a table with labeled rows; a table with different

keys and different or same values

•	 Association of associations; a table with labeled rows and columns

The most common form to create a new dataset is from a list of lists. Create a list

within the curly braces {} using the Dataset function. Each brace represents the parts of

the table. Figure 3-1 shows the output of the Dataset function.

In[65]:= Dataset@{{"Jhon",23,"male","Portugal"},{"Mary",30,"female","USA"},

{"Peter",33,"male","France"},{"Julia",53,"female","Netherlands"},{"Andrea",

45,"female","Brazil"},{"Jeff",24,"male","Mexico"}}

Out[65]=

Figure 3-1.  Dataset object created from the input code

By hovering the mouse cursor over the elements of the dataset, you can see their

position in the lower-left corner. The name France corresponds to row 3 and column 4.

The notation of a dataset is first rows, then columns. If you have labeled columns, rows,

or both, you see the column name and row name instead of the numbers.

Constructing a dataset with a list of associations is performed by creating

associations first with repeated keys and then enclosing them in a list. First, create the

associations; the repeated keys specify each column header. The values represent the

contents of the columns. Datasets have a head expression of Dataset.

Chapter 3 Working with Data and Datasets

105

In[66]:=

Dataset@{

<|"Name"->"Jhon","Age"->23,"Gender"->"male","Country"->"Portugal"|>,

<|"Name"->"Mary","Age"->30,"Gender"->"female","Country"->"USA"|>,

<|"Name"->"Peter","Age"->33,"Gender"->"male","Country"->"France"|>,

<|"Name"->"Julia","Age"->53,"Gender"->"female","Country"->"Netherlands"|>,

<|"Name"->"Andrea","Age"->45,"Gender"->"female","Country"->"Brazil" |>,

<|"Name" -> "Jeff", "Age" -> 24, "Gender" -> "male", "Country" -> "Mexico"

|>}(*Head @ % *)

Out[66]=

As seen in Figure 3-2, Mathematica recognizes that Name, Age, Gender, and Country

are column headers, which is why the color of the box is different.

Figure 3-2.  Dataset with column headers

When passing the cursor over the column labels, they are highlighted in blue, thus

making it possible to click the name of the label, and then it produces only the selected

label and not the whole dataset, as seen in Figure 3-3.

Chapter 3 Working with Data and Datasets

106

Figure 3-3.  Column name selected in the dataset

When this happens, the name of the column also appears. To return to the whole

dataset, hit the spreadsheet icon in the upper-left corner or the name All. This type of

layout is practical when dealing with a big set of rows and columns, and you want to

focus only on a few sections of the dataset.

In an association of lists, the keys represent the label of the rows, and the values are

the list of the elements of the rows; then, you associate the whole block. The next block

of code generates an association of a list.

Note T he same is true here. Whenever you click a row’s name, it only displays
that row.

In[67]:= Dataset@

<|"Subject A"->{"Jhon",23,"male","Portugal"},

"Subject B"->{"Mary",30,"female","USA"},

"Subject C"->{"Peter",33,"male","France"},

"Subject D"->{"Julia",53,"female","Netherlands"},

"Subject E"->{"Andrea",45,"female","Brazil"},

"Subject F"->{"Jeff",24,"male","Mexico"}|>

Out[67]=

Chapter 3 Working with Data and Datasets

107

As seen in Figure 3-4, the rows are now labeled.

Figure 3-4.  Dataset with labeled rows

Row labels are recognized and displayed in the color box. When selecting the row’s

label, it display only that row, as shown in Figure 3-5.

Figure 3-5.  Subject E row selected

In an association of associations, the repeated keys of the association of associations

are the column labels and the values of the dataset. In the second association, the

keys are the labels of the rows, and the first associations are the values of the second

association. The next example clarifies this.

In[68]:= Dataset@

<|"Subject A"-><|"Name"->"Jhon","Age"->23,"Gender"->"male","Country"->

"Portugal"|>,"Subject B"-><|"Name"->"Mary","Age"->30,"Gender"->

"female","Country"->"USA"|>,"Subject C"-><|"Name"->"Peter","Age"->33,

"Gender"->"male","Country"->"France"|>,

"Subject D"-><|"Name"->"Julia","Age"->53,"Gender"->"female","Country"->

"Netherlands"|>,"Subject E"-><|"Name"->"Andrea","Age"->45,"Gender"->

"female","Country"->"Brazil"|>,"Subject F"-><|"Name"->"Jeff","Age"->

24,"Gender"->"male","Country"->"Mexico"|>|>

Out[68]=

Chapter 3 Working with Data and Datasets

108

Figure 3-6.  Dataset with names in rows and columns

As can be seen in Figure 3-6, the rows and columns are now labeled. Like the

previous examples, the column and row labels are recognized and displayed in the color

box. When selecting the label of the row or a column, it displays only that row or column,

as seen in Figure 3-7.

Figure 3-7.  Only a row selected

If you select only a particular value, then that value is solely displayed. Figure 3-8

shows its form.

Figure 3-8.  Name for subject F

Creating a dataset from associations of associations is best for compact datasets

because sometimes it can get messy to extract values and keys. However, the best

approach is the one that works best for you.

Chapter 3 Working with Data and Datasets

109

�Accessing Data in a Dataset
Mathematica gives each element a unique index; so if you are interested in selecting data

from a dataset, assign a symbol to the dataset and proceed to specify each output in the

next form. The first and second positions of the arguments represent row and column

[nth row, mth column]. So, to extract data based on a column name or a set of columns,

enclose the columns in brackets. You can also use double-bracket notation. If only one

argument is received, it is only the rows. First, let’s create the dataset.

In[69]:=Dst=Dataset@{

<|"Name"->"Jhon","Age"->23,"Gender"->"male","Country"->"Portugal"|>,

<|"Name"->"Mary","Age"->30,"Gender"->"female","Country"->"USA"|>,

<|"Name"->"Peter","Age"->33,"Gender"->"male","Country"->"France"|>,

<|"Name"->"Julia","Age"->53,"Gender"->"female","Country"->"Netherlands"|>,

<|"Name"->"Andrea","Age"->45,"Gender"->"female","Country"->"Brazil"|>,

<|"Name"->"Jeff","Age"->24,"Gender"->"male","Country"->"Mexico"|>};

The notation [[]] works the same as the special character for double brackets (⟦ ⟧).

Also, you can select data using the specific keys of the value, as shown in Figure 3-9.

In[70]:= Dst[[1,2]](*This is for row 1,column 2*)

Dst[1](*row 1*)

Out[70]= 23

Out[71]=

Figure 3-9.  Row 1 for Dst

Let ́s look at the following and Figure 3-10.

In[72]:= Dst[1;;3](*to manipulate data of the column try Dst[1;;3,1;;3]*)

Out[72]=

Chapter 3 Working with Data and Datasets

110

Figure 3-10.  Values from rows 1 to 3 and columns 1 to 3

This case selected data from positions 1 to 3, from John to Peter. The same is applied

to columns.

You can also show specific columns and maintain all the fixed rows with their keys.

The same process is applied when having a label in each row. Typing All means all the

elements in the column or the row. The output is shown in Figure 3-11.

In[73]:= Dst[All,{"Name","Age"}] (*If more than 1 column label is added

then enclosed the labels by curly braces.*)

Out[73]=

Figure 3-11.  Values for column name and age

Chapter 3 Working with Data and Datasets

111

Alternatively, you can extract a column or a row as a list to better manipulate them in

the Wolfram Language. To do that you need to use the Normal function and the Values

command. Remember that you are dealing with associations, so if you want the values,

you use the Values command and then Normal to convert it to a normal expression.

In[74]:= Normal@Values@Dst[All,{"Name","Age"}](*values of the name and age

columns*)

Out[74]= {{Jhon,23},{Mary,30},{Peter,33},{Julia,53},{Andrea,45},{Jeff,24}}

It is the same idea for the rows: if they have a label, you can use them.

In[75]:= Normal@Values@Dst[[1,All]]

Out[75]= {Jhon,23,male,Portugal}

The result is the same if you first do Normal and then Values.

In[76]:= Values@Normal@Dst[[1,All]]

Out[76]= {Jhon,23,male,Portugal}

Another function that can be used is Query, a specialized function that works with

datasets. Queries must be applied to the symbol of the dataset or directly to the dataset.

Queries are helpful because they allow easy selectivity of the values; you can extract rows

or columns and get individual records.

In[77]:= Query[All,"Country"]@Dst

Query[3]@%

Out[77]=

Figure 3-12 shows that you can extract columns and values with Query.

Chapter 3 Working with Data and Datasets

112

Figure 3-12.  Country values

Out[78]= France

Another function that works more intuitively is Take, in which you can specify the

symbol of the dataset and then how many rows and columns to display. Take comes

in handy when dealing with large datasets, and you want to only view a specific part of

the data.

In[79]:= Take[Dst,2] (*First 2 rows*)

(*Take[Dst,3,3] First 3 rows and columns*)

Out[79]=

Figure 3-13 shows you can use Take as an alternative.

Figure 3-13.  First two rows of a dataset

Chapter 3 Working with Data and Datasets

113

�Adding Values
Now that you have examined how to access the elements of a dataset, you can add new

values to the dataset. You can add rows with Append or Prepend, but remember that

AppendTo and PrependTo can be used too. However, they assign the new result to the

assigned variable. Append adds at the last and Prepend at the first.

To add a row, you would need to write the new row like you write the associations

with repeated keys, calling the dataset and then the function, followed by the new row,

as shown in Figure 3-14.

In[80]:= Dst[Append[<|"Name"->"Anya","Age"->19,"Gender"->

"female","Country"->"Russia"|>]]

Out[80]=

Figure 3-14.  New row added at the end of the dataset

The operator form of the Append function was used in this case. Operator forms

in the Wolfram Language allows for a more concise and readable code syntax. They

essentially allow function to be used directly without square brackets. This form

can be used with other function, like Apply, to make expression with a more natural

representation. For example, to add a new row at the top of the dataset, try using the

code, Dst@Prepend[<|“Name”->“Anya”, “Age”->19, “Gender”->“female”, “Country”->

“Russia”|>], which is the same as Dst[Prepend[<|"Name"->"Anya","Age"->19,

"Gender"->"female", "Country"->"Russia"|>]].

Chapter 3 Working with Data and Datasets

114

Adding a new column of only single values can be done by simply assigning a value

to the side of the columns of the dataset with the key name, which is the column name.

Figure 3-15 shows the new column added.

In[81]:= Dst[All,Prepend["ID number"->1]]

Out[81]=

Figure 3-15.  ID column added

To add a list of values as a column, first create a list of values. Next, use

AssociationThread to associate each value with the same key, creating an association

of values for the repeated key. Then you create a dataset of the new association and

combine it with the original dataset with the Join function. This merges expressions of

the same head.

In[82]:= Id={1,2,3,4,5,6};(*our list of values*)

ID=AssociationThread["ID"->#]&/@Id (*the process is threaded in the list*)

Out[82]= {<|ID->1|>,<|ID->2|>,<|ID->3|>,<|ID->4|>,<|ID->5|>,<|ID->6|>}

Each element needs to be associated one by one for the later block because

AssociationThread suppresses repeated keys, so you would only have one association,

and you need to have a repeated key marking different values.

Next, create the new dataset with the same key shown in Figure 3-16.

In[83]:= Dataset[ID]

Out[83]=

Chapter 3 Working with Data and Datasets

115

Figure 3-16.  ID column dataset

Finally, join the same objects; here, Join is used with a level of specification of 2

because the new dataset is a sublist of depth 2. If you want to add the column on the

left side, the new column goes first, followed by the dataset; for the right side, it is the

opposite. Figure 3-17 shows the output dataset.

In[84]:= Join[%,Dst,2]

Out[84]=

Figure 3-17.  ID column added

Chapter 3 Working with Data and Datasets

116

The previous cases worked with a dataset from a list of associations; since you are

working with tagged rows only or tagged rows and columns, adding a row or column

is preserved by adding the same structure to the dataset. So, adding a new row to an

association of lists would take the form < | “key” → {elem, ... } |>; for columns, this

would be the process of creating a dataset and joining them. In the case of a list of lists,

adding a row would be the same approach but without a key. For the case of association

of associations, to add a row would be <| “key” → < |”key 1” → “val 1”, ... | > |>, and for

columns, it would be the same as before, a key associated with a value. Nevertheless,

there is no restriction on how data can be accommodated.

Finally, to change unique values, select the item and give it the new content. In

the case that you have labels on rows and columns, the original form is still preserved:

“rows”, “columns”}. So, if you want to replace Jhon’s age, use the ReplacePart function

by calling the symbol of the dataset and specifying the column tag and then with the

new value, which is 50. If you were working with only a row label or a column label, the

process would be the same, but using the row or column label and then the number

position of the element. Figure 3-18 shows the new value is 50.

In[85]:= ReplacePart[Dst,{1,"Age"}->50](*Also using the index will produce

the same output,that would be {1,2} -> 50*)

Out[85]=

Figure 3-18.  Jhon age value changed to 50

Chapter 3 Working with Data and Datasets

117

�Dropping Values
You can eliminate the contents of a row or column without deleting the entire table

structure. To accomplish this, use the Drop function or the Delete function. When using

Drop, you enclose the number of the row or column with { } to delete a unique row or

column (see Figure 3-19).

In[86]:= Drop[Dst,{1}](*in the instance we want to delete more than one

then we write m through n dropped {m,n}*)

Out[86]=

Figure 3-19.  Drop row 1

Figure 3-19 shows that the first row has been dropped. You can also drop rows and

columns at the same time. Figure 3-20 shows the second row and last column dropped.

In[87]:= Drop[Dst,{2},{4}]

Out[87]=

Chapter 3 Working with Data and Datasets

118

Figure 3-20.  New dataset after dropping row 2 and column 4

Another way is to use Delete on a row or column label, as shown in Figure 3-21.

In[88]:= Dst[All,Delete["Age"]] (*to delete a row use["label of row",All]*)

Out[88]=

Figure 3-21.  Age column deleted

Chapter 3 Working with Data and Datasets

119

�Filtering Values
Having the data as a dataset allows you to look at the data in multiple ways. Let’s now

work with the tagged dataset to better expose how filtering values work. For starters, you

use the labeled dataset shown in Figure 3-22.

In[89]:= Clear[Dst];(*Let's clear the symbol "Dst" of previous

assignments*)

Dst=Dataset@

<|"Subject A"-><|"Name"->"Jhon","Age"->23,"Gender"->"male","Country"->

"Portugal"|>,"Subject B"-><|"Name"->"Mary","Age"->30,"Gender"->

"female","Country"->"USA"|>,"Subject C"-><|"Name"->"Peter","Age"->33,

"Gender"->"male","Country"->"France"|>,

"Subject D"-><|"Name"->"Julia","Age"->53,"Gender"->"female","Country"->

"Netherlands"|>,"Subject E"-><|"Name"->"Andrea","Age"->45,"Gender"->

"female","Country"->"Brazil"|>,"Subject F"-><|"Name"->"Jeff","Age"->24,

"Gender"->"male","Country"->"Mexico"|>

|>

Out[90]=

Figure 3-22.  Tagged dataset

Chapter 3 Working with Data and Datasets

120

As with lists, you can create one or more filter conditions; for example, you can select

an age greater than 30 and get a dataset object (see Figure 3-23).

In[91]:= Cases[Dst[All,"Age"],x_/;x>30](*also we can select data that

matches exactly 30 with the==sign*)

Out[91]=

Figure 3-23.  Filtered data from the age column

Figure 3-23 shows the filtered data. Data can be selected based on True or False

results. For that, you can use the Select function. Figure 3-24 shows the selected subjects.

In[92]:= Select[Dst[All,"Age"],EvenQ]

Out[92]=

Figure 3-24.  Selected subjects

The use of pure functions can be applied too. Remember that the #Age resembles the

elements in the Age column, as shown in Figure 3-25.

In[93]:= Dst[Select[#Age>30&]]

Out[93]=

Chapter 3 Working with Data and Datasets

121

Figure 3-25.  Selected values using pure function syntax

Also, you can count categorical data values, as shown in Figure 3-26. This is helpful

when you want to identify how many types of a class you have in the data. For example,

you can count how many females and males are in the dataset.

In[94]:= Counts[Dst[All,"Gender"]] (*alternative

form:Dst[Counts,"Gender"]*)

Out[94]=

Figure 3-26.  Count data for class male and female

More complex groups can be made based on a class; for instance, you can group the

dataset by gender, as shown in Figure 3-27.

In[95]:= Dst[GroupBy["Gender"],Counts,"Age"]

Out[95]=

Chapter 3 Working with Data and Datasets

122

Figure 3-27.  Data arranged by class and age

As a good practice, clear symbols when they are no longer used.

In[96]:= Clear[Dst]

�Applying Functions
Functions can be applied to the dataset to get statistics, determine dimensions, or

transform the data. Functions can be applied to single columns or a unique element in

the data structure. First, let’s create a dataset comprising 10 items, whose columns are

the factorial of 1 to 10, a random real number from 1 to 0, and the natural logarithm from

1 to 10. Figure 3-28 shows the new dataset.

In[97]:= DataNumbr=Dataset@Table[<|"Factorial"->Factorial[i],"Random

number"->RandomReal[{0,1}],"Natural Logarithm"->Log[E,i]|>,{i,1,10}]

Out[97]=

Chapter 3 Working with Data and Datasets

123

Figure 3-28.  Numeric dataset

And now you can compute basic operations on the data, like getting the mean of the

factorials and random numbers, as shown in Figure 3-29.

In[98]:= DataNumbr[Mean,{"Factorial","Random number"}]//N

Out[98]=

Figure 3-29.  Mean for values in Factorial and Random number columns

Parenthesis and the composition of functions can also be used to relate operations

applied to the data by using the @ *(composition) symbol. Figure 3-30 shows the data for

random numbers sorted from less to greater.

Chapter 3 Working with Data and Datasets

124

In[99]:= DataNumbr[All,"Random number"]@(Sort@*N)

Out[99]=

Figure 3-30.  Sorted data in canonical order

You can apply different functions to the data. As shown in Figure 3-31, the dataset

shows numbers in decimal form; otherwise, it would not fit in the square box.

In[100]:= DataNumbr[{Total,Max,Min},"Natural Logarithm"]

Out[100]=

Figure 3-31.  Total, Max, and Min value for Natural Logarithm column

You can also apply your own functions; let’s use a previously constructed function.

Figure 3-32 shows the function you created previously applied to a dataset column.

In[101]:= DataNumbr[{StatsFun},"Natural Logarithm"]

Out[101]=

Figure 3-32.  StatsFun applied to the Natural Logarithm column

Functions to restructure the dataset can be applied too, like Reverse, as shown in

Figure 3-33.

In[102]:= DataNumbr[Reverse,All]

Out[102]=

Chapter 3 Working with Data and Datasets

125

Figure 3-33.  Reversed elements of the dataset

Map can also apply functions, as you saw with lists in the previous sections. The next

example maps a function directly into the dataset, as shown in Figure 3-34.

In[103]:= Map[Sqrt,DataNumbr]

Out[103]=

Chapter 3 Working with Data and Datasets

126

Figure 3-34.  The square root function mapped in the dataset

Transposition is an operation that consists of converting columns to rows and rows to

columns and can sometimes help you observe data differently. To obtain the transposition

of the dataset, use the Transpose function applied to the dataset. Figure 3-35 shows all

columns are now rows and displayed compactly because it is a large row.

In[104]:= DataNumbr//Transpose

Out[104]=

Figure 3-35.  Dataset values by Mathematica due to large contents

If you click a row, you should get the values for the corresponding row.

Chapter 3 Working with Data and Datasets

127

�Functions by Column or Row
Another approach is to directly apply a function to the values of a column, and you can

specify a rule of transformation. For example, you can round to the smallest integer

greater than or equal to all the values in the Natural Logarithm column. Figure 3-36

shows the output.

In[105]:= DataNumbr[All,{"Natural Logarithm"->Ceiling}](*The same can be

done using the index number of the columns,DataNumbr*)

Out[105]=

Figure 3-36.  Ceiling function applied as a rule

You can apply the square root to the first row. Map can also be used to apply

functions to rows. Figure 3-37 shows the output generated

In[106]:= DataNumbr[1,Sqrt] (*Map[Sqrt,DataNumbr[1;;2,All]] can also do the

work for the first 2 rows*)

Out[106]=

Chapter 3 Working with Data and Datasets

128

Figure 3-37.  Output generated from the earlier code

When you want to apply a function to a defined level, you can use MapAt. MapAt has

the form MapAt[f, “expr”, {i, j, ...}], where {i, j} means the level of the position, as shown in

Figure 3-38.

In[107]:= MapAt[Exp,DataNumbr,{1}](*for first position of row 1 only*)

(*Double semi-colon can be used to define from row to row,try using 4;;6.

Caution you might get big numbers*)

Out[107]=

Figure 3-38.  Exponentiation for the first row only with MapAt

Chapter 3 Working with Data and Datasets

129

Occasionally, you might encounter duplicate data, making it hard to understand the

data, especially if something goes wrong. One approach can be to remove an entire row

or column, as you saw in previous sections; but as an alternative, you can use built-

in functions that can do the job. The DeleteDuplicates function is the most common.

DeleteCases can be used, too, but it removes data that matches a pattern, in contrast to

DeleteDuplicates. Let’s create a dataset for the example.

In[108]:= Sales = Dataset@{

<|"Id" -> 1, "Product" -> "PC", "Price" -> "800 €", "Sale Month" ->
"January"|>,

<|"Id" -> 2, "Product" -> "Smart phone", "Price" -> "255 €", "Sale Month"
-> "January"|>,

<|"Id" -> 3, "Product" -> "Anti-Virus", "Price" -> "100 €", "Sale Month"
-> "March"|>,

<|"Id" -> 4, "Product" -> "Earphones", "Price" -> "78 €", "Sale Month" ->
"February"|>,

<|"Id" -> 5, "Product" -> "PC", "Price" -> "809 €", "Sale Month" ->
"March"|>,

<|"Id" -> 5, "Product" -> "PC", "Price" -> "809 €", "Sale Month" ->
"March"|>,

 <|"Id" -> 6, "Product" -> "Radio", "Price" -> "60 €", "Sale Month" ->
"January"|>,

 <|"Id" -> 7, "Product" -> "PC", "Price" -> "700 €", "Sale Month" ->
"February"|>,

 <|"Id" -> 8, "Product" -> "Mouse", "Price" -> "100 €", "Sale Month" ->
"March"|>,

 <|"Id" -> 9, "Product" -> "Keyboard", "Price" -> "125 €", "Sale Month" ->
"January"|>,

 <|"Id" -> 10, "Product" -> "USB 64gb", "Price" -> "90 €", "Sale Month" ->
"March"|>,

 <|"Id" -> 11, "Product" -> "LED Screen", "Price" -> "900 €", "Sale Month"
-> "February"|>,

 <|"Id" -> 11, "Product" -> "LED Screen", "Price" -> "900 €", "Sale Month"
-> "February"|>}

Out[108]=

Chapter 3 Working with Data and Datasets

130

Figure 3-39 reveals two duplicated rows in the dataset: ID numbers 5 and 11. The

DuplicateFreeQ function can detect whether the dataset appears to have duplicates. The

function returns False when there is duplicate data and True when there is not. It can be

applied straight to the dataset, or you can detect the rows that appear to be duplicated.

Figure 3-39.  Dataset example for duplicate data

Let’s check if there are duplicates in rows 1 through 7.

In[109]:= DuplicateFreeQ[Sales[1;;7,All]]

Out[109]= False

Chapter 3 Working with Data and Datasets

131

Duplicate data was programmatically found in the dataset. You can also check for

duplicates by column.

In[110]:= Sales[All,{"Id"}]@DuplicateFreeQ

Out[110]= False

To delete duplicates, the DeletDuplicates function is used. It can be applied to the

dataset, column, or row as a function. The output generated is shown in Figure 3-40.

In[111]:= DeleteDuplicates[Sales] (*Datas[All,{"ID"}]@DuplicateFreeQ*)

Out[111]=

Figure 3-40.  Dataset without duplicates

Chapter 3 Working with Data and Datasets

132

An alternative is to use GroupBy to identify which data is duplicated in the dataset.

Notice in Figure 3-41 that the repeated data is stacked together.

In[112]:= GroupBy[Sales,"Id"]

Out[112]=

Figure 3-41.  Dataset grouped by duplicates

�Joining and Merging Datasets
Combining multiple datasets into one based on shared attributes is a frequent task.

This process can be achieved depending on how a dataset should be joined. The three

different functions that operate on datasets are Join, JoinAcross, and Merge.

Chapter 3 Working with Data and Datasets

133

The first function combines two datasets end-to-end, effectively concatenating them

into a single dataset (see Figure 3-42).

In[113]:= dataset1={<|"a"->1,"b"->2|>,<|"a"->3,"b"->4|>};

dataset2={<|"a"->5,"b"->6|>};

Join[dataset1,dataset2]//Dataset

Out[116]=

Figure 3-42.  Dataset grouped by the Join function

The second function combines datasets on a specified key or keys, similar to how

relational databases join tables based on common keys (see Figure 3-43). Similar to

operations from relational databases like join, left join, right join, inner join, outer join,

and more.

In[117]:= dataset3={<|"ID"->1,"Value"->"A"|>,<|"ID"->2,"Value"->"B"|>};

dataset4={<|"ID"->1,"Score"->95|>,<|"ID"->2,"Score"->90|>};

JoinAcross[dataset3,dataset4,"ID"]//Dataset

Out[119]=

Chapter 3 Working with Data and Datasets

134

Figure 3-43.  Dataset combined by the JoinAcross function

The third function combines datasets, using a function f to combine values with the

same key, returning a single value (see Figure 3-44).

In[120]:= Merge[Dataset[JoinAcross[dataset3,dataset4,"ID"]],Total]

Out[120]=

Figure 3-44.  Dataset combined by the Merge and Total functions of each key

�Customizing a Dataset
Datasets can be customized depending on how you want to show the data. Working with

datasets can be personalized based on preferences. To explore this, the next block loads

example data from the Wolfram reference servers to discover how to personalize data for

your needs. When loading data from the server, depending on your Internet connection,

it might pop up a loading frame trying to access the Wolfram servers.

Let’s load the data by using ExampleData and then choosing statistics of animal

weights and converting the list into a dataset. By using the MaxItem option, you can

display how many rows or columns to exhibit from the dataset. The first four rows and

the first three columns are shown in this example. When viewing the dataset, scroll

Chapter 3 Working with Data and Datasets

135

bars appear on the left and top sides; use them to move over the dataset. Alternatively,

you can align the contents on the left, center, or right sides. In Figure 3-45, only the left

scrollbars appear.

In[121]:= AnimalData=ExampleData[{"Statistics","AnimalWeights"}];

Dataset[AnimalData,MaxItems->{4,3},Alignment->Center] (*To align a

sole column,Alignment-> “Col_name" -> Left}*)

Out[121]=

Figure 3-45.  Animal dataset

The Background option is used to color the dataset’s contents; the colors of the

notation {row, col} are preserved. To paint the whole data, enter only the color. To paint

by row or column, enter the colors as a nested list—that is, {{“color_row1”, “color_row2”,

... }, {“color_col1”, “color_col2”, ... } }. Mixing colors can also be done by nesting the nested

colors. For specific values, the position of the values would need to be entered. The next

example colors the first two columns, as shown in Figure 3-46.

In[122]:= Dataset[AnimalData,MaxItems->{4,3},Background-> {{None},{LightBlue,

LightYellow}},ItemSize->{12}]

Out[122]=

Chapter 3 Working with Data and Datasets

136

Figure 3-46.  Columns 1 and 2 colored

For particular values, the position of the values would need to be entered. Another

option is the size of the items, which is controlled with the ItemSize option. If you want

to edit the same options but with headers, you would use HeaderAlignment for placing

the text left, center, or right; HeaderSize for the size of the titles; and ItemStyle for the

style of the font of the items. Figure 3-47 shows the dataset in bold style.

In[123]:= Dataset[AnimalData,MaxItems->{4,3},Background->{{4,3}->

Yellow},ItemSize->{12},ItemStyle->Bold]

Out[123]=

Figure 3-47.  Dataset with bold style

Another useful option is HiddenItems, which hides items that should not be

displayed. Therefore, to hide row 1 and column 1, use HiddenItems → {“row #”, “col #”}.

Columns can be hidden with their associated labels. Figure 3-48 illustrates the form of

suppressed rows and columns in the dataset. For specific values, nest the value’s position

and try HiddenItems → {{2,3}}.

Chapter 3 Working with Data and Datasets

137

In[124]:= Dataset[AnimalData,MaxItems->{4,3},HiddenItems->{1,1}]

Out[124]=

Figure 3-48.  Column 1 and row 1 suppressed

You can add headers to each column in the new dataset with the Query command.

To rename the columns, the same procedure is applied; the new names would be ruled

to the old names—that is, “New name” → “Animal Name,” as shown in Figure 3-49.

In[125]:= Query[All,<|"Animal Name"->1,"Body Weight"->2,"Brain

Weight"->3|>]@Dataset[AnimalData]

(*for display motives we put row 7 to 9,use All for the whole data set*)

(*or "symbol_of_the_dataset"[All,<|"Animal Name"-> 1,"Body Weight"->2,

"Brain Weight"->3|>]*)

Out[125]=

Chapter 3 Working with Data and Datasets

138

Figure 3-49.  Animal dataset with added column headers

�Generalization of Hash Tables
A hash table is an associative data structure that allows data storage and, in turn,

the rapid retrieval of elements (values) from objects called keys. Hash tables can be

implemented inside arrays, where the main components are the key and the value. The

way to search for an element in the array is by using a hash function, which maps the

keys to the pairs of values and gives you the place where it is in the array (index).

Chapter 3 Working with Data and Datasets

139

In other words, the hash function searches for a certain key, evaluates that key, and

returns an index. This process is known as hashing. Figure 3-50 shows a representative

schema of a hash table.

Figure 3-50.  Graphic representation of a hash table

Inside the hash table, the number of keys and values can go on and on, which is one

of the reasons hash tables are very useful; they can store large amounts of information.

Inside the Wolfram Language, associations can represent hash tables. Primarily, this is

because associations are an abstract data structure with fundamental components such

as keys and values, just like a hash table. This combines the structure of an associative

array and an indexed list, more like a nest of hash arrays. With the crucial property that

associations are immutable, each association-type object is unique and the reference

to one association has no link to another, even though they are referenced to the

same symbol.

Other special commands are available. Let’s first create an association. Nested

associations are defined as associations that have associations within them—in other

words, a key that points to a bucket of values that correspond to keys that have other

values inside (see Figure 3-51).

In[126]:= Asc=<|"User"->

<|"Edgar"-> <|"id"->01, "Parameters"-><|"Active"->True,"Region"->

"LA","Internet Traffic"->"1 GB"|>|>,

<|"Anya"-><|"id"->02,"Parameters"-><|"Active"->False,"Region"->

"MX","Internet Traffic"->"3 GB"|>|>

Chapter 3 Working with Data and Datasets

140

|>|>|>;

Dataset[%]

Out[127]=

Figure 3-51.  Nested associations in the dataset format

Executing operations like accessing items, updating values, and deleting is

supported by the commands associated with keys and values. Remember that Keys

returns the keys of the association and Values the values. Keys only work at the surface

level inside a nested association, as seen in the following code.

In[128]:= Keys[Asc]

Out[128]= {User}

Applying the Keys command returns only the key user. The Keys command needs to

be applied to deeper levels to see the keys inside a nested association, which is achieved

with Map by specifying the sublevel only.

In[129]:= Map[Keys,Asc,#]&/@{{0},{1},{2}}//Column

Out[129]= {User}

<|User->{Edgar,Anya}|>

<|User-><|Edgar->{id,Parameters},Anya->{id,Parameters}|>|>

As seen on the surface level (0), the key is User. The next sublevel has the keys Edgar

and Anya, and the last level has the keys ID and parameters for each of the keys Edgar

and Anya. MapIndexed lets you look inside the whole association and apply Keys to

sublevels to show the predecessors of the keys.

Chapter 3 Working with Data and Datasets

141

In[130]:=

Print["Level 0: "<>ToString@MapIndexed[Keys,Asc,{0}]]

Print["Level 1: "<>ToString@MapIndexed[Keys,Asc,{1}]]

Print["Level 2: "<>ToString@MapIndexed[Keys,Asc,{2}]]

Out[130]=

Level 0: {{}[User]}

Level 1: <|User -> {{Key[User]}[Edgar], {Key[User]}[Anya]}|>

Level 2: <|User -> <|Edgar -> {{Key[User], Key[Edgar]}[id], {Key[User],

Key[Edgar]}[Parameters]}, Anya -> {{Key[User], Key[Anya]}[id], {Key[User],

Key[Anya]}[Parameters]}|>|>

At level 0, only the User key exists, and the predecessor is {}. At level 1, the User

predecessor and the Edgar and Anya keys are values of the User key. At level 2, the

predecessor keys are Edgar/Anya and User for the ID and Parameters keys. In other

words, the expression {Key[User], Key[Anya]}[id] means that ID corresponds to the Anya

key and Anya to the User key, and so on. This is also useful because it means that access

to a value or values of a key is done with the operator form applied to the association

specifying the keys.

In[133]:= Asc["User"]["Edgar"]["id"](*{Key[User],Key[Anya]}[id],*)

Out[133]= 1

As shown, you get the value that corresponds to the ID inside Edgar inside User key.

To see a graphical representation of the previous expression, you can use MapIndexed

to label the positions of the keys and dataset applied, for example, in sublevel 4 (see

Figure 3-52).

In[134]:= Dataset@MapIndexed[Framed[Labeled[#2,#1],FrameMargins->0,

RoundingRadius->5]&,Asc,{4}] (*Try changin the number to see how the

expression changes*)

Out[134]=

Chapter 3 Working with Data and Datasets

142

Figure 3-52.  Dataset representation marking the keys inside the nested
association

Each box contains the values of the predecessor key. This is why 1 GB corresponds

to {Key[User],Key[Edgar],Key[Parameters],Key[Internet Traffic]}. To see the whole

expression, the level of specification is Infinity (see Figure 3-53).

In[135]:=MapIndexed[Framed[Labeled[#2,#1,ImageMargins->0,Spacings->0],

FrameMargins->0,RoundingRadius->5]&,Asc,Infinity]

Out[135]=

Chapter 3 Working with Data and Datasets

143

Figure 3-53.  Framed levels of the keys in a nested association

Values use the same approach as with Keys. To test if a key exists, use KeyExistQ; this

returns true if the key exists. Otherwise, it is false. To test inside deeper levels, use Map.

In[136]:={KeyExistsQ[Asc,"User"],Map[KeyExistsQ["Anya"],Asc,{1}],Map

[KeyExistsQ["Anya"],Asc,{2}]}

Out[136]= {True,<|User->True|>,<|User-><|Edgar->False,Anya->False|>|>}

Another way to test whether a key in a particular form exists inside an association,

use KeyMemberQ—for example, if there is a string pattern key.

In[137]:= KeyMemberQ[Asc["User"]["Anya"],_String]

Out[137]= True

To test if a value exists given a key, use Lookup.

In[138]:= Lookup[Asc["User"]["Anya"],"Parameters"]

Out[138]= <|Active->False,Region->MX,Internet Traffic->3 GB|>

Chapter 3 Working with Data and Datasets

144

To select a key based on criteria, use KeySelect.

In[139]:= KeySelect[Asc["User"]["Anya"],StringQ]

Out[139]= <|id->2,Parameters-><|Active->False,Region->MX,Internet

Traffic->3 GB|>|>

Or use KeyTake to grab a particular key.

In[140]:= KeyTake[Asc["User"]["Anya"]["Parameters"],{"Region","Internet

Traffic"}]

Out[140]= <|Region->MX,Internet Traffic->3 GB|>

To remove a key, use KeyDrop.

In[141]:= KeyDrop[Asc["User"],"Edgar"]

Out[141]= <|Anya-><|id->2,Parameters-><|Active->False,Region->MX,Internet

Traffic->3 GB|>|>|>

To assign a new value, the value associated with the key is assigned with the

new value

In[142]:= Asc["User"]["Edgar"]["Parameters"]["Region"]="CZ"

Out[142]= CZ

Passing this into a dataset, you can look for the new assigned value (see Figure 3-54).

In[143]:= Dataset[Asc]

Out[143]=

Figure 3-54.  Dataset with the region value changed to CZ

Chapter 3 Working with Data and Datasets

145

To add a key and a value to the association, you can insert the new expression by

specifying the position to insert it with the key (see Figure 3-55).

In[144]:= Insert[Asc["User"],"Alexandra"-><|"id"->0,"Parameters"-

><|"Active"->False,"Region"->"RS","Internet Traffic"->"12

GB"|>|>,Key["Edgar"]]//Dataset

Out[144]=

Figure 3-55.  New row added by the key position

�Summary
This chapter continued to build upon the list operations introduced in Chapter 2. You

explored the unique syntax of pure functions in the Wolfram Language and delved

into several methods for creating indexed tables and associations. Additionally, you

transitioned to the powerful capabilities of datasets, which provide a structured and

organized way to handle and analyze data. The chapter wrapped up by providing

insights into the essential components of associations and key-value management.

Chapter 3 Working with Data and Datasets

https://doi.org/10.1007/979-8-8688-0348-2_2

147
© Jalil Villalobos Alva 2024
J. Villalobos Alva, Beginning Mathematica and Wolfram for Data Science,
https://doi.org/10.1007/979-8-8688-0348-2_4

CHAPTER 4

Import and Export
This chapter reviews the import and export of data, including the relevant Wolfram

Language commands and the import and export formats that Mathematica supports.

Experimental data can come from different sources; the way to process this external data

is to import it through Wolfram Language. Data that has been calculated or obtained

externally can be transferred to Mathematica and exported for use on other platforms.

However, Mathematica has tools to handle different data types (numbers, text, audio,

graphics, and images). This chapter focuses on working with numerical and categorical

data, the most frequently used data types for analysis.

Importing data from multiple sources into Mathematica allows you to load data into

a notebook for analysis. The Wolfram Language supports numerous import formats; to

see which are supported, type the dollar symbol ($) accompanied by the ImportFormats

command. Currently, Mathematica supports 256 file formats. As shown in the following

code, new formats have been added and updated since the last version of this book.

In[1]:= Short[$ImportFormats,4](* Length[$ImportFormats] --> 256 formats*)

Out[1]//Short= {3DS,7z,AC,ACO,Affymetrix,AgilentMicroarray,AIFF,ApacheLog,

ArcGRID,ASC,ASE,AU,AVI,Base64,BDF,Binary,BioImageFormat,Bit,BLEND,BMP,

<<216>>,WAV,Wave64,WDX,WebP,WL,WLNet,WMLF,WXF,X3D,XBM,XGL,XHTML,XHTMLMathML,

XLS,XLSX,XML,XPORT,XYZ,ZIP,ZSTD}

There are a lot of formats in the list, including audio, image, and text. But let’s focus

on the text-based formats. To import any file, the Import command is used. Import

receives two arguments: the file’s path and options. Options can vary between file

format, elements, and other types of objects in Mathematica, like cloud and local. To

select a file path, head to the toolbar and then to Insert ➤ File Path. A file explorer should

appear; search the file you would like to import and select it. The path is enclosed in

apostrophes like a string.

https://doi.org/10.1007/979-8-8688-0348-2_4#DOI

148

Another option is the named file in the Insert menu. In contrast to File Path, the File

option introduces the file’s contents directly without receiving prior formatting from

Mathematica. File is better suited for importing notebooks or other Wolfram formats.

Note  The next series of imported files are included in the source code. The files
are located in the host Desktop folder for ease of use.

Let’s look at transferring a simple text file. First, select the HelloWorld.txt file path

using the Import command.

In[2]:= Import["/Users/macosx/Desktop/Hello_World.txt"]

Out[2]= Hello world!

Note  Based on your operating system, the file path shows forward slashes
(Linux, macOS) or back slashes (Windows file system delimiter).

You have imported your first file. Mathematica recognizes it based on the file extension

and then imports it automatically. If you import a file with no file extension but you know

the type of format used in the file, you can choose the proper format as an option.

In[3]:= Import["/Users/macosx/Desktop/Hello_World.txt","Text"]

Out[3]= Hello world!

�Importing Files
Importing simple text files is easy and intuitive. However, based on the type of file you

want to import, the options and format to display the data inside Mathematica can vary.

�CSV and TSV Files
This section focuses on how to import files into Mathematica. The examples work

with comma-separated value (CSV) files, tab-separated value (TSV) files, and Excel

spreadsheet-style files. CSV and TSV files are files that include text and numeric values.

In CSV files, fields are separated by a comma; each row is one line record. Meanwhile, in

TSV files, each record is separated with a tab space.

Chapter 4 Import and Export

149

With Import, you can import TSV or CSV files with the .tsv or .csv file extension,

respectively. Let’s first import a regular CSV file by introducing the file path and then the

CSV option.

In[4]:= Import["/Users/macosx/Desktop/Grocery_List.csv","CSV"]

Out[4]= {{id,grocery item,price,sold items,sales per day},{1,milk,4$,4,4

Jun 2019},{2,butter,3$,2,6 Jun 2019},{3,garlic,2$,1,7 Jun

2019},{4,apple,2$,4,1 Jun 2019},{5,orange,3$,5,8 Jun 2019},{6,orange

juice,5$,2,8 Jun 2019},{7,cheese,5$,2,6 Jun 2019},{8,cookies,2$,5,9 Jun

2019},{9,grapes,4$,3,21 Jun 2019},{10,potatoe,2$,5,26 Jun 2019}}

Now that the contents of the file are imported, depending on the format of the

contents, the data is presented as a nested list or not. The elements of the nested list

represent rows, and the elements of the whole list represent columns.

When importing data, parts of the data can be imported—that is, if you only need a

row or a column.

In[5]:=Import["/Users/macosx/Desktop/Grocery_List.csv",{"Data",5;;10}]

Out[5]= {{4,apple,2$,4,1 Jun 2019},{5,orange,3$,5,8 Jun 2019},{6,orange

juice,5$,2,8 Jun 2019},{7,cheese,5$,2,6 Jun 2019},{8,cookies,2$,5,9 Jun

2019},{9,grapes,4$,3,21 Jun 2019}}

The previous example imported data from row 5 to row 10.

You can use the following form when you are only interested in single values.

In[6]:=Import["/Users/macosx/Desktop/Grocery_List.csv",{"Data",6,2}]

Out[6]= orange

Depending on the maximum bytes of the expression, Mathematica truncates the

imported data and shows you a suggestion box of a simplified version of the whole data.

To see the maximum byte size, go to Edit ➤ Advanced tab, and in “Maximum output size

before truncation,” enter the new number of bytes before truncation. This preference

applies to every output expression in Mathematica.

Let’s use the same approach to import TSV files. With the short command, you can

show a part of the data, just in case the data is extensive.

In[7]:= Short[Import["/Users/macosx/Desktop/Color_table.tsv","TSV"]]

(*Rest,to view the remain*)

Out[7]//Short= {{number,color},{1,red},<<7>>,{9,magenta},{10,brown}}

Chapter 4 Import and Export

150

Consequently, in the result, a seven appears among the elements of the imported

file. This result happens because the file contains seven elements that are not visible.

Now that you have learned how to import CSV and TSV files, you can display the

imported data in table format using Grid or TableForm.

In[8]:= Import["/Users/macosx/Desktop/Grocery_List.csv","CSV"];

Grid[%]

Out[9]=

id grocery item price sold items sales per day

1 milk 4$ 4 4 Jun 2019

2 butter 3$ 2 6 Jun 2019

3 garlic 2$ 1 7 Jun 2019

4 apple 2$ 4 1 Jun 2019

5 orange 3$ 5 8 Jun 2019

6 orange juice 5$ 2 8 Jun 2019

7 cheese 5$ 2 6 Jun 2019

8 cookies 2$ 5 9 Jun 2019

9 grapes 4$ 3 21 Jun 2019

10 potato 2$ 5 26 Jun 2019

Once you have imported the file, data can be treated as a list or any other structure

inside the notebook. Parts of the data are named after the imported data, and the

contents can now be extracted, as discussed in later chapters.

�XLSX Files
The following example shows how to import data, display data as a spreadsheet, and

transform it into a dataset. Let’s use the XLSX grocery list file rather than the CSV file for

exemplification purposes. To start, you need first to import the data. To start, you need

first to import the data.

In[10]:= path="/Users/macosx/Desktop/Grocery_List.xlsx";

Import[path,"Data"]

Out[11]= {{{id,grocery item, price, sold items,sales per day},{1.,milk,4

$,4.,4-Jun-2019},{2.,butter,3$,2.,6-Jun-2020},{3.,garlic,2

$,1.,7-Jun-2021},{4.,apple,2 $,4.,1-Jun-2022},{5.,orange,3

Chapter 4 Import and Export

151

$,5.,8-Jun-2023},{6.,orange juice,5 $,2.,8-Jun-2024},{7.,cheese,5

$,2.,6-Jun-2025},{8.,cookies,2 $,5.,9-Jun-2026},{9.,grapes,4 $,3.,21-Jun-20

27},{10.,potatoe,2 $,5.,26-Jun-2028}}}

As can be seen, the imported data appears as a nested list because Excel files can

have multiple sheets inside a file. For this case, you have only one sheet. To see the

number of sheets and the name of the sheets, use SheetCount and Sheets, respectively.

In[12]:= Import[path,#]&/@{"SheetCount","Sheets"}

Out[12]= {1,{Grocery_List}}

To show data as a spreadsheet, you use the TableView command (see Figure 4-1).

The following format is used as an option to select a sheet: {“Data,” # of sheet}. To select

a character encoding, use the CharacterEncoding option. Also, custom rows or columns

can be imported, preserving the format: {“Data,” # of the sheet, # row, # column}.

In[13]:= TableView[Import[path,{"Data",1},CharacterEncoding->"UTF-8"]]

Out[13]=

Figure 4-1.  Spreadsheet view with TableView command

Note  With “Data”, import the data as a nested list.

Chapter 4 Import and Export

152

You can now see the data in spreadsheet format. Now, with TableView, you can view

the data like in spreadsheet software, with selection tools, scrollbars, and text editing of

the contents. However, one of the downsides is that with TableView, you cannot directly

access the file’s contents; neither can calculations be performed. To do the latter, you can

transform it into a dataset.

You can convert data into a dataset for better handling in Mathematica. By typing

the “Dataset” as the option instead of “Data”, the imported file becomes a dataset but

without headers (see Figure 4-2). To add the headers, use the HeaderLines option and

choose the specification of the header by row or column type HeadLines → {# row, #

column}. The file used is Grocery List 2.xlxs.

In[14]:=file="/Users/macosx/Desktop/Grocery_List_2.xlsx";Import[file,

{"Dataset",1},HeaderLines->1]

Out[14]=

Figure 4-2.  Incomplete Grocery List dataset

You have imported incomplete data. EmptyField is implemented as a rule of

transformation to treat empty spaces. If the data has empty spaces and no rule is

expressed, the spaces are treated as empty strings. Figure 4-3 shows the output.

In[15]:= Import[file,{"Dataset",1},"EmptyField"->"NaN",HeaderLines->1]

Out[15]=

Chapter 4 Import and Export

153

Figure 4-3.  NaN-filled dataset

�JSON Files
The JavaScript Object Notation (JSON) file extension is a data representation file. JSON

files store data as an ordered list of values, and a collection of value pairs constitutes

each list. To import a JSON file, specify the two options: JSON or RawJSON.

In[16]:=json=Import["/Users/macosx/Desktop/Sports_cars.json","JSON"]

Out[16]=

{{Model->Enzo Ferrari,Year->2002,Cylinders->12,Horsepower HP->660,Weight

Kg->1255},{Model->Koenigsegg CCX,Year->2000,Cylinders->8,Horsepower HP->

806,Weight Kg->1180},{Model->Pagani Zonda,Year->2002,Cylinders->12,

Horsepower HP->558,Weight Kg->1250},{Model->McLaren Senna,Year->2019,

Cylinders->8,Horsepower HP->800,Weight Kg->1309},{Model->McLaren 675 LT,

Year->2015,Cylinders->8,Horsepower HP->675,Weight Kg->1230},{Model->

Bugatti Veyron,Year->2006,Cylinders->16,Horsepower HP->1001,Weight Kg->

1881},{Model->Audi R8 Spyder,Year->2010,Cylinders->10,Horsepower HP->525,

Weight Kg->1795},{Model->Aston Martin Vantage,Year->2009,Cylinders->8,

Horsepower HP->926,Weight Kg->1705},{Model->Maserati Gran Turismo,Year->

2010,Cylinders->8,Horsepower HP->405,Weight Kg->1955},{Model->Lamborghini

Aventador S,Year->2017,Cylinders->12,Horsepower HP->740,Weight Kg->1740}}

Chapter 4 Import and Export

154

Given the nature of the JSON file structure, Mathematica recognizes each structure

and interprets each key to its values when importing them. As you saw in the previous

output, keys correspond to Model, Year, Cylinders, Horsepower, and Weight, and each

key has its values. Everything said so far explains that all records are in a nested list.

This outcome leads you to conclude that if you want to present it in a dataset, you

cannot directly apply Association, and Association suppresses repeated keys. You

must create an association for each record since it is a nested list, which you achieve

with Map, specifying the depth level of the Association command. This is shown in the

following code.

In[17]:= Map[Association,Json,1]

Out[17]= {<|Model->Enzo Ferrari,Year->2002,Cylinders->12,Horsepower HP->

660,Weight Kg->1255|>,<|Model->Koenigsegg CCX,Year->2000,Cylinders->8,

Horsepower HP->806,Weight Kg->1180|>,<|Model->Pagani Zonda,Year->2002,

Cylinders->12,Horsepower HP->558,Weight Kg->1250|>,<|Model->

McLaren Senna,Year->2019,Cylinders->8,Horsepower HP->800,Weight Kg->

1309|>,<|Model->McLaren 675 LT,Year->2015,Cylinders->8,Horsepower HP->675,

Weight Kg->1230|>,<|Model->Bugatti Veyron,Year->2006,Cylinders->16,

Horsepower HP->1001,Weight Kg->1881|>,<|Model->Audi R8 Spyder ,Year->2010,

Cylinders->10,Horsepower HP->525,Weight Kg->1795|>,<|Model->Aston Martin

Vantage,Year->2009,Cylinders->8,Horsepower HP->926,Weight Kg->1705|>,

<|Model->Maserati Gran Turismo,Year->2010,Cylinders->8,Horsepower HP-

>405,Weight Kg->1955|>,<|Model->Lamborghini Aventador S,Year->2017,

Cylinders->12,Horsepower HP->740,Weight Kg->1740|>}

You already have each record as an association, and now you can convert it to a

dataset, as shown in Figure 4-4.

In[18]:= Dataset[%]

Out[18]=

Chapter 4 Import and Export

155

Figure 4-4.  Cars dataset

You can now handle a JSON file as a dataset. However, there is another way to do

it without requiring as much calculation as before. When importing the file, you must

import it as RawJson because, with RawJson, the Wolfram Language identifies and

imports each record as a list of associations rather than a sole nested list, as shown here.

This reason is because of the nature of the key and value of the JSON file extension.

In[19]:= Import["/Users/macosx/Desktop/Sports_cars.json","RawJSON"]

Out[19]=

{<|Model->Enzo Ferrari,Year->2002,Cylinders->12,Horsepower HP->660,Weight

Kg->1255|>,<|Model->Koenigsegg CCX,Year->2000,Cylinders->8,Horsepower HP->

806,Weight Kg->1180|>,<|Model->Pagani Zonda,Year->2002,Cylinders->12,

Horsepower HP->558,Weight Kg->1250|>,<|Model->McLaren Senna,Year->2019,

Cylinders->8,Horsepower HP->800,Weight Kg->1309|>,<|Model->McLaren 675

LT,Year->2015,Cylinders->8,Horsepower HP->675,Weight Kg->1230|>,<|Model->

Bugatti Veyron,Year->2006,Cylinders->16, Horsepower HP->1001,Weight Kg->

1881|>,<|Model->Audi R8 Spyder ,Year->2010,Cylinders->10,Horsepower HP->

525,Weight Kg->1795|>,<|Model->Aston Martin Vantage,Year->2009,

Cylinders->8,Horsepower HP->926,Weight Kg->1705|>,<|Model->Maserati Gran

Turismo,Year->2010,Cylinders->8,Horsepower HP->405,Weight Kg->1955|>,

<|Model->Lamborghini Aventador S,Year->2017,Cylinders->12,Horsepower

HP->740,Weight Kg->1740|>}

Chapter 4 Import and Export

156

The file is imported as an association in each record, and you can convert it into a

dataset.

In[20]:=Cars=Dataset[%];

As a complement, once the data is imported, you can perform operations on the

dataset, such as ordering the models by year from low to high.

In[21]:=Cars[SortBy[#Year&]];

Note  The previous example is also possible using the query command. (Query
[SortBy[#Year &]][Cars]).

�Web Data
On the other hand, web data is also supported with Import. Instead of inserting the file

path, the URL site is inserted as the argument of the Import command. The next example

imports a simple text file from the National Oceanic and Atmospheric Administration

(NOAA). The text file contains the list of country codes used for the Integrated Global

Radiosonde Archive (IGRA). The parent directory where files are located is https://

www1.ncdc.noaa.gov/pub/data/igra/, but let’s only import the country list file. You

need an Internet connection to make this work.

In[22]:=Short[Import["https://www1.ncdc.noaa.gov/pub/data/igra/igra2-

country-list.txt","HTML"]]

Out[22]//Short= AC Antigua and Barbuda AE United Arab Emirates AF ... WS

Samoa YM Yemen ZA Zambia ZI Zimbabwe ZZ Ocean

The file is a plain text, but you can change how the data is imported by inserting a file

format as an option. You can import it as a CSV file, for instance.

In[23]:=Short[Import["https://www1.ncdc.noaa.gov/pub/data/igra/igra2-

country-list.txt","CSV"]]

Out[23]//Short= {{AC Antigua and Barbuda},{AE United Arab

Emirates},<<215>>,{ZI Zimbabwe},{ZZ Ocean}}

Chapter 4 Import and Export

https://www1.ncdc.noaa.gov/pub/data/igra/
https://www1.ncdc.noaa.gov/pub/data/igra/

157

This is useful when you try to make computations with the data imported.

Alternatively, you can use URL commands to check the status of an online file and then

download it. To check the status of the online file, use URLRead. When the file is online,

you should get an HTTP response object like the one shown in Figure 4-5. You can even

perform this approach before importing data, ensuring the content is available online.

In[24]:= URLRead["https://www1.ncdc.noaa.gov/pub/data/igra/igra2-country-

list.txt"]

Out[24]=

Figure 4-5.  HTTPResponse object of the URL entered

Now that you know the status, you can download the data file with URLDownload.

In[25]:= URLDownload["https://www1.ncdc.noaa.gov/pub/data/igra/igra2-

country-list.txt"]

Out[25]=

You should get a file object with the file’s location (see Figure 4-6), the name, and the

extension; in this case, it is in a temporary folder.

Figure 4-6.  File object with the locations of the file downloaded

Click the double chevron icon to open the file in an external viewer.

�Semantic Import
So far, you have seen how to import files of different formats, but there is another tool

called SemanticImport that allows you to import files semantically and returns a dataset

as a result. Let’s looks at a simple example with the CSV file.

In[26]:= sImprt=SemanticImport["/Users/macosx/Desktop/Grocery_List.csv"]

Out[26]=

Chapter 4 Import and Export

158

Figure 4-7 shows that when you use semantic import Mathematica, it imports the

data in the form of a dataset, and when it does this, it recognizes some quantities.

Figure 4-7.  File imported as a dataset with SemanticImport

These quantities correspond to the magnitude and its units, such as in the case of

the elements of the column of price and sales per day. When dealing with quantities, the

color of the elements changes; as you see in the dataset, the elements appear differently

from the other contents because a semantic-type object now represents them. Semantic

objects include quantities, entities, dates, and geolocation. In other words, they are

interpretations made by the freeform interpreter related to the Wolfram Knowledgebase.

Note  To check if the data is recognized as a quantity or semantic-type object,
use Normal[sImprt]; you should see the entities colored differently.

In the case of imported data, there are two date-type objects, which you saw in the

first chapter, and quantity type. It should be understood that to work with quantities, you

must understand where they come from.

Chapter 4 Import and Export

159

�Quantities
The Quantity command converts a magnitude with units to a quantity type to convert

the magnitude with their respective units; the magnitude is entered first, followed by its

units in string type. When you do this, Mathematica displays the autocomplete menu as

on other occasions. The following example shows it.

In[27]:= Quantity[2,"USDollars"]

Out[27]= $2

Thus, it is transformed into a quantity type. When you hover over the result, an ad

is displayed, marking that a result is already a unit. In this case, it is a unit of US dollars.

Now, if you check the head of the expression, it shows that it is a type of quantity.

Note  Quantities are shown in light brown color.

In[28]:= Quantity[2,"USDollars"]//Head

Out[28]= Quantity

You can also use the inline freeform input in the menu bar: Insert ➤ Inline Freeform

Input. This input type is associated with the Wolfram Alpha search engine , so the inline

freeform input transforms natural language into Wolfram Language input.

Inside the box, you’ll find the magnitude and quantity written. One of the advantages

of this type of input is that it allows for using natural language. The following example

writes the amount of 77 min, which means 77 minutes. Figure 4-8 shows the input cell of

the inline freeform input.

In[29]:=

Figure 4-8.  Free inline freeform input for the quantity of 77 minutes

Out[29]= 77min

Chapter 4 Import and Export

160

To run the code, click ENTER since it gives you a result. Some tabs appear where

you can click a submenu or a checkmark. If you click the checkmark, it is to accept the

interpretation made. If you believe that the interpretation is different, you can click the

other option, which is alternate interpretations, and it shows a small pop-up where it

lists different interpretations. Figure 4-9 show the pop-up for the example.

Figure 4-9.  Options for the quantity entered

Once the interpretation is accepted, the result changes color and is a quantity-type

object. And it can be used like any other quantity-type object.

When you have quantities, you cannot make operations between numbers; quantities

are already different types. For these, there are two options: convert the data to quantities

or extract the magnitude of a quantity. The QuantityMagnitude command is used to extract

the magnitude. Make sure to copy the entity (light brown output), not the pure text 77 min.

In[30]:= {QuantityMagnitude[77 min],Head[%]}

Out[30]= {77,Quantity}

You have already extracted the magnitude, and it is already an integer. In the

supposed case of wanting the units, the QuantityUnit command extracts the units.

In[31]:= QuantityUnit[77 min]

Out[31]= Minutes

�Datasets with Quantities
Another aspect to emphasize: To carry out operations, the concept of performing

arithmetic operations among physical quantities is maintained; otherwise, the operation

is not possible, and you get an error in which the units do not agree. When you carry out

an operation between quantities, the result is also of the quantity type.

Chapter 4 Import and Export

161

In[32]:= {77min-77min,77min+77min,77min*77min,77min/77min,77min*3m}

Out[32]= {0min,154min,5929(min)^2,1,231m min}

This example shows how the results are of type quantity. Except for the division, it is

already a quotient between the same units. The last one is 231 meters per minute.

Returning to the imported data, you can extract the data from the price column, as

shown in Figure 4-10.

In[33]:= sImprt[[All,"price"]]

Out[33]=

Figure 4-10.  Price column

If you want to have them in a list, you must use the Normal command.

In[34]:= Normal[%]

Out[34]= {$ 4,$ 3,$ 2,$ 2,$ 3,$ 5,$ 5,$ 2,$ 4,$ 2}

The result is the list but in quantity type. It is fair to say that you can do operations

with quantities, but if what matters are the magnitudes, you can extract them. It’s worth

noting that working with magnitudes alone is generally faster and more efficient, which

reduces the overhead or additional quantity processing. Unless a specific quantity is

required, converting to pure numbers may be preferable.

Let’s look at how.

In[35]:= QuantityMagnitude[#]&[%]

Out[35]= {4,3,2,2,3,5,5,2,4,2}

You are now working with only the magnitudes.

You can even work with dates and quantities, as shown in Figure 4-11, starting by

displaying the ID of the products and the date they were sold.

In[36]:= sImprt[[All,{"id","sales per day"}]]

Out[36]=

Chapter 4 Import and Export

162

Figure 4-11.  ID and sales per day columns

Having done this, you can extract the values and work directly with the date

object types.

In[37]:= Normal[Values[%]]//InputForm

Out[37]//InputForm=

{{1, DateObject[{2019, 6, 4}, "Day"]},

 {2, DateObject[{2019, 6, 6}, "Day"]},

 {3, DateObject[{2019, 6, 7}, "Day"]},

 {4, DateObject[{2019, 6, 1}, "Day"]},

 {5, DateObject[{2019, 6, 8}, "Day"]},

 {6, DateObject[{2019, 6, 8}, "Day"]},

 {7, DateObject[{2019, 6, 6}, "Day"]},

 {8, DateObject[{2019, 6, 9}, "Day"]},

 {9, DateObject[{2019, 6, 21}, "Day"]},

 {10, DateObject[{2019, 6, 26}, "Day"]}}

Each value represents a date using DateObject, which is easily converted to numeric

values using AbsoluteTime. It is handy for numerical operations involving dates, making

the data handling more flexible and efficient.

Chapter 4 Import and Export

163

Note  You should get the date object when testing the code instead of the pure
word; here, the InputForm is used to avoid image conflicts.

Knowing this, you can make an association between the IDs of each product and

when it was sold, applying the Rule command inside the nested list and creating the

associations.

In[38]:= Association[Apply[Rule,%,1]]//InputForm

Out[38]//InputForm=

<|1 -> DateObject[{2019, 6, 4}, "Day"],

 2 -> DateObject[{2019, 6, 6}, "Day"],

 3 -> DateObject[{2019, 6, 7}, "Day"],

 4 -> DateObject[{2019, 6, 1}, "Day"],

 5 -> DateObject[{2019, 6, 8}, "Day"],

 6 -> DateObject[{2019, 6, 8}, "Day"],

 7 -> DateObject[{2019, 6, 6}, "Day"],

 8 -> DateObject[{2019, 6, 9}, "Day"],

 9 -> DateObject[{2019, 6, 21}, "Day"],

 10 -> DateObject[{2019, 6, 26}, "Day"]|>

To illustrate this, create a visualization in a timeline, as shown in Figure 4-12,

marking the product sold and the date of its sale.

In[39]:= TimelinePlot[%]

Out[39]=

Figure 4-12.  Timeplot

Chapter 4 Import and Export

164

The date of each grocery item sold is shown by ID. A tooltip shows the exact date

when the cursor is passed over the number in the timeline.

The idea is that when you use SemanticImport, you can integrate different forms

of the Wolfram Language and how you can use this to your advantage when importing

data. Semantic import makes it possible to compare data with other selected data.

SemanticImport provides you with tools to work among various types of semantic

objects. What is essential to observe is that instead of importing standard text, you can

import currency types, dates, and any magnitude with the respective unit, as in the

previous examples. This allows that data to be associated with different commands

within the Wolfram Language.

�Costume Import (Dealing with Large Datasets)
Having said all this about semantic import, you can import data and choose how each

column in the imported file should be interpreted. However, based on the same idea that

you saw earlier, with semantic import, you can also choose what data to import (e.g., if it

is only one column or several), as illustrated in Figure 4-13.

In[40]:= SemanticImport["/Users/macosx/Desktop/Grocery_List.csv",{"Integer",

"String","Currency","Real","Date"}]

Out[40]=

id grocery item price sold items sales per day

1 milk $ 4 4.0 Tue 4 Jun 2019

2 butter $ 3 2.0 Thu 6 Jun 2019

3 garlic $ 2 1.0 Fri 7 Jun 2019

4 apple $ 2 4.0 Sat 1 Jun 2019

5 orange $ 3 5.0 Sat 8 Jun 2019

6 orange juice $ 5 2.0 Sat 8 Jun 2019

7 cheese $ 5 2.0 Thu 6 Jun 2019

8 cookies $ 2 5.0 Sun 9 Jun 2019

9 grapes $ 4 3.0 Fri 21 Jun 2019

10 potato $ 2 5.0 Wed 26 Jun 2019

Chapter 4 Import and Export

165

Figure 4-13.  Dataset with excluded rows

With this result, observe that the first column imported contains integers, the second

contains text, the third contains a currency type quantity, the fourth contains a real

number, and the last contains a date object. Having done this, it is possible in the same

way that with spreadsheet files, you can import certain types of information in list form,

either by column or by row. The following example imports rows 1 through 5.

In[41]:=SemanticImport["/Users/macosx/Desktop/Grocery_List.

csv",Automatic,"Rows"][[1;;5]]//InputForm

Out[41]//InputForm= {{1, "milk", Quantity[4, "USDollars"], 4,

DateObject[{2019, 6, 4}, "Day"]}, {2, "butter", Quantity[3, "USDollars"],

2, DateObject[{2019, 6, 6}, "Day"]}, {3, "garlic", Quantity[2,

"USDollars"], 1, DateObject[{2019, 6, 7}, "Day"]}, {4, "apple", Quantity[2,

"USDollars"], 4, DateObject[{2019, 6, 1}, "Day"]}, {5, "orange",

Quantity[3, "USDollars"], 5, DateObject[{2019, 6, 8}, "Day"]}}

As indicated, columns can also be imported from columns 1 to 2.

In[42]:=SemanticImport["/Users/macosx/Desktop/Grocery_List.

csv",Automatic,"Columns"][[1;;2]]

Out[42]= {{1,2,3,4,5,6,7,8,9,10},{milk,butter,garlic,apple,orange,orange ju

ice,cheese,cookies,grapes,potato}}

It is necessary to emphasize that if you want to exclude data, importing with the

ExcludedLines statement is recommended. For example, exclude rows 9 and 10,

remembering that the titles are in row 1, as shown in Figure 4-13.

Chapter 4 Import and Export

166

In[43]:=SemanticImport["/Users/macosx/Desktop/Grocery_List.csv",ExcludedLin

es->{{10},{11}}]

Out[43]=

When working with large datasets, it’s crucial to manage memory usage. Review if

your system can handle big sizes of data. If it’s too large to import at once, try importing

it in smaller pieces and filtering/managing the data as needed. The following example

effectively selects the first ten buildings (see Figure 4-14) from the buildings.dat dataset

based on the specified condition using a pure function within Select.

In[44]:= SemanticImport["ExampleData/buildings.dat",<|"Name"->

Automatic,"City"->Automatic,"Country"->Automatic,"Year"->

Automatic|>,HeaderLines->1];

Select[%,#[[4]]<=2000&][[1;;10]]

Out[45]=

Figure 4-14.  Buildings dataset with selected rows

To filter the data dataset based on the condition that the Year column (index 4) is less

than or equal to 2000. Then, use [[1;; 10]] to select the first ten elements from the filtered

dataset, which are the first ten buildings that meet the condition.

�Export
Mathematica supports many formats; to view all supported formats, type

$ExportFormat.

Chapter 4 Import and Export

167

In[46]:= Short[$ExportFormats,5]

Out[46]//Short= {3DS,AC,ACO,AIFF,ASE,AU,AVI,Base64,Binary,Bit,BLEND,BMP,

BREP,BSON,Byte,BYU,BZIP2,C,CDF,<<167>>,WDX,WebP,WL,WLNet,WMLF,WXF,X3D,XBM,

XGL,XHTML,XHTMLMathML,XLS,XLSX,XML,XPORT,XYZ,ZIP,ZPR,ZSTD}

Exporting data is carried out using the Export command. Export has the form

Export[“directory path,” expr, “format”].

First, you need to set up a working directory. If not, the file is exported to the default

Mathematica working directory. To see the working default directory, use Directory.

In[47]:= Directory[]

Out[47]= /Users/macosx

In this case, the default directory is the Desktop folder.

Two commands are key; one is SetDirectory, whose argument is the path of the new

working directory, and the other is NotebookDirectory, which is the file’s location.

First, let’s set the new working directory to export files to the notebook location.

Using the notebook directory as the argument on SetDirectory, you tell Mathematica

that the new working directory is the location of the notebook in which you are currently

working.

In[48]:= SetDirectory[NotebookDirectory[]]

Out[48]= /Users/macosx/Desktop

Now that you have set up a new directory, you can export data created in

Mathematica. The next example exports a list of prime numbers from 1 to 10 as a table

in a text file and a CSV file. An option applies as well as Import, but if the file extension is

added, it is not compulsory to write the format option.

Note  There is no restriction about whether to assign a name to the list of data or
to create the data directly in the export.

In[49]:= mydata=Table[Prime[i],{i,1,10}];

{Export["New_File.txt",mydata,"Table"], Export["New_File.csv",mydata]}

Out[50]= {New_File.txt,New_File.csv}

Chapter 4 Import and Export

168

The output generates the name of the new file exported. An alternative is manually

entering the desired location of the file instead of setting a new working directory; in this

case, Desktop was set as the new location.

In[51]:= Export["/Users/macosx/Desktop/New_File.TSV",mydata,"TSV"]

Out[51]= /Users/macosx/Desktop/New_File.TSV

Now that you have exported the data into a new location, the output is the full path

of the new file. If you want to open the file from Mathematica, you can use SystemOpen.

This command opens the operating system explorer.

In[52]:= SystemOpen["/Users/macosx/Desktop/New_File.TSV"]

SystemOpen lets you open the notebook directory folder to open other files inside

the notebook directory.

In[53]:= SystemOpen[NotebookDirectory[]]

On the other hand, when dealing with tabular data, it can be exported as a

spreadsheet. The next example export a tabular data structure and then export it into a

spreadsheet format.

To create tabular data, let’s use the Table command.

In[54]:=

tabD1=Table[i,{i,4}];

tabD2=SetPrecision[Table[i/11,{i,4}],3];

Now that you have a set of coordinates, you can export the data to different sheets by

typing the reference name of the data into a list of options: {data_sheet 1,data_sheet 2, ...}

In[56]:= Export["Tabular_data.xls",{{tabD1},{tabD2}}]

Out[56]= Tabular_data.xls

By opening the file with a spreadsheet viewer, you should get that TabD1 is in sheet 1

and TabD2 is in sheet 2.

To customize the name of the sheets, you need to enter the names as a list of rules

with the rule operator (➤).

In[57]:= Export["Tabular_data_2.xls",{"Page number 1"->tabD1,"Page number

2"->tabD2}]

Out[57]= Tabular_data_2.xls

Chapter 4 Import and Export

169

If you open the file, now you should have two sheets with the names you have set.

In addition to this, there is the possibility to add the same data in a single

spreadsheet. You only have to enclose the data you want in the same sheet in curly

braces to do this.

In[58]:= Export["New_data.xls",Transpose[{tabD1,tabD2}]]

Out[58]= New_data.xls

After opening the file, you should see something like the following code.

In[59]:= Grid[Transpose[{tabD1,tabD2}]]

Out[59]=

1 0.0909

2 0.182

3 0.273

4 0.364

You can even export tables.

In[60]:= table1={{"Dog","Wolf"},{"Cat","Leopard"},{"Pigeon","Shark"}};

Export["Animal_table.xls",table1]

Out[61]= Animal_table.xls

�Other Formats
By advancing the topic, it is possible to export the data to simple formats such as TXT, DAT,

CSV, and CSV. To do this, you only have to put the path of the file where you want it to be

exported, along with the name of the new file, followed by the extension of the desired file.

The second argument writes the data to be exported or the variable that contains the data.

The third argument is what designates the format you want the data to import.

Let’s look at the following example, which exports new data to text and DAT formats.

In this case, you only write the file’s name, which indicates that you want it to be

exported to the working directory established earlier, corresponding to the notebook’s

directory.

In[62]:= newD=Table[{i+j,i*j},{i,1,5},{j,1,5}];

{Export["File_text.txt",newD,"Text"],Export["File_dat.dat",newD,"Table"]}

Out[63]= {File_text.txt,File_dat.dat}

Chapter 4 Import and Export

170

It is advisable to pause for a moment. As shown in the earlier code, the Table format

is used for the DAT file. This is because a Table is used so that the exported data becomes

an expression in the Wolfram Language. After you have exported, verify that the files

have been exported. Likewise, you can choose the format for a file. For example, instead

of typing text, you export it in the TSV format.

In[64]:= Export["File_text.txt",newD,"TSV"]

Out[64]= File_text.txt

Similarly, you can export CSV and TSV files.

In[65]:={Export["File_csv.csv",newD,"CSV"],Export["File_tsv.

tsv",newD,"TSV"]}

Out[65]= {File_csv.csv,File_tsv.tsv}

It is possible to add titles to the columns of the data for when they are exported,

either CSV or TSV.

In[66]:= Export["File_csv.csv",newD,"CSV",TableHeadings->{"column

1","column 2","column 3","column 4","column 5"}]

Out[66]= File_csv.csv

It is also possible to define a list of names for the columns as follows.

In[67]:= labels={"Coordinates 1","Coordinates 2","Coordindates

3","Coordinates 4","Coordindates 5"};Export["File_csv.csv",newD,"CSV",

TableHeadings->labels]

Out[67]= File_csv.csv

In the same way, you can export datasets to known formats. Let’s use automobile

braking distance statistics based on speed. For this, the data is loaded using

the ExampleData command. Inside this, search “Statistics”; within that, search

“CarStoppingDistances”.

In[68]:= spData=ExampleData[{"Statistics","CarStoppingDistances"}]

Out[68]={{4,2},{4,10},{7,4},{7,22},{8,16},{9,10},{10,18},{10,26},{10,34},

{11,17},{11,28},{12,14},{12,20},{12,24},{12,28},{13,26},{13,34},{13,34},

{13,46},{14,26},{14,36},{14,60},{14,80},{15,20},{15,26},{15,54},{16,32},

{16,40},{17,32},{17,40},{17,50},{18,42},{18,56},{18,76},{18,84},{19,36},

{19,46},{19,68},{20,32},{20,48},{20,52},{20,56},{20,64},{22,66},{23,54},

{24,70},{24,92},{24,93},{24,120},{25,85}}

Chapter 4 Import and Export

171

To get the dataset’s columns and a description, add Description and

ColumnDescriptions.

In[69]:= ExampleData[{"Statistics","CarStoppingDistances"},#]&/@{"Descripti

on","ColumnDescriptions"}

Out[69]= {Car stopping distances as a function of speed.,{Speed in miles

per hour.,Stopping distance in feet.}}

Continuing the exploration, you see that the first numbers represent the speed in

miles per hour, and the second numbers represent the distance in feet.

Note  For more information, add properties as the second argument to
ExampleData.

Moving forward in the exercise, you can add the column titles. This distinguishes

each data type when you build the dataset (see Figure 4-15).

In[70]:= spDataset=Dataset[spData,Background->LightBlue][All,<|#1->1,#2->

2|>]&["Speed in miles per hours","Stopping distance in feet"]

Out[70]=

Chapter 4 Import and Export

172

Figure 4-15.  CarStoppingDistances dataset

You have finished the creation of the dataset. This data and the respective column

titles can now be exported to a CSV format.

In[71]:= Export["Dataset_csv.csv",spDataset,"CSV"]

Out[71]= Dataset_csv.csv

Chapter 4 Import and Export

173

If the export is successful, you should have a CSV file in the correct format. For the

case of a TSV file, see the following form.

In[72]:= Export["Dataset_tsv.tsv",spDataset,"TSV"]

Out[72]= Dataset_tsv.tsv

�XLS and XLSX Formats
It is worth distinguishing that to export datasets to spreadsheet formats such as XLS or

XLSX, you should work the dataset as a list since exporting the dataset directly would

result in exporting associations in a single cell, and you are not interested in that.

Regarding the second point, since you have the dataset, to extract the values, you use

the Normal command, which converts the dataset into a normal expression, followed by

extracting the values from the braces with Values.

In[73]:= Values@Normal@spDataset

Out[73]={{4,2},{4,10},{7,4},{7,22},{8,16},{9,10},{10,18},{10,26},{10,34},

{11,17},{11,28},{12,14},{12,20},{12,24},{12,28},{13,26},{13,34},{13,34},

{13,46},{14,26},{14,36},{14,60},{14,80},{15,20},{15,26},{15,54},{16,32},

{16,40},{17,32},{17,40},{17,50},{18,42},{18,56},{18,76},{18,84},{19,36},

{19,46},{19,68},{20,32},{20,48},{20,52},{20,56},{20,64},{22,66},{23,54},

{24,70},{24,92},{24,93},{24,120},{25,85}}

Now that you have the data, you can add the column titles and export the extracted

data from the dataset.

In[74]:= colTitles={"Speed in miles per hours","Stopping distance

in feet"};

To attach the two lists, let’s use Prepend and assign the name exprtData to

new values.

In[75]:= Short[exprtData=Prepend[%%,colTitles],1]

Out[75]//Short= {{Speed in miles per hours,Stopping distance in feet},{4,2},

{4,10},<<45>>,{24,93},{24,120},{25,85}}

You do not define variables to put together this data list and titles. A percentage

notation is used to simplify the code. Now that you have complete data, you can export it

to an XLS or XLSX format.

Chapter 4 Import and Export

174

In[76]:= Export["Stopping_distance_Dataset.xlsx",exprtData,"XLSX"]

Out[76]= Stopping_distance_Dataset.xlsx

If you verify the file, you should have something like the dataset created earlier.

�JSON Formats
It is also possible to export information to formats such as JSON. The following example

creates a JSON structure from an association.

In[77]:= Association@{"Name"->"Ellis","Date of birth"->

"1990,01,04","Height"->"180 cm","Favorite color"->"Red","Hobbies"->"Soccer,

Pc gaming, Board games","Social netwoks"->"Twitter, Facebook"};

Export["File_json.json",%,"JSON"]

Out[78]= File_json.json

If you open the new JSON file, you see that it has a structure corresponding to a JSON

file. It is the same process for the case where you have a nested list, although you can also

use the “Rawjson” format when exporting. The idea is that you can export data to JSON

formats from associations; as you have seen, the braces and values of an association can

be any expression. This leads you to say that more associations can be added, and these

can be exported. The vital thing to note is that given the nature of the JSON format of

containing braces and values in pairs, it is possible to export data in JSON format from

associations. Examining the case for when you have a dataset (see Figure 4-16), proceed

as noted here.

In[79]:=Association@{"Name"->"Ellis","Date of birth"->

DateObject[{1990,01,04}],"Height"->Quantity[180,"Centimeters"],"Favorite

color"->"Red","Hobbies"->"Soccer, Pc gaming, Board games","Social netwoks"->

"Twitter, Facebook"};

user=Dataset[%]

Out[80]=

Chapter 4 Import and Export

175

Figure 4-16.  JSON file dataset

The dataset is built, but in some cases, the dataset may contain quantities or other

semantic objects, as in this case, the date and height. So, exporting them would be the

same way as before but using the JSON option format, not Rawjson, since this does not

allow exporting dataset objects. To use Rawjson, you must convert the semantic objects

to strings or numbers.

In[81]:= Export["Dataset_json.json",user,"JSON"]

Out[81]= Dataset_json.json

If you have a dataset of repeated keys, you can export it to the JSON format (see

Figure 4-17).

In[82]:= assoc1=<|"Log in Date"->DateObject[{2020,06,29}],"User ID"->

123,"Status"->"Active"|>;

assoc2=<|"Log in Date"->DateObject[{2020,06,28}],"User ID"->122,"Status"->

"Not Active"|>;Dataset[{assoc1,assoc2}]

Export["Dataset2_json.json",%,"JSON"]

Out[83]=

Figure 4-17.  User Dataset

Chapter 4 Import and Export

176

Out[84]= Dataset2_json.json

To be precise, you can export shapes where the dataset contains complex structures,

such as an association of associations. Let’s look at the following example, which builds a

dataset (see Figure 4-18).

In[85]:= assoc3="Player A"->Association["Date"->DateObject[{2020,06,29}],

"User ID"->123,"Status"->"Active"];assoc4="Player B"->Association["Date"->

DateObject[{2020,06,28}],"User ID"->122,"Status"->

"Not Active"];Dataset[{<|assoc3,assoc4|>}]

Out[85]=

Figure 4-18.  Tagged dataset

Subsequently, proceed to export the dataset.

In[86]:= Export["Dataset3_json.json",%,"JSON"]

Out[86]= Dataset3_json.json

Let’s try to better understand how to export in JSON format. When you export

information such as a rule list or a single association, the structure of the content in

the exported JSON file is through a collection of pairs between braces and values. On

the contrary, when you have ordered structures, such as an association of lists and an

association of associations, the structure of the content in the JSON file is as an ordered

array within the array of the collections of associated pairs between braces and values.

Quite the opposite; however, exporting a nested list is already in the form of sorted

arrays. To clarify this, the reader can observe how a list of rules is exported through the

following code.

In[87]:= rules={"apple"->3,"car"->"3","2"->2};

Export["Rules.json",rules,"JSON"]

Out[88]= Rules.json

Chapter 4 Import and Export

177

In addition, for a nested list or list of lists.

In[89]:= arry=Array[{#1,#2}&,{4,4}]

Export["Array.json",arry,"JSON"]

Out[89]= {{{1,1},{1,2},{1,3},{1,4}},{{2,1},{2,2},{2,3},{2,4}},{{3,1},{3,2},

{3,3},{3,4}},{{4,1},{4,2},{4,3},{4,4}}}

Out[90]= Array.json

If the created file is observed, it must contain an array of arrays inside the JSON file.

�Content File Objects
It should be concluded that for all the exported files, you can create a content object

showing you the properties of the created files. This is done with the ContentObject

function, which provides content from a file. Let’s use the association’s example to create

a JSON file to do this.

In[91]:= Association@{"Name"->"Ellis","Date of birth"->DateObject[{1990,01,04}],

"Height"->Quantity[180,"Centimeters"],"Favorite color"->"Red","Hobbies"->

"Soccer, Pc gaming, Board games","Social netwoks"->"Twitter, Facebook"};

user=Dataset[%];

jsonFile=Export["Dataset_json_2.json",user,"JSON"];

Now, you need to get the path where the file is located with AbsoluteFileName.

In[94]:= AbsoluteFileName[jsonFile]

Out[94]= /Users/macosx/Desktop/Dataset_json_2.json

Let’s now use the file to create the file object type representation. Then,

ContentObject is applied to the file object.

In[95]:= ContentObject[%]

Out[95]=

A content-type object appears (see Figure 4-19).

Figure 4-19.  ContentObject for the JSON files created

Chapter 4 Import and Export

178

Pressing the + icon provides you with the exported file’s properties, such as name,

size, creation dates, and file localization. You can access the properties programmatically

using the following form.

In[96]:= ContentObject[%%]["Properties"]

Out[96]= {CreationDate,Plaintext}

This can be applied to other exported files.

�Searching Files with Wolfram Language
With the Wolfram Language, you can look at the location of the file or files.

The NotebookDirectory command is used to see the path of the notebook directory.

It shows the full directory containing the notebook in which you work.

In[97]:= NotebookDirectory[]

Out[97]= /Users/macosx/Desktop/

Now, SetDirectory is used to set a working directory as the current directory. You can

enter the path of the desired directory and establish it as the working directory. However,

now set the notebook directory as the new working directory.

In[98]:= SetDirectory[NotebookDirectory[]]

Out[98]= /Users/macosx/Desktop

With this new directory set, you can locate files in the new directory, the notebook

location. Here, the FileNames command lets you explore files in the working directory,

which, in this case, is the notebook’s directory because it was set up in the previous code.

In[99]:= FileNames[]

Out[99]= {Color_table.txt,Grocery_List.csv,Hello_World,Hello_World.

txt,import export.nb,weather.csv}

FileNames show all types of files available in the directory. If you have many files in

the directory, you can search for a particular file by using FindFile and entering the file’s

name as a string. The full path of the file is displayed.

In[100]:= FindFile["Color_table.txt"]

Out[100]= /Users/macosx/Desktop/Color_Table.txt

Chapter 4 Import and Export

179

File extensions can be searched, too.

In[101]:= FileNames["*.txt"]

Out[101]= {Color_table.txt,File_text.txt,Hello_World.txt,New_File.txt}

Note  Other types of File commands exist; to look for more commands associated
with the name file, enter ??File*.

Remember, this is when you set the working directory as the notebook directory. If

you have not set a directory previously, Mathematica searches the default directories of

your machine, which are the ones shown entering $Path.

�Connecting to External Services
Besides export and import capabilities, Mathematica can connect to various external

services, like external resources, external connectivity, and database management

through external evaluations.

�External Connections
With the launch of Mathematica version 13, improvements have been put together,

especially in connecting with external services. One notable feature is external

evaluators, which enable interaction with various languages such as Julia, Ruby, R,

Python, Java, Octave, Node.js, Shell, and SQL. To discover and utilize installed evaluator

systems, use FindExternalEvaluators, which scans standard directories for use in any

local evaluation.

Executing FindExternalEvaluators[], with no arguments, searches for all available

languages installed on your computer. Let’s find the version of the Shell evaluator. On

macOS, it usually refers to the Bash shell; on Windows, it’s typically PowerShell.

In[102]:= FindExternalEvaluators["Shell"]//Normal//Print

Out[102] =

<|4ce695dd-ef6a-7006-f30d-b4320329bbd7 → <|System → Shell,

 �Version → 3.2.57, Target ⧴ /bin/bash, Executable ⧴ /bin/bash,

Registered → Automatic|>,

Chapter 4 Import and Export

180

b217afb1-d97f-3cfa-3c52-19ec78df64bc → <|System → Shell,

 �Version → 3.2.57, Target ⧴ /bin/sh, Executable ⧴ /bin/sh,

Registered →Automatic|>,

342330ff-7009-e5ec-c00a-86949f3c0f7a → <|System → Shell,

 �Version → 5.9, Target ⧴ /bin/zsh, Executable ⧴ /bin/zsh,

Registered → Automatic|>|>

In this case, the output lists three shell versions: Bash (Bourne Again SHell), Sh

(Bourne Shell), and Zsh (Z Shell).

Note  The external language cannot be used if the Registered value is not set
to True or Automatic. For troubleshooting, go to the Wolfram documentation
page at https://reference.wolfram.com/language/workflowguide/
ConnectingToExternalSoftware.html.

Once the external evaluator has been registered, it can be used with

ExternalEvaluator. You can use ExternalEvaluate by applying the function directly or, in

a new cell, by typing ‘>’ to initiate a command line, where a yellow block line appears.

Choose your language from a drop-down list on the left icon or input it directly as a

string and then the code, as shown in Figure 4-20.

Figure 4-20.  External evaluation for Z shell code using the ExternalEvaluate and
the ‘>’ type command block

Executing the code following prints “Hello World!” using the Z shell. The resulting

exit code is 0, signifying success, and is displayed as standard notebook output (see

Figure 4-21).

In[103]:=

Out[103]=

Chapter 4 Import and Export

https://reference.wolfram.com/language/workflowguide/ConnectingToExternalSoftware.html
https://reference.wolfram.com/language/workflowguide/ConnectingToExternalSoftware.html

181

Figure 4-21.  External evaluation using Z shell code Hello World!

Different prerequisites may be required, such as additional libraries and the

language executable, depending on the external language you intend to use. While

language cells are handy, ExternalEvaluate offers more programmatic output flexibility.

�External Resources
The prior section highlights ExternalEvaluate’s role in integrating outer languages in a

notebook. Despite this, Mathematica can generate and utilize outer resources like outer

functions. Node.js version 21.2.0 was used while creating this book. It can be installed

from the official site or approved repositories. In this case, the Homebrew package

installer was used. Using Node.js required the zeromq library, installed using npm, as

stated in the Wolfram documentation.

Note  For detailed info, visit Wolfram documentation. NodeJS for
ExternalEvaluate: https://reference.wolfram.com/language/workflow/
ConfigureNodeJSForExternalEvaluate.html

To automatically identify Node.js, use FindExternalEvaluators[“NodeJS”], similar

to the shell language process. If successful, Registered shows as Automatic, indicating

complete setup. If MissingDependencies appears, Mathematica can’t find the necessary

dependencies, requiring manual registration. Regardless, it’s advised to manually

register the external evaluator by adding the executable’s path to ensure proper function.

Chapter 4 Import and Export

https://reference.wolfram.com/language/workflow/ConfigureNodeJSForExternalEvaluate.html
https://reference.wolfram.com/language/workflow/ConfigureNodeJSForExternalEvaluate.html

182

Like in the shell process, to autodetect Node.js, use FindExternalEvaluators[“Node

JS”]. If Registered shows as Automatic, all setup is done. If MissingDependencies shows,

Mathematica lacks needed dependencies, requiring manual registration. Regardless,

you should manually register the external evaluator by adding the executable’s path to

ensure proper function.

In[104]:= RegisterExternalEvaluator["NodeJS","/opt/homebrew/bin/node"]

Out[104]= 629ba62a-8d17-e9fe-6cd9-870f94c7933c

Then, trying to find it again.

In[105]:= FindExternalEvaluators["NodeJS"] // Normal // Print

Out[105]=

<|629ba62a-8d17-e9fe-6cd9-870f94c7933c → <|System → NodeJS,

 Version → 21.2.0, Target ⧴ /opt/homebrew/bin/node,

 Executable ⧴ /opt/homebrew/bin/node, Registered → True|>|>

The Registered key has a value of True, meaning successful manual registration. To

test it, calculate the square root of 25.

In[106]:= ExternalEvaluate["NodeJS","Math.sqrt(25)"]

Out[106]= 5

With Node.js set, custom functions can be implemented—for instance, a primary

function to find the square root of a number.

In[107]:= jsFun1 =ExternalFunction["NodeJS","Math.sqrt"]

Out[107]= ExternalFunction[System : NodeJS Command : Math. sqrt

Session : Automatic]

The outer Node.js system calculates using Math.sqrt. If no external session is

manually set, it is automatic. The function is now at hand in the notebook.

In[108]:= jsFun1[#]&/@{25,36,49,64}

Out[108]= {5,6,7,8}

The Function syntax can vary, but the process is the same; for example, using an

arrow function.

Chapter 4 Import and Export

183

In[109]:= jsFun2 =

ExternalFunction["NodeJS", "(number) => Math.sqrt(number);"];

jsFun2[#] &/@ {25,36,49,64}

Out[109]= {5,6,7,8}

Using the external block is also at hand. Figure 4-22 shows that the node.js function

is linked to a default external node.js session.

In[111]:=

Out[111]=

Figure 4-22.  Node.js function to return the square root of the sum of two numbers

In[113]:= %[18,18]

Out[113]= 6

Note  To ensure that a function can be called in NodeJS using ExternalFunction, it
must be explicitly returned.

To unregister an external evaluator, type the system language and the executable

path. In this case, it is the same path used when registered.

In[114]:= UnregisterExternalEvaluator["NodeJS","/opt/homebrew/bin/node"]

Out[114]= 629ba62a-8d17-e9fe-6cd9-870f94c7933c

Chapter 4 Import and Export

184

�Database and File Operations (SQL)
Database and file operations can be performed in Mathematica using external languages

like SQL. By leveraging ExternalEvaluate, it is possible to execute SQL queries and work

directly with dataset formats.

You can generate a reference object for the database by utilizing a table from the

example data folder.

In[115]:= DatabaseReference[FindFile["ExampleData/ecommerce-database.

sqlite"]];

Shallow[%]

Out[116]//Shallow=

DatabaseReference[<|Backend → SQLite, Name → /Applications/Mathematica.

app/Contents/Documentation/English/System/ExampleData/ecommerce-database.

sqlite|>]

The reference of the retrieved file with FindFile associates the .sqlite local file

with the backend SQL engine set as SQLite, which performs operations and data

management.

Note  SQL should be available within Mathematica, but check that it appears as
a registered external evaluator FindExternalEvaluator[“SQL”]. If not, make sure to
register the evaluator.

After referencing, view all database table names (see Figure 4-23). Choose a table

(offices) (see Figure 4-24) and select territory and city, ordering by territory (see

Figure 4-25).

In[117]:=

Out[117]=

Chapter 4 Import and Export

185

In[118]:=

Out[118]=

Figure 4-23.  Listing all tables

In[119]:=

Out[119]=

Figure 4-24.  Fetching all office data

Chapter 4 Import and Export

186

Figure 4-25.  Sorting offices by territory

�Summary
This chapter explored essential aspects of importing and exporting various file

formats, including costume imports. It provides the basics of semantic import,

dealing with quantities and large datasets. The chapter also offered a deep dive into

data management and the search of content file objects within a notebook. The

chapter concluded with a discussion on connecting to external elements, establishing

connections, and working with external resources, databases, and files.

Chapter 4 Import and Export

187
© Jalil Villalobos Alva 2024
J. Villalobos Alva, Beginning Mathematica and Wolfram for Data Science,
https://doi.org/10.1007/979-8-8688-0348-2_5

CHAPTER 5

Data Visualization
This chapter discusses data visualization in more depth, showing the different ways of

visually representing data, using different commands, and creating a range of different

types of graphs. It also explains how to customize plots and use predefined plot themes.

�Basic Visualization
Data visualization is key for understanding information about data. Visual tools such

as 2D plots, contour plots, 3D plots, and time series provide a handy form to view and

understand trends and patterns of the data. One of the things about Wolfram Language

is that it contains commands that enable you to plot graphs in a simple form. Now, you

can better learn how plotting works. Mathematica treats every plot as a graphic object,

that is because every graphic is created of primitive elements (points, lines, polygons,

geometric figures, etc.), directives (style, shape, size, width, blurriness, etc.), and options

(visual modifications, styles, frames, aspects, text, etc.). However, let’s focus on the area

of 2D and 3D plots.

�2D Plots
Simple 2D plots over a specified range are relatively simple to create, as you saw in

Chapter 1 with the Plot function. The Wolfram Language gives you accurate control over

your plots; for example, you can define the range of your plot’s range and many options.

For instance, you can add a title to the next plot, a LogPlot, which is a function in a

logarithm scale (see Figure 5-1).

In[1]:= LogPlot[Log[x]/x,{x,1,20},PlotLabel->"New Log plot"]

Out[1]=

https://doi.org/10.1007/979-8-8688-0348-2_5#DOI
https://doi.org/10.1007/979-8-8688-0348-2_1

188

Figure 5-1.  LogPlot

Figure 5-1 shows that a title has been added.

When plotting points over an interval, the default plot range to show is produced

automatically by Mathematica. But with PlotRange, you can override the option and

enter a desired range (see Figure 5-2).

In[2]:= LogPlot[x+(6/x),{x,1,20},PlotLabel->"New Log

plot",PlotRange->{0,14}]

Out[2]=

Chapter 5 Data Visualization

189

Figure 5-2.  LogPlot of x+(6/x), with custom range

By selecting All in PlotRange, the y axis increases. Alternatively, you can choose the

limits by entering them in the form {y min, y max}. Sometimes, a graphic may not pass

through a desired set of coordinates; to force this, AxesOrigin is used (see Figure 5-3).

Intersections are written in the form {x,y}, where the coordinates denote the x and y

origin points.

In[3]:= Plot[Abs[x],{x,-2,2}, AxesOrigin->{0,2}]

Out[3]=

Chapter 5 Data Visualization

190

Figure 5-3.  The absolute value of x on origin 0, 2

AspectRatio is used to control the aspects using their height and width. This option

allows you to specify how big or small a graphic can be, calculating the height and width

ratio (h/w). However, when using ImageSize to directly select the width and height of a

graphic, if you specify the height alone, it is better to set AspectRatio to Full. This ensures

proper scaling as the width adjusts accordingly. Both options are shown in Figure 5-4.

In[4]:=GraphicsRow[{Plot[Cos[x],{x,0,2\[Pi]},ImageSize->Small],

Plot[Cos[x],{x,0,2\[Pi]},AspectRatio->0.5]}]

Out[4]=

Figure 5-4.  First graphic with ImageSize; second with AspectRatio

Chapter 5 Data Visualization

191

�Plotting Data
When plotting graphs, a set of points can be represented in a plot. Data can be plotted

with different commands, depending on their purpose. To plot a list of coordinates,

ListPlot is used, and the arguments of the plot are represented as x, y coordinates

({x1,y1}, {x2,y2} ...). You can create a list of values and pass them as the arguments. The

following example creates a table of values to resemble a hyperbolic cosine, with one

step between each point (see Figure 5-5).

In[5]:= ListPlot[Table[Cosh[i Degree],{i,1,20}]]

Out[5]=

Figure 5-5.  Hyperbolic cosine plot, ranging from 1 to 20

In this case, you only generate points in {1, y1}, {2, y2}, but you can also plot x and

y values. Let’s generate the x points with Table and then thread each element of x to a y

element and plot (see Figure 5-6) the new set of coordinates.

In[6]:= xcoor=Table[i,{i,1,5}];

ycoor={12,5,35,20,55};

coordinates=Thread[{xcoor,ycoor}];

ListPlot[coordinates]

Out[9]=

Chapter 5 Data Visualization

192

Figure 5-6.  ListPlot of x and y coordinates

Another useful command is ListLinePlot, which plots points through points

by joining them with a line. ListLinePlot (see Figure 5-7) can also plot predefined

coordinates. You can show how many points to display to understand how the plot is

constructed with the Mesh option.

In[10]:= ListLinePlot[coordinates,Mesh->20]

Out[10]=

Chapter 5 Data Visualization

193

Figure 5-7.  ListLinePlot with mesh option set to 20

A plot can be represented with different colors and markers. Colors and markers

are convenient to distinguish among different plots. To introduce markers, enter the

PlotMarkers option followed by the markers symbol. Markers can be special characters

or letters; use the special character pallet for a complete list of symbols and characters.

By default, different sets are colored differently, but to choose a specific color, use

PlotStyle. With PlotStyle the thickness of a line can be changed too, as shown in

Figure 5-8.

In[11]:=

ListLinePlot[{Table[Cos[i], {i, 0, 2 \[Pi], 0.2}],

 Table[Sin[i], {i, 0, 2 \[Pi], 0.2}]}, PlotMarkers -> {"\[CloverLeaf]", "\

[FilledDownTriangle]"}, PlotStyle -> {Green, Black}]

Out[11]=

Chapter 5 Data Visualization

194

Figure 5-8.  Plots with different marker points

Another general option is Ticks. With this option, you can modify the indicators on

the axes for both x and y. For example, in Figure 5-9, the plot ticks are marked on the x

axis; the ticks are –1 and 1. And the y axis is set to automatic (see Figure 5-9).

In[12]:= Plot[x^3,{x,-5,5},Ticks->{{-1,0,1},Automatic}]

Out[12]=

Figure 5-9.  Plots with ticks marked on –1 and 1 for the x axis

Chapter 5 Data Visualization

195

Additionally, plots containing dates can be displayed with DateListPlot. The

DateListPlot has the following form, DateListPlot[{v1,v2, ... }, “date specification”]. With

DateListPlot, the x axis is converted into a timeline, and the y axis corresponds to the

values (v1.v2, ...). Figure 5-10 shows a DateListPlot, starting in June and finishing in

November.

In[13]:= data1=Table[Power[i,2],{i,0,5}];

data2=Table[Power[i,3],{i,0,5}];

DateListPlot[{data1,data2},{2006,06}]

Out[15]=

Figure 5-10.  Date plot, starting the plot from June 2006 to November 2006

Additionally, you can use ListLinePlot or ListPlot to create date plots. Employing the

ScalingFunction option with {“Date”, Identity} allows a proper scaling along the date axis,

for good data visualization over time, as the following code and Figure 5-11 show.

In[16]:= data1=Table[{DateObject[{2006,i}],Power[i,2]},{i,3,9}];

data2=Table[{DateObject[{2006,i}],Power[i,3]},{i,3,9}];

ListLinePlot[{data1,data2},ScalingFunctions->{"Date",Identity},PlotStyle->

Automatic,Frame->True,PlotLegends->{"Data 1","Data 2"}]

Out[17]=

Chapter 5 Data Visualization

196

Figure 5-11.  Date plot using ListLinePlot with ScalingFunctions

�Plotting Defined Functions
You can define and plot custom functions (see Figure 5-12). User functions can also

be used as arguments for plotting commands. Functions can have a single or multiple

variables, as with 3D plots.

In[17]:= F[x_]:=Exp[x];

Plot[F[x],{x,-10,10}]

Out[18]=

Figure 5-12.  User-defined function for Exp of x

Chapter 5 Data Visualization

197

Also, multiple defined functions are supported. When multiple plots are in the same

graphic, each plot is colored differently (see Figure 5-13).

In[18]:= X[x_]:=x;Y[y_]:=-Sqrt[y];Z[z_]:=1/z;

Plot[{X[x],Y[x],Z[x]},{x,-10,10}]

Out[19]=

Figure 5-13.  Multiple plots

�Customizing Plots
The Wolfram Language lets users customize plots based on their needs, like adding

text, changing color style, adding fill, presenting on tabular frameworks, and so forth.

Many commands used in the 2D plots are also preserved in 3D plots. Depending on the

graphical representation, options can vary between commands.

�Adding Text to Charts
Adding text to charts, like markers and the range of values, can make a chart more

informative. Many other elements can be added too.

PlotLabel adds a title to a chart. In addition to this option, there is AxesLabel and

PlotLegends. The first allows you to add labels to your axes in the form {“x_label,” “y_

label”}; the second enables you to add text related to each expression within the graph

(see Figure 5-14).

Chapter 5 Data Visualization

198

In[20]:= Plot[{Abs[x], x^2}, {x, -2, 2}, AxesLabel -> {"x", "y"},

 PlotLegends -> "Expressions"]

Out[20]=

Figure 5-14.  Plots with labeled axes and functions

You can use Labeled to add costume text expressions on plots (see Figure 5-15). As

for the new Mathematica version, passing the cursor over the plot displays the x and y

coordinates without creating an explicit tooltip.

In[21]:= Labeled[Plot[x^2, {x,-2,2}], "f(x) = "x2,, Left]

Out[21]=

Figure 5-15.  Label placed on the left side of the graphic

Chapter 5 Data Visualization

199

Even with the Labeled command, Tooltips can be constructed. Tooltips display a

label tooltip for any expression (see Figure 5-16). Tooltips are displayed when the mouse

pointer is passed over the tooltip expression. The difference between Tooltips and

PlotLegends is that PlotLegends is an option and not a command.

In[22]:= Tooltip[{Plot[x^2,{x,-2,2}]}]

Out[22]= {}

Figure 5-16.  Tooltip created for the plot expression

When you hover over the entire graph, it shows you the tooltip of the entire graph

since you specify it. But you can do it just for the expression of the function (see

Figure 5-17).

In[23]:= Plot[Tooltip[x^2],{x,-2,2},ImageSize->200]

Out[23]=

Figure 5-17.  Tooltip for the curve expression

Chapter 5 Data Visualization

200

If you hover over the curve, it shows you the tooltip of x^2; this function also works

with the other types of plots. You can add what the tooltip style should look like with the

ToolTipStyle option (see Figure 5-18).

In[24]:=ListPlot[Tooltip[Range[10], TooltipStyle -> {Bold,Red,

Background -> LightBlue}], ImageSize -> 250]

Out[24]=

Figure 5-18.  Tooltip for every point plotted

If you move the cursor to the points, you get the coordinates of the points written in

red and the tooltip’s background in light blue.

�Frame and Grids
Plots can be framed and gridded. The Frame option is used, and to add labels to the

frame, use FrameLabel, which receives instructions like AxesLabel (see Figure 5-19).

In[25]:= ListPlot[Table[Prime[i],{i,1,10}],Frame->True,FrameLabel->

{"X Framed Axis ","Y Framed Axis"}]

Out[25]=

Chapter 5 Data Visualization

201

Figure 5-19.  Framed ListPlot

To add a grid (see Figure 5-20), use the GridLines option.

In[26]:= ListPlot[Table[Prime[i],{i,1,10}],GridLines->Automatic,AxesLabel->

{"X Framed Axis ","Y Framed Axis"}]

Out[26]=

Figure 5-20.  Gridded plot

Chapter 5 Data Visualization

202

To modify the grid style, use the GridLinesStyle option, which can have a particular

thickness using Directive (see Figure 5-21).

In[27]:= ListPlot[Table[Prime[i], {i, 1, 10}], GridLines -> Automatic,

GridLinesStyle -> Directive[Thickness[0.0002], LightRed]]

Out[27]=

Figure 5-21.  GridLines colored in light red

�Filled Plots
Plots can be filled in various forms—for example, between the x axis, from the bottom

and top of a curve (see Figure 5-22).

In[28]:= ListLinePlot[Table[Mod[i,2],{i,0,5}],Filling->Bottom]

Out[28]=

Chapter 5 Data Visualization

203

Figure 5-22.  Filled plot from plotted points to the bottom of the axis

A specified region between curves can also fill them by introducing Filling → {“1st

curve” → {“2nd curve”},”2nd curve” → {“3rd curve”}, as shown in Figure 5-23.

In[29]:= Plot[{x^2, x^3, x^4},{x,0,5}, Filling->{1->{2}, 2->{3}}]

Out[29]=

Figure 5-23.  Filled plots

Chapter 5 Data Visualization

204

�Filling Patterns and Gradient
The updated version has added new features, such as cross-hatching fillers. This

enhancement is used like the standard options illustrated in Figure 5-24.

In[30]:= ListLinePlot[Table[Mod[i,2], {i,0,5}], Filling -> Bottom,

FillingStyle -> HatchFilling["Horizontal"]]

Out[30]=

Figure 5-24.  Filled horizontal style

New function additions are implemented by a style or a pattern, as seen in

Figure 5-25.

In[31]:= ListLinePlot[Table[Mod[i,2], {i, 0, 5}], Filling -> Bottom,

FillingStyle -> PatternFilling["ChevronLine", ImageScaled[1/20]]]

Out[31]=

Chapter 5 Data Visualization

205

Figure 5-25.  Filled Chevron horizontal line style

The same applies to shading functions; additions are implemented by the gradient

technique, as seen in Figure 5-26.

In[32]:= Plot[{x^2,x^3,x^4}, {x,0,5},FillingStyle -> LinearGradientFilling

[{Red,Blue},Top],Filling -> {1->{2},2->{3}}]

Out[32]=

Figure 5-26.  Linear Filled Gradient red, blue, line style

Chapter 5 Data Visualization

206

�Combining Plots
To display overlap graphics, there are ways to display the graphs even if they are not of

the same type. The following example assigns names to plots without showing the result

of each one and finally shows the three graphs. The Show command shows previously

defined plots; the arguments are graphic objects followed by options. This is an

alternative to doing multiple listable subplots.

In[33]:= plot1=Plot[x,{x,0,10},PlotStyle->Red];

plot2=Plot[Cos[x],{x,0,10},PlotStyle->Black];

plot3=ListPlot[Table[Sin[i]+1,{i,1,10}],PlotStyle->Brown];

Show[plot1,plot2,plot3,PlotRange->Automatic]

Out[33]=

As shown in Figure 5-27, Show changes the appearance of the graphics; the order

in which they are entered is preserved when displayed. Although making the graphics

within Show is possible, you can add colors within the Plot command to distinguish the

different graphs (see Figure 5-28).

In[34]:= Show[Plot[Cos[x],{x,0,10},PlotStyle->Orange],

Plot[Sin[x],{x,0,10},PlotStyle->Purple],PlotRange->Automatic]

Out[34]=

Figure 5-27.  Combined plots shown in the same graphic

Chapter 5 Data Visualization

207

Figure 5-28.  Cosine and Sine plot in the same graphic

There are several ways to create a list of graphs. You can assign variables to graphs

and deploy them as a list.

In[35]:= {Plot1,Plot2,Plot3}

Out[35]=

As seen in Figure 5-29, these three graphs are separated by commas since it is a list.

Figure 5-29.  List of three different plots

�Multiple Plots
Multiple plots can be shown in a single output cell. To do this, use the Row command;

this command allows the graphs to be displayed horizontally, with each graph on one

side of the other (see Figure 5-30). However, Row generally displays expressions in row

form, not just graphs.

In[36]:= Row[{plot1,plot2,plot3}]

Out[36]=

Chapter 5 Data Visualization

208

Figure 5-30.  Plots expressed as a row

By entering a second argument for Row (see Figure 5-31), you have the option to add

a separator between the graphs.

Figure 5-31.  Separator (**--**) added between each plot

In[37]:= Row[{plot1,plot2,plot3},"**--**"]

Out[37]=

Alternatively, there is the Column command, which acts similarly to Row but

displays expressions or graphs in column form (see Figure 5-32).

In[38]:= Column[{plot1,plot2,plot3}]

Out[38]=

Chapter 5 Data Visualization

209

Figure 5-32.  Graphics expressed as a column

If you look at the following example, it is possible to add frames over the entire chart

(see Figure 5-33) for both columns and rows.

In[39]:={Column[{plot1,plot2,plot3},Frame-> True],

Row[{plot1,plot2,plot3},Frame->True, FrameMargins->Medium]}

Out[39]=

Chapter 5 Data Visualization

210

Figure 5-33.  Exhibit of column and row expression for the three plots

�Multiaxis Plots
Since the new version, creating a single graph with multiple coordinate systems into a

single pack requires linking the axes with different styles using MultiAxisArrangement.

So, the curves connect through the same axis (see Figure 5-34).

In[40]:= ListLinePlot[{Table[{x,x^2},{x,0,1,0.1}],Table[{x,x^3}, {x,0,2,0.1}],

Table[{x,x^4},{x,0,3,0.1}]},MultiaxisArrangement-> All]

Out[40]=

Chapter 5 Data Visualization

211

Figure 5-34.  An exhibit of column and row expression for the three plots

�Coloring Plot Grids
Column and Row allow you to customize graphs. There are various ways of changing the

color of the frame and adding shading to the graphs (see Figure 5-35).

In[41]:= Column[{plot1,plot2,plot3},Frame->True,Background->LightCyan,

FrameStyle->Directive[Black,Dashed],Dividers->All]

Out[41]=

Chapter 5 Data Visualization

212

Figure 5-35.  Column graphics with multiple features

Some options are available depending on whether you use a Row or Column. With

Column, there is the option of dividers; in Row, there is no such option, but it is done via

a separator, as you saw earlier. Using Table, it is possible to create different shapes on the

graphs, either by color or frames, as shown in Figure 5-36.

In[42]:= Table[Row[{plot1,plot2,plot3},Frame->True,FrameStyle->Opts],

{Opts,{Thick,Dashed,Dotted}}]

Out[42]=

Figure 5-36.  Table of multiple features implemented with the Row command

Chapter 5 Data Visualization

213

Next, let’s address the existing alternative using GraphicsRow and GraphicsColumn.

Around these commands, there are also options for the image size (see Figure 5-37).

In[43]:= {GraphicsRow[{plot1,plot2,plot3},ImageSize->Medium],

GraphicsColumn[{plot1,plot2,plot3},ImageSize->Small]}

Out[43]=

Figure 5-37.  GraphicsRow vs. GraphicsColumn

GraphicsRow and GraphicsColumn are commands with specific shapes for

constructing graphics, whether polygons, lines, dots, and so on. In addition, with Rows

and Columns, the graphs are independent. With GraphicsRow or GraphicsColumn, if

you select the graph, it is a unique image containing (in this case) the three plots you

have made.

Another useful command shows you the graphs as a network, taking up the point

stated earlier—if you select the graph, it is a unique image. The following example adds

another chart to better illustrate why it’s helpful to use GraphicsGrid (see Figure 5-38).

In[44]:=plot4=LogLogPlot[Cos[x],{x,0,10},PlotStyle->Yellow];

GraphicsGrid[{{plot1,plot2},{plot3,plot4}},Frame->All,FrameStyle->Purple,

Background->LightCyan]

Out[44]=

Chapter 5 Data Visualization

214

Figure 5-38.  GraphicsGrid showing four different plots

As shown in Figure 5-38, this shape can help you compactly visualize four graphs

at once. Without a doubt, the graphs do not have to be so simple. The options you have

seen throughout this chapter can also be added, such as titles and labels on the axes,

grid lines and colors, and more, as shown in the following example.

In[45]:=

newPlot1=Plot[x,{x,0,10},PlotStyle->{Purple,Thick},PlotLabel->"X"];

newPlot2=Plot[Cos[x],{x,0,10},GridLines->{{-1,0,1},{-1,0,1}},GridLinesSty

le->Directive[Dotted,Blue],PlotLabel->"Cos[x]",ColorFunction->"Rainbow"];

newPlot3=ListPlot[Table[Sin[i]+1,{i,1,10}],Frame->True,FrameLabel->{Style[

"X",Bold],Style["Y",Bold]},PlotStyle->Red,PlotMarkers->"X",PlotLabel->"2D

Scatter Plot"];

newPlot4=LogLogPlot[Cos[x],{x,0,9},Filling->Axis,ColorFunction->

"BlueGreenYellow",PlotRange->{0,1},PlotLabel->"Log Log Plot"];

Chapter 5 Data Visualization

215

Now that you have the new plots, you can compare them by putting them as a nested

list in GraphicsGrid (see Figure 5-39).

In[46]:=Labeled[GraphicsGrid[{{newPlot1,newPlot2},{newPlot3,newPlot4}},

Frame->All,Background->White,Spacings->1],Style["Multiple Plots

Box",20,Italic],Top,Frame->True,Background->LightYellow]

Out[46]=

Figure 5-39.  Grid of multiple plots

This is not restricted to displaying 2D graphs; it also applies to 3D graphs and other

types of charts.

Chapter 5 Data Visualization

216

�Colors Palette
If you are interested in more colors, there is a gamma of various types of colors in

Mathematica. For this, go to the menu in Palettes ➤ Color Schemes, as the color palette

in Figure 5-40 shows.

Figure 5-40.  Colors palette

The tabs that appear are of the colors associated with the different classes. To defer

through the colors in the tabs, use the arrows, and the different names of the colors and

their color or gradient are displayed. If you want to introduce colors that are not reserved

words, then you use the insert button. For example, go to the Gradient tab and click the

Insert button, which inserts the function with the chosen color into the notebook.

To illustrate, let’s look at the following example. Select the Color BrownCyanTones,

insert it with the button, evaluate the expression, and get the result of the

ColorDataFunction (see Figure 5-41).

Chapter 5 Data Visualization

217

In[47]:= ColorData["BrownCyanTones"]

Out[47]=

Figure 5-41.  ColorData object

This gives you a color data object showing the name, color type, class, and domain.

Gradient colors are intricate in text and work best with the ColorFunction function. So

now that you know the name, you can assign it a color (see Figure 5-42).

In[48]:= Plot[x,{x,0,10},ColorFunction->ColorData["BrownCyanTones"]]

Out[48]=

Figure 5-42.  Gradient color of straight line x

Note P lain colors are located in the named tab of the palette.

Chapter 5 Data Visualization

218

�3D Plots
Mathematica can perform various types of 3D graphics, many of which are simple. 3D

functions are displayed as surfaces in space. Figure 5-43 presents the example.

In[49]:= Plot3D[Sinc[x*8+y^2],{x,-1,2},{y,-1,3},ImageSize->Medium,

PlotPoints->20]

Out[49]=

Figure 5-43.  3D plot figure

Mathematica allows you to observe the graph by moving with the cursor. Hovering

over the chart changes the cursor to rotating arrows, which means you can move the

chart to observe it from different points. One last observation is that when you press the

Ctrl or Cmd key, you can magnify the chart, keeping its position fixed.

Note that the cursor can manipulate 3D graphs so that you can visualize the angle

spread graph. Common standard Mathematica displays the graph as a mesh, which

can be modified with the Mesh option, as you saw earlier, or by adding more points

to evaluate with the PlotPoints option. This increases the number of points in both

directions in both x and y. It also serves to improve the quality of the chart.

Chapter 5 Data Visualization

219

�Customizing 3D Plots
3D graphics can also be customized as 2D graphics (see Figure 5-44) as labels to

axes, colors, grids, and so forth. Figure 5-44 shows a 3D plot with the AxesLabel,

ColorFunction, and FaceGrids options.

In[50]:= Plot3D[Sin[4(x^2+y^2)]/0.5,{x,-0.8,0.8},{y,-0.8,0.8}, AxesLabel->

{"X axis","Y axis","Z axis"},ColorFunction->"Rainbow", FaceGrids->All]

Out[50]=

Figure 5-44.  Gridded 3D plot

Table 5-1 shows general options for 3D graphics.

Table 5-1.  Plot Options

Option Instructions

AspectRatio Height/width ratio

AxesLabel Add text to axes

PlotStyle Color, opacity, thickness, etc.

PlotRange Range of values

PlotLabel Plot title

Background Background Color

Chapter 5 Data Visualization

220

Customization of graphics depends on how you plan to exhibit them. There is no

limit on how graphics are presented. The following example plots a 3D function and

colors the background light yellow (see Figure 5-45).

In[51]:= Plot3D[Sin[0.9(x^2+y^2)]/0.5,{x,-1,1},{y,-1,1},AxesLabel->

{"X axis","Y axis","Z axis"},FaceGrids->All,ColorFunction->Hue, PlotLabel->

"My 3D Plot",Background->LightYellow,ViewAngle->Pi/7]

Out[51]=

Figure 5-45.  Customized 3D plot

�Hue Color Function and List3D
The Hue color function is a directive that specifies that the values are colored depending

on the height they are at. There are three arguments for the Hue color function. The first

is for the tone of the color (hue); the second marks the saturation; the third marks the

bright one; and the fourth is the opacity. With hue, it is possible to adequately identify

the high and low areas from a graph (see Figure 5-46) in the four previous features. You

can mark these four different parameters. The hue parameters are in the range of 0 to 1.

In[52]:= Plot3D[Sin[0.9(x^2+y^3)]/0.5,{x,-1,1},{y,-1,1}, FaceGrids->

None,ColorFunction -> (Hue[0.5,1,0.6,0.5]&),PlotLabel->Style["My 3D

Plot",Italic,"Arial"], Background->Black]

Out[52]=

Chapter 5 Data Visualization

221

Figure 5-46.  3D plot with colored Hue values

For 3D scatter plots (see Figure 5-47), you can do it using the same data. With

ListPlot3D, the points are joined together to create a surface represented by the height

values of each point. With ListPointPlot3D, a scatter plot is generated in 3D points.

In[53]:=Row[{ListPlot3D[Table[RandomReal[1,5],{i,5}],ColorFunction->

"SunsetColors",Ticks->None, PlotLegends-> BarLegend[Automatic,

egendMarkerSize->90],ImageSize-> Small,PlotLabel->"ListPlot3D",Filling->

Bottom,BoxRatios-> Automatic] , ListPointPlot3D[Table[RandomReal[1,5],

{i,5}], ColorFunction->"Rainbow", PlotLegends->BarLegend[Automatic,

LegendMarkerSize->90], ImageSize->Small, PlotLabel->" ListPointPlot3D",

Filling->Bottom,BoxStyle->Thick, BoxRatios->{1,1,1}]},Background->Lighter

[Gray,0.80],Frame->True]

Out[53]=

Chapter 5 Data Visualization

222

Figure 5-47.  ListPlot3D and ListPointPlot3D for random real numbers

�Contour Plots
One way to visualize a two-variable function is to use a scalar field in which the scalar z =

f (x, y) is mapped to the point (x, y). A scalar field can be characterized by its contours (or

contour lines) along which the value of f (x, y) is constant. The trace lines of contour line

plots or contours can be done using the ContourPlot command, like in the next example.

In[54]:= ContourPlot[-((Pi*x)/(3+x^2+y^2)),{x,-5,5},{y,-5,5},ColorFunction-

>"Temperature",PlotLegends->Automatic,FrameLabel->{x,y}]

Out[54]=

Figure 5-48 plots a contour plot using the ColorFunction and PlotLegends options.

When you use PlotLegends, you specify what type of legends the chart should use; in

this case, you use automatic. This shows you the scale of the contours depending on the

color of each outline; for example, red is when it is at 0.8 or greater. When you pass the

cursor through the contour curves, the value of that curve appears. To label the values

of the contour curves in the graph image, add the ContourLabels option and assign

the value to true, as shown in Figure 5-49. To add lines that pass through the graph,

use the GridLines command, as you saw earlier, or use Mesh. Mesh can be joined with

MeshFunction or MeshStyle.

In[55]:= ContourPlot[-((Pi*x)/(3+x^2+y^2)), {x,-5,5}, {y,-5,5},

ColorFunction->"DeepSeaColors", PlotLegends-> Automatic, FrameLabel->

Chapter 5 Data Visualization

223

{x,y}, ContourLabels->True, Mesh->{10,10}, MeshStyle->{White},

MeshFunctions-> {#3&}]

Out[55]=

Figure 5-48.  Contour plot for the defined z function

Figure 5-49.  Contour lines added to the contour plot

Chapter 5 Data Visualization

224

To plot data into a contour plot (see Figure 5-50), use ListContourPlot.

ListContourPlot creates a contour plot from an array of values shown in heights.

In[56]:= ListContourPlot[Table[Exp[x]*Sin[y],{x,0,2,.1},{y,0,2,.1}],

ContourLines->True,Mesh->Full,ContourLabels->True]

Out[56]=

Figure 5-50.  ListContourPlot

Another plot is DensityPlot (see Figure 5-51). DensityPlot works similarly to

ContourPlot.

In[57]:= DensityPlot[(Sin[2x]*Cos[3y])/5,{x,0,5},{y,0,5}, ColorFunction->

"SunsetColors", Mesh->Full]

Out[57]=

Chapter 5 Data Visualization

225

Figure 5-51.  Density plot

You can plot density plots from data with ListDensityPlot (see Figure 5-52).

In[58]:= ListDensityPlot[Table[x/3 + Sin[3 x + y^2], {x, 0, 5, 0.1}, {y, 0,

5, 0.1}],ColorFunction -> "LightTemperatureMap", Mesh -> 10, PlotLegends ->

Placed[Automatic, Left]]

Out[58]=

Chapter 5 Data Visualization

226

Figure 5-52.  Data represented as a density plot

�3D Plots and 2D Projections
With the Wolfram Language, it is possible to plot functions in 3D and, at the same time,

project the contour maps to planes as the axis, as shown in Figure 5-53.

In[59]:= Show[Plot3D[(Sin[2 x]*Cos[2 y])/4, {x, 0, 2}, {y, 0, 2},

PlotStyle -> Directive[Opacity[1]], AxesLabel -> {"X axis", "Y axis", "Z

axis"},ColorFunction -> "Rainbow", PlotTheme -> "Marketing"],SliceContourPlo

t3D[(Sin[2 x]*Cos[2 y])/4, {z == -0.15, z == 0.15}, {x, 0, 2}, {y, 0, 2},

{z, -1, 1}, ColorFunction -> "Rainbow", Boxed -> False], ViewPoint ->

{1, -1, 1}]

Out[59]=

Chapter 5 Data Visualization

227

Figure 5-53.  3D plot with contour plots along the xy plane

Let’s discuss what happens in the code. You plot a function in 3D (see Figure 5-53),

and to this function, you add color, using the command directive to define the type of

opacity, which is set to 1. This is followed by typing the name of the corresponding axes

for the x, y, and z axes. The ColorFunction option can help define a function for the color

type; in this case, it is Rainbow. The PlotTheme is an option to plot with various themes

for visualization. Coming to this point, you move on to the SliceContourPlot3D, which

gives you a graph of the function, either on a plane or a surface. you have plotted when z

is worth ± 0.15. A cut is made on the xy plane. This occurs when x and y are in the range

of 0 to 2, and z is in the range of –1 to 1. In the end, you combine the two graphs with

the Show command; you use this command because you would not have the function’s

graph in 3D only by plotting on its slice contour plot.

�Plot Themes
Preconstructed themes can be accessed using the PlotTheme option. You see the

autocomplete menu when you add the PlotTheme option, followed by the first

apostrophe. Figure 5-54 shows the different themes that exist.

Chapter 5 Data Visualization

228

Figure 5-54.  PlotTheme pop-up menu

PlotTheme supports 3D plots, as shown in Figure 5-55.

In[60]:= data=Flatten[Table[{x,y,Sin[10(x^2+y^2)]/10},

{x,-2,2,0.2},{y,-2,2,0.2}],1]; ListPointPlot3D[data,ColorFunction->

"LightTemperatureMap", PlotTheme->"Detailed",ViewPoint->{0,-2,0},

ImageSize->250,PlotLegends->Placed[BarLegend[Automatic, LegendMarkerSize->

90],Left], ImageSize->20]

Out[60]=

Figure 5-55.  3D scatter plot

These themes can be used for both 2D and 3D graphics. Now, let’s look at another

type of theme for a two-dimensional chart (see Figure 5-56).

Chapter 5 Data Visualization

229

In[61]:= Plot[Cos[x],{x,0,10},PlotLabel->"Cos[x]",PlotTheme-> "Detailed"]

Out[61]= cos(x)

Figure 5-56.  2D plot theme: Detailed

Let’s discuss a characteristic of PlotTheme. Some themes already have functions

within these themes. Figure 5-55 shows that the Detailed theme adds frames, plot

legends, and grid lines, even though you can add them manually.

It is also notable that other topics can only be used for explanatory and

demonstrative purposes—that is, no extra information is needed on the chart, but you

need to be able to express the information effectively and concretely, as in the Business

and Minimal themes (see Figure 5-57).

In[62]:= Table[Plot[Cos[x],{x,0,10},PlotLabel->"Cos[x]",PlotTheme->Pl],{Pl,

{"Business","Minimal"}}]

Out[62]=

Figure 5-57.  Business and Minimal plot themes

Chapter 5 Data Visualization

230

While there are also topics that show more details, like the Detailed theme you saw

earlier, other themes exist, like the Scientific theme, as shown in Figure 5-58. You can

add more options, such as ColorFunction and a view, with the ViewProjection option,

which allows you a fixed observation point.

Figure 5-58.  Orthographic point of view

Note P lotLegends can work together with ColorFunction, displaying how the
colors of the dots transition between blue and red, from lowest to highest.

In[63]:= data=Flatten[Table[{x,y,Sin[10(x^2+y^2)]/10},

{x,-2,2,0.2},{y,-2,2,0.2}],1]; ListPointPlot3D[data,ColorFunction->

"LightTemperatureMap",PlotLegends-> Placed[BarLegend[Automatic,

LegendMarkerSize->90],Left], PlotTheme->"Scientific", ViewProjection->

"Orthographic"]

Out[63]=

If you want to observe through the coordinate measurements, use the Viewpoint

option, which is governed by {x coordinate, y coordinate, z coordinate}. These

coordinates are relative to the graph’s center, as Figure 5-59 shows.

Chapter 5 Data Visualization

231

In[64]:= ListPointPlot3D[Data,ColorFunction->"LightTemperatureMap",

PlotLegends->Automatic,PlotTheme->"Scientific", ViewPoint->

{0,0,-2},ImageSize->Medium]

Out[64]=

Figure 5-59.  Viewpoint for x and y equal 0 and z equal –2

�Summary
This chapter introduced the basics of data visualization, emphasizing 2D plots, plotting

data, and user-defined functions. As progress is made, the section on customizing plots

covers text to charts, frames, grids, and filled plots, including further content on fill

patterns and gradient filling, followed up by discussing how plot combinations are done,

focusing on multiple plots, and coloring plot grids and concentrating on new additions

like multi-axes plots. Furthermore, an overview of the color palette was presented,

followed by a segmentation of 3D Plots, elaborating on the customization, Hue coloring,

and contour plots. Finally, it culminates with an outlook on the variety of plot themes for

3D graphs.

Chapter 5 Data Visualization

233
© Jalil Villalobos Alva 2024
J. Villalobos Alva, Beginning Mathematica and Wolfram for Data Science,
https://doi.org/10.1007/979-8-8688-0348-2_6

CHAPTER 6

Statistical Data Analysis
This chapter reviews concepts and techniques to analyze with the Wolfram Language,

perform a linear adjustment through equations, and implement specialized functions

of the Wolfram Language for the same purpose, using statistical functions. The Wolfram

Language is a useful tool for statistics and probability. Mathematica has the functions to

perform numerical and approximate calculations for descriptive statistics and random

distributions, random numbers, and random sampling methods, as you see in this

section.

�Random Numbers
This section reviews the basic commands to generate random numbers—for the case of

integers, real and complex. You see the functions of performing random sampling with

replacement and without replacement and, in addition, ensuring that the results are

reproducible for random numbers.

To create random numbers, there are several functions to generate random integers

and real ones. The RandomInteger function generates entered random numbers; if no

arguments are entered in the function, the generation interval is 0 or 1.

In[1]:= RandomInteger[]

Out[1]= 0

To enter a range, you must define it within the function; for example, between

 –1 and 1.

In[2]:= RandomInteger[{-1,1}]

Out[2]= 1

https://doi.org/10.1007/979-8-8688-0348-2_6#DOI

234

To generate a list of random numbers, you must define how many numbers you want

within the list.

In[3]:= RandomInteger[{-1,1},7]

Out[3]= {-1,0,1,1,1,1,1}

To repeat the numbers, add the form of the list or nested list as a second argument.

For example, create a nested list of seven total items in each sublist with four items.

In[4]:= RandomInteger[{-10,10},{7,4}]

Out[4]= {{-8,7,7,0},{-4,-8,10,-8},{10,8,-8,0},{-2,-6,8,-10},

{8,-1,-6,-4},{1,4,0,-1},{5,7,9,10}}

The function for generating random numbers with a decimal point is called

RandomReal. It works similarly to RandomInteger, where the interval is between

curly braces.

In[5]:= RandomReal[]

Out[5]= 0.020413

A command for complex random and prime numbers also exists.

In[6]:= RandomComplex[]

Out[6]= 0.727318 +0.998602 I

You must define a minimum and maximum interval for random prime numbers—

for example, if it is a prime number of the first 100.

In[7]:= RandomPrime[{1,100},6]

Out[7]= {89,2,59,71,53,29}

This type of function generates pseudorandom numbers so that you can set a seed

to generate the numbers. This is done with SeedRandom. With a seed, you can ensure

that the starting sequence of random numbers generated is the same to make random

outputs reproducible. To set a seed, use the SeedRandom command. The following

example sets a seed followed by a sequence of random numbers; once the seed is

introduced, the results should be the same for that seed.

In[8]:= SeedRandom[6467789];RandomInteger[{-1,1},3]

Out[8]= {0,1,0}

Chapter 6 Statistical Data Analysis

235

The seed must go in the same code block to generate the results. There is the option

to choose the method. The following example uses the MersenneTwister method, which

generates random numbers. Using another method allows you to generate sequences of

different random numbers.

In[9]:=SeedRandom[Method->"MersenneTwister"];RandomInteger[{-1,1},{3,3}]

// MatrixForm

Out[9]//MatrixForm

	

− − −
−

















1 1 1

0 0 1

0 0 1 	

The seed enters the function without arguments to return to the original value.

In[10]:= SeedRandom[];

In addition to introducing a seed, you can create blocks of random numbers in which

functions can be used locally and not affect random behavior outside these blocks. This

is done with the BlockRandom function.

In[11]:= BlockRandom[RandomReal[1]]

Out[11]= 0.774569

If you run an algorithm that produces random numbers within the BlockRandom

and declare the seed, this should not impact other processes where random numbers

are generated outside the BlockRandom. To illustrate, let’s look at the example.

In[12]:= SeedRandom[121];

{RandomReal[],BlockRandom[RandomReal[]],RandomReal[],RandomReal[]}

Out[13]= {0.994955,0.788549,0.788549,0.957081}

As seen, the latter process generated different random numbers

�Random Sampling
Use the RandomChoice function to make a sample with a replacement. To select a single

item, you write only the list. You set a seed to get the same results.

Chapter 6 Statistical Data Analysis

236

In[14]:= SeedRandom[12345]; ranData=RandomReal[{0,1},10]

Out[15]={0.158069,0.599452,0.656143,0.918006,0.0805897,0.682397,0.638187,

0.431772,0.126333,0.973705}

This generated a list of 10 random numbers from 0 to 1, and now you randomly

choose an item of these numbers.

In[16]:= RandomChoice[ranData]

Out[16]= 0.973705

This gives you a single result from the list of 10 items. Similarly, you can choose the

number of samples with some elements, with the following form: RandomChoice[“data,”

“number of samples,” “several elements”]. You now pick three samples with one element

of the ten elements.

In[17]:= RandomChoice[ranData,{3,1}]

Out[17]= {{0.126333},{0.431772},{0.973705}}

Although, if you want it in the same sample, you only need to specify the number of

elements to choose from.

In[18]:= RandomChoice[ranData,5]

Out[18]= {0.0805897,0.158069,0.158069,0.0805897,0.973705}

To get a sampling without replacement, use RandomSample. This function only

chooses a list item from the data list once. To choose, you only specify the number of

elements in the sample as the second argument since the first one corresponds to the

data list.

In[19]:= RandomSample[ranData,9]

Out[19]={0.158069,0.682397,0.431772,0.599452,0.918006,0.638187,0.656143,

0.126333,0.0805897}

Looking at the details, you notice that there is no repeated value. Each item in the list

is equally likely to be selected in sampling.

In the case that each item in the list has a specific weight associated with it, then

to enter those terms, you use the following form of expression, {w1, w2, w3...} →

{element1, element2, element3...}; the list of items is associated with a specific weight for

replacement sampling. You denote the list of weights and do the sampling by associating

the weights and elements.

Chapter 6 Statistical Data Analysis

237

In[20]:=w={0.03`,0.08`,0.22`,0.04`,0.12`,0.3`,0.12`,0.03`,0.04`,0.02`};

RandomChoice[w->ranData,2]

Out[20]= {0.656143,0.638187}

They are chosen depending on how each element is assigned a weight. For sampling

without replacement, the process is analogous.

In[21]:= RandomSample[w->ranData,3]

Out[21]= {0.682397,0.656143,0.599452}

�Systematic Sampling
To perform a system sampling, you must determine the sample size, M. To get the

sample size, you can list the items in the list or get the length of the list. To get started,

you create a list of 200 prime numbers.

In[22]:= SeedRandom[09876]; rPrime=RandomPrime[{1,100},200];

Length[rPrime]

Out[24]= 200

The sample size was already calculated, so you must determine the size of a specific

sample; for this case, you want a sample of 20 elements. Once the sample is determined,

you calculate the interval of the denoted sampling j; j is calculated through a ratio, the

original sample size divided by the total number of elements in the specified sample.

In[25]:= j=Length[rPrime]/20

Out[25]= 10

This means that the sampling interval for the new sample is from 1 to 10. From

here, you select a random number within the interval, and from there, you add j times

to choose the next element; that is, for the first element, it is a random h number of the

range [1,10], for the second it is h + j, and for the third h + 3j, and so on, until it reaches

the size of the original sample.

You chose a random number between 1 and 10.

In[26]:= RandomSample[Range[10],1]

Out[26]= {6}

Chapter 6 Statistical Data Analysis

238

The result means that you select from the sixth element. You deploy the list to have a

better view of the data.

In[27]:= rPrime

Out[27]={7,41,3,7,83,61,41,29,89,5,17,3,41,73,73,67,29,71,23,13,31,19,89,

41,79,19,47,83,13,73,37,67,59,29,13,17,83,43,17,71,89,11,71,23,29,37,89,3,

89,11,41,59,2,37,41,31,59,79,61,13,59,53,53,59,2,43,11,73,41,37,3,31,13,

83,83,3,31,5,37,2,89,23,2,37,23,3,79,17,47,71,79,13,47,13,17,41,71,73,2,

53,29,7,2,7,79,97,83,31,3,43,29,11,37,67,11,41,67,13,23,2,59,53,89,61,29,

19,29,13,11,7,61,71,59,53,5,71,13,43,67,2,73,2,5,67,83,53,11,7,61,71,7,11,

83,59,47,67,17,83,43,53,17,59,11,11,61,2,11,97,2,73,41,7,41,19,41,71,53,3,

3,41,29,5,73,53,79,43,13,19,29,2,73,67,29,41,13,3,43,23,59,89}

To get the positions of the items to be selected, it would be the random number for

the selection, which is 6, plus n times j until you have 20 elements.

In[28]:= Table[6+n*j,{n,0,19}]

Out[28]= {6,16,26,36,46,56,66,76,86,96,106,116,126,136,146,156,166,

176,186,196}

Note R emember that the position index starts from 1 to n elements.

You must choose the positions shown in the previous output. To choose, you use the

double square bracket notation.

In[29]:= Table[rPrime[[6+n*j]],{n,0,19}]

Out[29]= {61,67,19,17,37,31,43,3,3,41,97,41,19,71,53,67,2,71,43,3}

Let’s take a closer look at the selected elements, highlighting them in red (here it is

plaintext) with the help of MapAt and Style.

In[30]:= MapAt[Style[#,FontColor-> ColorData["HTML"]["Red"]]&,

RPrime,{#}&/@{61,67,19,17,37,31,43,3,3,41,97,41,19,71,53,67,2,71,43,3}]

Out[30]={7,41,3,7,83,61,41,29,89,5,17,3,41,73,73,67,29,71,23,13,31,19,89,

41,79,19,47,83,13,73,37,67,59,29,13,17,83,43,17,71,89,11,71,23,29,37,89,3,

89,11,41,59,2,37,41,31,59,79,61,13,59,53,53,59,2,43,11,73,41,37,3,31,13,

83,83,3,31,5,37,2,89,23,2,37,23,3,79,17,47,71,79,13,47,13,17,41,71,73,2,

Chapter 6 Statistical Data Analysis

239

53,29,7,2,7,79,97,83,31,3,43,29,11,37,67,11,41,67,13,23,2,59,53,89,61,29,

19,29,13,11,7,61,71,59,53,5,71,13,43,67,2,73,2,5,67,83,53,11,7,61,71,7,11,

83,59,47,67,17,83,43,53,17,59,11,11,61,2,11,97,2,73,41,7,41,19,41,71,53,3,

3,41,29,5,73,53,79,43,13,19,29,2,73,67,29,41,13,3,43,23,59,89}

As you can see, system sampling does not create a completely random sample.

The random selection process comes in the first part when you select the first item to

create the new sample. Once the first item is selected, the other selections are from

a succession of non-random numbers. Another aspect to consider is the order of the

original sample; if the elements are periodic, this can lead to significant variability in the

selection of components.

�Commons Statistical Measures
Grasping the commonly used statistical formulas is crucial to understanding how the

data behaves on a given set of conditions. Descriptive statistics are implemented once

data has been collected, and it is one of the first steps in the process of exploratory data

analysis, which allows you to find insights into the data collected in terms of discovering

patterns, anomalies, trends, seasonality, variations, and so forth.

Exploratory data analysis is a set of techniques to detect characteristics that are not

visible at first sight or revealed once the data has been collected. The basic structure of

this technique relies on numeric data analysis, graphical representation, and a statistical

model. Many reasons to use data exploratory analysis include reviewing for missing

data, describing a general and particular idea of the underlying structure, and analyzing

for different assumptions associated with the model creation, among many more.

The proposal for such a process was introduced by Jhon Tukey in 1977. To review this

technique in more depth, visit the following reference, Exploratory Data Analysis (Tukey,

J. W. [1977], Vol. 2, pp. 131-160).

�Measures of Central Tendency
Given a sample of data, you can calculate the descriptive measures. Central trend

measures are those parameters that give you information on the average data values to

be studied. The mean, also known as arithmetic mean, is a parameter calculated from

Chapter 6 Statistical Data Analysis

240

the sum of the values of the sample and divided by the sum of the number of elements.

The Mean function calculates the average.

In[31]:= list1=Table[Prime[i],{i,10}];

"Prime list :"<>ToString@list1

"Mean: "<>ToString@Mean@N@list1

Out[32]= Prime list :{2, 3, 5, 7, 11, 13, 17, 19, 23, 29}

Out[33]= Mean: 12.9

Note T he symbol <> is the short notation for StringJoin.

The median is the value that divides the sample into two equal parts; since it is the

data’s midpoint, the median is the symmetry value relative to the amount of data. The

Median function gives you this value.

In[34]:= "Median: "<>ToString@Median@list1

Out[34]= Median: 12

Mode is the most common value of the sample. You use the Counts command,

which gives you the number of occurrences of each item in the list.

In[35]:= Counts[list1]

Out[35]= <|2->1,3->1,5->1,7->1,11->1,13->1,17->1,19->1,23->1,29->1|>

In this case, the occurrence is 1. There are no repeated values; you can say there is no

mode in this data sample.

�Measures of Dispersion
Dispersion measurements reveal information on the variability presented in the

sample. The range tells you about the interval in which the data varies. This is taken by

subtracting the max value and the minimum value. The Max and Min functions return a

list’s maximum and minimum values.

In[36]:= "Range: "<>ToString[Max[list1]-Min[list1]]

Out[36]= Range: 27

Chapter 6 Statistical Data Analysis

241

Variance is a measure obtained by subtracting the mean of each element in the

sample. The result is squared, followed by adding the elements together. The summation

is divided by the size of the sample. Its function is Variance.

In[37]:= "Variance: "<>ToString[N[Variance[list1],3]]

Out[37]= Variance: 81.4

Standard deviation is a measurement obtained from the square root of the variance

or employing the StandardDeviation function.

In[38]:= {"Square root of Variance: " <> ToString[N[Sqrt[Variance[list1]],

2]],"StandardDeviation: " <> ToString[N[StandardDeviation[list1], 2]]}

Out[38]= {Square root of Variance: 9.0,StandardDeviation: 9.0}

The standard score, z, is a score that measures how many standard deviations are

away from the arithmetic average for each sample element. The mathematical equation

is z x
=

− µ
σ

, where x is the measure, μ the mean, and σ the standard deviation. If z is

positive, the element is greater than the mean. When z is negative, it is the opposite case.

You determine the z-score for the second item in the list.

In[39]:= z=N[(list1[[2]]-Mean@list1)/StandardDeviation@list1,3];

"z score: "<>ToString@z

Out[40]= z score: -1.10

This result means that the score for the second element is 1.10 times below average.

Quartile calculation divides data into four equal parts. The lower quartile

corresponds to the 25% quartile of the data, while the second quartile is 50%, the third

quartile (the upper quartile) is 75%, and the fourth quartile (100%). To calculate the

quartiles, you use the Quartiles function, which gives the values of the first, second, and

third quartiles.

In[41]:= "Quartiles: " <> ToString@Quartiles[list1]

Out[41]= Quartiles: {5, 12, 19}

If you want to get a single value, use the Quantile function, followed by the

percentile, to be calculated. Then, use the following for calculating the third quartile

(75th percentile).

In[42]:= Quantile[list1,0.75]

Out[42]= 19

Chapter 6 Statistical Data Analysis

242

To calculate the interquartile range, which is the difference between the upper and

lower quartiles, use the InterquartileRange function.

In[43]:= InterquartileRange[List1]

Out[43]= 14

�Statistical Charts
Using charts to display data is a straightforward approach with Mathematica. Many times,

studies include various types of information. Mathematica has a repertoire of statistical

charts based on users’ needs for more visual and understandable presentations.

�Bar Charts
Sometimes, when you conduct a statistical study, you can find quantitative and

qualitative variables and create a bar graph representation for these variables. A bar

graph (see Figure 6-1) is a graphical representation where the number of frequencies of a

discrete qualitative variable is displayed on an axis.

In[44]:= BarChart[{1,2,3,4},ChartLabels->{"feature 1","feature 2",

"feature 3","feature 4"}]

Out[44]=

Figure 6-1.  Bar chart

Chapter 6 Statistical Data Analysis

243

The different modalities of the qualitative variable are positioned on one of the

axes. The other axis shows the value or frequency of each category on a given scale. The

feature 2 bar has an associated value of 2. The orientation of the graph can be vertical,

where the categories are located on the horizontal axis, and the bars are vertical or

horizontal, where the categories are located on the vertical axis. The bars are horizontal

(see Figure 6-2).

In[45]:= GraphicsRow[{BarChart[{1,2,3,4},ChartLabels->{"feature 1",

"feature 2","feature 3","feature 4"},BarOrigin->Bottom,ChartStyle->

LightBlue],BarChart[{1,2,3,4},ChartLabels->{"feature 1","feature

2","feature 3","feature 4"},BarOrigin->Left,ChartStyle->LightRed]}]

Out[45]=

Figure 6-2.  Bottom and left origin bar chart

Bar graphs can be used to compare magnitudes of different categories and observe

how values change according to a fixed variable—for example, each feature. In addition,

you can choose how to show the bars, where you show a single series, as shown in

the earlier example; grouped, which contains several data series and is represented

by a different type of bar; or stacked, where the bar is divided into segments with

different colors representing various categories. The percentile layout is displayed on a

percentage scale, as shown in Figure 6-3.

In[46]:= Labeled[GraphicsGrid[{{BarChart[{{4, 3, 2, 1}, {1, 2, 3}, {3, 5}},

ChartLayout -> "Grouped", ColorFunction -> "SolarColors"], BarChart[{1, 2,

3, 4}, ChartStyle -> LightRed, ChartLayout ->

"Stepped"]}, {BarChart[{{4, 3, 2, 1}, {1, 2, 3}, {6, 5}}, ChartLayout ->

"Stacked"], BarChart[{{4, 3, 2, 1}, {1, 2, 3}, {6, 5}}, ChartLayout ->

Chapter 6 Statistical Data Analysis

244

"Percentile", ColorFunction -> "DarkRainbow"]}},

Frame -> All, FrameStyle -> Directive[Black, Dashed], Background ->

LightBlue, ImageSize -> 500], "Bar Charts", Top]

Out[46]=

Figure 6-3.  Bar chart grid

There is also the counterpart to 3D graphics, with BarChart3D (see Figure 6-4).

In[47]:= SeedRandom[123];

Labeled[GraphicsGrid[{{BarChart3D[{{4, 3, 2, 1}, {1, 2, 3}, {3, 5}},

ChartLayout -> "Grouped", ColorFunction -> "SolarColors"],

BarChart3D[{1, 2, 3, 4}, ChartStyle -> LightRed, ChartLayout ->

"Stepped"]}, {BarChart3D[RandomReal[1, {10, 5}], ChartLayout -> "Stacked"],

BarChart3D[{{4, 3, 2, 1}, {1, 2, 3}, {6, 5}}, ChartLayout -> "Percentile",

ColorFunction -> "DarkRainbow"]}}, Frame -> All, FrameStyle ->

Directive[Red, Thick],Background -> LightBlue, ImageSize -> 500], "3D Bar

Charts", Top, Frame -> True, Background -> White]

Out[48]=

Chapter 6 Statistical Data Analysis

245

Figure 6-4.  3D bar charts grid

�Histograms
Histograms are a type of visualization that is commonly used in statistical studies. With

histograms, you can see how a sample is distributed. Histograms are used to represent

the frequencies of a quantitative variable. The variable classes are positioned on the

horizontal axis, and the frequencies are on the other axis. The following examples graph

a histogram from a population of 50 random values between 0 and 1 and set the number

of bins to 10. The second argument for histograms is to define the number of bins (see

Figure 6-5).

In[49]:= SeedRandom[4322];

hist1=Table[RandomReal[{2,3}],{i,0,20}];

Histogram[hist1,10]

Out[51]=

Chapter 6 Statistical Data Analysis

246

Figure 6-5.  Histogram for random real numbers

Note  When dealing with charts, if you put the pointer cursor on the graphic, an
info tip marks the value.

Just like with bar charts, there are ways to edit the histogram’s origin and how the

histogram is displayed—stacked or overlapped—as shown in Figure 6-6.

In[51]:= hist2=Table[Cos[i],{i,1,20}];

hist3=Table[Sin[i],{i,1,10}];

GraphicsColumn[{Histogram[{hist1,hist2},10,BarOrigin-

>Left,ChartStyle->"Pastel",ChartLegends->{"rand num",

"Cos(x)"}],Histogram[{hist2,hist3},10,ChartLayout->

"Overlapped",ChartStyle->"Pastel",ChartLegends-> {"Cos(x)","Sin(x)

"}],Histogram[{hist2,hist3},10,ChartLayout-> "Stacked",ChartStyle-

>"Pastel",ChartLegends->{"Cos(x)","Sin(x)"}]}]

Out[54]=

Chapter 6 Statistical Data Analysis

247

Figure 6-6.  Histogram shapes grid

With this in mind, you can also graph bidirectional histograms using

PairedHistograms. These can be horizontal or vertical orientations and contain two data

series whose bars go opposite directions (see Figure 6-7).

In[55]:=SeedRandom[123] ;GraphicsRow[{PairedHistogram[{RandomReal[{0,1},20]},

{RandomReal[{0,1},20]},BarOrigin->Left], PairedHistogram[{RandomReal

[{0,1},20]}, {RandomReal[{0,1},20]},10,BarOrigin->Top, ChartStyle->"Pastel"]}]

Out[55]=

Chapter 6 Statistical Data Analysis

248

Figure 6-7.  Paired histograms with different origins

While histograms offer a powerful way to visualize data distribution, you can

enhance these visualizations by incorporating various statistical functions directly into

the notebook. By default, histograms in the Wolfram Language display data counts

within each bin. However, it’s often valuable to visualize cumulative distribution

functions (CDFs) and probability density functions (PDFs), like the following example

and Figure 6-8.

In[56]:= (*common options*)

continuousOpts = {Filling -> Axis, Frame -> True, FrameLabel -> {"X", #},

PlotLabel -> "Continuous " <> #} &;

(*Continuous PDF and CDF plots*)

continuousPlots =

 Grid[{{Labeled[Plot[PDF[NormalDistribution[0, 1], x], {x, -3, 3},

Evaluate@continuousOpts["PDF"], PlotStyle -> Directive[Blue,

Opacity[0.5]]], "PDF", Top], Labeled[Plot[CDF[NormalDistribution[0,

1], x], {x, -5, 5}, Evaluate@continuousOpts["CDF"], PlotStyle ->

Directive[Red, Thick]], "CDF", Top]}}, Frame -> All]

Out[57]=

Chapter 6 Statistical Data Analysis

249

Figure 6-8.  PDF and CDF plots for the standard normal distribution

The previous code generates the PDF and CDF plots for a continuous distribution,

for a standard normal distribution (mean 0, standard deviation 1). It uses the

distributions as arguments for the PDF and CDF functions. The plots are labeled

accordingly for clarity. Similarly, the process can be done to discrete distributions (see

Figure 6-9).

In[57]:= (*common options*)

discreteOpts = {ExtentSize -> Full, Frame -> True, FrameLabel -> {"x", #},

PlotLabel -> "Discrete " <> #} &;

(*Discrete PDF and CDF plots*)

discretePlots = Grid[{{Labeled[DiscretePlot[PDF[BinomialDistribution

[10, 0.5], x], {x, 0, 10}, Evaluate@discreteOpts["PDF"], PlotStyle ->

Directive[Green, Opacity[0.5]]], "PDF", Top], Labeled[DiscretePlot[CDF

[BinomialDistribution[10, 0.5], x], {x, 0, 10}, Evaluate@discreteOpts["CDF"],

PlotStyle -> Directive[Orange, Thick]], "CDF", Top]}}, Frame -> All]

Out[58]=

Chapter 6 Statistical Data Analysis

250

Figure 6-9.  PDF and CDF plots for the binomial distribution with parameters
n=10 and p=0.5

�Pie Charts and Sector Charts
Pie charts are circles that are divided into two or more sections. They represent

quantitative variables that make up a total; for example, the sector’s size is drawn

proportional to the value it represents and is expressed in percentages, which only

provides relative quantitative information. Pie charts are made with the PieChart

command (see Figure 6-10).

In[59]:= GraphicsRow[{PieChart[{1,1,1},ChartLegends->{"part a","part b",

"part c"},ChartStyle->{LightRed,LightBlue,LightYellow}], PieChart[{1,1},

ChartLegends->{"part a","part b"},ChartStyle-> "SunsetColors"]}]

Out[59]=

Figure 6-10.  Pie charts

Chapter 6 Statistical Data Analysis

251

Sector charts are graphed with the SectorChart command (see Figure 6-11). They

are used to compare different data that occur in the same place. They are constructed

from the proportional size of x to the value of the radius of y. The dimension in which the

quantities are expressed must be the same for all the segments.

In[60]:= SectorChart[{{2,1},{1,2}},ChartLegends->{"Sector a","Sector b"},

ChartStyle->{LightRed,LightYellow}]

Out[60]=

Figure 6-11.  Sector chart

For each graph seen, there is a corresponding command to create them in 3D, as

shown in Figure 6-12.

In[61]:=

GraphicsGrid[{{SectorChart3D[{{2, 1, 1}, {3, 1, 2}, {1, 2, 2}},

PlotLabel -> "3D Sector chart", ChartStyle -> {Red, Blue,

Yellow}], PieChart3D[{1, 1, 1}, ChartStyle -> "GrayTones", PlotLabel

 -> "3D Pie Chart"]}, {Histogram3D[Table[{i^3, i^-1}, {i, 20}], 10,

ChartElementFunction -> "GradientScaleCube", PlotLabel -> "3D

Histogram"], None}}, ImageSize -> 500, Frame -> True, FrameStyle ->

Directive[Thick, Dotted]]

Out[61]=

Chapter 6 Statistical Data Analysis

252

Figure 6-12.  3D grid charts

�Box Plots
The box plot is a way of representing and observing a data distribution. Fundamentally,

it highlights aspects of data distribution in one or more series. To graph a box plot, you

use the BoxWhiskerChart command (see Figure 6-13).

In[62]:= SeedRandom[1234] BoxWhiskerChart[{Table[RandomReal[],{i,0,50}],

Table[RandomReal[],{i,0,50}], Table[RandomReal[],{i,0,15}]},ChartLabels→
{"Chart 1","Chart 2","Chart 3"}]

Out[62]=

Chapter 6 Statistical Data Analysis

253

Figure 6-13.  Box plot

The box is represented by a rectangle that marks the interquartile range of the

distribution. The first line from bottom to top marks the value of the first quartile (25%),

the line that crosses the box is the median, and the last line that delimits the box is the

third quartile (75%). Whiskers are the lines that mark the maximum and minimum

values. When passing the mouse cursor over the plot, information about the data is

shown; this includes minimum, maximum, median, 75th percentile, and first quartile.

Depending on the specification, this can affect the parameters displayed and how (see

Figure 6-14).

In[62]:= SeedRandom[123];

data = {Table[RandomReal[], {i,0,50}],Table[RandomReal[], {i,0,50}],

Table[RandomReal[], {i,0,15}]};

options = {ImageSize -> Medium, ChartStyle -> "MintColors", FrameStyle ->

Directive[White, 12]};

GraphicsGrid[{{BoxWhiskerChart[data, "Median", PlotLabel -> Style["Median",

White], options], BoxWhiskerChart[data, "Basic", PlotLabel ->

Style["Basic", LightOrange], FrameStyle -> Directive[Orange, 12], options],

BoxWhiskerChart[data, "Notched",

PlotLabel -> Style["Notched", White], options]},

{BoxWhiskerChart[data, "Outliers", PlotLabel -> Style["Outliers",

LightOrange], FrameStyle -> Directive[Orange, 12], options],

BoxWhiskerChart[data, "Mean", PlotLabel -> Style["Mean",

Chapter 6 Statistical Data Analysis

254

White], options],BoxWhiskerChart[data, "Diamond", PlotLabel ->

Style["Diamond", LightOrange], FrameStyle -> Directive[Orange, 12],

options]}},FrameTicksStyle -> 18, Frame -> {None, None, {{1, 1} -> True,

{2, 2} -> True, {1, 3} -> True}}, FrameStyle -> Directive[Thick, Red],

Background -> Black]

Out[63]=

Figure 6-14.  Multiple box plots

Median is the default specification; it shows the median in the center of the box.

Basic is to show only the box. Notches show the confidence interval for the median.

Outliers show and mark the atypical points. The mean marks the average of the

distribution, and Diamond notes the confidence interval for the mean.

�Distribution Chart
A violin diagram is used to visualize the distribution of the data and the probability

density. To plot a violin plot (see Figure 6-15), the DistributionChart command is used.

In[64]:= DistributionChart[Table[i^Exp[i],{i,0,1,0.01}]]

Out[64]=

Chapter 6 Statistical Data Analysis

255

Figure 6-15.  Violin plot

The graph in the figure combines a box-and-whisker plot and a density plot on each

side to show how the data is distributed. DistributionChart has different shapes to graph

(see Figure 6-16).

In[65]:= GraphicsGrid[{{DistributionChart[Table[i^Exp[i], {i, 0, 2, 0.1}],

ChartElementFunction -> "SmoothDensity", PlotLabel -> "SmoothDensity"],

DistributionChart[Table[i^Exp[i], {i, 1, 2, 0.1}], ChartElementFunction ->

"Density", PlotLabel -> "Density",

FrameStyle -> Directive[Red, 12]]}, {DistributionChart[Table[i^Exp[i],

{i, 0, 1, 0.09}], ChartElementFunction -> "HistogramDensity", PlotLabel ->

"HistogramDensity", FrameStyle -> Directive[Red, 12]], DistributionChart

[Table[i^Exp[i], {i, 0, 1, 0.0112}], ChartElementFunction -> "PointDensity",

PlotLabel -> "PointDensity"]}}, ImageSize -> Medium, FrameStyle ->

Directive[Thickness[0.02], LightGray], Dividers -> {2 -> Directive[Black,

Dotted], 2 -> Directive[Black, Dotted]}, Frame -> {1 -> False, False}]

Out[65]=

Chapter 6 Statistical Data Analysis

256

Figure 6-16.  Violin plots in different shapes

�Charts Palette
Another way to add options to charts is through the Chart Element Schemes palette,

found within the Palettes menu (Palettes ➤ Chart Element Schemes). This palette is

shown in Figure 6-17.

Chapter 6 Statistical Data Analysis

257

Figure 6-17.  Chart Element Schemes palette

Chapter 6 Statistical Data Analysis

258

In the palette, you find three categories. Chart Type is where you choose the type

of chart. This contains four tabs: (1) general, where the graphics are found from bar

charts, sector, footer, and others; (2) statistical graphs associated with data distributions;

(3) financial, associated with charts for financial data; and (4) gauges, which are

diagrams of measures. The second category is to choose the shape of the graph with

the ChartElementFunction option. The third category is for the preview of the options

chosen from the previous categories.

To illustrate this, let’s look at the following exercises. First, make the graph of the

density of a histogram, and later, modify the shape of the graph with the help of the

palette. To graph the density of a histogram, use the DensityHistogram command (see

Figure 6-18).

In[66]:= DensityHistogram[Flatten[Table[{x^2+y^2,x^2-y^2},

{x,0,2,0.1},{y,0,2,0.1}],1],ChartBaseStyle->Red,ColorFunction->

"SolarColors",Background->Black,FrameStyle->Directive[White,Thick],

FrameLabel->{"X","Y"},ImageSize->300]

Out[66]=

Figure 6-18.  Density histogram

Chapter 6 Statistical Data Analysis

259

Once the graph is done, add an option with the pallet head and open the Chart

Element Schemes palette. Within the chart type, you click the statistical tab and choose

the DensityHistogram chart. Once the chart has been selected, go to Chart Element and

select that the type of form is Bubble. Then go to Options Preview to see how the graph

would look; if you click Shape, a pop-up menu appears with other shapes; you choose

hexagon. Figure 6-19 shows how the preview of the selected chart elements should look.

Figure 6-19.  Density histogram options selected

Chapter 6 Statistical Data Analysis

260

Once you finish selecting, click the insert button so that it inserts the following code:

ChartElementFunction ➤ ChartElementDataFunction [“Bubble”, “Shape” ➤ “Hexagon”].

To graph it correctly, add this code as an option and proceed to plot it (see Figure 6-20)

to observe the new option added.

In[67]:= DensityHistogram[Flatten[Table[{x^2 + y^2, x^2 - y^2}, {x, 0,

2, 0.1}, {y, 0, 2, 0.1}], 1], ChartBaseStyle -> Red, ColorFunction ->

"SolarColors", Background -> Black, FrameStyle -> Directive[White,

Thick], FrameLabel -> {"X", "Y"}, ImageSize -> 300, ChartElementFunction ->

ChartElementDataFunction["Bubble", "Shape" -> "Hexagon"]]

Out[67]=

Figure 6-20.  Hexagon density histogram

The DensityHistogram command allows you to choose how to display the data

distribution along the axes; it can be the dimensions, box plots, or histograms if you

select the Method type as an option (see Figure 6-21).

In[68]:= hist = Flatten[Table[{x^2+y^2,x^2-y^2}, {x,0,2,0.1},

{y,0,2,0.1}],1];

densityHistogram[distAxes_, colFunc_, baseStyle_, plotLabel_,

imgSize_] := DensityHistogram[Hist, Method -> {"DistributionAxes" ->

Chapter 6 Statistical Data Analysis

261

distAxes},ColorFunction -> colFunc, ChartBaseStyle -> baseStyle, PlotLabel

 -> Style[plotLabel, Bold], ChartLegends -> Automatic,

ChartElementFunction -> ChartElementDataFunction["Bubble", "Shape"

 -> "Hexagon"],ImageSize -> imgSize] {MenuView[{densityHistogram

[True, GrayLevel, Directive[FaceForm[Opacity[0.5]], EdgeForm[Red]],

"Density Histogram 1", 200], densityHistogram["Histogram",

Automatic, Directive[EdgeForm[Thick]], "Density Histogram 2", 200],

densityHistogram["BoxWhisker", "BlueGreenYellow", Automatic, "Density

Histogram 3", 200]}], GraphicsRow[{densityHistogram[True, GrayLevel, Direct

ive[FaceForm[Opacity[0.5]], EdgeForm[Red]],

"Density Histogram 1", 130], densityHistogram["Histogram", Automatic,

Directive[EdgeForm[Thick]], "Density Histogram 2", 130],

densityHistogram["BoxWhisker", "BlueGreenYellow", Automatic, "Density

Histogram 3", 130]}]}

Out[70]=

Figure 6-21.  Menu view of the three different method plots

The plots are shown inside as a menu, so to access the different graphs, you have

to select each graph within the menu. Even so, you show the plots on a small scale

to demonstrate how they should look (see Figure 6-21). The first graph shows the

dimensions of the data distribution along the axes. The second shows the distribution of

the data in the form of histograms, and the third shows the box plots.

Chapter 6 Statistical Data Analysis

262

�Ordinary Least Squares Method
The ordinary least squares method finds the best-fitting line through data points. This

method is used to study the relationship between the dependent variable and the

independent variable. The process is based on the expression of finding a line of the

form y = mx + b, where x is the independent variable, y is the dependent variable, m is

the slope, and b is the y-intercept. The slope and the sorted to origin b are calculated

from the following equations.

	
m

n x y x y
n x x

=
∗∑ ∗() − ∑ ∗∑

∗∑ − ∑2 2 	

	
b y x x x y

n x x
=
∑ ∗∑ −∑ ∗∑ ∗

∗∑ − ∑

2

2 2

(

	

The summation is denoted by the Greek capital letter sigma (∑); n is the amount of

data in the sample. The method is calculated for measured data pairs and slope values,

and y-intercept sources are calculated to create the best data fit to a line. By substituting

in the general equation, you get the equation of the line for the dataset.

To illustrate the method, let’s look at the following example using the points for the

dependent and the independent variables.

In[71]:= data={{-1,10},{0,9},{1,7},{2,5},{3,4},{4,3},{5,0},{7,-1}};

Grid[Transpose[Prepend[data,{"X","Y"}]],Dividers->{2->True,2->

True},Alignment-> Center]

Out[72]=

X | -1 0 1 2 3 4 5 7

__|______________________

Y | 10 9 7 5 4 3 0 -1

Next, calculate the data needed to get the slope and y-intercept.

In[73]:=n = Length[data];

sumX = Total@data[[All, 1]];

sumY = Total@data[[All, 2]];

sumXY = Total[data[[All, 1]]*data[[All, 2]]];

sumXSqr = Total@(data[[All, 1]]^2);

Chapter 6 Statistical Data Analysis

263

m = N@((n*sumXY-sumX*sumY)/n*sumXSqr-Abs[sumX]^2);

b = N@((sumY*sumXSqr-sumX*sumXY)/n*sumXSqr-Abs[sumX]^2);

Use the Solve command to solve the equation of the shape y = mx + b. The first

argument is the equation, and the second is for the variable to solve. You must use the

same double notation to enter the equation since a single equal is for set instruction.

In[80]:= Solve[SetPrecision[y==m*x+b,3],y]

Out[80]= {{y->8.47-1.47 x}}

This results in the equation of the line being y = 1.47 x + 8.47. Given this equation,

you plot the points and the line that best fits these points (see Figure 6-22).

In[81]:= Show[Plot[b + m*x,{x,-1,8}, PlotLegends->Placed["Linear Fit: y=-

1.47x+8.47",{0.6,0.8}],PlotRange->Automatic], ListPlot[data, PlotStyle

 -> Red]]

Out[81]=

Figure 6-22.  Plot of data and fitted curve

Having obtained the equation, you observe that this is a model with a negative slope,

corroborated by the equation graph shown in blue.

Chapter 6 Statistical Data Analysis

264

�Pearson Coefficient
The measure that tells you that both the points fit the equation is the Pearson correlation

coefficient named r. When the points are found with a positive slope, r has a positive

value. When the points are negatively sloped, r has a negative value. The coefficient

value determines the correct setting, ranging from –1 to 1. When the r value is 1 or –1, it

tells you that the points are adjusted exactly to the line. The closer r is to –1 or 1 indicates

that there appears to be a linear relationship between the study variables. Otherwise,

when r is equal to 0, it tells you that the setting is not correct, and therefore, it can be

concluded that there is no apparent linear relationship.

The equation for determining the coefficient is as follows.

	
r

x y

x y

=
∗()Cov

σ σ
,

	

Cov represents the covariance of x, y. The symbols 𝜎x and 𝜎y represent the standard

deviations of x and y.

Now, you proceed to calculate the coefficient r for the created adjustment. For this,

you must introduce only the points of x and y, for calculating covariance and standard

deviations.

In[82]:= r= N@(Covariance@@{data [[All,1]],data [[All,2]]} /

(StandardDeviation@data[[All,1]]*StandardDeviation@data[[All,2]]))

Out[82]= -0.987814

The result is close to 1; therefore, the straight is adequately fair to the data. Although

it is possible to calculate it through the equation, Mathematica has a function for this

calculation. Correlation calculates the coefficient from two lists, so you need to enter

only the x data in one list and the data from y in another list.

In[83]:= N@Correlation[data[[All,1]],data[[All,2]]]

Out[83]= -0.987814

And you get the same result as the previous one.

Chapter 6 Statistical Data Analysis

265

�Linear Fit
Mathematica has functions that specialize in finding the best linear model using

LinearModelFit. Given the dataset, you write the LinearModelFit command with the

data to work and the variable to write the equation. In addition, you can specify the level

of precision for adjustment with WorkingPrecision.

In[84]:= model=LinearModelFit[data,x,x,WorkingPrecision->10]

Out[84]= FittedModel[8.473684211-1.466165414 x]

The same equation returns to you but with better precision. Within the model, you

can access different properties related to the data, the model, and other adjustment

parameters, as well as measures of the goodness of the fit, among others. To illustrate

this, you see how to do it for the BestFit, BestFitParameters, and Function options, which

return the best-fit equation as a list, the best parameters, and model construction for a

pure function, respectively.

A critical aspect is that trying to make predictions about a future value using

the fitted equation (8.47 – 1.47 x), with values of x outside the range, could generate

abnormal values since you have not established whether the relation of the equation

outside the range of x is met. Figure 6-23 shows the fitted curve calculations.

In[85]:= {"\n" Framed["Best Fit Parameters b and m: " <>

ToString[model["BestFitParameters"]], Background -> LightYellow], "\n"

Framed["Equation: " <> ToString[model["BestFit"]], Background ->

LightYellow], "\n" Framed["Pure Function:" <> ToString[SetPrecision[model[

"Function"], 3]], Background -> LightYellow], "\n" Framed["r coeficcient:"

<> ToString[r], Background -> LightYellow]}

Out[85]=

Figure 6-23.  Fitted parameters, equation, and Pearson coefficient

Chapter 6 Statistical Data Analysis

266

Since you have the line that best fits, you should consider whether a relationship

exists between x and y. How do you know if the adjustment adequately describes the

linear relationship between the x and y variables? To solve this problem, there is the

concept of residual.

�Model Properties
Residuals can be used as a measure to know how good the fit of the line is to the study

points. Residuals are vertical deviations, either positive or negative. A residual point

is the difference between the observed value of the dependent variable and the value

that predicts the adjustment. To get the residual points, write the FitResiduals property

within the model.

In[86]:= model["FitResiduals"]

Out[86]= {0.06015038,0.52631579,-0.00751880,-0.54135338,-0.07518797,

0.39097744,-1.14285714,0.78947368}

With these points, you can get the residual plot (see Figure 6-24), which is the x

variable vs. the residual points.

In[87]:= ListPlot[model["FitResiduals"],PlotStyle->{Red,Thick},

PlotLabel->"Residual Plot",AxesLabel-> {Style["X",Bold], Style["residual

points",Bold]},Filling->Axis]

Out[87]=

Chapter 6 Statistical Data Analysis

267

Figure 6-24.  Residual plot of the fitted data

To show only the observed and predated values for the single prediction, use the

SinglePredictionConfidenceIntervalTable option.

In[88]:= model["SinglePredictionConfidenceIntervalTable"]

Out[88]=

Observed Predicted Standard Error Confidence Interval

10 9.93984962 0.78481739 {8.0194706,11.8602286}

9 8.47368421 0.74856412 {6.6420138,10.3053546}

7 7.00751880 0.72287410 {5.2387096,8.7763280}

5 5.54135338 0.70889670 {3.8067456,7.2759611}

4 4.07518797 0.70732661 {2.3444221,5.8059538}

3 2.60902256 0.71824519 {0.8515399,4.3665052}

0 1.14285714 0.74110068 {-0.6705509,2.9562652}

-1 -1.78947368 0.81811053 {-3.7913180,0.2123707}

In addition to the residual points, you can extract the table from the parameters of

the model adjusted with the ParameterTable property.

In[89]:= model["ParameterTable"]

Out[89]=

Chapter 6 Statistical Data Analysis

268

Estimate Standard Error t-Statistic P-Value

1 8.473684211 0.34167121 24.800697 2.8278226*10^-7

x -1.466165414 0.094310214 -15.5461996 4.4832546*10^-6

The coefficients are shown in the table. The first coefficient is the ordinate to

the origin, and the coefficient associated with the e variable is the slope. The two

coefficients have their respective standard errors. To know the confidence interval for the

parameters, you write the ParameterConfidenceIntervalTable property.

In[90]:= model["ParameterConfidenceIntervalTable"]

Out[90]=

Estimate Standard Error Confidence Interval

1 8.473684211 0.34167121 {7.63764488,9.30972355}

x -1.466165414 0.094310214 {-1.69693419,-1.23539663}

The default confidence interval is 95%. With these confidence values, you can plot

the points inside or outside this range (see Figure 6-25), extracting the values from the

predictions and setting the option for the confidence interval to 0.95.

In[91]:= model[x];

model["SinglePredictionBands", ConfidenceLevel -> 0.95]; Show[

ListPlot[data, PlotStyle -> Red], Plot[{Model[x],

Model["SinglePredictionBands", ConfidenceLevel -> 0.95]}, {x, -1, 10},

Filling -> {2 -> {1}}], PlotRange -> {Automatic, {-1, 10}}, Frame -> True,

ImageSize -> 400]

Out[92]=

Chapter 6 Statistical Data Analysis

269

Figure 6-25.  The filled region denotes the 95% confidence interval

Finally, to obtain the properties related to the sum of the squared errors, you use the

ANOVATable property.

In[93]:= model["ANOVATable"]

Out[93]=

DF SS MS F-Statistic P-Value

X 1 107.213346 107.213346 241.68432 4.48325*10^-6

Error 6 2.6616541 0.44360902

Total 7 109.8750000

�Summary
This chapter covered the concepts and techniques for conducting statistical analysis

using the Wolfram Language and how to perform linear adjustments (least squares,

linear fit) through equations and implement specialized statistical functions—

demonstrating that the Wolfram Language is an effective statistical tool. In addition,

you also view the reference functions available in Mathematica for numerical and

approximate calculations of descriptive statistics, random distributions, numbers, and

sampling methods.

Chapter 6 Statistical Data Analysis

271
© Jalil Villalobos Alva 2024
J. Villalobos Alva, Beginning Mathematica and Wolfram for Data Science,
https://doi.org/10.1007/979-8-8688-0348-2_7

CHAPTER 7

Data Exploration
This chapter looks at the basics of data management through the Wolfram Data

Repository online platform and its use in Mathematica. You also learn how data is

viewed inside datasets and how to apply user functions and query commands.

�Wolfram Data Repository
The Wolfram Data Repository is a data repository in the cloud. This data repository

contains information from different categories, such as computer science, meteorology,

agriculture, sports, text and literature education, and many more. Although

this repository belongs to Wolfram Research, it is characterized by being in the

public domain.

The Wolfram Data Repository consists of computable data selected, structured, and

cured for direct use to perform numerical calculations, estimates, analysis, statistics,

or demonstrations. The content hosted in this repository is data from many sources,

globally known datasets, and publication data. All this information is designed so that

any individual can access it globally. The Wolfram Data Repository system provides a

data source that, in turn, also enables the storage of new information. The information

stored in the repository is designed to directly implement the Wolfram Language.

As you saw in the data import section, you know whether the website is active by

receiving an HTTP-type response, as shown in Figure 7-1.

In[1]:= URLRead["https://datarepository.wolframcloud.com/"]

Out[1]=

https://doi.org/10.1007/979-8-8688-0348-2_7#DOI

272

Figure 7-1.  HTTP response object of the Wolfram Data Repository. As you can see,
you have received a successful response.

�Wolfram Data Repository Website
To access this website, enter the following URL address in your favorite browser:

https://datarepository.wolframcloud.com. Figure 7-2 shows the welcome page of the

Wolfram Data Repository.

Figure 7-2.  Wolfram Data Repository website

Note  The images that appear are links that redirect to the dataset associated
with that image.

Once the site is loaded, you see a menu of options to navigate the site, either by

categories or data type. Within that menu, you find the different categories and data

types: text, numerical data, images, and so forth. You also find the contact option,

Chapter 7 Data Exploration

https://datarepository.wolframcloud.com

273

custom searches, and Submit New Data among the menu options. The latter is the

option that redirects to another page that displays the instructions for publishing

and uploading new data to this repository. Scrolling down, you also see the existing

categories and the data types. If so, there is the possibility to browse all resources by

clicking the Browse All Resources link (bottom of the web page). To browse categories,

you can choose the category from the menu or by clicking the category name at the

initial site. Figure 7-3 shows what the site looks like once you have selected a category—

in this case, Life Science.

Figure 7-3.  Life Science category of the Wolfram Data Repository

Note  The same process is for navigating by data type. As new data is added,
content is updated regularly.

Chapter 7 Data Exploration

274

�Selecting a Category
Each category shows the title, the number of elements in that category, and the option

to filter the category’s contents by the data type. Regarding the content, each sample

data type is displayed with its title, a small description of the data it contains, and the

different tags associated with that sample data. For example, the image shows Fisher’s

Irises’ known dataset. Once you select a sample dataset, it takes you to the site where the

relevant information about that dataset is contained, as shown in Figure 7-4, where the

Fisher’s Irises dataset is selected.

Figure 7-4.  Fisher’s Irises dataset

When a sample dataset is selected, a brief description of the dataset is shown, as

well as the different calculations that can be made and different formats to download

the data or the notebook. Besides this, it also includes relevant information such as the

Chapter 7 Data Exploration

275

bibliographic citation, data resource history, and data source. In some instances, the

data can be downloaded for different types of formats, such as comma-separated value

(CSV), tab-separated value (TSV), JavaScript object notation (JSON), and others. Before

starting to download data from the Wolfram Data Repository, it is necessary to have a

Wolfram ID. This ID is an account that gives you access to the content of the Wolfram

Data Repository in addition to other benefits, such as Wolfram One and Wolfram Alpha.

To log in from Mathematica, head to the menu in Help ➤ Sign in, and a window appear

like the one in Figure 7-5.

Figure 7-5.  Wolfram Cloud sign-in prompt

In the new window, you enter your email and password to access the contents of the

Wolfram Data Repository from Mathematica.

�Extracting Data from the Wolfram Data Repository
Let’s start by looking at the information and properties of the Fisher’s dataset; for this,

you must retrieve the information through a ResourceObject. With ResourceObject (see

Figure 7-6), you can now view the different properties of the published data by clicking

the plus icon. Detailed information about the data is displayed, such as sample name,

type, version, size of the data, and many more.

Chapter 7 Data Exploration

276

In[2]:= ResourceObject["Sample Data: Fisher's Irises"]

Out[2]=

Figure 7-6.  ResourceObject Fisher’s Irises

If you want to look at the properties of the resource object, enter the following

code. This code gives you a list of properties that can be accessed and related to the

data sample.

In[3]:= ResourceObject["Sample Data: Fisher's Irises"]["Properties"]

Out[3]= {AllVersions, AutoUpdate, Categories, ContentElementLocations,

ContentElements, ContentSize, ContentTypes, ContributorInformation,

DatedElementVersions, DefaultContentElement, Description, Details,

Documentation, DocumentationLink, DOI, DownloadedVersion, ExampleNotebook,

ExampleNotebookObject, Format, InformationElements, Keywords,

LatestUpdate, Name, Originator, Properties, PublisherUUID, ReleaseDate,

RepositoryLocation, ResourceLocations, ResourceType, SeeAlso, ShortName,

SourceMetadata, UUID, Version, VersionInformation, VersionsAvailable,

WolframLanguageVersionRequired}

Knowing the list of properties related to information, you can now download from

Mathematica the exercise notebook of the data sample.

In[4]:=ResourceObject["Sample Data: Fisher's Irises"]["ExampleNotebook"]

Out[4]= NotebookObject[Sample Data: Fisher's Irises | Example Notebook]

Chapter 7 Data Exploration

277

Once you finish evaluating the code, it automatically opens the new notebook. If you

want to operate the notebook from the cloud, you can type NotebookObject. This output

gives you back a cloud-like object associated with a hyperlink.

In[5]:= ResourceObject["Sample Data: Fisher's Irises"]

["ExampleNotebookObject"]

Out[5]= CloudObject[https://www.wolframcloud.com/obj/5e59b79e-d95e-4f6f-

a7c8-f1276ba17be2]

If you press the link of the new notebook, it opens the Internet browser and shows

you that it is in the Wolfram Cloud. Figure 7-7 shows this.

Figure 7-7.  Fisher’s Irises data sample, open from the Wolfram Cloud

Chapter 7 Data Exploration

278

To access the original sample data site from Mathematica, enter Documentation,

which gives you a URL object that you can enter by clicking the double chevron icon.

In[6]:= ResourceObject["Sample Data: Fisher's Irises"] ["Documentation"]

Out[6]=URL[https://datarepository.wolframcloud.com/resources/

b7f632f7-9c5f-4ad4-a73e-446cc2656f64/]

�Accessing Data Inside Mathematica
The same initiative is applied to downloading the data using the ResourceData to the

object resource. With ResourceData, you access the contents of the specified resource; in

this case, it is the Fisher’s Irises data sample (see Figure 7-8).

In[7]:= ResourceData[ResourceObject["Sample Data: Fisher's Irises"]]

Out[7]=

Chapter 7 Data Exploration

279

Figure 7-8.  Fisher’s Irises dataset object

As shown in Figure 7-8, the returned object is a ResourceData to use with a head

of the dataset. Performing a visual inspection of the data sample, you observe that it

is a dataset of 150 values containing five columns: Species, SepalLength, SepalWidth,

PetalLength, and PetalWidth. If you pay attention, you can see how the values of the

SepalLength, SepalWidth, PetalLength, and PetalWidth columns are quantities. Moving

further down the entire dataset, the species are divided into three categories: setosa,

versicolor, and virginica. If you want to access the information related to the dataset,

Chapter 7 Data Exploration

280

you must do it through the resource object and retrieve it through a ResourceData form,

as shown.

In[8]:=ResourceObject["Sample Data: Fisher's Irises"]

["ContentElements"]

Out[8]= {ColumnDescriptions, ColumnTypes, Content, DataType, Dimensions,

ObservationCount, RawData, Source, TrainingData,

TestData}

With the ContentElements property, you are accessing the elements of the data

sample, which are the ones that appear within the resource object. ContentElements

shows you the information associated with the sample data, such as column

information, data source, training data, and test data—not to be confused with the

properties of the resource object created, as it is not the same since you can construct

a resource object for another associated name. To retrieve the information from the

ContentElements, you must do it with ResourceData. This command gives you access to

the contents of the data sample—in this case, the Fisher’s Irises. Now, let’s get the data

type of the columns.

In[9]:= ResourceData[ResourceObject["Sample Data: Fisher's

Irises"],"ColumnTypes"]

Out[9]= {Numeric,Numeric,Numeric,Numeric,Categorical}

The second argument of the ResourceData command is the element you are looking

for. Running the code mentioned above shows you that there are four data types: three

numeric and one categorical. Using a pure function, you can obtain information in a

single expression. If you add the Column command, it is possible to have a better view of

the information.

In[10]:= Column[ResourceData[ResourceObject["Sample Data: Fisher's

Irises"],#]&/@{"ColumnDescriptions","Dimensions","Source"}]

Out[10]= {Sepal length in cm.,Sepal width in cm.,Petal length in cm.,Petal

width in cm.,Species of iris}

{150,4}

Fisher,R.A. "The use of multiple measurements in taxonomic problems"

Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to

Mathematical Statistics" (John Wiley, NY, 1950).

Chapter 7 Data Exploration

281

This way, you get to know the type of information in the columns, such as

dimensions, which are 150 rows per four columns, and the data source.

�Data Observation and Querying
This section explains how to observe data inside a dataset. You use the Iris dataset,

which has been extracted from the Wolfram Data Repository. Let’s start by naming the

data sample Fisher; this variable contains the dataset with quantities included.

In[11]:= fisher=ResourceData[ResourceObject["Sample Data: Fisher's

Irises"]];

In the dataset, the numbers have units and magnitude. Having a dataset, you can

perform endless processes, such as grouping the content by the category variable, which

is the type of species. (This example accessed the dataset contained in the Fisher’s

variable.) Let’s look at the data that includes each column grouped by species (see

Figure 7-9).

In[12]:= fisher[GroupBy["Species"]]

Out[12]=

Chapter 7 Data Exploration

282

Figure 7-9.  Iris data grouped by species

Let’s look at how the data is divided into three categories: setosa, versicolor, and

virginica. Each category contains a number 50 at the end of the Species column of each

category. This means that there are 50 more rows in addition to those shown, making a

total of 50 for each category, which is 150 rows in total, which matches the number of 150

you review the dimensions of the sample data.

In the meantime, clicking one of the categories shows you the columns for that

category alone, as shown in Figure 7-10. The same happens if you select a specific column

within a category—it shows only that column for that category; try it to see what happens.

There is also the possibility to click any column, and this shows you only the chosen

column for the three categories. This means that if you choose SepalLength, for example,

you see the contents of that column for the three species, as shown in Figure 7-10.

Chapter 7 Data Exploration

283

Figure 7-10.  SepalLength column selected

It is possible to group by species and choose only the columns that contain

numeric values. This helps if, for example, you want to visually inspect the dataset (see

Figure 7-11).

In[13]:= Query[GroupBy[Key["Species"] -> KeyTake[{"SepalLength",

"SepalWidth", "PetalLength", "PetalWidth"}]]][fisher]

Out[13]=

Chapter 7 Data Exploration

284

Figure 7-11.  Dataset with the species column suppressed

In the latter code, you use the Key command to access the keys of the species

column. Once these keys are accessed, you write a transformation rule so that

each extracted key is assigned the associations extracted (KeyTake) from columns

(SepalLength, SepalWidth, PetalLength, PetalWidth), then grouped and applied to

Fisher’s dataset.

If you wanted to count the data elements in Fisher’s dataset, you could add an ID

column as a label (see Figure 7-12) to list the data it contains. To achieve this, first, create

an association with keys and values that go from 1 to the length of the dataset. Then,

this instruction is applied to the dataset object Fisher’s, which adds the IDs as labels for

the rows.

In[14]:= Query[AssociationThread[Range[Length@#]→Range[Length@#]]]

[fisher]&[fisher]

Out[14]=

Chapter 7 Data Exploration

285

Figure 7-12.  IDs added to the Fisher’s dataset

If you drag down the bar, you see that the counter reaches 150 elements.

You can use the Counts command if you don’t want to add an enumerated column

to count the elements (see Figure 7-13).

In[15]:= Fisher[Counts,"Species"]

Out[15]=

Chapter 7 Data Exploration

286

Figure 7-13.  Counted elements on the dataset

This results in 50 data belonging to setosa, versicolor, and virginica. If you add

them up, you get 150. You can also use the Query command, Query[Counts, “Species”]

[Fisher].

Now, let’s look at how to get the average of the three categories for each column. It

would be possible if you knew the average of SepalLength, SepalWidth, PetalLength, and

PetalWidth for the species, setosa, versicolor, and virginica, as exhibited in Figure 7-14.

In[16]:=Query[GroupBy[Key["Species"]→KeyTake[{"SepalLength","SepalWidth",

"PetalLength","PetalWidth"}]],Mean][fisher]

Out[16]=

Figure 7-14.  Mean for the four columns, divided by species

But, if you want to get the average of the columns for all categories, one way to get it

would be by applying Mean as a query to the number of columns in the entire dataset

(see Figure 7-15).

In[17]:= Query[Mean][fisher[[All,2;;5]]]

Out[17]=

Figure 7-15.  Average values for the four columns of all species

Chapter 7 Data Exploration

287

Note  The Mean command works with the quantities and returns the average to
use as a quantity.

�Descriptive Statistics
This section demonstrates how to perform descriptive statistics of the Irises data and

computations inside the dataset format and how to create custom grid formats. Let’s

start by building the function that calculates the maximum, minimum, mean, median,

first, and third quartile.

In[18]:

stats[data_]:=

{{#[{"Max: ",Max@data}]},

{#[{"Min: ",Min@data}]},

{#[{"Mean: ",Mean@data}]},

{#[{"Median: ",Median@data}]},

{#[{"1st quartile: ",Quantile[data,0.25]}]},

{#[{"3rd quartile: ",Quantile[data,0.75]}]}

}&[Row]

Now, apply the created function to each of the columns. This function is to get

overall statistics for SepalLength, SepalWidth, PetalLength, and PetalWidth (see

Figure 7-16).

In[20]:= {{#1,#2,#3,#4},{Fisher[Stats,#1],Fisher[Stats,#2],Fisher[Stats,

#3],Fisher[Stats,#4]}}&["SepalLength","SepalWidth","PetalLength",

"PetalWidth"]//Grid

Out[20]=

Chapter 7 Data Exploration

288

Figure 7-16.  Function Stats applied to each column

This also can be displayed in a compact form in a tab format with TabView (see

Figure 7-17).

In[21]:= TabView[{#1->Fisher[Stats,#1],#2->Fisher[Stats,#2],#3->

Fisher[Stats,#3],#4->Fisher[Stats,#4]},ControlPlacement-> Left]&

["SepalLength","SepalWidth","PetalLength","PetalWidth"]

Out[21]=

Figure 7-17.  Tabview format

With TabView, you create three tabs with the names of each column, which shows

the values maximum, minimum, average, median, first, and third quartile; the columns

are SepalLength, SepalWidth, PetalLength, and PetalWidth.

Chapter 7 Data Exploration

289

�Table and Grid Formats
An alternative is to create a table for each species. In this way, you better present the data

and thus be able to read it properly. You extract the data by applying the Nest command.

With this command, you can specify the number of times a command or function is

applied; in this case, you apply it twice.

In[22]:= Short[Values[Nest[Normal,fisher,2]]]

{sLall,sWall,pLall,pWall}=%[[All,#]]&/@{2,3,4,5};

Out[22]//Short= {{setosa,5.1cm,3.5cm,1.4cm,0.2cm},{setosa,4.9cm,3.cm,1.4cm,

0.2cm},<<146>>,{virginica,6.2cm,3.4cm,5.4cm,2.3cm},{virginica,5.9cm,3.cm,

5.1cm,1.8cm}}

Having the values of all species separated by columns, you create a list instead

of a function, where the statistics are displayed according to each column, adding

calculations such as variance, standard deviation, skewness, and kurtosis. Then, you

assign the calculations in the DescriptiveStats variable.

In[23]:={Max[#],Min[#],Median[#],Mean[#],Variance[#],StandardDeviat

ion[#],Skewness[#],Kurtosis[#],Quantile[#,0.25],Quantile[#,.75]}&/@

{sLall,sWall,pLall,pWall};

A table (see Figure 7-18) can be created with these calculations and adding the rows

and column headings.

In[24]:= tableHeads={Style["Sepal Length",#1,ColorData["HTML"]

["Maroon"],#2,#3],Style["Sepal Width",#1,ColorData["HTML"]["YellowGreen"],

#2,#3],Style["Petal Length",#1,ColorData["HTML"]["SteelBlue"],#2,#3],Style

["Petal Width",#1,ColorData["HTML"]["Orange"],#2,#3]}&["Title",Italic,20];

tableRows={Style["Max",#1,#2],Style["Min",#1,#2],Style["Median",#1,#2],

Style["Mean",#1,#2],Style["Variance",#1,#2],Style["Standard\n Deviati

on",#1,#2],Style["Skewness",#1,#2],Style["Kurtosis",#1,#2],Style["1st

quartile",#1,#2],Style["3rd quartile",#1,#2]}&["Text",Italic];TableForm

[descriptiveStats,TableHeadings->{tableHeads,tableRows}]

Out[25]//TableForm=

Chapter 7 Data Exploration

290

Figure 7-18.  Table showing descriptive statistics by the four features

Note that the statistics are calculated with their units, except for skewness and

kurtosis, since, by definition, they are dimensionless. However, you can create a better

structure from Grid because it is possible to add dividers like a spreadsheet format.

To do this, you add the TableRows to the data and then apply a transpose so that each

calculated statistic is with its respective name. Subsequently, you add the column titles.

In[26]:=

Transpose[Prepend[descriptiveStats,tableRows]];

{" ",Style["Sepal Length",#1, ColorData["HTML"]["Maroon"],#2,#3],

Style["Sepal Width",#1,ColorData["HTML"]["YellowGreen"],#

2,#3],Style["Petal Length",#1, ColorData["HTML"]["SteelBlue"],#2,

#3], Style["Petal Width",#1,ColorData["HTML"]["Orange"],

#2,#3]}&["Title",Italic,20];

newTable=Prepend[%%,%];

Next, create the table as a spreadsheet (see Figure 7-19).

In[27]:= Grid[newTable,ItemSize->{{None,Scaled[0.11], Scaled[0.11],

Scaled[0.11]}},Background->{{LightGray},None}, Dividers->{{False},

{1,2,3,4,5,6,7,8,9,10,11->True,-2->Blue}}, Alignment->Center]

Out[27]=

Chapter 7 Data Exploration

291

Figure 7-19.  Grid view of the descriptive statistics

To build the table for each species, you must first separate the dataset by species with

the Cases command. You should use Cases since it allows you to work with patterns.

First, write the code to extract the raw data. Instead of using Short, use Shallow to

suppress the 150 values.

In[28]:= Shallow[Values[Nest[Normal,fisher,2]],1]

Out[28]//Shallow= {<<150>>}

Create the table for the versicolor species, extract the values for versicolor, and store

the values of the columns in the SLVersi, SWVersi, PLVersi, and PWVersi variables.

In[29]:= Shallow[Cases[%,{"versicolor",__}],1]

{sLVersi,sWVersi,pLVersi,pWVersi}=%[[All,#]]&/@{2,3,4,5};

Out[29]//Shallow= {<<50>>}

Next, repeat the process to calculate the statistics, but instead of the white space,

add the name “Versicolor” in the Style text, to distinguish that the table belongs to the

versicolor species.

In[30]:= tableRows;

{Max[#],Min[#],Median[#],Mean[#],Variance[#],StandardDeviation[#],Skewness

[#],Kurtosis[#],Quantile[#,0.25],Quantile[#,.75]}&/@{sLVersi,sWVersi,

pLVersi,pWVersi};

descriptiveStats2=Prepend[%,%%];

Chapter 7 Data Exploration

292

Transpose[descriptiveStats2];

{Style["Versicolor","Text",Red,Italic,20],Style["Sep

al Length",#1,ColorData["HTML"]["Maroon"],#2,#3],Style["Sepal

Width",#1,ColorData["HTML"]["YellowGreen"],#2,#3],Style["Pet

al Length",#1,ColorData["HTML"]["SteelBlue"],#2,#3],Style["Petal

Width",#1,ColorData["HTML"]["Orange"],#2,#3]}&["Title",Italic,20];

newTable2=Prepend[%%,%];

Next, build the table (see Figure 7-20) for the species versicolor.

In[31]:= Grid[newTable2,ItemSize-> {{None,Scaled[0.11],Scaled[0.11],

Scaled[0.11]}},Background->{{LightGray},None}, Dividers-> {{False},

{1,2,3,4,5,6,7,8,9,10,11->True,-2->Blue}},Alignment-> Center]

Out[31]=

Figure 7-20.  Descriptive stats for the versicolor species

You have only done this for the versicolor species; the same process is performed for

each species. For example, if you choose Cases with the other species, you would change

the text to the corresponding species.

Chapter 7 Data Exploration

293

�Dataset Visualization
Having viewed the capabilities of the Wolfram Language to perform descriptive statistics

within the dataset, statistical charts can be implemented inside the dataset format, as

you see in this fragment.

You can have a better perspective from graphs; you use the dataset format (see

Figure 7-21) to display the graphs by their species.

In[32]:= fisher[GroupBy["Species"],DistributionChart[#,Plo

tTheme-> "Classic",PlotLabel->"PetalLength cm",GridLines->

Automatic]&,"PetalLength"]

Out[32]=

Figure 7-21.  Distribution chart plot

You can perform the same process but for the box whiskers plot (see Figure 7-22),

but choose another column.

In[33]:= fisher[GroupBy["Species"],BoxWhiskerChart[#,"Outliers",PlotThe

me-> "Detailed",ChartLabels->Placed[{"SepalLength cm"},Above],BarOrigin->

Right,ChartStyle->Blue]&,"SepalLength"]

Out[33]=

Chapter 7 Data Exploration

294

Figure 7-22.  Box whiskers plot

If the specie is clicked, it amplify the graph (see Figure 7-23).

Figure 7-23.  Box whiskers plot for virginica species

Chapter 7 Data Exploration

295

The same applies to histograms. When the graph is extensive, it appears suppressed

within the dataset, but you can still select it, as shown in Figure 7-24.

In[34]:=fisher[GroupBy["Species"], Labeled[Histogram[#, ColorFunction ->

(Hue[3/5, 2/3, #] &)], {Rotate["Frequency", 90 Degree], "SepalWidth cm"},

{Left, Bottom}] &, "SepalWidth"]

Out[34]=

Figure 7-24.  Histogram plot for versicolor

Here, you show the 3D scatter plots for each species (see Figure 7-25) for sepal length

(x) vs. sepal width (y).

In[35]:=Fisher[GroupBy["Species"], Labeled[ListPlot[{#, #}], {Rotate["Sepal

width cm", 90 Degree], "Sepal length cm"}, {Left, Bottom}] &,

{"SepalLength","SepalWidth"}]

Out[35]=

Chapter 7 Data Exploration

296

Figure 7-25.  2D scatter plot

To return to the full dataset, click the dataset icon as with any other.

�Data Outside Dataset Format
The truth is that there is also the possibility of extracting the data crudely, as follows.

You’ll do this to have better data handling. You use the Short command since the list is

quite long.

In[36]:= Short[ResourceData[ResourceObject["Sample Data: Fisher's

Irises"],"RawData"]]

Out[36]//Short= {<|Species->setosa,SepalLength-

>5.1cm,SepalWidth->3.5cm,PetalLength->1.4cm,PetalWidth-

>0.2cm|>,<|<<1>>|>,<<146>>,<|<<1>>|>,<|<<1>>|>}

With the data already extracted, you can get the values with the Values function and

convert them to normal expressions.

In[37]:= Short[Normal[Values[%]]]

Out[37]//Short= {{setosa,5.1cm,3.5cm,1.4cm,0.2cm},{setosa,4.9cm,3.cm,1.4cm,

0.2cm},<<146>>,{virginica,6.2cm,3.4cm,5.4cm,2.3cm},{virginica,5.9cm,3.cm,

5.1cm,1.8cm}}

Chapter 7 Data Exploration

297

With the help of MapAt, you can extract the magnitudes of the quantities. The MapAt

command lets you choose where to apply the Quantity function. You decided to apply

it to all rows with All, but only from columns 2 to 4, which is where the quantities are

located.

In[38]:= Short[iris=MapAt[QuantityMagnitude,%,{All,2;;5}]]

Out[38]//Short={{setosa,5.1,3.5,1.4,0.2},<<148>>,{virginica,

5.9,3.,5.1,1.8}}

Why remove the units if calculations can be made with them? You extract the

magnitudes for all quantities because they have the same order of magnitude (cm), so

each calculation is in the same units, except if you make conversions or transformations

to the data.

�2D and 3D Plots
On the other hand, it is easier to manipulate lists with Wolfram Language. Having the

data in the form of lists, you now plot the three columns in a box plot and a distribution

graph (see Figure 7-26). You only choose the three columns.

In[39]:=

Row[{BoxWhiskerChart[{iris[[All, #1]], iris[[All, #2]], iris[[All,

#3]], iris[[All, #4]]}, "Outliers", PlotRange -> Automatic, FrameTicks

 -> True, ChartStyle -> "SandyTerrain", PlotLabel -> "All Species",

GridLines -> Automatic, ChartLegends -> Placed[{"SepalLength",

"SepalWidth", "PetalLength", "PetalWidth"}, Bottom], ImageSize -> Small],

DistributionChart[{iris[[All, #1]], iris[[All, #2]], iris[[All, #3]],

iris[[All, #4]]}, PlotRange -> Automatic, FrameTicks -> True, ChartStyle ->

"SouthwestColors", PlotLabel -> "All Species", ChartLegends ->

Placed[{"SepalLength", "SepalWidth", "PetalLength", "PetalWidth"}, Bottom],

PlotTheme -> "Detailed", GridLines -> Automatic, ImageSize -> Small]}] &[2,

3, 4, 5]

Out[39]=

Chapter 7 Data Exploration

298

Figure 7-26.  Box whiskers plot and distribution chart for all species

To improve this, let’s graph for each species. You use Cases to separate the list with

their respective species (see Figure 7-27).

In[40]:= Short[setosa=Cases[iris,{"setosa",__}]];

Short[versi=Cases[iris,{"versicolor",__}]];

Short[virgin=Cases[iris,{"virginica",__}]];

Column@{BoxWhiskerChart[{setosa[[All,#1]],setosa[[All,#2]],setosa[[All,#3]],

setosa[[All,#4]]},"Outliers",PlotRange->Automatic,FrameTicks->True,

ChartStyle->"Rainbow",PlotLabel->"Setosa",ChartLegends->Placed

[{"SepalLength","SepalWidth","PetalLength","PetalWidth"},Bottom],

GridLines->Automatic],BoxWhiskerChart[{versi[[All,#1]],versi[[All,#2]],

versi[[All,#3]],versi[[All,#4]]},"Outliers",PlotRange->Automatic,

FrameTicks->True,ChartStyle->"Rainbow",PlotLabel->"Versicolor",ChartLegends->

Placed[{"SepalLength","SepalWidth","PetalLength","PetalWidth"},Bottom],

GridLines->Automatic],BoxWhiskerChart[{virgin[[All,#1]],virgin[[All,#2]],v

irgin[[All,#3]],virgin[[All,#4]]},"Outliers",PlotRange->Automatic,FrameTicks->

True,ChartStyle->"Rainbow",PlotLabel->"Virginica",ChartLegends-> Placed

[{"SepalLength","SepalWidth","PetalLength","PetalWidth"},Bottom],GridLines->

Automatic]

}&[2,3,4,5]

Out[40]=

Chapter 7 Data Exploration

299

Figure 7-27.  Box whiskers plot for every species with the four features

In addition, you can join the scatter plots of sepal width vs. sepal length for all

species (see Figure 7-28).

In[41]:= ListPlot[{setosa[[All, {2, 3}]], versi[[All, {2, 3}]],

virgin[[All, {2, 3}]]}, FrameTicks -> All, Frame -> True,

AspectRatio -> 1, PlotStyle -> {Blue, Red, Green},

FrameLabel -> {Style["Sepal length (cm)", FontSize -> 20],

Style["Sepal width (cm)", FontSize -> 20]}, PlotLegends -> {"Setosa",

"Versicolor", "Virginica"}]

Out[41]=

Chapter 7 Data Exploration

300

Figure 7-28.  2D scatter plot for all species of the first two features

Or you can make a 3D scatter plot with three features (see Figure 7-29).

In[42]:= ListPointPlot3D[{setosa[[All, {2, 3, 4}]], versi[[All, {2, 3,

4}]], virgin[[All, {2, 3, 4}]]}, Ticks -> All, AspectRatio -> 1,

PlotStyle -> {Blue, Red, Green}, AxesLabel -> {Style["Sepal length cm",

FontSize -> 13], Style["Sepal width cm", FontSize -> 13],

Style["Petal Length cm", FontSize -> 13]}, PlotLegends -> {"Setosa",

"Versicolor", "Virginica"}, PlotTheme -> "Detailed", ViewPoint ->

{0, -3, 3}]

Out[42]=

Chapter 7 Data Exploration

301

Figure 7-29.  3D scatter plot of three features for every species

Now, when you have finished working with the resource object, you need to delete it

so that the local cache of the resource is removed correctly.

In[43]:=Clear[fisher]

DeleteObject[ResourceObject["Sample Data: Fisher's Irises"]]

�Summary
This chapter explored data exploration using the Wolfram Language. It starts by covering

the Wolfram Data Repository, where instructions to navigate the website and select

appropriate data categories effortlessly are addressed. The chapter continues to guide by

showing how to extract data from the repository, offering insights on accessing, filtering,

and observing the data within Mathematica. Additionally, the descriptive statistics

section provides the reader with an understanding of table and grid formats. By the end

of the chapter, it assists in mastering the visualization of datasets for 2D and 3D plots.

Chapter 7 Data Exploration

303
© Jalil Villalobos Alva 2024
J. Villalobos Alva, Beginning Mathematica and Wolfram for Data Science,
https://doi.org/10.1007/979-8-8688-0348-2_8

CHAPTER 8

Machine Learning
with the Wolfram
Language
This chapter introduces the gradient descent algorithm as an optimization method

for linear regression; the corresponding computations are shown, as well as the

concept of the learning curve of the model. Later, you see how to use the specialized

functions of the Wolfram Language for machine learning, such as Predict, Classify,

and ClusterClassify, in the case of linear regression, logistic regression, and cluster

search. The different objects and results generated by these functions and the metrics to

measure the model are shown for these functions. In each case, the parts of the model

that are fundamental for the correct construction using the Wolfram Language are

explained. This part of the book uses examples of known datasets such as the Fisher’s

Irises, Boston Homes, and Titanic datasets.

�Gradient Descent Algorithm
The gradient descent is an optimization algorithm that finds the minimum of a function

through an iterative process. To build the process, the squared error loss function is

minimized with the linear model hypothesis of the shape of (xj) = θ0 + θ1 ∗ xj , around the

point xj. The following expression gives the loss function.

	
J

N
f x y

j

N

j j�� � �
�

� � �� �
�
�1

2 1

2

	

https://doi.org/10.1007/979-8-8688-0348-2_8#DOI

304

J(θ) is the cost function, N is the number of observations, f (xj) is the predicted output

for observation j, and yj is the actual output for observation j. The iterative process of

the algorithm consists of calculating the coefficients until convergence is obtained. The

following expressions give the coefficients.

	
� � � � �
0

1

0

1

0 1

1i i

j

N
i i

j jN
x y�

�

� � � � �� ��

�
�

�

�
�� 	

	
� � � � �
1

1

1

1

0 1

1i i

j

N
i i

j j jN
x y x�

�

� � � � �� ���

�
�

�

�
�� 	

Here, �
0

1i� and �1
1i� represent the updated parameters after the 𝑖+1 th iteration.

θ0
i and θ1

i indicate their current values at the 𝑖th iteration, 𝛼 is the learning rate, a

hyperparameter for updating θ0 and θ1, that minimizes error during the learning process.

At the same time, N is the total number of dataset observations. xj and yj are the 𝑗th

observations of the independent and dependent variables in the dataset, respectively.

The summations are obtained from partial derivatives concerning θ0 and θ1. For more

mathematical depth about the method and demonstrations, see Artificial Intelligence: A

Modern Approach by Stuart Russell and Peter Norvig (Prentice Hall, 2010).

�Getting the Data
First, you define the data with the RandomReal function and establish a seed. This is to

maintain the reproducibility of the data in case of practicing the same example.

In[1]:=

SeedRandom[888];

x=RandomReal[{0,1},50];

y=-1-x+0.6*RandomReal[{0,1},50];

Therefore, let’s observe the data with a 2D scatter plot Figure 8-1.

In[4]:= ListPlot[Transpose[{x,y}],AxesLabel->{"X axis","Y

axis"},PlotStyle->Red]

Out[4]=

Chapter 8 Machine Learning with the Wolfram Language

305

Figure 8-1.  2D scatter plot of the randomly generated data

�Algorithm Implementation
Let’s now proceed to implement the algorithm with the Wolfram Language. The

algorithm defines the constants, the number of iterations, and the learning rate.

Then, you create two lists containing initial values of zero, in which the values of the

coefficients for each iteration are stored. Later, you calculate the coefficients through

a loop with Table, which does not end until you reach the number of iterations. In this

case, you establish several iterations of 250 with a learning rate of 1.

In[5]:=

itt=250;(*Number of iterations*)

\[Alpha]=1;(*Learning rate*)

\[Theta]0=Range@@{0,itt};(* Array for values of Theta_0*)

\[Theta]1=Range@@{0,itt};(* Array for values of Theta_1*)

Table[{\[Theta]0[[i+1]]=\[Theta]0[[i]]-\[Alpha]/Length@x* Sum[(\

[Theta]0[[i]]+\[Theta]1[[i]]* x[[j]]-y[[j]]),{j,1,Length@x}];

\[Theta]1[[i+1]]=\[Theta]1[[i]]-\[Alpha]/Length@x*Sum[(\[Theta]0[[i]]+\

[Theta]1[[i]]*x[[j]]- y[[j]])* x[[j]],{j,1,Length@x}];},{i,1,itt}];

Chapter 8 Machine Learning with the Wolfram Language

306

Since you have determined the calculation of the coefficients, you build the linear

adjustment equation by constructing a function and using the coefficient values of the

last iteration, which are in the previous position of the lists θ0 y θ1.

In[10]:= F[X_] := \[Theta]0[[Length@\[Theta]0]] + \[Theta]1[[Length@\

[Theta]1]]*X

To know the shape of the best fit, you add the X variable as an argument. This gives

you the form F(X) = θ0 + θ1 * X.

In[11]:= F[X]

Out[11]= -0.707789-0.923729 X

Look at how the line fits the data in Figure 8-2.

In[12]:= Show[{Plot[F[X],{X,0,1},PlotStyle->Blue,AxesLabel->{"X axis",

"Y axis"}],ListPlot[Transpose[{x,y}],PlotStyle->Red]}]

Out[12]=

Figure 8-2.  Adjusted line to the data

Since you have built the linear model, you can make a graphical comparison of the

variation of the learning rate with the number of iterations and the loss value given by

the function J. But first, you must declare the loss function J. For the summation, you can

either use the special symbols of sigma (∑) or write Sum [expr, {i,imax}].

In[13]:= J[Theta0_, Theta1_] := 1/(2*Length[x])* Sum[(Theta0 +

(Theta1*x[[i]]) - y[[i]])^2, {i, 1, Length@x}]

Chapter 8 Machine Learning with the Wolfram Language

307

�Multiple Alphas
Having seen the previously constructed process, you can repeat the process for different

alphas. Following is the graph of loss vs. each interaction for learning rate values of α1=1,

α2=0.1, α3=0.01, α4=0.001, and α5=0.001, when repeating the process.

In[14]:=\[Alpha]1=Transpose[{Range[0,itt],J[\[Theta]0,\[Theta]1]}];

In[20]:=\[Alpha]2=Transpose[{Range[0,itt],J[\[Theta]0,\[Theta]1]}];

In[26]:=\[Alpha]3=Transpose[{Range[0,itt],J[\[Theta]0,\[Theta]1]}];

In[32]:=\[Alpha]4=Transpose[{Range[0,itt],J[\[Theta]0,\[Theta]1]}];

In[38]:=\[Alpha]5=Transpose[{Range[0,itt],J[\[Theta]0,\[Theta]1]}];

Graph with ListLinePlot and visualize the learning curve for different alphas (see

Figure 8-3). When changing the alpha value, check how the adjusted line changes.

In[39]:=ListLinePlot[{\[Alpha]1,\[Alpha]2,\[Alpha]3,\[Alpha]4,\

[Alpha]5},FrameLabel->{"Number of Iterations","Loss Function"},Frame-

>True,PlotLabel->"Learning Curve",PlotLegends-> SwatchLegend[{Style["\

[Alpha]=1",#],Style["\[Alpha]=0.1",#],Style["\[Alpha]=0.01",#],Style["\

[Alpha]=0.001",#],Style["\[Alpha]=0.0001",#]},LegendLabel->Style["Learning

rate",White],LegendFunction->(Framed[#,RoundingRadius->5,Background-

>Gray]&)]]&[White]

Out[39]=

Figure 8-3.  The learning curve for the gradient descent algorithm

Chapter 8 Machine Learning with the Wolfram Language

308

In the previous graph (see Figure 8-3), you can visualize the size of iterations

concerning cost and how it varies depending on the alpha value. With a high learning

rate, you can cover more ground at each step but risk exceeding the lowest point. To

know whether the algorithm works, you must see that each new iteration’s loss function

is decreasing. The opposite case would indicate that the algorithm is not working

correctly; this can be attributed to various factors, such as a code error or an incorrect

learning rate value. As the graph shows, adequate alpha values correspond to small

values between a scale of 1 to 10-4. It is not necessary to use these exact values; you can

use values within this range. Depending on the form of the data, the algorithm may or

may not converge with different alpha values as the same for the iteration steps. If you

choose minimal alpha values, the algorithm can take a long time to converge, as you can

see for alpha values 10-3 or 10-4.

�Linear Regression
Despite being able to build the algorithms to perform a linear regression, the Wolfram

Language has a specialized function for machine learning. In the case of linear

regression problems, there is the Predict function. The Predict function can also work

with different algorithms, not only regression task algorithms.

�Predict Function
The Predict function helps you predict values by creating a predictor function using the

training data. It also allows you to choose different learning algorithms, the purpose

of which is to predict a numerical, visual, categorical value or a combination. The

methods to choose from are decision tree, gradient boosted tree, linear regression,

neural network, nearest neighbors, random forest, and Gaussian process. Each method

has options within it; the options vary depending on the algorithm chosen to train the

predictor function. Let’s look at the linear regression method. The input data for Predict

can be in the form of a list of rules, associations, or a dataset.

Chapter 8 Machine Learning with the Wolfram Language

309

�Boston Dataset
Let’s look at the first example of loading the Boston Homes data from the Wolfram

Data Repository (see Figure 8-4). This dataset contains information about housing in

the Boston, Massachusetts, area. For more in-depth information, refer to the article

“Hedonic Housing Prices and the Demand for Clean Air,” by David Harrison and Daniel

Rubinfeld, in the Journal of Environmental Economics and Management (1978; 5[1],

81–102. https://doi.org/10.1016/0095-0696(78)90006-2) or Regression Diagnostics:

Identifying Influential Data and Sources of Collinearity: 546 by David Belsley, Edwin Kuh,

and Roy Welsch, (Wiley-Interscience, 2013).

In[40]:= bstn=ResourceData[ResourceObject["Sample Data: Boston Homes"]]

Out[40]=

Figure 8-4.  Boston Homes price dataset

Try using the scroll bars to have a complete view of the dataset. Let’s look at the

descriptions of the columns and show them in TableForm.

Chapter 8 Machine Learning with the Wolfram Language

310

In[41]:= ResourceData[ResourceObject["Sample Data: Boston

Homes"],"ColumnDescriptions"]//TableForm

Out[41]//TableForm= Per capita crime rate by town

Proportion of residential land zoned for lots over 25000 square feet

Proportion of non-retail business acres per town

Charles River dummy variable (1 if tract bounds river, 0 otherwise)

Nitrogen oxide concentration (parts per 10 million)

Average number of rooms per dwelling

Proportion of owner-occupied units built prior to 1940

Weighted mean of distances to five Boston employment centers

Index of accessibility to radial highways

Full-value property-tax rater per $10000

Pupil-teacher ratio by town

1000(Bk-0.63)^2 where Bk is the proportion of Black or African-American

residents by town

Lower status of the population (percent)

Median value of owner-occupied homes in $1000s

�Model Creation
You create a model capable of predicting housing prices in the Boston area through the

number of rooms in the dwelling. To achieve this, the columns of interest correspond

to RM (average number of rooms per dwelling) and MEDV (median value of owner-

occupied homes) since you want to find out if there is a linear relationship between the

number of rooms and the price of the house. Applying some common sense, the houses

with the most significant number of rooms are more extensive and, therefore, can store

more people, increasing the price.

Look at the MEDV and RM scatter plots in Figures 8-5.

In[42]:= MEDVvsRM=Transpose[{Normal[bstn[All,"RM"]],Normal[bstn[All,"

MEDV"]]}];

ListPlot[MEDVvsRM,PlotMarkers->"OpenMarkers",Frame->True,FrameLabel->

{Style["RM",Red],Style["MEDV",Red]},GridLines->All,PlotStyle->

Black,ImageSize->Medium]

Out[43]=

Chapter 8 Machine Learning with the Wolfram Language

311

Figure 8-5.  2D scatter plot of MEDV vs. RM

As seen in Figure 8-5, the house price increases as the average number of rooms

increases. This suggests that there is a direct proportional relationship between these

two variables. Given what is seen in the graph, let’s know the correlation value between

these variables. You show this through a correlation matrix by first computing the

correlation of the values, assigning the ticks’ names, and plotting it with MatrixPlot (see

Figure 8-6).

In[44]:=correLat=SetPrecision[Correlation[Transpose[{Normal[bstn[All,"RM"]],

Normal[bstn[All,"MEDV"]]}]],2];

xTicks={{1,"RM"},{2,"MEDV"},{1,"RM"},{2,"MEDV"}};

yTicks={{1,"RM"},{2,"MEDV"},{1,"RM"},{2,"MEDV"}};

postionsValues={Text[#1,{0.5,1.5}],Text[#1,{1.5,0.5}],Text[#2,{1.5,1.5}],

Text[#2,{0.5,0.5}]}&[correLat[[1,1]],correLat[[1,2]]];

MatrixPlot[correLat,ColorFunction->"DarkRainbow",FrameTicks->{ xTicks,

yTicks,xTicks,yTicks},Epilog->{White,postionsValues},PlotLegends->

BarLegend[{"DarkRainbow",{0,1}},4],ImageSize->180]

Out[48]=

Chapter 8 Machine Learning with the Wolfram Language

312

Figure 8-6.  A matrix plot combined with a correlation matrix

By observing the matrix plot (see Figure 8-6), it can be concluded that there is an

excellent linear relationship between RM and MEDV.

Let’s now shuffle the dataset randomly and establish a list of rules with Thread

because the data to be entered in the predictor function must be as follows: {x → y}—in

other terms, input, and target value.

In[49]:= newData = RandomSample[Thread[Normal[bstn[All, "RM"]] ->

Normal[bstn[All, "MEDV"]]]];

Once randomly sampled, you select the first 354 elements (70%); this is the training

set, and the remaining 152 (30%) is the test set. When splitting, common ratios include

70/30 (training/testing), 80/20, and 60/40. Where the training set is used to train the

model and usually the majority of the data. The remaining portion, the test set, is an

independent dataset to assess the model performance on unseen data. The choice

depends on factors like the size of the dataset and the detailed conditions of the

machine-learning task you want to do.

In[50]:= {training, test} = {newData[[;; 354]], newData[[355 ;;]]};

You train the model, a predictor for the average values of owner-occupied homes

(MEDV) as a target. As a method, you choose linear regression. When training a model,

specification of the option of training report includes Panel (dynamical updating of

the Panel), Print (periodic information including time, training example, best method,

current loss), ProgressIndicator (simple progress bar), SimplePanel (dynamic update

panel with no plots), and None. Panel is the default option (see Figure 8-7).

In[51]:=pF=Predict[training,Method->"LinearRegression",TrainingProgress

Reporting->"Panel"]

Out[51]=

Chapter 8 Machine Learning with the Wolfram Language

313

Figure 8-7.  PredictorFunction object of the trained model

When entering the code, depending on the option added to

TrainingProgressReporting, a progress bar and panel report should appear (see

Figure 8-8). The time of the panel displayed depends on the training time of the model.

To set a specific time for the training, add TimeGoal as an option, which specifies how

long the training should last for the model. Time values are seconds of CPU time—that

is, the number with no units. With units of time (seconds, minutes, and hours), the use

of Quantity command is needed, like TimeGoal ➤ Quantity [“time magnitude,” #] & / @

{“Second,” “Minute,” “Hour”}.

Figure 8-8.  Progress report of the PredictorFunction

Chapter 8 Machine Learning with the Wolfram Language

314

Let’s go back to the model. Figure 8-7 shows that the return object is a predictor

function (try using Head to verify it). When assigning a name to the predictor function,

additional information about the model can be obtained; the command Information

is used (see Figure 8-9). The information works for every other expression, not just for

machine learning purposes.

Figure 8-9.  Information report of the trained model

Note I f you want fixed results involving random data, you need to set the seed
before every random operation; this ensures consistent outputs.

In[52]:= Information[pF]

Out[52]=

Chapter 8 Machine Learning with the Wolfram Language

315

The information panel in Figure 8-9 includes data type, root mean squared

(StandardDeviation), method, batch evaluation speed, loss, model memory, number of

examples for training, and training time. The graphics at the bottom of the panel are for

standard deviation, model learning curve, and learning curve for the other algorithms.

Hovering the cursor pointer over the numerical parameters shows the confidence

intervals and units. If the method’s name is correct, it shows the parameters of the linear

regression method. Since you did not select a specific optimization algorithm within

the LinearRegression method, Mathematica tries to search through the algorithms for

the best one (this can be viewed in the learning curve for all algorithms). You see how to

access these options further down the line.

Note E very method used in the predict function has options and suboptions; for
full customization, use the Wolfram Language Documentation Center.

Table 8-1 shows the standard options that can be used for model training, as well as

their definition and possible values for the training process of a PredictorFunction.

Table 8-1.  Most Common Options for Predict Function

Option Definition

Method AlgorithmPossible values: DecisionTree, GradientBoostedTrees,

LinearRegression, NearestNeighbors, RandomForest and

GaussianProcess

PerformanceGoal Performance optimizationPossible values: DirectTraining, Memory,

Quality, Speed, TrainingSpeed, Automatic Combination of values

supported (PerformanceGoal -> {val1, val2})

RandomSeeding Seed for the pseudorandom number generatorPossible values:

Automatic, “custom seed,” Inherited (random seed used in previous

computations)

TargetDevice Specifies a device to perform the training or test processPossible values:

CPU or GPU. If a GPU is installed, the automatic target device is the GPU.

TimeGoal Time spent on the training process

TrainingProgressReporting Progress reportPossible values: Panel, Print, ProgressIndicator,

SimplePanel, None

Chapter 8 Machine Learning with the Wolfram Language

316

�Model Measurements
Once the model is built, you must observe and analyze the performance of the predictor

function in the test set. To carry out this, you must do it within the PredictorMeasurments

command. The predictor function goes in the argument (see Figure 8-10), followed by the

test set and the property or properties to add. Since the latest version, the final model features

predictions are presented instead of just the model of the PredictorMeasurements object.

In[53]:= pRM=PredictorMeasurements[pF,test]

Out[53]=

Figure 8-10.  PredictorMeasurements object of the tested model

Chapter 8 Machine Learning with the Wolfram Language

317

The returned object is called PredictorMeasurementsObject. You can add the

properties from the PredictorMeasurements command. You can assign a variable to

the object to access it more simply. Since the new version of 13, the report is given in

the output, so the model report of the test set is suppressed as it returns the same as in

Figure 8-10.

In[54]:= pRM["Report"];

The report in Figure 8-10 shows different parameters, such as the standard deviation

and mean cross-entropy. It shows a graph of the model’s fit and the current and

predicted values. The model is suitable for most cases, except that some outliers still

affect performance.

To better understand the precision of the model, let’s look at the root mean squared

error (RMSE) and RSquared (coefficient of determination) shown in Figure 8-11.

To display the associated uncertainties, use the option ComputeUncertainty with

True value.

In[57]:=Dataset[AssociationMap[pRM[#,ComputeUncertainty-> True]&, {"Standard

Deviation","RSquared"}]]

Out[57]=

Figure 8-11.  Standard deviation and r-squared values of the linear model

This gives you a slightly high RMSE value, not an excellent r-squared value.

Remember that the r-squared value indicates how good the model is for making

predictions. These two values indicate that although there may be a linear relationship

between the number of rooms and prices, a linear regression does not necessarily

explain this. These observations are also consistent, remembering that you obtained a

correlation value of 0.7.

Chapter 8 Machine Learning with the Wolfram Language

318

�Model Assessment
The graphs made within the model are the model graph and the target variable

(ComparisonPlot). To check the distribution of the variance, use the ResidualHistogram

function, and to check the residual plot, use ResidualPlot. These are shown in

Figure 8-12.

In[58]:=pRM[#]&/@{"ResidualHistogram", "ResidualPlot", "ComparisonPlot"} /.

plot_Graphics:>Show[plot,ImageSize->Small]

Out[58]=

Figure 8-12.  ResidualHistogram, ResidualPlot, and ComparisonPlot

You write Properties as an argument to find out all the properties of the Predictor

Measurements object. These properties can vary between methods.

In[59]:= pRM["Properties"]

Out[59]={BatchEvaluationTime,BestPredictedExamples,ComparisonPlot,

EvaluationTime,Examples,FractionVarianceUnexplained,GeometricMeanProbabili

tyDensity,ICEPlots,LeastCertainExamples,Likelihood,LogLikelihood,MeanCross

Entropy,MeanDeviation,MeanSquare,MostCertainExamples,Perplexity,PredictorFu

nction,ProbabilityDensities,ProbabilityDensityHistogram,Properties,Rejectio

nRate,Report,ResidualHistogram,ResidualPlot,Residuals,RSquared,SHAPPlots,SH

APValues,StandardDeviation,StandardDeviationBaseline,TotalSquare,WorstPredi

ctedExamples}

If you are not satisfied with the chosen methods or hyperparameters, retraining the

model can be done by configuring the new values for the hyperparameters. You access

the values of the current method with the help of the Information command and add

the properties of Method (shows you the Method used to train the model), method

description (description of the Method used), and MethodOption (method options).

Chapter 8 Machine Learning with the Wolfram Language

319

In[60]:= Information[pF,"MethodOption"]

Out[60]=Method->{LinearRegression,L1Regularization->0,L2Regularization->

1.*10^-6,OptimizationMethod->NormalEquation}

You see terms such as L1Regularization, L2Regularization, and OptimizationMethod.

The first two terms are associated with regularization methods, and L1 refers to the

Lasso regression name and L2 to the Ridge regression name. Regularization is used to

minimize the complexity of the model and reduce the variation; it also improves the

precision of the model, solving overfitting problems. This is accomplished by adding a

penalty to the loss function; this penalty is added to the sum of the absolute value of the

coefficient � �
1 0
�

�� ii

N , whereas for L2, it is given by the expression � �
2

2

0
2/� �� �� ii

N ,

where the function to minimize is the loss function 1 2
2

0
/� � � � �� ��� y f xi ii

N � , . For

more mathematical depth, refer Artificial Intelligence: A Modern Approach by Stuart

Russell and Peter Norvig (Prentice Hall, 2010) and An Introduction to Statistical

Learning: With Applications in R by Gareth James, Trevor Hastie, Robert Tibshirani,

and Daniela Witten (Springer, 2017). The third term is which optimization method you

want to choose; the existing methods are NormalEquation, StochasticGradientDescent,

and OrthanWiseNewton. That said, it must be emphasized that using the vector of

coefficients with the L1 and L2 standards is known as an Elastic Net regression model.

Elastic Net might be used when there is a correlation in the parameters. For more theory,

reference The Elements of Statistical Learning: Data Mining, Inference, and Prediction by

Trevor Hastie, Robert Tibshirani, and Jerome Friedman (Springer, 2009).

�Retraining Model Hyperparameters
As discussed later, let’s retrain the model but with the values of L1 → 12, L2 → 100

and the optimization algorithm OptimizationMethod → StochasticGradientDescent,

TrainingProgressReporting → None, PerformanceGoal → “Quality,” RandomSeeding →

10000, TargetDevice → “CPU.”

In[61]:= pF2 = Predict[training, Method -> {"LinearRegression",

"L1Regularization" -> 12, "L2Regularization" -> 100, "OptimizationMethod"

-> Automatic}, TrainingProgressReporting -> None, PerformanceGoal ->

"Quality", RandomSeeding -> 10000, TargetDevice -> "CPU"];

Chapter 8 Machine Learning with the Wolfram Language

320

To see the properties related to an example, type properties after the input data

for the PredictorFunction—for instance, PF2[“example,” “Properties”]. Let’s compare

the new model’s performance by showing the graphs and metrics like before (see

Figures 8-13 and 8-14).

Note  Standard deviation refers to the root mean square of the residuals, root
mean square error (RMSE).

In[62]:= pRM2=PredictorMeasurements[pF2,test];

pRM2[#]&/@{"ResidualHistogram","ResidualPlot","ComparisonPlot"}/.

plot_Graphics:>Show[plot,ImageSize->Small]

Dataset[AssociationMap[pRM2[#,ComputeUncertainty->True]&,{"StandardDeviation",

"RSquared"}]]

Out[63]=

Out[64]=

Figure 8-13.  Plots of the retrained model

Figure 8-14.  New values for standard deviation and r-squared

Chapter 8 Machine Learning with the Wolfram Language

321

Observing the graphs and data, you see the model merely decreases to a certain

degree; this agrees with the new r-squared value. However, it is still a poor model for

making future predictions. The poor performance may be due to the optimization

choice, the L1 and L2 parameters. Try to explore different L1 and L2 values for potential

improvement.

�Logistic Regression
Logistic regression is a technique commonly used in statistics but also used within

machine learning. The logistic regression works considering that the values of the

response variable only take two values, 0 and 1; this can also be interpreted as a false or

true condition. It is a binary classifier that uses a function to predict the probability of

whether or not a condition is met, depending on how the model is constructed. Usually,

this model type is used for classification since it can provide you with probabilities and

classifications since the values of the logistic regression oscillate between two values. In

logistic regression, the target variable is a binary variable that contains encoded data. For

more information, refer to Introduction to Data Science: A Python Approach to Concepts,

Techniques and Applications by Laura Igual, Santi Seguí, Jordi Vitrià, Eloi Puertas, Petia

Radeva, Oriol Pujol, Sergio Escalera, Francesc Dantí, and Lluis Garrido (Springer, 2017).

�Titanic Dataset
For the following example, you use the Titanic dataset, which is a dataset that describes

the survival status of the passengers. The variables used are class, age, sex, and survival

condition. You load the data directly as a dataset (see Figure 8-15) from the ExampleData

and enumerate the rows of the dataset.

Note T his section is constructed using Query language so the reader can
understand how to use it more deeply inside datasets.

In[65]:= titanic=Query[AssociationThread[Range[Length@#]->Range[Length@#]]]

[ExampleData[{"Dataset","Titanic"}]]&[ExampleData[{"Dataset","Titanic"}]]

Out[65]=

Chapter 8 Machine Learning with the Wolfram Language

322

Figure 8-15.  New values for Standard deviation and r-squared

Let’s look at the dimensions of the data using the Dimensions command.

In[66]:= Dimensions@titanic

Out[66]= {1309,4}

Interpreting the result, you see that the dataset comprises 1309 rows and four

columns. The dataset has four columns classified by class, age, sex, and survived status.

Using the space bar shows that some elements do not register data entry. To see which

columns contain missing data, execute the following code by counting the components

corresponding to the pattern missing in each column.

Chapter 8 Machine Learning with the Wolfram Language

323

In[67]:=Query[Count[_Missing],#]@titanic&/@{"class","age","sex","survived"}

Out[67]= {0,263,0,0}

This shows 263 missing values within the age column and zero for the others. Let’s

remove the rows that contain this missing data. First, you extract the row numbers from

the missing data by selecting the elements from the age column equal to missing and

then extracting the row IDs.

In[68]:= Query[Select[#age==Missing[]&]][titanic];

Normal@Keys@%

Out[68]={16,38,41,47,60,70,71,75,81,107,108,109,119,122,126,135,148,153,

158,167,177,180,185,197,205,220,224,236,238,242,255,257,270,278,284,294,

298,319,321,364,383,385,411,470,474,478,484,492,496,525,529,532,582,596,

598,673,681,682,683,706,707,757,758,768,769,776,790,796,799,801,802,803,

805,806,809,813,814,816,817,820,836,843,844,853,855,857,859,866,872,873,

875,877,880,883,887,888,901,902,903,904,919,921,922,923,924,927,928,929,

930,931,932,941,943,945,946,947,949,955,956,957,958,959,962,963,972,974,

977,983,984,985,988,989,990,992,994,995,998,999,1000,1001,1002,1003,1004,

1005,1006,1007,1010,1013,1014,1015,1017,1019,1023,1024,1028,1029,1030,1031,

1033,1034,1035,1036,1037,1038,1039,1040,1042,1043,1044,1045,1053,1054,1055,

1056,1070,1071,1072,1073,1074,1075,1077,1078,1079,1081,1082,1086,1096,1110,

1115,1116,1117,1122,1123,1124,1125,1129,1133,1136,1137,1138,1139,1150,1151,

1152,1155,1156,1160,1163,1164,1165,1167,1168,1169,1171,1173,1174,1175,1176,

1177,1178,1179,1180,1181,1185,1186,1187,1194,1195,1196,1198,1199,1200,1201,

1203,1213,1214,1215,1216,1217,1220,1222,1242,1243,1244,1246,1247,1248,

1250,1251,1254,1256,1263,1269,1283,1284,1285,1292,1293,1294,1298,1303,

1304,1306}

These numbers represent the rows containing the age column’s missing data. You

use the DeleteMissing command to eliminate them, considering there is missing data at

level 1. The final dataset is seen in (see Figure 8-16).

In[69]:= titanic=DeleteMissing[titanic,1,1]

Out[69]=

Chapter 8 Machine Learning with the Wolfram Language

324

Figure 8-16.  Titanic dataset without missing values

To corroborate that there is no missing data, you could apply the same code with

counts or by looking at the keys of the removed rows, for example.

In[70]:= titanic[Key[16]]

Out[70]= Missing[KeyAbsent,Key[16]]

This means that there is no content associated with key number 16. If you want to

check all keys, use the row list of the missing data.

Chapter 8 Machine Learning with the Wolfram Language

325

�Data Exploration
Once you have removed the missing data, you can count the elements of each class, sex,

and survival status (see Figure 8-17).

In[71]:= Dataset@<|"Class" -> Query[Counts, "class"]@titanic, "Sex"

-> Query[Counts, "sex"]@titanic, "Survival status" -> Query[Counts,

"survived"]@titanic|>

Out[71]=

Figure 8-17.  Basic elements count for class, sex, and survival status

After eliminating the rows with the missing elements, the dataset consists of 284

elements in the first class, 261 in the second class, and 501 in the third class (see

Figure 8-18). Also, note that more than half of the registered passengers were male and

that there were more deaths than survivors. It is possible to verify this graphically by

showing the percentages. The same approach is applied to the column’s class and sex.

In[72]:= Row[{PieChart[{N@(#[[1]]/Total@#),N@(#[[2]]/Total@#)}&[Counts

[Query[All,"survived"][titanic]]], PlotLabel->Style["Percentage of

survival",#3,#4], ChartLegends-> {"Survived", "Died"}, ImageSize->#1,

ChartStyle->#2,LabelingFunction->(Placed[Row[{SetPrecision[100#,3],"%"}],

"RadialCallout"]&)],

Chapter 8 Machine Learning with the Wolfram Language

326

PieChart[{N@(#[[1]]/Total@#),N@(#[[2]]/Total@#)}&[Counts[Query[All,"sex"]

[titanic]]], PlotLabel->Style["Percentage by sex",#3,#4], ChartLegends->

{"Female", "Male"}, ImageSize->#1,ChartStyle->#2,LabelingFunction->(Placed

[Row[{SetPrecision[100#,3],"%"}],"RadialCallout"]&)],

PieChart[{N@(#[[1]]/Total@#),N@(#[[2]]/Total@#),N@(#[[3]]/Total@#)}&

[Counts[Query[All,"class"][titanic]]], PlotLabel->Style["Percentage by

class",#3,#4], ChartLegends->{"1st", "2nd","3rd"}, ImageSize->

#1,ChartStyle->#2,LabelingFunction->(Placed[Row[{SetPrecision[100#,3],"%"}],

"RadialCallout"]&)]},"----"]&[200,{ColorData[97,20],ColorData[97,13],

ColorData[97,32]},Black,20]

Out[72]=

Figure 8-18.  Pie charts for class, sex, and survival status

This example looks at the survival status of Titanic passengers. It builds a model that

classifies whether a given class, age, and sex survived and which did not. The features

are class, age, and sex; the target is survival status. These variables are the features,

which the model then uses to classify whether a class, age, and sex survived, which is the

target variable. The dataset is divided into 80% training (837 elements) and 20% test (209

elements). To split the dataset, first do a random sampling; afterward, extract the keys of

the IDs and create a new dataset divided by the train and test sets (see Figure 8-19).

In[73]:= BlockRandom[SeedRandom[8888];

RandomSample[titanic]];

Keys@Normal@Query[All][%];

{train,test}={%[[1;;837]],%[[838;;1046]]};

dataset=Query[<|"Train"->{Map[Key,train]},"Test"->{Map[Key,test]} |>]

[titanic]

Out[77]=

Chapter 8 Machine Learning with the Wolfram Language

327

Figure 8-19.  Titanic dataset divided by train and test set

�Classify Function
The Classify command is another super function used in the Wolfram Language

machine learning scheme. This function can be used in tasks that solve a classification

problem. The data that this function accepts are numerical, textual, sound, and image

data. This function’s input data can be the same as the Predict function {x → y}. However,

entering data as a list of elements, an association of elements, or a dataset is also

possible. In this case, you introduce it as a dataset.

In this case, you extract the data from the dataset format by specifying that

the columns’ input (class, age, sex) points to the target (survived). Now, let’s build

the classifier function (see Figure 8-20) with the following options: Method →

{LogisticRegression, L1 → Automatic, L2 → Automatic}. When choosing Automatic,

Chapter 8 Machine Learning with the Wolfram Language

328

you let Mathematica choose the best combination of L1 and L2 parameters. For the

OptimizationMethod, set the StochasticGradientDescent method. And for performance

goal set Quality. Finally, you choose a seed with a value of 100,000 and the CPU unit as

the target device. The optimization methods for the logistic regression are the limited

memory Broyden-Fletcher-Goldfarb-Shanno algorithm, StochasticGradientDescent,

and Newton method. These are for estimating the parameters of the logistic function.

The rule construction is done from the data inside the dataset using the Query language.

In[78]:= cF = Classify[Flatten[Values[Normal[Query["Train", All,

All, {#class, #age, #sex} -> #survived &][dataset]]]], Method ->

{"LogisticRegression", "L1Regularization" -> Automatic,

"L2Regularization" -> Automatic, "OptimizationMethod" ->

"StochasticGradientDescent"}, PerformanceGoal -> "Quality", RandomSeeding

 -> 100000, TargetDevice -> "CPU", TrainingProgressReporting -> None]

Out[78]=

Figure 8-20.  ClassifierFunction object

After training, like with the Predict function, the Classify function returns a classifier

function object (see Figure 8-21) instead of a predictor function. Inspecting the

classifier function, you can see the two input data types—nominal and numerical—

and the classes, which are the survival status—true or false. The method used (logistic

regression) and the number of examples (837). To obtain information on the model, use

the Information command. Let’s look at the model report.

In[79]:= Information[cF]

Out[79]=

Chapter 8 Machine Learning with the Wolfram Language

329

Figure 8-21.  Information about the trained classifier function

Note I f you click the arrows above the graphs, three plots are shown: Learning
curve, accuracy, and Learning curve for all algorithms. If you hover the pointer over
the line of the last one, a tooltip appears with the corresponding parameters along
with the method used, as shown in Figure 8-22.

Chapter 8 Machine Learning with the Wolfram Language

330

Figure 8-22.  Algorithm specifications tooltip from the method logistic regression

You see that the model’s accuracy is approximately 79%. You also observe by clicking

the arrows of the plots that the learning curve and accuracy curve both experience

variation at 500 training examples used. To access all the properties of the trained model,

add Properties as an option in Information.

In[80]:= Information[cF,"Properties"]

Out[80]={AcceptanceThreshold,Accuracy,AnomalyDetector,BatchEvaluationSpeed,

Chapter 8 Machine Learning with the Wolfram Language

331

BatchEvaluationTime,Calibrated,Classes,ClassNumber,ClassPriors,Evaluation

Time,ExampleNumber,FeatureExtractor,FeatureNames,FeatureNumber,FeatureTypes,

FunctionMemory,FunctionProperties,IndeterminateThreshold,LearningCurve,Max

TrainingMemory,MeanCrossEntropy,Method,MethodDescription,MethodOption,Method

Parameters,MissingSynthesizer,PerformanceGoal,Properties,TrainingClassPriors,

TrainingTime,UtilityFunction}

Note  Depending on the method used, properties may vary.

Let’s examine the probabilities for the data: class = 3rd, age = 23, and sex = male.

Probability → name or number of class or TopProbabilities → number of most likely

classes.

In[81]:= cF[{"3rd",23,"male"},{"Probability"->

False,"TopProbabilities"-> 2}]

Out[81]= {0.676982,{False->0.676982,True->0.323018}}

The probabilities of the latter example show that the passenger’s survival status may

be more inclined to the False status.

To see the complete properties of a new classification, type the example followed

by Properties. The properties included are Decision (best choice of class according to

probabilities and its utility function) and Distribution (categorical distribution object).

Probabilities of each class are displayed as associations: ExpectedUtilities (expected

probabilities), LogProbabilities (natural logarithm probabilities), Probabilities (all

classes), and TopProbabilities (most likely class). This is displayed in the following

dataset (see Figure 8-23).

In[82]:= Dataset@

AssociationMap[cF[{"3rd",23,"male"},#]

&,{"Decision","Distribution","ExpectedUtilities","LogProbabilities",

"Probabilities","TopProbabilities"}]

Out[82]=

Chapter 8 Machine Learning with the Wolfram Language

332

Figure 8-23.  Properties for the classifier function of the trained model

Note T o check the logarithm result, use the Log command, Log[base, number].

�Testing the Model
You now test the model on the test data using the ClassifierMeasurements command,

adding the function and the test set as arguments and the uncertainty computation.

Like PredictionMeasurement, the output returned shows details about the model (see

Figure 8-24).

In[83]:= cM = ClassifierMeasurements[cF,Flatten[Values[Normal[Query[

"Test", All, All, {#class, #age, #sex} -> #survived &][dataset]]]],

ComputeUncertainty -> True, RandomSeeding -> 8888]

Out[83]=

Chapter 8 Machine Learning with the Wolfram Language

333

Figure 8-24.  ClassifierMeasurements object of the classifier function

The object returned is called a ClassifierMeasurementsObject (see Figure 8-25),

which is used to look for the properties of the ClassifierFunction after testing the test

set. Just like with the linear regression model, the report of the test set is suppressed as it

returns the same as in Figure 8-24.

In[84]:=cM["Report"];

Chapter 8 Machine Learning with the Wolfram Language

334

The report in Figure 8-24 shows information such as the number of test examples, the

accuracy, and the accuracy baseline, among others. It also shows you the confusion

matrix, which shows you the prediction results for the classification model, showing the

number of correct and incorrect predictions; these being broken down by class, in this

case, return either false or true, which gives you an idea of the errors the model is making

and the type of error it is making. It shows you the true positives and true negatives and

false positives and false negatives for each class.

Let’s look at the graph (confusion matrix) concretely (see Figure 8-25).

In[85]:= cM["ConfusionMatrixPlot"]

Out[85]=

Figure 8-25.  Confusion matrix plot of the tested model

To get the values of the confusion matrix, use CM[“ConfusionMatrix”] or class

CM[“ConfusionFunction”].

Looking at the plot, you see that the model classified, starting from left to right at the

top, 106 examples of false correctly classified, 21 examples of false as true, 34 examples of

true as false, and 48 examples of true correctly. To better visualize the performance, look

at each class’s ROC curves (see Figure 8-26), their respective values, and the Matthews

correlation coefficient and AUC values.

In[86]:= {cM["ROCCurve"],Dataset@<|{"AUC"->cM["AreaUnderROCCurve"]},

{"MCC"->cM["MatthewsCorrelationCoefficient"]}|>}

Out[86]=

Chapter 8 Machine Learning with the Wolfram Language

335

Figure 8-26.  ROC curves for each class, along with AUC and MCC values

The two classes have different values in the AUC, but comparing the ROC curve;

the class False has better classification than the True class. Let’s look at which class has

worse examples. You can show the less accurate results of the model, which has the

highest entropy distribution and mean cross-entropy for each class.

In[87]:= cM[{"LeastCertainExamples","ClassMeanCrossEntropy"}]

Out[87]= {{{1st,4,male}->True, {1st,19,male}->False, {1st,22,male}->

False, {1st,24,male}->False, {1st,25,male}->False, {1st,27,male}->

False, {1st,29,male}->False, {1st,30,male}->False, {1st,33,male}->False,

{1st,35,male}->True}, <|False->0.552204,True->0.611137|>}

To get the values of the MCC coefficient, use the following properties:

FalseDiscoveryRate, FalsePositiveRate, FalseNegativeRate (for each class),

FalseNegativeExamples, FalseBegativeNumber (true negatives), FalsePositive and

FalsePositiveNumber (true positive). These are shown in a short form here.

In[88]:= cM[#] & /@ {"FalseDiscoveryRate", "FalseNegativeRate",

"FalsePositiveRate"}

Out[88]= {<|False->0.242857,True->0.304348|>,<|False->0.165354,True->

0.414634|>,<|False->0.414634,True->0.165354|>}

Another way to see if the model behaves consistently in predictions is to look at key

metric values like accuracy, recall, F1 score, precision, and the accuracy rejection plot

(see Figure 8-27). Let’s look at these metrics for the model.

In[89]:= cM[{"Accuracy", "Recall", "F1Score",

"Precision", "AccuracyRejectionPlot"}] // TableForm

Out[89]//TableForm=

Chapter 8 Machine Learning with the Wolfram Language

336

Figure 8-27.  TableForm for the values of Accuracy, Recall, F1Score, Precision, and
AccuracyRejectionPlot

To see related metrics about the accuracy, type the following properties: Accuracy

(number of correctly classified examples), AccuracyBaseline (accuracy of predicting

the standard class), and AccuracyRejectionPlot (ARC plot, accuracy rejection curve).

However, to find information about probability and the predicted class of the test set,

use the following properties: DecisionUtilities (value of the utility function for every

example in the test set), Probabilities (probabilities for every example in the test set), and

ProbabilityHistogram (histogram of class probabilities). Let’s look at how the probability

behaves by plotting the probability of a passenger’s survival status (see Figure 8-28),

remembering that the false state means that a passenger did not survive, and True

means that a passenger did survive.

In[90]:= plotClass[class1_, class2_, class3_, gender_, prob_,

frame_, ticks_,

 imgSize_] := Plot[{cF[{class1, age, gender}, "Probability" ->

prob], cF[{class2, age, gender}, "Probability" -> prob], cF[{class3,

age, gender}, "Probability" -> prob]}, {age, 0, 90}, PlotLegends ->

{gender <> " in 1st class", gender <> " in 2nd class", gender

<> " in 3rd class"}, FrameLabel -> {Style["Age in years", Bold,

15], Style["Probability", Bold, 15]}, Frame -> frame, FrameTicks ->

Chapter 8 Machine Learning with the Wolfram Language

337

ticks, GridLines -> {{20, 40, 60, 80}}, ImageSize -> imgSize]

truPlot = {plotClass["1st", "2nd", "3rd", "male", True, True,

All, Medium], plotClass["1st", "2nd", "3rd", "female", True, True,

All, Medium]};

falsePlot = {plotClass["1st", "2nd", "3rd", "male", False, True,

All, Medium], plotClass["1st", "2nd", "3rd", "female", False, True,

All, Medium]};

headings = {Style["True class", Black, 20, FontFamily -> "Arial

Rounded MT"], Style["False class", Black, 20, FontFamily -> "Arial

Rounded MT"]};

Grid[{{headings[[1]], headings[[2]]}, {truPlot[[1]], falsePlot[[2]]},

{truPlot[[2]], falsePlot[[1]]}}, Alignment -> {{Center, Center}, {None,

None}}, Dividers -> {False, 1}]

Out[92]=

Figure 8-28.  Probabilities of each class, depending on the class, age, and sex

The graphs shown in Figure 8-30 clearly show that males’ probability of survival

decreases as age increases, even to hit values below 20% of chance, whether 1st, 2nd, or

3rd class. This is contrary to the probability of survival for females, where it starts with

values above 80% of chance and decreases as age increases, too, hitting values above

50% for 1st class.

Chapter 8 Machine Learning with the Wolfram Language

338

�Data Clustering
The data clustering method is unsupervised learning, as referenced by M. Emre Celebi,

and Kemal Aydin in Unsupervised Learning Algorithms (Springer, 2018). It is generally

used to find structures and characteristics of data clusters, where the points to be

observed are divided into different groups by which they are compared based on unique

characteristics.

The following example creates a bivariate data series and plot the list of points (see

Figure 8-29). To find clusters, there is the Find Clusters command; this command makes

a partition of the points according to their similarities.

In[93]:= BlockRandom[

SeedRandom[321];

rndPts=Table[{i,RandomReal[{0,1}]},{i,1,450}];]

ListPlot[rndPts,PlotRange->All,PlotStyle->Directive[Thick,Blue],Frame->

True,FrameTicks->All]

Out[93]=

Figure 8-29.  2D scatter plot of random data

�Clusters Identification
The FindClusters function is used to detect partitions within a set of data with

similar characteristics. This function gathers the cluster elements into subgroups

that the function finds. When you do not add options to the Find Clusters command,

Chapter 8 Machine Learning with the Wolfram Language

339

Mathematica automatically sets the cluster identification parameters. Options for

other machine learning methods can also be used for this command; for example,

PerformanceGoal, Method, and RandomSeeding.

In[94]:= clusters=FindClusters[rndPts,PerformanceGoal->"Speed",Method-

>Automatic,DistanceFunction->Automatic,RandomSeeding->1234];

Short[clusters,1]

Out[95]//Short={{{1,0.924416},{8,0.951038},<<162>>,{443,0.824999}},{<<1>>},

{<<1>>}}

Let’s look at how many clusters were identified. You use the Length command; this

way, you obtain the general form of the list.

In[96]:= Length[clusters]

Out[96]= 3

You see that the result is three. This can be interpreted as follows: the list contains

three elements (that is, three sublists), each list represents a cluster, and within each

cluster, there is a sublist, which includes the points of each identified cluster. To

determine how many elements are included in each cluster, use the Map command and

apply the Dimension command at the specification level.

In[97]:= Map[Dimensions,clusters,1]

Out[97]= {{165,2},{143,2},{142,2}}

This tells you that the first cluster contains 165 elements, the second cluster contains

143 components, and the third cluster contains 142 elements; these are the same

number of points you created earlier, totaling 450. Each cluster consists of a two-point

coordinate system. The FindClusters command returns the points where it identifies the

clusters. Figure 8-30 exhibits the plot of the clusters generated.

In[98]:= ListPlot[clusters,PlotStyle->{Red,Blue,Green},PlotLegends->

Automatic,Frame->True,FrameTicks->All,PlotLabel->Style["Cluster Plot",

Italic,20,Black],Prolog-> {LightYellow,Rectangle[Scaled[{0,0}],

Scaled[{1,1}]]}]

Out[98]=

Chapter 8 Machine Learning with the Wolfram Language

340

Figure 8-30.  2D scatter plot of the three clusters identified

Find Clusters automatically colors the clusters. To explicitly establish the number of

clusters to search, you add the desired number as the second argument—that is, in the

form FindCluster [“points,” “a number of clusters”]. In the previous example, you set the

method option to automatic. The different methods for finding the clusters are shown

here. Agglomerate (which is the algorithm of single linkage clustering), density-based

spatial clustering of applications with noise (DBSCAN), NeighborhoodContraction

(nearest-neighbor chain algorithm), JarvisPatrick (Jarvis\[Dash]Patrick clustering

algorithm), KMeans (k-means clustering), MeanShift (mean-shift clustering), KMedoids

(k-medoids partitioning), SpanningTree (minimum spanning tree clustering), Spectral

(spectral clustering), and GaussianMixture (Gaussian mixture model).

�Choosing a Distance Function
In addition to the method option, there is also the DistanceFunction, which was given

the value of Automatic. This option defines how the distance between the points is

calculated. In general, when you choose automatic, the square Euclidean distance is

used (∑(yi − xi)2). There are also other values for the distance function,

Euclidean distance (� �� �y xi i
2), Manhattan distance (∑ ∣ xi − yi∣), Chessboard

distance, or Chebyshev distance ((|xi − yi|)), among others. Now that you know how the

clusters are identified, you want to know the centroid of each one. For this it is necessary to

Chapter 8 Machine Learning with the Wolfram Language

341

calculate the mean of the points of the clusters. The centroid of a series of points is obtained

from the expression � � ��
�
�

�
�
�

x
n
i , which can be interpreted as the average of the points. For

the calculation, you extract the data from each cluster and calculate its arithmetic mean.

In[79]:={cluster1Centroid,cluster2Centroid,cluster3Centroid}={N@Mean@

clusters[[1,All]],N@Mean@clusters[[2,All]],N@Mean@clusters[[3,All]]}

Out[79]= {{224.806,0.810328},{105.14,0.331805},{347.514,0.31097}}

Let’s plot the clusters with their centroids to visualize how the points are classified

for each centroid (see Figure 8-31).

In[99]:= clusterPlot=ListPlot[clusters,PlotStyle->{Red,Blue,Green},

PlotLegends->{"Cluster 1","Cluster 2","Cluster 3"}];

centroidPlot=ListPlot[{cluster1Centroid,cluster2Centroid,cluster3Centroid},

PlotStyle->Black];

Show[{clusterPlot,centroidPlot},Prolog->{LightYellow,Rectangle[Scaled[{0,0

}],Scaled[{1,1}]]},Frame-> True,FrameTicks-> All,PlotLabel->Style["Cluster

Plot",Italic,20,Black]]

Out[100]=

Figure 8-31.  2D scatter plot of the three clusters identified with their respective centroids

Chapter 8 Machine Learning with the Wolfram Language

342

To make sure the first cluster corresponds to the red points, try using ListPlot to plot

the points contained in clusters[[1, All]], as well as those in the second cluster (blue) and

third cluster (green). Alternatively, you can highlight the area of the centroids by adding

the Epilog option to the plot. Epilog is another graphic option like Prolog, but you can

use it to highlight the location of the centroid points (see Figure 8-32).

In[101]:= Show[{clusterPlot, centroidPlot}, Prolog -> {LightYellow,

Rectangle[Scaled[{0, 0}], Scaled[{1, 1}]]}, Frame -> True,

FrameTicks -> All, Epilog -> {Opacity[0.2], PointSize[0.1],

Point[cluster1Centroid], Point[cluster2Centroid],

Point[cluster3Centroid]}]

Out[101]=

Figure 8-32.  2D scatter plot of the three clusters identified with their respective
centroids

�Identifying Classes
Once the clusters are identified by the command FindClusters, you can use

the ClusteringComponents command to label or identify the different classes

found. You must specify the number of clusters and where to look for the clusters

within the ClusteringComponents command since there are several ways to use

ClusteringComponents.

Chapter 8 Machine Learning with the Wolfram Language

343

In[102]:= classes=ClusteringComponents[clusters,3,2,Method->Automatic,

DistanceFunction->Automatic,RandomSeeding-> 1234,PerformanceGoal->"Speed"]

//Shallow

Out[102]={{1,2,1,1,2,1,2,

1,2,2,1,1,1,1,2,1,1,2,1,1,2,1,2,2,2,2,1,1,2,2,1,2,2,2,2,2,2,1,1,2,2,2,2,1,

2,2,2,2,2,2,2,2,2,1,2,

2,

2,2},{1,1,1,1,1,1,1,1,1,1,1,1,1,

1,

1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,3,1,3,1,1,1,1,1,1,1,1,3,1,3,3,1,

3,1,1,3,1,1,1,1,3,1,3,1,1,1,3,3,1,3,3},{3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,

3,

3,3,3,3,3,3,2,2,3,3,3,3,3,2,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,2,

2,2,3,2,3,

2,3,3,3,3,3,2,3,3,3,3,2,3,3}}

In this way, numbers that correspond to the three classes appear. The command

only identifies three types of classes; it does not mention what each class means. This is

because cluster methods are often performed on unlabeled data, so interpretation is part

of the analysis. Let’s count how many elements of each class you have.

In[103]:= Flatten[classes]//Counts

Out[103]= <|1->174,2->132,3->144|>

The command returns that class one contains 174, class two contains 132, and class

three contains 144. One point to clarify is why the clusters identified with FindClusters

and ClusteringCompnents defer. This is because by setting the automatic option in the

distance function, you are telling Mathematica to find the optimal distance function.

Depending on the data, one function might gather elements in different forms, as you

see later.

�K-Means Clustering
Thus far, you have seen how to search for clusters in a generic way. This section focuses

on the k-means method. The k-means is a technique to find and classify data groups

(k) so that the elements that share similar characteristics are grouped similarly for the

Chapter 8 Machine Learning with the Wolfram Language

344

opposite case (not similar characteristics). The method calculates the distance between

the data for a centroid to distinguish whether the data contain similarities. The elements

that have less distance between them is those that share similarities. This technique is

an iterative process in which the groups are adjusted until they reach a convergence.

The k-means method, a simple algorithm, makes a classification employing specific

partitions in different groups, where each point or observation belongs to the group.

Clustering is done by minimizing the sum of the distances between each object and

the centroid of its group. The k-means clustering technique tries to build the clusters

to have the least variation within a group. This is done by minimizing the expression

C xi j ix Cj i
� � � �

�� �
2

, where Ci represents the ith cluster, xj represents the points, and

μi represents the centroid of each cluster. The square term of the function is the distance

function; the most used is the square Euclidean distance, as in this case.

To learn more about the mathematical foundation behind this technique, consult the

reference An Introduction to Statistical Learning: With Applications in R by Gareth James,

Daniela Witten, Trevor Hastie, and Robert Tibshirani. (1st ed. 2013, Corr. 7th printing

2017 ed.: Springer).

The Fisher’s Irises dataset in ExampleData is used in the following example.

Recalling the dataset’s features, execute the following code.

In[104]:= ExampleData[{"Statistics","FisherIris"},"ColumnDescriptions"]

Out[104]= {Sepal length in cm.,Sepal width in cm.,Petal length in cm.,Petal

width in cm.,Species of iris}

Let’s extract the dataset and assign the variable iris to it.

In[105]:= iris=ExampleData[{"Statistics","FisherIris"}];

Short[iris,6]

Out[106]//Short= {{5.1,3.5,1.4,0.2,setosa},{4.9,3.,1.4,0.2,setosa},{4.7,3.2

,1.3,0.2,setosa},{4.6,3.1,1.5,0.2,setosa},{5.,3.6,1.4,0.2,setosa},{5.4,3.9,

1.7,0.4,setosa},{4.6,3.4,1.4,0.3,setosa},<<136>>,{6.8,3.2,5.9,2.3,virginica

},{6.7,3.3,5.7,2.5,virginica},{6.7,3.,5.2,2.3,virginica},{6.3,2.5,5.,1.9,

virginica},{6.5,3.,5.2,2.,virginica},{6.2,3.4,5.4,2.3,virginica},{5.9,3.,

5.1,1.8,virginica}}

Chapter 8 Machine Learning with the Wolfram Language

345

�Dimensionality Reduction
Since the iris dataset consists of four features classified into three species types, you use

the PCA method, as this method is used to reduce high-dimensionality problems. In

this case, you want to represent these features through two main components. For this,

you proceed to standardize the data—that is, they have zero mean and one standard

deviation since the variables with larger variance are more likely to affect the PCA.

In[107]:= sT=Standardize[iris[[All,{1,2,3,4}]]];(*Showing only the first

4 terms*)

%[[1;;4]]//TableForm

Out[108]//TableForm= -0.897674 1.0156 -1.33575 -1.31105

-1.1392 -0.131539 -1.33575 -1.31105

-1.38073 0.327318 -1.3924 -1.31105

-1.50149 0.0978893 -1.2791 -1.31105

There are two ways to do the process, either using the DimensionReduce command

or the DimensionReduction command, which are used to reduce the dimensions of

the data. The difference between the two is that the first returns the values as a list. The

second returns a DimensionReducerFunction (see Figure 8-33) as output, as in the

case of Predict and Classify. Both belong to the Wolfram Language special functions for

machine learning. For this case, you use the DimensionReduction command. Since you

have the data, you introduce the standardized data as arguments, followed by specified

target dimensions (2), with the PrincipalComponentAnalysis method. This gives you the

DimensionReducerFunction that assigns the name DR.

In[109]:= dR=DimensionReduction[sT,2,Method->"PrincipalComponentsAnalysis"]

Out[109]=

Figure 8-33.  DimensionReductionFunction object

Chapter 8 Machine Learning with the Wolfram Language

346

The properties of the function are “ReducedVectors” (list of reduced vectors),

“OriginalData” (deduction from the original data list given the reduced vectors),

“ReconstructedData” (data reconstruction by reduction and inversion), “ImputedData”

(missing values replaced by imputed ones). You call the standardized data values

function, showing the first five. The coordinates x and y are for the principal components

1 and 2, respectively.

In[110]:= pCA=dR[sT,"ReducedVectors"]; TableForm[%[[1;;5]],TableHeadings

->{None, {"First principal component","Second Principal component"}},

TableAlignments->Center]

Out[111]//TableForm= First principal component Second Principal component

2.2647 -0.480027

2.08096 0.674134

2.36423 0.341908

2.29938 0.597395

2.38984 -0.646835

This calculates the variance of each component, followed by the total to find the

proportion of variance explained. PC1 represents 76% of the data dispersion, and

PC2 represents 23%. To obtain the accumulated percentage, you add the variations

of each component. To view more depth about the proportion of variation, refer to

An Introduction to Statistical Learning: With Applications in R by G. James, D. Witten,

T. Hastie, and R. Tibshirani (Springer, 2017).

In[112]:= Variance@pCA[[All, All]]/Total@Variance@pCA[[All, All]]

// TableForm[#, TableHeadings -> {{"First PC variation", "Second PC

variation"}, None}] &

Out[112]//TableForm=

First PC variation | 0.761507

Second PC variation | 0.238493

You look at the plot (see Figure 8-34) of the main components made by the previous

process. If you look over the complete iris data from the ExampleData, the first 50

elements correspond to the setosa species, the next 50 to versicolor, and the last 50 to

virginica.

Chapter 8 Machine Learning with the Wolfram Language

347

In[113]:= labels={Style["First principal component", Black, Bold],

Style["Second Principal component",Black,Bold]};ListPlot[{pCA[[1 ;; 50]],

pCA[[51 ;; 100]], pCA[[100 ;; 150]]},PlotLegends->Placed

[{Placeholder["setosa"], Placeholder["versicolor"], Placeholder

["virginica"]}, Right], PlotMarkers -> "OpenMarkers", GridLines -> All,

Frame -> True, Axes -> False, FrameTicks -> All, FrameLabel -> labels]

Out[114]=

Figure 8-34.  Scatter plot of the two principal components

�Applying K-Means
Now, let’s find the clusters with k-means using the Manhattan distance. You assume

that the data can be divided into three clusters by specifying to look for three clusters.

You know the original data belongs to three species (setosa, versicolor, and virginica).

The plot of the clusters is shown here (see Figure 8-35), with their respective centroids.

When choosing the k-means method, suboptions can be added, like InitialCentroids.

Costum start centroids (a list of centroid coordinates) can be typed, or you can leave the

automatic option. To enter the centroids coordinates, you use the following form Method

→ {“KMeans,” InitialCentroids” → {{x1, y1}, {x2,y2}, {x3,y3} ... }}, where x1, y1 represent

the centroid of the C1 (cluster 1). Initial centroids are not given to the command

FindClusters to keep some randomness.

Chapter 8 Machine Learning with the Wolfram Language

348

In[115]:= clstr = FindClusters[pCA, 3, Method ->

"KMeans", DistanceFunction -> SquaredEuclideanDistance, RandomSeeding

 -> 8888];ListPlot[clstr, PlotRange -> All, Frame -> True, AspectRatio ->

0.8, Axes -> False, PlotStyle -> {ColorData[97, 1], ColorData[97, 2],

ColorData[97, 3]}, PlotLabel -> Style["K-

means clustering for K=3", FontFamily -> "Times", Black, 20, Italic],

FrameTicks -> All, PlotLegends -> Placed[{Placeholder[Style["Cluster 1",

Bold, Black, 10]], Placeholder[Style["Cluster 2", Bold, Black, 10]],

Placeholder[Style["Cluster 3", Bold, Black, 10]]}, Right], PlotMarkers

 -> "OpenMarkers", FrameLabel -> labels, GridLines -> All, Epilog ->

{Opacity[1], PointSize[0.01], Point[Mean@clstr[[1, All]]], Point[Mean@

clstr[[2, All]]], Point[Mean@clstr[[3, All]]]}]

Out[115]=

Figure 8-35.  3 clusters identified of the two principal components

In Figure 8-35, the method identifies the left points as a single cluster (setosa specie),

whereas some points between clusters 2 and 3 might be misclassified.

Chapter 8 Machine Learning with the Wolfram Language

349

�Changing the Distance Function
Changing the DistanceFunction can modify how the clusters are arranged; the following

code shows the plot for k = 3 and choosing a different distance function. In the next

block of code, the computation of the clusters is made for the same k (3), with a different

distance function, and stored into their respective variables. Then, the clusters are

plotted (see Figure 8-36) for each of the different distance functions, and finally, they are

displayed within a graphic grid.

In[116]:= clusteringPlot[distanceName_, distanceFunction_]

:= Module[{clusters, pltTitles, points}, clusters = FindClusters[pCA,

3, PerformanceGoal -> "Quality", Method -> "KMeans", DistanceFunction

 -> distanceFunction, RandomSeeding -> 8888]; points = Point[Mean[#]]

& /@ clusters; pltTitles = distanceName; ListPlot[clusters, Frame ->

True, AspectRatio -> 0.8, PlotMarkers -> "OpenMarkers", PlotStyle ->

{ColorData[97, 1], ColorData[97, 2], ColorData[97, 3]}, GridLines ->

All, PlotRange -> Automatic, ImageSize -> 300, FrameLabel -> labels,

Axes -> False, FrameTicks -> All, Epilog -> {Opacity@1, PointSize@0.03,

points}, PlotLabel -> Style[pltTitles, Black]]]

eDplt = clusteringPlot["Euclidean Distance", EuclideanDistance];

mhDplt = clusteringPlot["Manhattan Distance", ManhattanDistance];

chDplt = clusteringPlot["Chessboard Distance", ChessboardDistance];

cosDplt = clusteringPlot["Cosine Distance", CosineDistance];

legendsText = {Placeholder[Style["Cluster 1", Bold,

Black, 10]], Placeholder[Style["Cluster 2", Bold,

Black, 10]], Placeholder[Style["Cluster 3", Bold, Black,

10]]};Labeled[Legended[GraphicsGrid[{{eDplt, mhDplt},

{chDplt, cosDplt}},Frame->All,Background->White,Spacings->1],

PointLegend[{ColorData[97,1], ColorData[97,2], ColorData[97,3]},

legendsText, LegendMarkers -> "OpenMarkers"]], Style["K-means clustering

for K=3", FontFamily -> "Times", Black, 20, Italic], Top]

Out[117]=

Chapter 8 Machine Learning with the Wolfram Language

350

Figure 8-36.  K-means clustering for K = 3, for different distance functions

The clusters can have different arrangements with different distance functions; one

thing to note also is that the cluster’s centroids change in each of the subfigures.

�Different k’s
Having seen that for different distance functions, the clusters can vary, let’s now

construct the process but with different k’s—that is, for k= 2, 3, 4, and 5, as exhibited in

Figure 8-37.

In[117]:= findKClusters[k_, PCA_] := FindClusters[PCA, k,

PerformanceGoal -> "Speed", Method -> "KMeans",DistanceFunction ->

SquaredEuclideanDistance, RandomSeeding -> 8888];

plotKClusters[k_, clusters_] := ListPlot[clusters, Frame -> True,

Chapter 8 Machine Learning with the Wolfram Language

351

AspectRatio -> 0.8, PlotMarkers -> "OpenMarkers", PlotStyle ->

ColorData[97, "ColorList"][[;; k]], GridLines -> All, PlotRange ->

Automatic, ImageSize -> 260, FrameLabel -> labels, Axes -> False,

FrameTicks -> All, Epilog -> {Opacity@1, PointSize@0.015, Point[Mean

/@ clusters]}, PlotLabel -> Style["K=" <> ToString[k], Black]];

kValues = {2, 3, 4, 5};

kClusters = findKClusters[#, pCA] & /@ kValues;

kPlots = plotKClusters[#, kClusters[[#2]]] & @@@ Transpose[{kValues, Range@

Length@kValues}];

legendsText2 = {Placeholder[Style["Cluster " <> ToString[#], Bold, Black,

10]]} & /@ Range@5;

Labeled[Legended[GraphicsGrid[Partition[kPlots, 2], Frame ->

All, Background -> White, Spacings -> 1], PointLegend[ColorData[97,

"ColorList"][[;; 5]], legendsText2, LegendMarkers ->

"OpenMarkers"]], Style["K-means clustering for K=2,3,4,5", FontFamily ->

"Times", Black, 20, Italic], Top]

Out[120]=

Chapter 8 Machine Learning with the Wolfram Language

352

Figure 8-37.  K-means for K from 2 to 5

The arrangement of the clusters also depends on the number of ks. Complementing

with ClusteringComponents, you can count the number of labels registered for a k = 3.

In[120]:= ClusteringComponents[clstr,3,2,Method->"KMeans",DistanceFunction

->SquaredEuclideanDistance,RandomSeeding->8888]

Counts[Flatten[%]]

Out[121]={{1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},{2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

2,2},{3,3,3,3,2,3,3,3,

3,2,2,3,2,

3,3,3,3,3,3,2,3,3,2}}

Out[122]= <|1->50,2->51,3->49|>

Chapter 8 Machine Learning with the Wolfram Language

353

Given a clustering problem, the k-means technique is meant to be used for

unlabeled data—that is, data without defined categories. Some factors that can alter the

operation of the method include the following.

•	 The spread, or how far apart the points are. This is reflected if

the data contains outliers or are in various scales, which can be

erroneously classified as part of a cluster when the opposite is

observed visually.

•	 The dimensionality of the data. Given that more information and

features are often added to the model, the number of dimensions

grows, leading to the “curse of dimensionality.” This type of problem

can be solved using data transformation methods, as in the example

seen from PCA, but with some restrictions since the PCA method can

lose sensitive information on the features.

•	 The value of k is determined manually, but when there are high-cost

function values, it can be interpreted that the intra-cluster variation is

high. With low-cost function values, the intra-cluster variation is low.

The last two assumptions can also be attributed to the fact that for lower

values of k, many observations can be grouped into large individual

clusters. For high values of k observations, they can be a proper group.

�Cluster Classify
Another command that belongs to the cluster functions is called ClusterClassify (see

Figure 8-38). This command works in the same way as Classify does. The following

example uses this command to see how the k-means cluster classifies the species based

on Sepal length and Sepal width. Split the data into halves when you randomly sample.

In[122]:= BlockRandom[

SeedRandom[88888];

RandomSample[iris[[All,{1,2}]]];]

trainingSet=%[[1;;75]];

testSet=%%[[76;;150]];

In[123]:= cC=ClusterClassify[trainigSet,3,Method->"KMeans",

DistanceFunction->Automatic,PerformanceGoal->"Speed",RandomSeeding->8888]

Out[123]=

Chapter 8 Machine Learning with the Wolfram Language

354

Figure 8-38.  ClassifierFunction of the cluster classification model

Figure 8-38 shows the details of the cluster classification model. The input vector is a

numerical vector, the number of classes (three), the method, and the number of training

examples.

Note T o correctly use the k-means method, the number of clusters needs to be
specified; otherwise, the command does not execute correctly.

Use the Information command to see the classifier information (see Figure 8-39).

In[124]:= Information[cC]

Out[124]=

Figure 8-39.  Classifier information for k-means

Chapter 8 Machine Learning with the Wolfram Language

355

More detailed information about the classifier function is shown in Figure 8-39.

To get the complete list of properties, type “Properties” as a second argument. Many

metrics, such as BatchEvaluationSpeed, BatchEvaluationTime, and TrainingTime, can

compare times with different methods.

In[125]:= Information[cC,"Properties"]

Out[125]={AcceptanceThreshold,AnomalyDetector,BatchEvaluationSpeed,BatchEv

aluationTime,Calibrated,Classes,ClassNumber,ClassPriors,DistanceFunction,

EvaluationTime,ExampleNumber,FeatureExtractor,FeatureNames,FeatureNumber,

FeatureTypes,FunctionMemory,FunctionProperties,IndeterminateThreshold,

LearningCurve,MaxTrainingMemory,Method,MethodDescription,MethodOption,

MethodParameters,MissingSynthesizer,PerformanceGoal,Properties,Training

ClassPriors,TrainingTime,UtilityFunction}

Let’s now get the information about the classes identified from the cluster classifier,

the number of classes, distance function, feature names, and the training class

probabilities.

In[126]:=Information[cC,#]&/@{"Classes","ClassNumber","DistanceFunction",

"FeatureNames","TrainingClassPriors"}

Out[126]= {{1,2,3},3,EuclideanDistance,{f1},<|1->0.333333,2->0.293333,

3->0.373333|>}

There are three classes: class 1, class 2, and class 3. The distance function used is

EuclideanDistance, and the name f1 refers to the numeric vector features. A simple

example is chosen by choosing a sepal length of 1 and a sepal width of 2 to show the

different properties that can be used when testing the data, shown in the dataset form

(see Figure 8-40). The example is first written, followed by the properties Decision

(cluster that belongs to the example), Distribution (categorical distribution object

for histogram plots), ExpectedUtilities (expected probabilities and indeterminate

threshold), LogProbabilities (log probabilities), Probabilities (probabilities of the test

data based on classes), and TopProbabilities (best probabilities for the test data).

In[127]:=Dataset[AssociationMap[cC[{1,2},#]&,{"Decision","Distribution",

"ExpectedUtilities","LogProbabilities","Probabilities","TopProbabilities"}]]

Out[127]=

Chapter 8 Machine Learning with the Wolfram Language

356

Figure 8-40.  The dataset of the simple Iris example

The example belongs to the third cluster and that the associated probability is 3 →

0.976148. Look at the rest of the data and plot the cluster classification. The classified

data plot is shown in Figure 8-41.

In[128]:= ListPlot[Pick[testSet,cC[testSet],#]&/@{1,2,3},

PlotMarkers->"OpenMarkers",GridLines->Automatic,PlotLegends->

{Placeholder[Style["Cluster 1",Bold,Black,10]],Placeholder[Style["Cluster

2",Bold,Black,10]],Placeholder[Style["Cluster 3",Bold,Black,10]]},

Frame->True,FrameTicks->All,FrameLabel->{"Sepal Lenght","Sepal Width"}]

Out[128]=

Figure 8-41.  Cluster classification on the example of the iris data for the first
two features

Chapter 8 Machine Learning with the Wolfram Language

357

As a complement, a probability restriction for values below an established

probability value can be added with IndeterminateThreshold, as depicted in Figure 8-42.

In[129]:= ListPlot[Pick[testSet,CC[testSet,IndeterminateThreshold->

0.6],#]&/@{1,2,3,Indeterminate},PlotMarkers-> "OpenMarkers",PlotLegends->

{Placeholder[Style["Cluster 1",Bold,Black,10]],Placeholder[Style["Cluster

2",Bold,Black,10]],Placeholder[Style["Cluster 3",Bold,Black,10]],Placeholder

[Style["Indeterminate",Bold,Black,10]]},Frame->True,FrameTicks->

All,FrameLabel->{"Sepal Lenght","Sepal Width"},GridLines->Automatic]

Out[129]=

Figure 8-42.  Cluster classification on the example of the iris data for the first two
features with a probability restriction

�Summary
The first part of the chapter discussed machine learning, the gradient descent algorithm,

and its comprehensive implementation. Then, the linear regression model was

introduced by exploring the Boston dataset and the guide to creating, measuring, and

refining the created model. This previous process is also carried out for the logistic

regression but with the Titanic dataset. As the chapter concluded, you learned about

data clustering and k-means clustering.

Chapter 8 Machine Learning with the Wolfram Language

359
© Jalil Villalobos Alva 2024
J. Villalobos Alva, Beginning Mathematica and Wolfram for Data Science,
https://doi.org/10.1007/979-8-8688-0348-2_9

CHAPTER 9

Neural Networks with
the Wolfram Language
This chapter starts with the basic foundations of the neural network framework in the

Wolfram Language. The chapter begins with the concepts of layers, how to use the

commands for different layers, and the most common layers. You learn how to enter

data into the layers by the net port and the different forms of equivalent expression of the

layers. This topic is followed by how to distinguish different layers by their symbol. You

see that layers can have multiple options that enable them to have various specifications

by viewing the concept of a layer in the Wolfram Language scheme, comparing different

layers with different purposes, and performing different computations. You also achieve

this by looking at the various activation functions supported by the Wolfram Language

and inspecting the plots of each function in addition to different syntax forms. Next,

you learn about encoders and decoders and how these tools are used to construct a

neural network model, depending on the task to be fulfilled. You then learn how these

encoders and decoders are used to convert different data types to numeric arrays and

how to convert the numeric arrays back to the initial data. You introduce the concept

of a container, what it means for the created models, and what types exist. You see how

to handle and build containers with different commands and graphically visualize the

created model. You see how the Wolfram Neural Net Framework supports MXNet-

related operations and how to export a network to the format of the MXNet operation.

https://doi.org/10.1007/979-8-8688-0348-2_9#DOI

360

�Layers
It is necessary to understand that neural networks, in general and in the Wolfram

Language, are built from layers. A layer is a term that can be applied to a collection of

nodes that operate together at a specific level within the neural network. The layer is an

essential and straightforward member for constructing a neural network.

�Input Data
The data handled by the layers is of a numeric type and not of another kind. Input

variables can be vectors, a unidimensional list, matrixes, a two-dimensional list, arrays,

a list of lists, or any other numeric tensor. These input variables can be either features or

attributes of the dataset of study, with a known or multidimensional shape. These types

of input attributes are associated with the input layer, for which the feature size, in turn,

must be equal to the input size of a layer, but not every layer receives the same input and

returns the same output; every input varies depending on the type of layer to be used.

This definition is one of the most basic ideas in neural networks since they are a crucial

component of the whole structure that involves the term neural network. A remark here

is to distinguish input from input layer since they do not mean the same.

�Linear Layer
A linear layer is the most common and widely used layer in a neural network. To build

the simplest layer in the Wolfram Language, use the LinearLayer command.

In[1]:= LinearLayer["Input"->1,"Output"->2]

Out[1]=

Figure 9-1 represents the LinearLayer object in the Wolfram Language. Clicking the

plus icon shows the internal parameters, including details about the layer port’s input

and output and array rank of the weights and biases of the linear layer, as shown in

Figure 9-2.

Figure 9-1.  LinearLayer object

Chapter 9 Neural Networks with the Wolfram Language

361

Figure 9-2.  Expanded LinearLayer object

Each layer has an input port and an output port. Each port has an associated size of

what is entering the layer and what is going out. In the latter case, a vector of size one is

entering, and the layer returns a vector of size two.

�Weights and Biases
The general form of a linear layer is given by the following expression of the dot product

w⋅x + b, where x is the data vector, w represents the matrix of the weights, and b is the

vector of the biases. Linear layers have other associated names, like fully connected

layers, as in the MXnet framework. The input of the layers in the Wolfram Language

receives numerical tensors as input—that is, they only act on numerical arrays. To

explicitly enter the size of input and output, you write the form of the input port and

the output port followed by different options: “Input” or “Output” → {size, Options.}.

Options include defining a real number (Real), a vector of form n (single number n),

an array ({n1 * n2 * n3} ...), or a NetEncoder, which you see later. Following are some

equivalent ways to write layers, as depicted in Figure 9-3.

In[2]:= LinearLayer["Input"->{2,"Real"},"Output"->{3,1}]

Out[2]=

Figure 9-3.  LinearLayer with different input and output rank arrays

Chapter 9 Neural Networks with the Wolfram Language

362

As shown in Figure 9-3, the layer receives a vector of size two (list of length 2),

comprised of real numbers, and the output is a matrix of the shape 3×2. When a real

number is specified within the Wolfram Neural Network Framework, it works with the

precision of a Real32. When no arguments are added to the layer, the input and output

shapes are inferred. To manually assign the weights and biases, write “Weights” →

number, “Biases” → number; None is also available for no weights or biases. This is

shown in the following example, where weights and biases are set to a fixed value of 1

and 2 (see Figure 9-4).

In[3]:= LinearLayer["Input"-> 1,"Output"-> 1,"Weights"-> 1,"Biases"-> 2]

Out[3]=

Figure 9-4.  Initialized linear layer, with fixed biases and weights

�Initializing a Layer
Another command allows you to initialize the layer with random values:

NetInitialize. So, to establish hold values of weights or biases, you can also use the

LearningRateMultipliers option (see Figure 9-5). Besides this, LearningRateMultipliers

also mark the rate at which a layer learns during the training phase.

In[4]:= NetInitialize[LinearLayer["Input"-> "Real","Output"->

"Real",LearningRateMultipliers->{"Biases"->1}]]

Out[4]=

Chapter 9 Neural Networks with the Wolfram Language

363

Figure 9-5.  LinearLayer with training parameters

When a layer is initialized, the uninitialized text disappears. If you observe the properties

of the new layer, they appear within the training parameters where fixed biases have been

established, and a learning rate has been set. The options for NetInitialize are Method and

RandomSeeding. The available methods are Kaiming, Xavier, Orthogonal (orthogonal

weights), and Random (weights selection from a distribution). For example, you can use the

Xavier initialization sampling from a normal distribution, as seen in Figure 9-6.

In[5]:= NetInitialize[LinearLayer["Input"-> "Real","Output"->

"Real",LearningRateMultipliers->{"Biases"->1}],Method->

{"Xavier","Distribution"->"Normal"},RandomSeeding->888]

Out[5]=

Figure 9-6.  LinearLayer initialized with the Xavier method

Note T he Option command is recommended to see the options set for a layer.

Despite being able to establish the weights and biases manually, it is advisable to

start the layer with random values to maintain a certain level of complexity in the overall

structure of a model since, on the contrary, this could have an impact on the creation of

a neural network that does not make accurate predictions for non-linear behavior.

Chapter 9 Neural Networks with the Wolfram Language

364

�Retrieving Data
NetExtract retrieves the value of the weights and biases in the form NetExtract [net,

{level1, level2, ...}. The weights and bias parameters of the linear layers are packed in

NumericArray objects (see Figure 9-7). This object has the values, dimensions, and

type of the values in the layer. NetExtract also serves to extract layers of a network with

many layers. NumericArrays are used in the Wolfram Language to reduce memory

consumption and computation time.

In[6]:= linearL=NetInitialize[LinearLayer[2, "Input"->

1],RandomSeeding->888];

NetExtract[linearL,#]&/@{"Weights","Biases"}//TableForm

Out[7]//TableForm=

Figure 9-7.  Weights and biases of a linear layer

With Normal, you convert them to lists.

In[8]:=TableForm[SetPrecision[{{Normal[NetExtract[linearL,"Weights"]]},

{Normal[NetExtract[linearL,"Biases"]]}},3],TableHeadings->{{"Weights

 ->","Biases ->"},None}]

Out[8]//TableForm=

Weights -> -0.779

0.0435

Biases -> 0

0

For instance, a layer can receive a length of one vector to produce an output vector

of size 2.

In[9]:= linearL[4]

Out[9]= {-3.11505,0.174007}

Chapter 9 Neural Networks with the Wolfram Language

365

The layer can only be evaluated when input is introduced in the appropriate shape.

In[10]:= linearL[{88,99}]

During evaluation of In[10]:= LinearLayer::invindata1: Data supplied

to port "Input" was a length-2 vector of real numbers, but expected a

length-1 vector.

Out[10]= $Failed

The weights and biases are the parameters that the model must learn from, which

can be adapted based on the input data that the model receives, which is why it is

initialized randomly since if you try to extract these values without initializing, you

cannot because they have not been defined.

Layers have the property of being differentiable. It is achieved with NetPortGradient,

which can represent the gradient of a net output for a port or a parameter. For example,

give the derivative of the output concerning the input for a particular input value.

In[11]:= linearL[2,NetPortGradient["Input"]]

Out[11]= {-0.735261}

�Mean Squared Layer
Until now, you have seen the linear layer, which has various properties. Layers with the

icon of a connected rhombus (see Figure 9-8), by contrast, do not contain any learnable

parameters, like MeanSquaredLossLayer, AppendLayer, SummationLayer, DotLayer,

ContrastiveLossLayer, and SoftmaxLayer, among others.

In[12]:= MeanSquaredLossLayer[]

Out[12]=

Figure 9-8.  MeanSquaredLossLayer

Chapter 9 Neural Networks with the Wolfram Language

366

MeanSquaredLossLayer[] has more than one input because this layer computes the

mean squared loss, which is the following expression (1/n) ∑ (Input - Target)2, and has

the property that compares two numeric arrays. With the MeanSquaredLossLayer, the

input/output ports’ dimensions are entered in the same form as a linear layer, and the

input and target values are entered as Associations.

In[13]:= MeanSquaredLossLayer["Input"->{3, 2},"Target" -> {3, 2}][

Association["Input" -> {{1, 2}, {2, 1}, {3, 2}}, "Target" -> {{2, 2},

{1, 1}, {1, 3}}]]

Out[13]= 1.16667

The latter example computes a MeanSquaredLossLayer for input/output dimensions

of three rows and two columns or by defining first the layer and then applying the layer

to the data.

Note U se the Matrixform[{{1, 2}, {2, 1}, {3, 2}}] command to verify the matrix
shape of the data.

In[14]:= lossLayer=MeanSquaredLossLayer["Input"->{3,2},"Target"->{3,2}];

lossLayer@<|"Input"->{{1,2},{2,1},{3,2}},"Target"->{{2,2},{1,1},{1,3}}|>

Out[15]= 1.16667

To get more details about a layer (see Figure 9-9), use the Information command.

In[16]:= Information[lossLayer]

Out[16]=

Chapter 9 Neural Networks with the Wolfram Language

367

Figure 9-9.  Information about the loss layer To know the layer options, use the
following

To know the layer options, use the following.

In[17]:= MeanSquaredLossLayer["Input"->"Real","Target"->"Real"]//Options

Out[17]= {BatchSize->Automatic,NetEvaluationMode->Test,RandomSeeding->

Automatic,TargetDevice->CPU,WorkingPrecision->Real32}

The input port and target port options are similar to that of the linear layer with the

different forms, Input → Real, n (a form of a vector n), {n1 × n2 × n3} ... (an array of n

dimensions), Varying (a vector or varying form) or a NetEncoder, but with the exception

that the input and target must have the exact dimensions. A few forms of layers are

shown in Figure 9-10.

In[18]:= {MeanSquaredLossLayer["Input"->"Varying","Target"->"Varying"],

MeanSquaredLossLayer["Input"-> NetEncoder["Image"],"Target"-> NetEncoder["I

mage"]],MeanSquaredLossLayer["Input"->1,"Target"->1]}//Dataset

Out[18]=

Chapter 9 Neural Networks with the Wolfram Language

368

Figure 9-10.  Loss layers with different input and target forms

�Activation Functions
Activation functions are a crucial part of the construction of a neural network. The role

of an activation function is to return an output from an established range, given an

input. In the Wolfram Language, activation functions are treated as layers. The layer that

is frequently used for activation function definition in the Wolfram Language neural

net framework is the ElementwiseLayer. With this layer, you can represent layers that

can apply a unary function to the input data elements—in other words, a function that

receives only one argument. These functions are also known as activation functions. For

example, one of the most common functions used is the hyperbolic tangent (Tanh[x]),

shown in Figure 9-11.

In[19]:= ElementwiseLayer[Tanh[#]&](* Altnernate form

ElementwiseLayer[Tanh]*)

Out[19]=

Chapter 9 Neural Networks with the Wolfram Language

369

Figure 9-11.  Tanh[x] function layer

Elementwise layers do not have learnable parameters. The pure function is used

because layers cannot receive symbols. If the plus icon is clicked, detailed information

about the ports and the parameters with the associated function, Tanh, are shown.

Having defined an ElementwiseLayer, it can receive values like the other layers.

In[20]:= ElementwiseLayer[Tanh[#]&];

Table[%[i],{i,-5,5}]

Out[21]= {-0.999909,-0.999329,-0.995055,-0.964028,-0.761594,0.,0.761594,

0.964028,0.995055,0.999329,0.999909}

When no input or output shape is given, the layer infers the type of data it receives

or returns. For instance, by specifying only the input as real, Mathematica infer that the

output is real (see Figure 9-12).

In[22]:= tanhLayer=ElementwiseLayer[Tanh,"Input"-> "Real"]

Out[22]=

Figure 9-12.  ElementwiseLayer with the same output as the input

Or, this can be inferred by entering only the output (see Figure 9-13) for a rectified

linear unit (ReLU).

In[23]:= rampLayer=ElementwiseLayer[Ramp,"Output"-> {1}](*or ElementwiseLay

er["ReLU","Output" -> "Varying"]*)

Out[23]=

Figure 9-13.  Ramp function or ReLU

Chapter 9 Neural Networks with the Wolfram Language

370

Note  Clicking the plus icon shows the elementwise layer’s established function
and the layer ports’ details.

Every layer in the Wolfram Language can be run through a graphics processor unit

(GPU) or a central processing unit (CPU) by specifying the TargetDevice option. It is

essential to ensure your computer supports the specified functionality, so if you do not

have a GPU, the compulsory target device is the CPU. For example, plot the previously

created layers with the TargetDevice on the CPU (see Figure 9-14).

In[24]:= GraphicsRow@{Plot[tanhLayer[x, TargetDevice -> "CPU"], {x, -12,

12}, PlotLabel -> "Hiperbolic Tangent", AxesLabel -> {Style["x", Bold,

12], Style["f(x)", Italic]}, PlotStyle -> ColorData[97, 25], Frame ->

True], Plot[rampLayer[x, TargetDevice -> "CPU"], {x, -12, 12}, PlotLabel

 -> "ReLU",AxesLabel -> {None, Style["f(x)", Italic]},FrameLabel -> {{None,

None}, {Style["x", Bold, 12], None}}, PlotStyle -> ColorData[97, 25], Frame

 -> True]}

Out[24]=

Figure 9-14.  Tanh[x] and Ramp[x] activation functions

Other functions can be used by their name or Wolfram Language syntax—for

instance, the SoftPlus function, as demonstrated in Figure 9-15.

Chapter 9 Neural Networks with the Wolfram Language

371

In[25]:= GraphicsRow@{Plot[ElementwiseLayer["SoftPlus"][x, TargetDevice

 -> "CPU"], {x, -12, 12}, PlotLabel -> "SoftPlus", AxesLabel -> {None,

Style["f(x)", Italic]},FrameLabel -> {{None, None}, {Style["x", Bold, 12],

None}}, PlotStyle -> ColorData[97, 25], Frame -> True], Plot[Log[Exp[x]

+ 1], {x, -12, 12}, PlotLabel -> "Log[Exp[x]+1]", AxesLabel -> {None,

Style["f(x)", Italic]}, FrameLabel -> {{None, None}, {Style["x", Bold, 12],

None}}, PlotStyle -> ColorData[97, 25], Frame -> True]}

Out[25]=

Figure 9-15.  SoftPlus function generated by the associated name and pure function

Other standard functions are shown in the next plots, such as the scaled exponential

linear unit, sigmoid, hard sigmoid, and hard hyperbolic tangent (see Figure 9-16). To

view the functions supported, visit the documentation and type ElementwiseLayer in the

search box.

In[26]:= GraphicsGrid@Partition[Table[If[Or[activation == "Sigmoid",

activation == "HardSigmoid"], Plot[ElementwiseLayer[activation]

[x, TargetDevice -> "CPU"], {x, -10, 10}, FrameLabel -> {Style["x",

Bold], None}, AxesLabel -> {None, Style["f(x)", Italic]}, PlotStyle

 -> ColorData[97, 25], Frame -> True, PlotLabel -> activation],

Plot[ElementwiseLayer[activation][x, TargetDevice -> "CPU"], {x, -10, 10},

AxesLabel -> {Style["x", Bold], Style["f(x)", Italic]}, PlotStyle ->

ColorData[97, 25], Frame -> True, PlotLabel -> activation]], {activation,

{"ScaledExponentialLinearUnit", "Sigmoid", "HardSigmoid", "HardTanh"}}], 2]

Out[26]=

Chapter 9 Neural Networks with the Wolfram Language

372

Figure 9-16.  Plot of four different activation functions

�Softmax Layer
SoftmaxLayer is a layer that uses the expression S x

x

x
i

i

j

n

j

() ()
()

=

=å
Exp

Exp
1

, where x represents

a vector and xi the components of the vector. This expression is known as the Softmax

function. The functionality of this layer consists of converting a vector to a normalized

vector, which consists of values in the range of 0 to 1. This layer is generally used to

represent a partition of the classes based on the probabilities of each one, and it is used

for tasks that involve classification. The input and output forms in the SoftmaxLayer can

be entered as the other common layers except for the shape of “Real.”

In[27]:= sFL=SoftmaxLayer["Input"-> 4,"Output"-> 4];

Now, the layer can be applied to data.

In[28]:= SetAccuracy[sFL[{9,8,7,6}],3]

Out[28]= {0.64,0.24,0.09,0.03}

Chapter 9 Neural Networks with the Wolfram Language

373

The total of the latter equals 1. SoftmaxLayer allows you to specify the level depth

of normalization, which is seen in the parameter’s properties of the layer. A level

of –1 produces the normalization of a flattened list. Also, SoftmaxLayer can receive

multidimensional arrays, not just flattened lists.

In[29]:= SoftmaxLayer[1,"Input"->{3,2}];

SetPrecision[%[{{7,8},{8,7},{7,8}}],3]//MatrixForm

Out[30]//MatrixForm=

	

0 212 0 422

0 576 0 155

0 212 0 422

. .

. .

. .

æ

è

ç
ç
ç

ö

ø

÷
÷
÷ 	

Summing the elements of the first columns gives the same for the second column.

Another practical layer is called CrossEntropyLossLayer. This layer is widely used as a

loss function for classification tasks. This loss layer measures how well the classification

model performs. Entering the string Probabilities as an argument of the loss layer

computes the cross-entropy loss by comparing the input class probability to the target

class probability.

In[31]:= CrossEntropyLossLayer["Probabilities","Input"->3];

Now, the target form is set to the probabilities of the classes; the inputs and targets

are entered the same way as with MeansSquaredLoss.

In[32]:= %[<|"Input"->{0.2,0.5,0.3},"Target"->{0.3,0.5,0.2}|>]

Out[32]= 1.0702

Setting the Binary argument in the layer is used when the probabilities constitute a

binary alternative.

In[33]:= CrossEntropyLossLayer["Binary","Input"-> 1];

%[<|"Input"-> 0.1,"Target"-> 0.9|>]

Out[34]= 2.08286

To summarize the properties of layers in the Wolfram Language, the inputs and

outputs of the layers are always scalars and numeric matrixes. Layers are evaluated using

lower number precision, such as single-precision numbers. Layers have the property

of being differentiable; this helps the model to perform efficient learning since some

Chapter 9 Neural Networks with the Wolfram Language

374

learning methods go into convex optimization problems. The Wolfram Language has

many layers, each with specific functions. To display all the layers within Mathematica,

check the documentation or write ?* Layer, which gives you the commands with the

word layer associated at the end. Each layer has different behaviors, operations, and

parameters, although some may resemble other commands, such as Append and

AppendLayer. It is important to know the different layers and what they can do to best

use them.

�Function Layer
Another recently introduced (version 12.2) and updated (version 13) layer is the

FunctionLayer. Unlike the ElementwiseLayer, this layer allows users to apply custom

functions that do not come by default in the documentation library. This makes

it a flexible tool for more complex operations, where the function to be applied is

determined by the user (see Figure 9-17).

In[35]:= FunctionLayer[#*4&]

Out[35]=

Figure 9-17.  A function layer that multiplies the input (#) by 4, and & is the pure
function

The input and output definitions are similar to the previous layers you have seen. It

can be an arbitrary array of input with no shape specification. However, the output shape

is determined based on the function used within the layer; for instance, in the previous

example, the input is a scalar (represented as a one-element array) and returns a scalar.

In[36]:= FunctionLayer[1/(1+Exp[-#])&];

%[{2,-3,4}]

Out[37]= {0.880797,0.0474259,0.982014}

With FunctionLayer, built-in functions can also be used instead of user-defined

functions, for instance, the logistic sigmoid function, which returns the same as the

latter code.

Chapter 9 Neural Networks with the Wolfram Language

375

In[38]:= FunctionLayer[LogisticSigmoid];

%[{2,-3,4}]

Out[39]= {0.880797,0.0474259,0.982014}

A difference between FunctionLayer and ElemewiseLayer is that you can apply a

function to each element independently in the first. On the other hand, it performs

element-wise operations, ensuring shape consistency.

�Encoder and Decoders
Suppose audio, images, or other types of variables are intended to be used. In that case,

this type of data needs to be converted into a numeric array to be introduced as input

into a layer. This is where encoders and decoders come into play.

�Encoder
Layers must have a NetEncoder attached to the input to perform a correct construction.

The NetEncoders interpret the image, audio, and data to a numeric value to be used

inside a net model. Different names are associated with the encoding type. The most

common are Boolean (True or False, encoding as 1 or 0), Characters (string characters

as one-hot vector encoding), Class (class labels as integer encoding), Function (custom

function encoding), Image (2D image encoding as a rank 3 array), and Image3D (3D

image encoding as a rank 4 array). The arguments of the encoder are the name or the

name and the corresponding features of the encoder (see Figure 9-18).

In[40]:= NetEncoder["Boolean"]

Out[40]=

Figure 9-18.  Boolean type NetEncoder To test the encoder, you use the following.

To test the encoder, you use the following.

In[41]:= Print["Booleans:",{%[True],%[False]}]

Out[40]= Booleans:{1,0}

Chapter 9 Neural Networks with the Wolfram Language

376

A NetEncoder can have classes with different index labels. Like a classification of

class X and class Y, this corresponds to an index of the range from 1 to 2 (see Figure 9-19).

In[42]:= NetEncoder[{"Class",{"Class X","Class Y"}}]

Out[42]=

Figure 9-19.  Class type NetEncoder

In[43]:= Print["Classes:", %[Table[RandomChoice[{"Class X", "Class Y"}],

{i, 10}]]]

Out[43]= Classes:{1,1,2,2,2,2,2,1,1,1}

The following is used for a unit vector.

In[44]:= NetEncoder[{"Class",{"Class X","Class Y","Class Z"},

"UnitVector"}]; Print["Unit Vector:",%[Table[RandomChoice[{"Class X",

"Class Y","Class Z"}],{i,5}]]] Print["MatrixForm:",%%[Table[RandomChoice[{"

Class X","Class Y","Class Z"}],{i,5}]]//MatrixForm[#]&]

Out[47]= Unit Vector:{{0,1,0},{0,1,0},{0,1,0},{1,0,0},{0,0,1}}

MatrixForm:

0 0 1

0 0 1

0 1 0

1 0 0

1 0 0

æ

è

ç
ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷
÷

Depending on the name used inside NetEncoder, properties related to the encoder

may vary. This is depicted in the different encoder objects that are created. To attach a

NetEncoder to a layer, the encoders are entered at the input port—for example, for an

ElementwiseLayer (see Figure 9-20). In this case, the input port of the layer has the name

Boolean; the layer recognizes that this is a NetEncoder of a Boolean type. Clicking the

name Boolean shows the relevant properties.

In[47]:= ElementwiseLayer[Sin,"Input"->NetEncoder["Boolean"]]

Out[47]=

Chapter 9 Neural Networks with the Wolfram Language

377

Figure 9-20.  Layer with an encoder attached to the input port

For a LinearLayer, use the following form.

In[48]:= LinearLayer["Input"->NetEncoder[{"Class",{"Class X","Class Y"}}],

"Output"->"Scalar"]

Out[48]=

Clicking the input port shows the encoder specifications, as Figure 9-21 shows.

Figure 9-21.  Class encoder attached to a Linear Layer

A NetEncoder is also used to convert images into numeric matrixes or arrays by

specifying the class, the size or width, and height of the output dimensions, and the color

space, which can be grayscale, RGB, CMYK, or HSB (hue, saturation, and brightness);

for example, encoding an image that produces a 1×28×28 array in grayscale, or 3×28×28

array in an RGB scale (see Figure 9-22), no matter the size of the input image. The first

rank of the array represents the color channel, and the other two represent the spatial

dimensions.

In[49]:= Table[NetEncoder[{"Image",{28,28},"ColorSpace"-> Color}],

{Color,{"Grayscale","RGB"}}]

Out[49]=

Chapter 9 Neural Networks with the Wolfram Language

378

Figure 9-22.  NetEncoders for grayscale and RGB scale images

Once the encoder has been established, it can be applied to the desired image; then,

the encoder creates a numeric matrix with the specified size. Creating a NetEncoder

for an image shows relevant properties such as type, input image size, and color space,

among others. Applying the encoder generates a matrix in the size previously established.

In[50]:=I imgEncoder = NetEncoder[{"Image", {3, 3}, "ColorSpace" ->

"CMYK"}]; Print["Numeric Matrix:", SetPrecision[%[ExampleData[{"TestImage",

"House"}]], 3] // MatrixForm]

Out[50]=

	

0 255

0 168

0 255

0 145

0 00392

0 255

0 0784.

.

.

.

.

.

.æ

è

ç
ç
ç

ö

ø

÷
÷
÷

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
00 0116

0 0274

0 153

0 196

0 129

0 2

0 31

0 2

.

.

.

.

.

.

.

.

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

æ

è

ç
ç
ç

ö

ø

÷
÷
÷ 555

0 259

0 349

0 306

0 047

0 102

0 00784

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

æ

è

ç

.

.

.

.

.

.
çç
ç

ö

ø

÷
÷
÷

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

0 164

0 321

0 164

0 262

0 384

0 146

.

.

.

.

.

.

00 16

0 262

0 184

0 255

0 408

0 478

0 325

0 3

.

.

.

.

.

.

.

.

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

888

0 569.

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

æ

è

ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
çç

ö

ø

÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷÷ 	

The output generated is a numeric matrix that is now ready to be implemented in

a network model. If the input image shape is in a different color space, the encoder

reshapes and transforms the image into the established color space. The image used in

this example is obtained from the ExampleData[{“TestImage,” “House”}].

Chapter 9 Neural Networks with the Wolfram Language

379

�Pooling Layer
Encoders can be added to the ports of single layers or containers by specifying the

encoder to the port—for instance, a PoolingLayer. These layers are used primarily on

convolutional neural networks (see Figure 9-23).

In[52]:= poolLayer=PoolingLayer[{3,3},{2,2},PaddingSize->0,"Function"->

Max,"Input"-> NetEncoder[{"Image",{3,3},"ColorSpace"-> "CMYK"}](*Or

ImgEncoder*)]

Out[52]=

Figure 9-23.  PoolingLayer with a NetEncoder

The latter layer has a specification for a two-dimensional PoolingLayer with a

kernel size of 3×3 and a stride of 2×2, which is the step size between kernel applications.

PaddingSize adds elements at the beginning and the end of the input matrix. This is

done so that the division between the matrix and kernel sizes is an integer, preventing

the loss of information between layers. Function indicates the pooling operation

function, which is Max; this calculates the maximum value in each filter patch. It can

also compute the mean and total for the average and summation of the filter values,

respectively. Sometimes, they might be known as max, average, and sum pooling layers.

In[53]:=SetPrecision[poolLayer[ExampleData[{"TestImage","House"}]],3]

//MatrixForm

Out[53]//MatrixForm=

Chapter 9 Neural Networks with the Wolfram Language

380

	

0 255

0 349

0 384

0 569

.

.

.

.

()
()
()
()

æ

è

ç
ç
ç
çç

ö

ø

÷
÷
÷
÷÷ 	

�Decoders
Once the net operations are finished, it return numeric expressions. On the other hand,

in some tasks, you do not want numeric expressions, such as in classification tasks where

classes can be given as outputs, where the model can tell that a particular object belongs

to a class A and another object belongs to a class B, so a vector or numeric array can

represent a probability of each class. To convert the numeric arrays into other forms of

data, a NetDecoder is used (see Figure 9-24).

In[54]:= decoder=NetDecoder[{"Class",CharacterRange["W","Z"]}]

Out[54]=

Figure 9-24.  NetDecoder for four different classes

The dimension of the decoder is equal to class construction. You can apply a vector

of probabilities, and the decoder interprets it and tells you the class to which it belongs.

It also displays the probabilities of the classes.

In[55]:= decoder@{0.3,0.2,0.1,0.4}(*This is the same as Decoder[{0.3,0.2,0.

1,0,4},"Decision"] *)

Out[55]= Z

TopDecisions, TopProbabilites, and uncertainty of the probability distribution are

displayed as follows.

In[56]:= TableForm[{decoder[{0.3, 0.2, 0.1, 0.4},

"TopDecisions" -> 4](* or {"TopDecisions", 4} the same is for

TopProbabilities*), decoder[{0.3, 0.2, 0.1, 0.4}, "TopProbabilities"

Chapter 9 Neural Networks with the Wolfram Language

381

 -> 4], decoder[{0.3, 0.2, 0.1, 0.4}, "Entropy"]}, TableDirections

 -> Column, TableHeadings -> {{Style["TopDecisions", Italic],

Style["TopProbabilities", Italic], Style["Entropy", Italic]},

None}]Out[56]//TableForm=

TopDecisions Z W X Y

TopProbabilities Z->0.4 W->0.3 X->0.2 Y->0.1

Entropy 1.27985

Given the list of values, input depth is added to define the class’s application level.

In[57]:= NetDecoder[{"Class",CharacterRange["X","Z"],"InputDepth"→2}];

Applying the decoder to a nested list of values produces the following.

In[58]:= TableForm[{%[{{0.1, 0.3, 0.6}, {0.3, 0.4, 0.3}}, "TopDecisions" ->

3](* or {"TopDecisions", 4} the same is for TopProbabilities*), %[{{0.1,

0.3, 0.6}, {0.3, 0.4, 0.3}}, "TopProbabilities" -> 3], %[{{0.1,

0.3, 0.6}, {0.3, 0.4, 0.3}}, "Entropy"]}, TableDirections ->

Column, TableHeadings -> {{Style["TopDecisions", Italic],

Style["TopProbabilities", Italic], Style["Entropy", Italic]}, None}]

Out[58]//TableForm=

TopDecisions Z Y

 Y X

 X Z

 Z->0.6 Y->0.4

TopProbabilities Y->0.3 X->0.3

 X->0.1 Z->0.3

Entropy 0.897946 1.0889

A decoder is added to the output port of a layer, container, or network model.

In[59]:=SoftmaxLayer["Output"→NetDecoder[{"Class",{"X","Y","Z"}}]];

Applying the layer to the data produce the probabilities for each class.

In[60]:= {%@{1,3,5},%[{1,3,5},"Probabilities"],%[{1,3,5},"Decision"]}

Out[60]= {Z,<|X->0.0158762,Y->0.11731,Z->0.866813|>,Z}

Chapter 9 Neural Networks with the Wolfram Language

382

�Applying Encoder and Decoders
You are ready to implement the whole process of encoding and decoding in Figure 9-25.

First, the image is resized by 200 pixels in width to show how the original image looks

before encoding.

In[61]:= Img=ImageResize[ExampleData[{"TestImage","House"}],200]

Out[61]=

Figure 9-25.  Example image of a house when the encoder and decoder are defined

In[62]:= encoder=NetEncoder[{"Image",{100,100},"ColorSpace"-> "RGB"}];

decoder=NetDecoder[{"Image",ColorSpace-> "Grayscale"}];

Then, the encoder is applied to the image, and the decoder is applied to the numeric

matrix. The dimensions of the decoded image are checked to see if they match the

encoder output dimensions (see Figure 9-26).

In[64]:=encoder[img];

decoder[%]

Chapter 9 Neural Networks with the Wolfram Language

383

Figure 9-26.  Example of the decoded house

Figure 9-26 shows that the image has been converted into a grayscale image with

new dimensions.

In[66]:= ImageDimensions[%]

Out[66]= {100,100}

As seen, the picture has been resized. Try to look at the steps in the process, like

viewing the numeric matrix and the objects corresponding to the encoder and decoder.

Using the encoders and decoders involves the data type you use because every net

model receives different inputs and generates different outputs.

�NetChains and Graphs
Neural networks consist of different layers, not individual layers on their own. The

NetChain command or the NetGraph command is used to construct more complex

structures with more than one layer.

�Containers
Containers are valuable for properly operating and constructing neural networks in the

Wolfram Language. In the Wolfram Language, containers are structures that assemble

the infrastructure of the neural network model. Containers can have multiple forms.

NetChain is useful for creating linear and non-linear structures’ nets. This helps the

model to learn non-linear patterns. You can think that each layer in a network has a

level of abstraction that detects complex behavior, which could not be recognized if you

Chapter 9 Neural Networks with the Wolfram Language

384

only worked with one single layer. As a result, you can build networks in a general way,

starting from three layers: the input layer, the hidden layer, and the output layer. When

there are more than two hidden layers, it is deep learning; for more information, refer to

Introduction to Deep Learning: From Logical Calculus to Artificial Intelligence by Sandro

Skansi (Springer, 2018).

NetChain can join two operations. They can be written as a pure function instead of

just the function’s name (see Figure 9-27).

In[67]:=NetChain[{ElementwiseLayer[LogisticSigmoid@#&],ElementwiseLayer[S

in@#&]}]

Out[67]=

Figure 9-27.  NetChain containing two elementwise layers

The object returned is a NetChain, and the icon of three colored rectangles appears.

This means that the object created (NetChain) or referred to is a net chain and contains

layers. If the chain is examined, it shows the input, first (LogisticSigmoid), second (Sin),

and output layers. The operations are in order of appearance, so the first layer is applied

and then the second. The input and output options of other layers are supported in

NetChain, such as a single real number (Real), an integer (Integer), an “n”-length vector,

and a multidimensional array (see Figure 9-28).

In[68]:= NetInitialize@NetChain[{3,4,12,Tanh},"Input"->1]

Out[68]=

Figure 9-28.  NetChain with multiple layers

Chapter 9 Neural Networks with the Wolfram Language

385

NetChain recognizes the Wolfram Language function names and associates them with

their corresponding layers, like 3, 4, and 12. They represent a linear layer with outputs of

sizes 3, 4, and 12 (see Figure 9-28). The Tanh function represents the elementwise layer.

Let’s append a layer to the chain created with NetAppend (see Figure 9-29) or

NetPrepend. Many of the original commands of the Wolfram Language have the same

meaning—for example, to delete in a chain would be NetDelete[net_ name, #_of_layer].

In[69]:=NetInitialize@NetChain[{1,ElementwiseLayer[LogisticSigmoid@#&]},"In

put"-> 1];

netCH2=NetInitialize@NetAppend[%,{1,ElementwiseLayer[Cos[#]&]}]

Out[70]=

Figure 9-29.  NetChain object with different added layers

Different options are available when a net is applied to data, such as

NetEvaluationMode (mode of evaluation, either train or test), TargetDevice, and

WorkingPrecision (numeric precision).

In[71]:= netCH2[{{0},{2},{44}},NetEvaluationMode-> "Train",TargetDevice->

"CPU",WorkingPrecision-> "Real64",RandomSeeding-> 8888](*use N@Cos[Sin[Logi

sticSigmoid[{0,2,44}]]] to check results*)

Out[71]= {{0.967873},{0.990894},{1.}}

Another form is to enter the explicit names of layers in a chain, which is typed as an

association (see Figure 9-30).

In[72]:= NetInitialize@NetChain[<|"Linear Layer 1"->LinearLayer[3],

"Ramp"-> Ramp,"Linear Layer 2"->LinearLayer[4],"Logistic"-> ElementwiseLayer

[LogisticSigmoid]|>,"Input"-> 3]

Out[72]=

Chapter 9 Neural Networks with the Wolfram Language

386

Figure 9-30.  NetChain object with custom layer names

Inspecting the layer’s contents should appear after clicking the layer’s name or the

layer. If a layer wants to be extracted, then NetExtract is used along with the name of

the corresponding layer. The output is suppressed, but the layer should pop out if the

semicolon is removed.

In[73]:=NetExtract[%,"Logistic"];

To extract all of the layers in one line of code, Normal does the job (see Figure 9-31).

In[74]:= Normal[netCH2]//Column

Out[74]=

Figure 9-31.  Layers of the NetChain NetCH2

�Multiple Chains
Chains can be joined with a nested chain (see Figure 9-32).

In[75]:= chain1=NetChain[{12,SoftmaxLayer[]}];

chain2=NetChain[{1,ElementwiseLayer[Cos[#]&]}];

Chapter 9 Neural Networks with the Wolfram Language

387

nestedChain=NetInitialize@NetChain[{chain1,chain2},"Input"-> 12]

Out[77]=

Figure 9-32.  Chain 1 selected of the two chains available

This chain is divided into two NetChains, each representing a chain. In this case, you

see chain1 and chain2, and each chain shows its corresponding nodes. To flatten the

chains, use NetFlatten (see Figure 9-33).

In[78]:= NetFlatten[nestedChain]

Out[78]=

Figure 9-33.  Flattened chain

�NetGraphs
The NetChain command only joins layers in which the output of a layer is connected

to the input of the next layer. NetChain does not work in connecting inputs or outputs

to other layers; it only works with one layer. To work around this, the use of NetGraph

is required. Besides allowing more inputs and layers, NetGraph represents the neural

network’s structure and process with a graph (see Figure 9-34).

Chapter 9 Neural Networks with the Wolfram Language

388

In[79]:= NetInitialize@NetGraph[{ LinearLayer["Output"-> 1,"Input"-> 1],

Cos,SummationLayer[]},{}]

Out[79]=

Figure 9-34.  Expanded NetGraph

The object crafted is a NetGraph, represented by the figure of the connecting

squares, as seen in Figure 9-35. The input goes to three different layers, each with its

output. NetGraph accepts two arguments: the first is for the layers or chains, and the

second is to define the graph vertices or connectivity of the net. For example, the net has

three outputs in the latter code because the vertices were not specified. SummationLayer

is a layer that sums all the input data.

In[80]:= net1=NetInitialize@NetGraph[{ LinearLayer["Output"-> 2,"Input"->

1],Cos,SummationLayer[]},{1-> 2-> 3}]

Out[80]=

Chapter 9 Neural Networks with the Wolfram Language

389

Figure 9-35.  Unidirectional NetGraph

The vertex notation means that the output of a layer is given to another layer, and so

on. In other words, 1 → 2 → 3 means that the output of the linear layer is passed to the

next layer until it is finally summed up in the last layer with the summation layer (see

Figure 9-35), thus preserving the order of appearance of the layers. However, you can

alter the order of each vertex. The net can be modified so that outputs can go to other

layers of the net, such as 1 to 3 and then to 2 (see Figure 9-36). With NetGraph, layers and

chains can be entered as a list or an association. The vertices are typed as a list of rules.

In[81]:= net2=NetInitialize@NetGraph[{ LinearLayer["Output"-> 2,"Input"->

1],Cos,SummationLayer[]},{1-> 3->2}]

Out[81]=

Figure 9-36.  NetGraph structure of Net2

The inputs and outputs of each layer are marked by a tooltip that appears when

passing the cursor over the graph lines or vertices. Because input and output are not

specified, NetGraph infers the data type in the input and output port; this is the case for

the capital R in the input and output of the layer used, which stands for real.

Chapter 9 Neural Networks with the Wolfram Language

390

With NetGraph, layers can be entered as a list or association. The connections are

typed as a list of rules (see Figure 9-37).

In[82]:= NetInitialize@NetGraph[<|"Layer 1"-> LinearLayer[2,"Input"->

1],"Layer 2"-> Cos,"Layer 3"-> SummationLayer[]|>,{"Layer 2"-> "Layer 1"->

"Layer 3"}]

Out[82]=

Figure 9-37.  NetGraph initialized with named layers

It is possible to specify how many inputs and outputs a structure can have from the

NetPort command (see Figure 9-38).

In[83]:= NetInitialize@ NetGraph[{ LinearLayer[3, "Input" ->

1], LinearLayer[3, "Input" -> 2], LinearLayer[3, "Input" -> 1] ,

TotalLayer[]}, {NetPort["1st Input"] -> 1, NetPort["2nd Input"] ->

2, NetPort["3rd Input"] -> 3, {1, 2, 3} -> 4}] (*Or NetInitialize@

NetGraph[<|"L1"\[Rule] LinearLayer[3,"Input"\[Rule] 1],"L2"\[Rule]

LinearLayer[3,"Input"\[Rule] 1], "L3"\[Rule] LinearLayer[3,"Input"\

[Rule] 1] ,"Tot L"\[Rule] TotalLayer[]|>,{NetPort["1st Input"]\

[Rule] "L1", NetPort["2nd Input"]\[Rule] "L2",NetPort["3rd Input"]\

[Rule]"L3",{"L1","L2","L3"} -> "Tot L"}]*)

Out[83]=

Chapter 9 Neural Networks with the Wolfram Language

391

Figure 9-38.  NetGraph with multiple inputs and a single output

If you have more than one input, each input is entered in the specified port.

In[84]:= %[<|"1st Input"-> 32.32,"2nd Input"-> {2,\[Pi]},"3rd Input"-> 1|>]

Out[84]= {82.4758,-42.202,-37.4852}

If having more than one output, the results are displayed for every different output

(see Figure 9-39).

In[85]:= NetInitialize[NetGraph[{LinearLayer[1,"Input"->

1],LinearLayer[1,"Input"-> 1],LinearLayer[1,"Input"-> 1],Ramp,El

ementwiseLayer["ExponentialLinearUnit"],LogisticSigmoid},{1->4->

NetPort["Output1"],2->5-> NetPort["Output2"],3-> 6-> NetPort["Output3"]}],

RandomSeeding->8888] %[{1}]

Out[85]=

Chapter 9 Neural Networks with the Wolfram Language

392

Figure 9-39.  NetGraph with single input and three outputs

Out[86]= <|Output1->{0.},Output2->{-0.289052},Output3->{0.860635}|>

NetChain containers can be treated as layers with NetGraph (see Figure 9-40). Some

layers, such as the CatenateLayer, accept zero arguments.

In[87]:= NetInitialize@NetGraph[{LinearLayer[1,"Input"-> 1], NetChain[{L

inearLayer[1,"Input"-> 1], ElementwiseLayer[LogisticSigmoid[#]&]}],NetCh

ain[{LinearLayer[1,"Input"-> 1],Ramp}], ElementwiseLayer["ExponentialLin

earUnit"],

CatenateLayer[]},{1->4,2->5,3-> 5,4-> 5}]

Out[87]=

Chapter 9 Neural Networks with the Wolfram Language

393

Figure 9-40.  NetGraph with multiple containers

Clicking the chain or the layer shows the relevant information, and clicking the layer

inside a chain gives the information about the layer on the selected chain.

�Combining Containers
NetChains, and NetGraphs can be nested to form different structures, as seen in the

following example (see Figure 9-41), where a NetGraph and vice versa can follow a

NetChain.

In[88]:= n1=NetGraph[{1,Ramp,2,LogisticSigmoid},{1-> 2,2-> 3,3-> 4}];

n2=NetChain[{3,SummationLayer[]}];

NetInitialize@NetGraph[{n2,n1},{2-> 1},"Input"-> 22]

Out[90]=

Chapter 9 Neural Networks with the Wolfram Language

394

Figure 9-41.  Nested NetGraph and NetChain

From the graph in Figure 9-40, it is clear that the input goes to the NetGraph, and the

output of the NetGraph goes to the NetChain. A NetChain or NetGraph that has not been

initialized appears in red. A fundamental quality of the containers (NetChain, NetGraph)

is that they can behave as a layer. With this in mind, you can create nested containers

involving only NetChains, NetGraphs, or both.

Just as a demonstration, more complex structures can be created with NetGraph, like

those in Figure 9-42. Once a network structure is created, properties about every layer or

chain can be extracted. For instance, with SummaryGraphic, you can obtain the graphic

of the network graph.

In[91]:= net = NetInitialize@ NetGraph[{LinearLayer[10], Ramp, 10,

SoftmaxLayer[], TotalLayer[], ThreadingLayer[Times]}, {1 -> 2 -> 3 -> 4,

{1, 2, 3} -> 5, {1, 5} -> 6}, "Input" -> "Real"];

Information[net, "SummaryGraphic"]

Out[92]=

Chapter 9 Neural Networks with the Wolfram Language

395

Figure 9-42.  Compound graph net structure

�Network Properties
The properties related to the numeric arrays of the network are Arrays (gives each array

in the network), ArraysCount (the number of arrays in the net), ArraysDimensions

(dimensions of each array in the net), and ArraysPositionList (position of each array in

the net), as depicted in Figure 9-43.

In[93]:={Dataset@Information[net,"Arrays"],Dataset@Information[net,"Arrays

Dimensions"],Dataset@Information[net,"ArraysPositionList"]}

Out[93]=

Figure 9-43.  Datasat containing various properties

Chapter 9 Neural Networks with the Wolfram Language

396

Information related to the variable type in the input and output ports are shown with

InputPorts and OutputPorts.

In[94]:= {Information[net,"InputPorts"],Information[net,"OutputPorts"]}

Out[94]= {<|Input->Real|>,<|Output1->10,Output2->10|>}

You can see that the input is a real number, and the net has two output vectors of

size 10. The most used properties related to layers are Layers (returns every layer of

the net), LayerTypeCounts (number of occurrences of a layer in the net), LayersCount

(number of layers in the net), LayersList (a list of all the layers in the net), and

LayerTypeCounts (number of occurrences of a layer in the net). Figure 9-44 shows for

Layers and LayerTypeCounts.

In[95]:=Dataset@{Information[net,"Layers"],Information[net,"LayerType

Counts"]}

Out[95]=

Chapter 9 Neural Networks with the Wolfram Language

397

Figure 9-44.  Information about the layers contained in the symbol Net

Visualization of the net structure (see Figure 9-45) is achieved with the properties

LayersGraph (a graph showing the connectivity of the layers), SummaryGraphics

(graphic of the net structure), MXNetNodeGraph (MXNeT raw graph operations), and

MXNetNodeGraphPlot (annotated graph of MXNet operations). MXNet is an open-

source deep learning framework that supports a variety of programming languages,

and one of them is the Wolfram Language. In addition, the Wolfram Neural Network

Framework works with MXNet structure as backend support.

Chapter 9 Neural Networks with the Wolfram Language

398

In[96]:= Grid[{{Style["Layers Connection",Italic,20,ColorData[105,4]],Style

["NetGraph",Italic,20,ColorData[105,4]]},{Information[net,"LayersGraph"],In

formation[net,"SummaryGraphic"]},{Style["MXNet Layer Graph",Italic,20,Color

Data[105,4]],Style["MXNet Ops Graph",Italic,20,ColorData[105,4]]},{Informat

ion[net,"MXNetNodeGraph"],Information[net,"MXNetNodeGraphPlot"]}},Dividers-

>All,Background-> {{{None,None}},{{Opacity[1,Gray],None}}}]

Out[96]=

Figure 9-45.  Grid showing multiple graphics

Passing the cursor pointer over a layer or node in the MXNet symbol graph, a tooltip

shows the properties of the MXNet symbols like ID, name, parameters, attributes,

and inputs.

Chapter 9 Neural Networks with the Wolfram Language

399

�Exporting and Importing a Model
Because of the interoperability of the Wolfram Language and MXNet, the Wolfram

Language supports the import and export of neural nets, initialized or uninitialized. You

create a folder on the desktop with the MXNet Nets name and export the network found

in the Net variable.

In[97]:= fileDirectory="/Users/macosx/Desktop";

Export[FileNameJoin[{dileDirectory,"MxNet.json"}],net,"MXNet","ArrayPath"->

Automatic,"SaveArrays"-> True]

Out[98]= /Users/macosx/Desktop/MxNet.json

Exporting the network to the MXNet format generates two files: a JSON file that

stores the topology of the neural network and a file of type .params that contains

the required parameters (numeric arrays used in the network) data for the exported

architecture; once it has been initialized. With ArrayPath set to Automatic, the params

file is saved in the same net folder. Otherwise, it can have a different path. SaveArrays

indicate whether the numeric arrays are exported (True) or not (False). Let’s check the

two files created in the MXNets Nets folder.

In[99]:= FileNames[All,File@fileDirectory]

Out[99]= {/Users/macosx/Desktop/MxNet.json,

/Users/macosx/Desktop/MxNet.params}

To import an MXNet network, the JSON and params files are recommended to be

in the same folder because the Wolfram Language assumes that a certain JSON file

matches the pattern of the params file. There are various ways to import a net, including

Import[file_name.json, “MXNet”] and Import[file_name.json,{“MXNet,” element}] (the

same as with .param files). Since version 13, nets are no longer imported as net chains or

net graphs but can now be imported as net external objects. However, if you don’t intend

to use the neural network outside of the Wolfram Language, it’s much simpler to store

it as a WLNet, which facilitates easier saving and retrieval within the Wolfram Language

environment. To export the net to the WLNet format, you can use the following code:

Export[“file_name.wlnet”, <net_symbol or variable_name>]. Then, you can import the

net using Import[“file_name.wlnet”]

In[100]:=Import[FileNameJoin[{fileDirectory,"MxNet.json"}],{"MXNet",

"NetExternalObject"},InputPorts-><|"Input"->{1}|>,"ArrayPath"->None];

Chapter 9 Neural Networks with the Wolfram Language

400

The latter net was imported with the .params file automatically. To import the net

without the parameters, use ArrayPath set to None or set the params file path. Importing

the net parameters can be done with a list (ArrayList), the names (ArrayNames), or an

association (ArrayAssociation), as shown in Figure 9-46.

In[101]:= Row[Dataset[Import[FileNameJoin[{fileDirectory,"MxNet.

json"}],{"MXNet",#}]]&/@{"ArrayAssociation","ArrayList","ArrayNames"}]

Out[101]=

Figure 9-46.  Different import options of the MXNet format

The elements of the net to import are InputNames, NetExternalObject, NodeDataset

(a dataset of the nodes of the MXNet), NodeGraph (nodes graph of the MXNet),

NodeGraphPlot (plot of nodes of the MXNet). The following dataset shows a few options

listed before Figure 9-47.

In[102]:= {Import[FileNameJoin[{fileDirectory,"MxNet.json"}],{"MXNet","Node

Dataset"}],Import[FileNameJoin[{ileDirectory,"MxNet.json"}],{"MXNet","NodeG

raphPlot"}]}//Row

Out[102]=

Chapter 9 Neural Networks with the Wolfram Language

401

Figure 9-47.  Node dataset and MXNet ops plot

Some operations between the Wolfram Language and MXNet are not reversible.

If you pay attention, the network input, exported to MXNet format, was set as a real

number, unlike the network input imported in MXNet format, which marks that the

input is an array with specifying dimensions.

When constructing a neural network, there is no restriction on how many net

chains or net graphs a net can have. For instance, the following example is a neural

network from the Wolfram Neural Net Repository, which has a deeper sense of

construction (see Figure 9-48). This net is called CapsNet, which is used to estimate

the depth map of an image. To consult the net, enter NetModel[“CapsNet Trained

Chapter 9 Neural Networks with the Wolfram Language

402

on MNIST Data,” “DocumentationLink”] for the documentation web page; for the

notebook on the Wolfram Cloud, enter NetModel[“CapsNet Trained on MNIST Data,”

“ExampleNotebookObject”] or just ExampleNotebook for the desktop version.

In[103]:= NetModel["CapsNet Trained on MNIST Data"]

Out[103]=

Figure 9-48.  CapsNet neural net model

�Summary
This chapter introduced the neural network scheme in the Wolfram Language and

covered basic layers components: data input, weight, and biases. Additionally, the

chapter focuses on the encoders and decoders, explaining its structure.

Chapter 9 Neural Networks with the Wolfram Language

403
© Jalil Villalobos Alva 2024
J. Villalobos Alva, Beginning Mathematica and Wolfram for Data Science,
https://doi.org/10.1007/979-8-8688-0348-2_10

CHAPTER 10

Neural Networks
Framework
This chapter explores training a neural network model in the Wolfram Language, how

to access the results and the trained network. You review the basic commands to export

and import a net model. You end the chapter by exploring the Wolfram Neural Net

Repository and reviewing the LeNet network model.

�Training a Neural Network
The Wolfram Language contains a very useful command that automates neural

network model training. This command is NetTrain. Training a neural network

consists of fine-tuning the internal parameters of the neural network. The whole point

is that the parameters can be learned during training. This general process is done

by an optimization algorithm called gradient descent, which is computed with the

backpropagation algorithm.

�Data Input
With NetTrain, data can be entered in different forms. First, the net model goes as the

first argument, followed by the input → target, {inputs, ...} → {target, ...} or the name

of the data or dataset. Once the net model is defined, the next argument is the data,

followed by an optional argument of All. The All option creates a NetTrainResultsObject,

which shows the NetTrain results panel after the computation and stores all relevant

information about the trained model. The options for training the model are entered

as the last arguments. Standard options used in layers and containers are available in

NetTrain.

https://doi.org/10.1007/979-8-8688-0348-2_10#DOI

404

The next example uses the perceptron model to build a linear classifier. The data to

be classified is shown in the following plot (see Figure 10-1).

In[1]:= plt=ListPlot[{{{-1.8,-1.5},{-1,-1.7},{-1.5,-1},{-1,-1},{-0.5,-1.2},

{-1,-0.7}}, {{1,1}, {1.7,1}, {0.5,2}, {0.1,0.3}, {0.5,1}, {0.6,1.3}}},

PlotMarkers->"OpenMarkers",Frame->True,PlotStyle->{Green,Red}]

Out[1]=

Figure 10-1.  ListPlot showing two different plot points

Let’s define the data, target values, and the training data.

In[2]:=data={{-1.8,-1.5},{-1,-1.7},{-1.5,-1},{-1,-1},{-0.5,-1.2},{-1,-0.7},

{1,1},{1.7,1},{0.5,2},{0.1,0.3},{0.5,1},{0.6,1.3}};

target={-1,-1,-1,-1,-1,-1,1,1,1,1,1,1};

trainData=MapThread[#1->]{#2}&,{Standardize[data],target},1];

The Standardize function is crucial in the latter code because it normalizes the input

data before training the neural network. This step ensures that each feature contributes

equally to the learning process during the training phase, preventing any single feature

from dominating the others. This process can lead to faster convergence during training

and improves the overall performance of the net model. Next, let’s define the net model.

Chapter 10 Neural Networks Framework

405

In[3]:= model=NetChain[{LinearLayer[1,"Input"->2],

ElementwiseLayer[Ramp[#]&]}];

�Training Phase
Having prepared the data and the model, you proceeded to train the model. Once the

training begins, a progress information panel appears with four main results.

•	 Summary: contains relevant information about the batches, rounds,

and time rates

•	 Data: involves processed data information

•	 Method: shows the method used, batch size, and device used for

training

•	 Round: the current state of loss value

In[6]:=net=NetTrain[model,trainData,All,LearningRate->0.01,

PerformanceGoal->"TrainingSpeed",TrainingProgressReporting->"Panel",

TargetDevice->"CPU", RandomSeeding->88888,WorkingPrecision->"Real64"]

Out[6]=

Chapter 10 Neural Networks Framework

406

Figure 10-2 shows the loss plot against the training rounds.

Figure 10-2.  NetTrainResultsObject

The Adam optimizer is a variant of the Stochastic gradient descent, which you see

later. The object generated is called NetTrainResultsObject.

�Model Implementation
Once the training is done, getting the trained net and model implementation is as

follows in Figure 10-3.

In[7]:= trainedNet1=net["TrainedNet"]

Out[7]=

Figure 10-3.  Extracted trained net

Chapter 10 Neural Networks Framework

407

Let’s look at how the trained net identifies each point by plotting the boundaries with

a density plot (see Figure 10-4).

In[8]:= Show[DensityPlot[trainedNet1[{x,y}],{x,-2,2},{y,-3,3},PlotPoints->

50,ColorFunction->(RGBColor[1-#,2*#,1]&)],Plt]

Out[8]=

Figure 10-4.  Net classification plot

The graphic shows that the boundaries are not well defined and that points near zero

might be misclassified. This result can be attributed to the ramp function, which gives

0 if it receives any negative number, but for any positive value, it returns that value. This

model can still be improved, perhaps by changing the activation function to a hyperbolic

tangent to have robust boundaries.

Chapter 10 Neural Networks Framework

408

�Batch Size and Rounds
If the batch size is not indicated, it has an automatic value, almost always a value of

64 or powers of two. Remember that the batch size indicates the number of examples

the model uses in training before updating the internal parameters of the model. The

number of batches is the division of the examples within the training dataset by the

batch size. The processed examples are the number of rounds (epochs) multiplied by the

number of training examples. The batch size is generally chosen to divide the training

set’s size evenly. The MaxTrainingRounds option determines the number of times the

training dataset is passed through during the training phase. When you go through the

entire training set just once, it’s called an epoch. To better understand this, a batch size

of 12 was automatically chosen in the earlier example, which is equal to the number of

examples in the training set. This means that it enters a batch of 12/12 -> 1 for epoch

or round. Now, the number of epochs was automatically chosen to 10000; this tells you

that there are 1 * 10000 batches. Also, the number of processed examples is 12 * (10000),

which is equal to 120000. If the batch size does not evenly divide the training set, the

final batch has fewer examples than the other batches.

Furthermore, adding a loss function layer to the container or the loss with the

LossFunction -> Loss Layer option has the same effect. In this case, you use the

MeanSquaredLossLayer as the loss function option, change the activation function to

Tanh[x], set the Batchsize to 5, and adjust MaxTrainingRounds to 1000.

In[9]:= net2=NetTrain[NetChain[{LinearLayer[1,"Input"->2], ElementwiseLayer

[Tanh[#]&]}],trainData,All,LearningRate->0.01, PerformanceGoal->

"TrainingSpeed",TrainingProgressReporting->"Panel", TargetDevice->

"CPU",RandomSeeding->88888,WorkingPrecision->"Real64", LossFunction->

MeanSquaredLossLayer[],BatchSize->5,MaxTrainingRounds->1000]

Out[9]=

Figure 10-5 shows that the loss has dropped considerably.

Chapter 10 Neural Networks Framework

409

Figure 10-5.  Training results of the Net2

Let’s determine the classification.

In[10]:= trainedNet2=net2["TrainedNet"];

Show[DensityPlot[trainedNet2[{x,y}],{x,-2,2},{y,-3,3}, PlotPoints->50,

ColorFunction->(RGBColor[1-#,2*#,1]&)],Plt]

Out[11]=

Chapter 10 Neural Networks Framework

410

Figure 10-6 shows how the two boundaries are better denoted.

Figure 10-6.  Net2 classification plot

The previous models represent a prediction of a linear layer, in which this

classification is compared with the targets so that the error is less and less.

To obtain the graph that shows the value of the error according to the number

of rounds carried out in the training, you do it through the properties of the trained

network. You can also see the network model’s appearance once the loss function

is added.

In[12]:= Dataset[{Association["LossPlot"->net2["LossPlot"]],

Association["NetGraph"->net2["TrainingNet"]]}]

Out[12]=

Figure 10-7 shows the loss graph as it decreases rapidly according to the number

of rounds.

Chapter 10 Neural Networks Framework

411

Figure 10-7.  LossPlot contained in the dataset

To see the network used for training, execute the next code. Mathematica

automatically adds a loss function to the neural network (see Figure 10-8) based on the

model’s layers.

In[13]:= net2["TrainingNet"]

Out[13]=

Chapter 10 Neural Networks Framework

412

Figure 10-8.  Network model before the training phase

To see the model’s properties, you add the string Properties as an argument.

In[14]:= net2["Properties"]

Out[14]= {ArraysLearningRateMultipliers,BatchesPerRound,BatchesPerSecond,Ba

tchLossList,BatchMeasurements,BatchMeasurementsLists,BatchSize,BestValidati

onRound,CheckpointingFiles,ExamplesProcessed,FinalLearningRate,FinalPlots,I

nitialLearningRate,InternalVersionNumber,LossPlot,MeanBatchesPerSecond,Mean

ExamplesPerSecond,NetTrainInputForm,OptimizationMethod,ReasonTrainingStoppe

d,RoundLoss,RoundLossList,RoundMeasurements,RoundMeasurementsLists,RoundPos

itions,SkippedTrainingData,TargetDevice,TotalBatches,TotalRounds,TotalTrain

ingTime,TrainedNet,TrainingExamples,TrainingNet,TrainingUpdateSchedule,Vali

dationExamples,ValidationLoss,ValidationLossList,ValidationMeasurements,Val

idationMeasurementsLists,ValidationPositions}

�Training Method (NetTrain)
Let’s look at the training method for the previous network with OptimizationMethod.

Some variants of the gradient descent algorithm are related to batch size. The first one

is the stochastic gradient descent (SGD). The SGD takes a single training batch at a

time before taking another step. This algorithm goes through the training examples in

a stochastic form—without a sequential pattern and only one instance at a time. The

Chapter 10 Neural Networks Framework

413

second variant is the batch gradient descent, meaning that the batch size is set to the

size of the training set. This method utilizes all training examples and makes only one

update of the internal parameters. The third variant is the mini-batch gradient descent,

which consists of dividing the training set into partitions smaller than the whole dataset

to update the model’s internal parameters to achieve convergence frequently. To see

a mathematical of the SGD and mini-batch SGD, visit the article “Efficient Mini-Batch

Training for Stochastic Optimization,” by Mu Li, Tong Zhang, Yuqiang Chen, and

Alexander J. Smola (2014, August: pp. 661-670; In Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data mining).

In[15]:= net2["OptimizationMethod"]

Out[15]= {ADAM, Beta1->0.9, Beta2->0.999, Epsilon->1/100000,

GradientClipping->None, L2Regularization->None, LearningRate->0.01,

LearningRateSchedule->None, WeightClipping->None}

The method automatically chosen is the Adam optimizer, which uses the SGD

method with an adapted learning rate. The other available methods are the RMSProp,

SGD, and the SignSGD. Within the available methods, there are also options to indicate

the learning rate, when to scale, when to use the L2 regularization, the gradient, and

weight clipping.

�Measuring Performance
In addition to the methods, you can establish what measures to consider during the

training phase. These options depend on the type of loss function used and which is

intrinsically related to the task, like classification, regression, and clustering. In the

case of MeanSquaredLossLayer or MeanAbsoluteLossLayer, the common option is

MeanDeviation, which is the absolute value of the average of the residuals. MeanSquare

is the mean square of the residuals, RSquared is the coefficient of determination,

and standard deviation is the root mean square of the residuals. After completing the

training, the measure appears in the net results (see Figure 10-9). The soft sign activation

function is used in this example to try out a different activation function and observe

its use.

In[16]:= net3 = NetTrain[NetChain[{LinearLayer[1, "Input" -> 2],

ElementwiseLayer["SoftSign"]}], trainData, All, LearningRate -> 0.01,

PerformanceGoal -> "TrainingSpeed", TrainingProgressReporting -> "Panel",

Chapter 10 Neural Networks Framework

414

TargetDevice -> "CPU", RandomSeeding -> 88888, WorkingPrecision ->

"Real64", Method -> "ADAM", LossFunction -> MeanSquaredLossLayer[],

BatchSize -> 5, MaxTrainingRounds -> 1000, TrainingProgressMeasurements ->

{"MeanDeviation", "MeanSquare", "RSquared", "StandardDeviation"}]

Out[16]=

Figure 10-9.  Net results with new measures added

Chapter 10 Neural Networks Framework

415

�Model Assessment
To access the values of the measures chosen, use the NetResultsObject. In the case

of the training set values, these are found in the properties of RoundLoss (gives the

average value of the loss), RoundLossList (returns the average values of the loss during

training), RoundMeasurements (the measurements of the training of the last round),

and RoundMeasurementsLists (the specified measurements for each round). This result

is depicted in Figure 10-10.

In[17]:= net3[#]&/@{"RoundMeasurements"}//Dataset[#]&

Out[17]=

Figure 10-10.  Dataset with the new measures

To get all the plots, use the FinalPlots option.

In[18]:= net3["FinalPlots"]//Dataset;

To replicate the plots of the measurements, extract the values of the measurements

of each round with RoundMeasurementsLists.

In[19]:= measures=net3[#]&/@{"RoundMeasurementsLists"};

Keys[measures]

Out[20]= {{Loss,MeanDeviation,MeanSquare,RSquared,StandardDeviation}}

Let’s plot the values for each round, starting with Loss and finishing with

StandardDeviation. You can also see how the network model makes the classification

boundaries (see Figure 10-11).

In[21]:= trainedNet3 =

 net3["TrainedNet"]; Grid[{{ListLinePlot[{measures[[1, 1]]

(*Loss*), measures[[1, 2]] (*MeanDeviation*), measures[[1, 3]]

(*MeanSquare*), measures[[1, 4]] (*RSquared*), measures[[1, 5]]

Chapter 10 Neural Networks Framework

416

(*StandardDeviation*)}, PlotStyle -> Table[ColorData[101, i], {i,

1, 5}], Frame -> True, FrameLabel -> {"Number of Rounds", None},

PlotLabel -> "Measurements Plot", GridLines -> All, PlotLegends ->

SwatchLegend[{Style["Loss", #], Style["MD", #], Style["MS", #],

Style["RS", #], Style["STD", #]}, LegendLabel -> Style["Measurements", #],

LegendFunction -> (Framed[#, RoundingRadius -> 5, Background -> LightGray]

&)], ImageSize -> Medium] &[Black], Show[DensityPlot[trainedNet3[{x, y}],

{x, -2, 2}, {y, -3, 3}, PlotPoints -> 50, ColorFunction -> (RGBColor[1 - #,

2*#, 1] &)], plt, ImageSize -> 200]}}]

Out[21]=

Figure 10-11.  Round measures plot and density plot

The Loss and MeanSquared have the same values (since the loss is a mean squared

error loss function), which is why the two graphics overlap. The mean deviation and

standard deviation have similar values but not the same. Three models are constructed,

and the activation function changes in each process. Looking at the plots, you see how

each function changes how the neural network model learns from the training data.

In the previous examples, the graphics were the loss plot for the training process and

other measurements related to the means squared loss layer. Make sure to consult

the documentation to confirm the measurements’ names; remember that not all

measurements apply to all loss functions.

In the subsequent section, you see how to generate the loss plot and the validation

plot during the training phase to validate that the LeNet model is learning during

training and how well the model can perform in data never seen before (validation set).

Chapter 10 Neural Networks Framework

417

�Exporting a Neural Network
Once a net model has been trained, you can export this trained net to a WLNet format so

that the net can be used without the need for training in the future. The export method

also works for uninitialized network architectures.

In[22]:= Export["/Users/macosx/Desktop/TrainedNet3.

wlnet",net3["TrainedNet"]]

Out[22]= /Users/macosx/Desktop/TrainedNet3.wlnet

Importing them back is done precisely as any other file, but imported elements can

be specified. Net imports the net model and all initialized arrays; UninitializedNet and

ArrayList imports for the numeric array’s objects of the linear layers; ArrayAssociation

imports for the numeric arrays in association form, and WLVersion is used to see the

version of the Wolfram Language used to build the net. The following dataset shows all

the options (see Figure 10-12).

In[23]:=Dataset@AssociationMap[Import["/Users/macosx/Desktop/TrainedNet3.

wlnet",#]&,{"Net","UninitializedNet","ArrayList","ArrayAssociation",

"WLVersion"}]

Out[23]=

Figure 10-12.  Dataset with the available import options

Chapter 10 Neural Networks Framework

418

�Wolfram Neural Net Repository
The Wolfram Neural Net Repository is a free-access website containing a repertoire

of various pre-trained neural network models. The models are categorized by the

input and data types, be it audio, image, numeric array, or text. Furthermore, they are

also categorized by the kind of task they perform, from audio analysis or regression to

classification. The main page of the website is shown in Figure 10-13.

Figure 10-13.  Wolfram Neural Net Repository home page

Enter https://resources.wolframcloud.com/NeuralNetRepository/ in your

favorite browser to access the web page, or run SystemOpen from Mathematica, which

opens the web page in the system’s default browser.

Once the site is loaded, net models can be browsed by either input or task. The

models in this repository are built in the Wolfram Language, allowing you to use them

within Mathematica. This leads to the models being found in a form that can be accessed

from Mathematica or the Wolfram Cloud for prompt execution. If you scroll down, you

see that the models are structured by name and the data used for training, along with

a short description. Such is the case, for example, for the Wolfram AudioIdentify V1

Chapter 10 Neural Networks Framework

https://resources.wolframcloud.com/NeuralNetRepository/

419

network, which is trained with the AudioSet Data and identifies sounds in audio signals.

To browse categories, you can choose the category from the menu. Figure 10-14 shows

the site’s appearance after an input category is chosen; in this case, the neural networks

that receive images as inputs.

Figure 10-14.  Category site, based on the input image

�Selecting a Neural Net Model
Once a category is chosen, it shows all the net models associated with the selected input

category. Like with the Wolfram Data Repository, once the model is selected, it shows

relevant information, like in Figure 10-15, where the selected net model is the neural

network Wolfram ImageIdentify Net V1.

Chapter 10 Neural Networks Framework

420

Figure 10-15.  Wolfram ImageIdentify Net V1

It is possible to navigate from the website and download the notebook containing

the network model, but it is also possible from Mathematica. In other words, search for

network models through ResourceSearch. The example shows the search if you were

interested in knowing the models of the networks that contain the word image (see

Figure 10-16).

In[24]:= ResourceSearch[{"Name"->"Image","ResourceType"-> "NeuralNet"}]

//Dataset[#,MaxItems->{4,3}]&

Out[24]=

Chapter 10 Neural Networks Framework

421

Figure 10-16.  Resource Dataset

The dataset shown in Figure 10-16 has only three columns for display purposes, but

you can navigate through the entire dataset using the slider. The columns not shown in

the image are Description, Location, and DocumentationLink. The last column provides

the link that leads to the web model page.

�Accessing Inside Mathematica
To access the model architecture, add the object argument; for example, do the following

for the Wolfram ImageIdentify Net V1 Network (see Figure 10-17).

In[25]:= ResourceSearch[{"Name"->"Wolfram ImageIdentify","ResourceType"->

"NeuralNet"},"Object"]

Out[25]=

Figure 10-17.  Wolfram ImageIdentify Net V1 resource

Note T o avoid problems accessing the Wolfram Net Repository from
Mathematica, ensure you are logged in to the Wolfram Cloud or your Wolfram
account.

Chapter 10 Neural Networks Framework

422

The following code is suppressed here to access the pre-trained model, but removing

the semicolon returns the NetChain object of the pre-trained neural network.

In[26]:= ResourceSearch[{"Name"->"Wolfram ImageIdentify","ResourceType"->

"NeuralNet"},"Object"][[1]]//ResourceData;

Out[26]=

�Retrieving Relevant Information
Information about the model is accessed from ResourceObject. The following is the

relevant information from the ImageIdentify model in a dataset (see Figure 10-18). To

see all information in the dataset format, type ResourceObject [“Wolfram ImageIdentify

Net V1”][All]//Dataset [#] &.

In[27]:= Dataset[AssociationMap[ResourceObject["Wolfram ImageIdentify Net V1"],

{"Name","RepositoryLocation","ResourceType","ContentElements","Version",

"Description","TrainingSetInformation","InputDomains","TaskType","Keywords",

"Attributes","LatestUpdate","DownloadedVersion","Format",

"ContributorInformation","DOI","Originator","ReleaseDate","ShortName",

"WolframLanguageVersionRequired"}]]

Out[27]=

Figure 10-18.  Dataset of some properties of the Wolfram ImageIdentify Net V1

Chapter 10 Neural Networks Framework

423

Here, in a few steps, is the way to access the trained neural network and much

relevant information associated with the neural network. It should be noted that the

process is also used to find other resources in the Wolfram Cloud or local resources, not

only neural networks, since, in general, ResourceSearch looks for an object within the

Wolfram Resource System. Such is the case of the neural network models in the Wolfram

Neural Net Repository.

�LeNet Neural Network
The following example examines a neural network model named LeNet. Despite being

able to access the model from a Wolfram resource, as you saw previously, performing

operations with networks found in the Wolfram Neural Net Repository with the

NetModel command is possible. To get a better idea of how this network is used, let’s

first look at the description of the network, its name, how it is used, and where it was

proposed for the first time.

�LeNet Model
The neural network LeNet is a convolutional neuronal network within the deep learning

field. The neural network LeNet is recognized as one of the first convolutional networks

that promoted deep learning. This network was used for character recognition to identify

handwritten digits. Today, architectures are based on LeNet neural network architecture,

but you focus on the Wolfram Neural Net Repository version. This architecture consists

of four key operations: convolution, non-linearity, subsampling, or pooling and

classification. To learn more about the LeNet convolutional neural network, see Neural

Networks and Deep Learning: A Textbook by Charu C. Aggarwal (Springer, 2018). With

NetModel, you can obtain information about the LeNet network that has been previously

trained.

In[28]:= NetModel["LeNet Trained on MNIST Data",#]&/@{"Details","ShortName"

,"TaskType","SourceMetadata"}//Column

Out[28]= This pioneer work for image classification with convolutional

neural nets was released in 1998. It was developed by Yann LeCun and his

collaborators at AT&T Labs while they experimented with a large range of

machine learning solutions for classification on the MNIST dataset.

Chapter 10 Neural Networks Framework

424

LeNet-Trained-on-MNIST-Data

{Classification} <|Citation->Y. LeCun, L. Bottou, Y. Bengio, P. Haffner,

"Gradient-Based Learning Applied to Document Recognition," Proceedings of

the IEEE, 86(11), 2278-2324 (1998),Source->http://yann.lecun.com/exdb/

lenet,Date->DateObject[{1998},Year,Gregorian,-5.]|>

Note T o access all the properties of a model with NetModel, add properties as
the second argument—NetModel[“LeNet Trained on MNISt Data,” “Properties”].

The input this model receives consists of images in grayscale with a size of 28 x 28,

and the model’s performance is 98.5% on the MNIST dataset.

In[29]:= NetModel["LeNet Trained on MNIST Data",#]&/@{"TrainingSetInformati

on","InputDomains","Performance"}//Column

Out[29]= MNIST Database of Handwritten Digits, consisting of 60,000

training and 10,000 test grayscale images of size 28x28.

{Image}

This model achieves 98.5% accuracy on the MNIST dataset.

�MINST Dataset
This network is used for rating, just as it appears in TaskType. The digits are in a database

known as the MNIST database. The MNIST database is an extensive database of

handwritten digits (see Figure 10-19) that contains 60,000 images for training and 10,000

for testing, the latter being used to get a final estimate of how well the neural net model

works. To observe the complete dataset, you load it from the Wolfram Data Repository

with ResourceData and ImageDimensions to verify that the dimensions of the pictures

are 28 x 28 pixels.

In[30]:= (*This is for seven elements randomly sampled, but you can check

the whole data set.*)

TableForm[

 SeedRandom[900];

 RandomSample[ResourceData["MNIST", "TrainingData"], 7],

 TableDirections -> Row]

Chapter 10 Neural Networks Framework

425

Map[ImageDimensions, %[[1 ;; 7, 1]]]

(*Test set : ResourceData["MNIST","TestData"] *)

Out[30]//TableForm=

Figure 10-19.  A random sample of the MNIST training set

Out[31]= {{28,28},{28,28},{28,28},{28,28},{28,28},{28,28},{28,28}}

Figure 10-19 shows the images of the digits, the class to which they apply, and the

dimensions of each image. You extract the training sets and test sets, which you use later.

In[32]:= {trainData,testData}={ResourceData["MNIST","TrainingData"],

ResourceData["MNIST","TestData"] };

�LeNet Architecture
Let’s start by downloading the neural network from the NetModel command, which

extracts the model from the Wolfram Neural Net Repository. The next exercise loads

the network that has not been trained since you do the training and validation process.

It should be noted that the LeNet model in the Wolfram Language is a variation of the

original architecture (see Figure 10-20).

In[33]:= uninitLeNet=NetModel["LeNet Trained on MNIST Data",

"UninitializedEvaluationNet"](*To work locally with the untrained

model: NetModel["LeNet"]*)

Out[33]=

Chapter 10 Neural Networks Framework

426

Figure 10-20.  LeNet architecture

The LeNet network in the Wolfram Neural Net Repository is built from 11 layers. The

layers that appear in red are layers with learnable parameters: two convolutional layers

and two linear layers.

�MXNet Framework
With the MXNet framework, let’s first visualize the process of this network through the

MXNet operation graph (see Figure 10-21).

In[34]:= Information[uninitLeNet,"MXNetNodeGraphPlot"]

Out[34]=

Chapter 10 Neural Networks Framework

427

Figure 10-21.  MXNet graph of the LeNet architecture

LeNet architecture starts at the input with the operation that converts the image to

a numeric array, followed by the first operation. This convolution returns a 20-feature

map with a rectified linear unit (ReLU) activation function immediately following

nodes 3 and 4. Then, the first max-pooling operation (subsampling layers) selects the

maximum value in the pooling node 5. Then, the second convolutional operation

returns a 50-feature map with a ReLU activation function immediately following nodes

8 and 9. The last convolution operation is followed by another max-pooling operation

(node 10), followed by a flattening operation (node 11), which flattens the output of the

pooling operation into a single vector. The last pooling operation gives an array of 50*4*4,

and the flatten operation returns an 800-vector that is the input of the next operation.

Next, you see the first fully connected layer (node 14); the first fully connected layer

has a ReLU function (node 15), and the second fully connected layer has the softmax

function (node 19). The last fully connected layer can be interpreted as a multilayer

perceptron (MLP) that normalizes the output into a probability distribution to indicate

the probability of each class. Finally, the tensor is converted to a class with the decoder.

Nodes 4, 9, and 15 are the layers for non-linear operations (ReLU), and node 19 applies

the softmax function for output classification. In summary, the architecture is as follows:

Tensor (input), Convolution, ReLU, Pooling, Convolution, ReLU, Pooling, Flatten, Fully

Connected (with ReLU), Fully Connected (with softmax), and Class output.

Chapter 10 Neural Networks Framework

428

�Preparing LeNet
Since LeNet is a neural network for image classification, an encoder and decoder must

be used. The NetEncoder is inserted in the input NetPort, and the NetDecoder is on

the output NetPort. Looking into the NetGraph (see Figure 10-22) might be useful in

understanding the process inside the Wolfram Language. Clicking the input and output

shows the relevant information.

In[35]:= NetGraph[uninitLeNet]

Out[35]=

Figure 10-22.  NetGraph of the LeNet model

You can extract the encoder and decoder to inspect their infrastructure. The encoder

receives an image of the dimensions of 28 x 28 of any color space and encodes the image

into a color space set to grayscale, returning then an array of the size of 1 x 28 x 28. On

the other hand, the decoder is a class decoder that receives a 10-size vector, which tells

the probability for the class labels that are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

In[36]:={enc=NetExtract[uninitLeNet,"Input"],dec=NetExtract[uninitLeNet,

"Output"]}//Row;

First, let’s look at how the net model works with NetInitialize; for example, use an

image of 0 in the training set.

In[37]:= testNet=NetInitialize[uninitLeNet,RandomSeeding->8888];

testNet@trainData[[1,1]](*TrainData[[1,1]] belongs to a zero*)

Out[38]= 9

The net returns that the image belongs to class 9, which means that the image is

a number 9; clearly, this is wrong. Let’s try NetInitialize again but with the different

methods available. Writing all, as the second argument to NetInitialize, overwrites any

pre-existing learning parameters on the network.

Chapter 10 Neural Networks Framework

429

In[39]:= {net1, net2, net3, net4} = Table[NetInitialize[uninitLe

Net, All, Method -> i, RandomSeeding -> 8888], {i, {"Kaiming",

"Xavier", "Orthogonal", "Identity"}}]; {net1[trainData[[1, 1]]],

net2[trainData[[1, 1]]], net3[trainData[[1, 1]]], net4[trainData[[1, 1]]]}

Out[40]= {9,9,7,3}

Every net model fails to classify the image in the correct class. This result is

because the neural network has not been trained, unlike NetInitialize, which only

randomly initializes the learnable parameters without proper training. This is why, with

NetInitialize, the model fails to classify the image given correctly. But first, let’s establish

the network graph to better illustrate the model, as seen in Figure 10-23.

In[41]:= leNet=NetInitialize[NetGraph[<|"LeNet NN" -> uninitLeNet, "LeNet

Loss" -> CrossEntropyLossLayer@"Index"|>, {NetPort@"Input" -> "LeNet NN",

"LeNet NN" -> NetPort@{"LeNet Loss", "Input"}, NetPort@"Target" -> NetPort@

{"LeNet Loss", "Target"}}], RandomSeeding -> 8888]

Out[41]=

Figure 10-23.  LeNet ready graph

Chapter 10 Neural Networks Framework

430

Before you train the net, you must make the validation set suited for the

CrossEntropyLossLayer in the target input because the classes start at 0 and end at 9,

and the Index target begins at 1 and goes on. So, the target input needs to be between

1 and 10.

In[42]:= trainDts=Dataset@Join[AssociationThread["Input"->#]& /@Keys[train

Data],AssociationThread["Target"-> #]&/@Values[trainData]+1,2];

testDts=Dataset@Join[AssociationThread["Input"->#]& /@Keys[testData],

AssociationThread["Target"-> #]&/@Values[testData]+1,2];

The training set and validation set have the form of a dataset. Only four random

samples are shown in Figure 10-24.

In[44]:= BlockRandom[SeedRandom[999];

{RandomSample[trainDts[[All]],4],RandomSample[testDts[[All]],4]}]

Out[44]=

Figure 10-24.  The dataset of the training and test set

�LeNet Training
Now that you have grasped the process of this neural net model, you can proceed to train

the neural net model. With NetTrain, you gradually modify the learnable parameters of

the neural network to reduce the loss. The next training code is set with the options seen

in the previous section, but here, you add new options also available for training. The

first one is TrainingProgressMeasurements. TrainingProgressMeasurements can specify

measures such as accuracy and precision. These are measured during the training phase

Chapter 10 Neural Networks Framework

431

by round or batch. The ClassAveraging is used to specify to get the macro-average or

the micro-average of the measurement specified <|”Measurement” -> “measurement”

(Accuracy, RSquared, Recall, MeanSquared, etc.), “ClassAveraging”->”Macro”|>.

The second option is the TrainingStoppingCriterion, which is used to add an early

stopping to avoid overfitting during the training phase based on different criteria, such as

stopping the training when the validation loss is not improving, measuring the absolute

or relative change of a measurement (accuracy, precision, loss, etc.), or stopping the

training when the loss or other criteria does not improve after a certain number of

rounds <|Criterion->”measurement” (Accuracy, Loss, Recall, etc.), “Patience”-> # of

rounds|>.

In[45]:= netResults = NetTrain[leNet, trainDts, All, ValidationSet ->

testDts, MaxTrainingRounds -> 15, BatchSize -> 2096, LearningRate ->

Automatic, Method -> "ADAM", TargetDevice -> "CPU", PerformanceGoal

 -> "TrainingMemory", WorkingPrecision -> "Real32", RandomSeeding

 -> 99999, TrainingProgressMeasurements -> {<|"Measurement" ->

"Accuracy", "ClassAveraging" -> "Macro"|>, <|"Measurement"

 -> "Precision", "ClassAveraging" -> "Macro"|> , <|"Measurement"

 -> "F1Score", "ClassAveraging" -> "Macro"|> , <|"Measurement"

 -> "Recall", "ClassAveraging" -> "Macro"|> , <|"Measurement" ->

"ROCCurvePlot", "ClassAveraging" -> "Macro"|> , <|"Measurement"

 -> "ConfusionMatrixPlot", "ClassAveraging" -> "Macro"|> },

TrainingStoppingCriterion -> <|"Criterion" -> "Loss", "AbsoluteChange" ->

0.001|>]

Out[45]=

Chapter 10 Neural Networks Framework

432

The final results of the training phase are depicted in Figure 10-25.

Figure 10-25.  Net results of LeNet training

Extracting the trained model and appending the net encoder and decoder is done

because the trained net does not come with an encoder and decoder at the input and

output ports.

In[46]:=NetExtract[netResults["TrainedNet"],"LeNet NN"];

trainedLeNet=NetReplacePart[%,{"Input"->enc,"Output"->dec}];

�LeNet Model Assesment
The following grid (see Figure 10-26) shows the tracked measurements and plots of

the training set. The measurements of the training set are in the RoundMeasurements

property. To get the list of the values in each round, use RoundMeasurementsLists.

Chapter 10 Neural Networks Framework

433

The performance of the training set is assessed with the round measurements, and the

test set is evaluated with the validation measurements. Also, the ROC curves and the

confusion matrix plot are shown in both cases.

In[48]:= netResults["RoundMeasurements"][[1 ;; 5]];

Normal[netResults["RoundMeasurements"][[6 ;; 7]]];

Grid[{{Style["RoundMeasurements", #1, #2], Style[%[[1, 1]], #1, #2],

 Style[%[[2, 1]], #1, #2]}, {Dataset[%%], %[[1, 2]], %[[2, 2]]}},

Dividers -> Center] &[Bold, FontFamily -> "Alegreya SC"]

Out[50]=

Figure 10-26.  Training set measurements

To see how the model performed on the validation set (see Figure 10-27),

see ValidationMeasurements. To get the list of the values in each round, use

ValidationMeasurementsLists.

In[51]:= netResults["ValidationMeasurements"][[1 ;; 5]];

Normal[netResults["ValidationMeasurements"][[6 ;; 7]]];

Grid[{{Style["ValidationMeasurements", #1, #2],

Style[%[[1, 1]], #1, #2], Style[%[[2, 1]], #1, #2]}, {Dataset[%%], %[[1,

2]], %[[2, 2]]}}, Dividers -> Center] &[Bold, FontFamily -> "Alegreya SC"]

Out[53]=

Chapter 10 Neural Networks Framework

434

Figure 10-27.  Validation set measurements

�Testing LeNet
Having finished the training and reviewed the round and validation measures, you are

now ready to test the trained LeNet neural network with some difficult images to see how

it performs (see Figure 10-28).

In[54]:=expls=Keys[{testData[[2150]],testData[[3910]],testData[[6115]],test

Data[[6011]],testData[[7834]]}]

Out[54]=

Figure 10-28.  Difficult examples from the MNIST test set

The selected images belong to the numbers 2, 3, 6, 5, and 7.

In[55]:= trainedLeNet[expls,"TopProbabilities"]

Out[55]= {{2->0.999397},{3->0.999856},{6->0.906024},{6->0.990975},{7->

0.999853}}

Chapter 10 Neural Networks Framework

435

Write all of the results with the top probabilities with TableForm.

In[66]:= TableForm[Transpose@{trainedLeNet[expls,{"TopDecisions",

2}],TrainedLeNet[expls,{"TopProbabilities",2}]},TableHeadings->

{Map[ToString,{2,3,6,5,7},1],{"Top Decisions","Top Probabilities "}},

TableAlignments->Center]

Out[66]//TableForm=

 |Top Decisions Top Probabilities

____|___________________________________

2 |3 3->0.000580186

 |2 2->0.999397

 |

3 |9 9->0.0000792077

 |3 3->0.999856

 |

6 |0 0->0.0904324

 |6 6->0.906024

 |

5 |5 5->0.00699159

 |6 6->0.990975

 |

7 |3 6->0.990975

 |7 7->0.999853

The trained net has misclassified the image of the number 5 because the top

decisions are either a 5 or a 6, being 6 with top probability, which is wrong. Also, you

can see the probabilities of the top decisions. Another form to evaluate the trained net

in the test set is using NetMeasurements to set the net model, test set, and the interested

measure. In the example, the measure of interest is the ConfusionMatrixPlot (see

Figure 10-29).

In[67]:= NetMeasurements[trainedLeNet,testData,"ConfusionMatrixPlot"]

Out[67]=

Chapter 10 Neural Networks Framework

436

Figure 10-29.  ConfusionMatrixPlot from NetMeasurements

�GPT and LLM Basics
This section explores the neural network GPT models available in the Wolfram

Language. You learn the basics of generative pre-trained transformers (GPT), the

architecture of some GPT models inside Mathematica, and new LLM (large language

model) Mathematica features.

Chapter 10 Neural Networks Framework

437

�A Brief Overview
GPT is a series of AI models that uses deep learning and transformer architecture

to generate human-like text by analyzing preceding text. LLM is a broader category

encompassing models trained to understand and generate human-readable text. GPT

models fall under the LLM category, representing just one kind of model within the

broader LLM framework.

�LLM in the Wolfram Language
The Wolfram Language offers several new LLM-based functionalities, including the

following.

•	 Chat Notebooks: a new feature enabling efficient and accessible

conversations with LLM (GPT-3, among others) like a traditional

Mathematica notebook

•	 Wolfram Prompt Repository: a collection of useful prompts made by

a community for easy access to LLM scope applications

•	 LLM Function Integration: seamless incorporation of LLM functions

within Mathematica

•	 GPT-1 and GPT-2: available from the Wolfram Neural Net Repository

Note  For LLM services in Mathematica, external API access is needed. Ensure
your API key is valid; for example, for OpenAI, an active Chat GPT account
with billing details is required. Be aware that API costs are separate from their
subscription plans and vary based on the model used. Make sure to read OpenAI
documentation for pricing and account details.

To connect to OpenAI GPT services, you first need to establish a connection. The

most direct path to connect is through the settings or preferences section. Select the AI

settings option from there, which shows various tabs related to chat notebooks, services,

personas, and tools. The default tab has the general setting for the persona, LLM service,

and temperature (model creativity), among other settings. To proceed, go to the Services

tab and click Authentication, followed by Connect. This triggers a WolframConnector

pop-up that requests the key access, as shown in Figure 10-30.

Chapter 10 Neural Networks Framework

438

Figure 10-30.  AI settings to connect LLM service from Mathematica

To get started, enter the key, save it by clicking the checkbox, and agree on the terms

of use. Once linked, a checkmark appears under Authentication, like Figure 10-30. If a

valid API is not linked, LLM services won’t work. To remove the key, click Disconnect

and repeat the previous steps.

Note  For quick API and LLM support, visit https://support.wolfram.com/

�Chat Notebooks
New types of notebooks have been developed apart from regular notebooks. These

notebooks are specialized for LLM tasks. These are Chat-Enabled and Chat-Driven

Notebooks. To create a new one, go to File ➤ New, then select Chat-Enabled or Chat-

Chapter 10 Neural Networks Framework

https://support.wolfram.com/

439

Driven Notebook. By default, chat-enabled use input chat cells with the code assistant

persona (sets the LLM’s response style), while chat-driven cells use PlainChat (basic

dialog, no Wolfram code execution), as seen in Figure 10-31.

Figure 10-31.  Multiple Chat cells and OpenAI available models

Apart from the different cells, Figure 10-31 show the various personas and GPT

models for use. You can select the one that fits your needs. The base model version used

in the following examples is with GPT-3.5 Turbo.

Chapter 10 Neural Networks Framework

440

To create a new chat cell, press (‘) once. Press it twice for a side chat and three times

for chat system input. To enable it in a regular notebook, click the chat cell icon in the

top right corner (see Figure 10-31). Select “Enable AI chat features” to activate. Select

the “Do automatic result analysis” option for LLM tips on output code. Try the example

shown in Figure 10-32 to see if everything is working.

Figure 10-32.  Sample prompt and output for CodeAssistant, PlainChat, and
RawModel

Chapter 10 Neural Networks Framework

441

In Figure 10-32, a chat icon is visible in the right cell bracket; this option lets you use

LLM with Wolfram code like you use it in Mathematica. The chat history is sequential,

and the conversation history output can also be accessed using the chat arrows.

Side chat cells or blocks/delimiters separate chats. Distinct personas yield different

responses; the CodeAssistant chat implies prompts in Wolfram code, whereas the Plain

and RawChat yield output but do not imply that it’s related to Wolfram code (unless

specified in the prompt), resulting in Python code being used instead. Hovering over the

code part allows you to either insert it as a newly evaluated cell, insert it, or copy it.

Note K eep your prompts concise; always verify the chosen model to avoid
unexpected fees since models have different costs based on token count.

Chat cells can rerun the prompt and regenerate the response. But remember that the

LLM prompts are not run by Mathematica kernel, so history is saved on the notebook.

So, closing the notebook does not erase the conversation.

�Wolfram Prompt Repository
The Wolfram Prompt Repository gives you access to a large, curated base of prompts,

from LLM prompts, personas, and costume functions. Navigating is similar to other

repositories. Select from the accessible sections to find your desired prompts or persona

for costume-style conversations. Once a prompt is selected various options are available,

like chat samples and how to use it inside Mathematica. The platform further supports

uploading, downloading, and utilizing various LLM components, as Figure 10-33 shows.

Chapter 10 Neural Networks Framework

442

Figure 10-33.  Wolfram Prompt Repository with the MockInterviewer prompt page

For instance, you can format output with different personas; select the persona from

the drop-down menu (see Figure 10-31). To download a persona, go to the Personas

tab in the AI setting and install via the prompt repository (see Figure 10-33) or enter the

persona URL. Once installed, it should be available as depicted in Figure 10-34; this can

also be done via Add & Manage Personas.

Chapter 10 Neural Networks Framework

443

Figure 10-34.  The Add & Manage Personas screen shows the R2D2 persona
selected

Apart from personas, a combination of prompt modifiers can be used. These act

on the input or output of a prompt. So, to invoke an input persona, use the character

‘@persona.’ To call for a function input modifier, use ‘!prompt’; to call an output

modifier, use ‘#param ‘; input and output modifiers go at the beginning and end of the

prompt. To insert parameters to function modifiers, use the vertical bar to separate, like

‘#prompt|param ‘ as defined in Figure 10-35.

Chapter 10 Neural Networks Framework

444

Figure 10-35.  R2D2 code comment in Haiku style

�LLM Functionalities
Chat objects are used along with chat evaluate to manage LLM conversations within

Mathematica. The chat object provides a convenient interface for interacting with the

LLM and managing conversations in a notebook environment. What happens is that

internally, LLM commands work as synthetic functions, which allows the LLM model to

access the Wolfram tools (see Figure 10-36).

In[68]:= ChatEvaluate[ChatObject[], "Break down this code in 3 simple

points? For[i=1,i<=5,i++,Print[i]", LLMEvaluator -> <|"Prompts" ->

{LLMPrompt["ELI5"]}|>] (*Explain Like I'm Five*)

Out[68]=

Figure 10-36.  Chatobject for an LLM text prompt

Chapter 10 Neural Networks Framework

445

To retrieve the chat contents and tokens, use the words “Messages” and “Usage”.

In[69]:=

%["Messages"]

%%["Usage"]

Out[2]= {<|"Role" -> "User", "Content" -> "Answer questions as if the

listener is a five year old child. Break down this code in 3 simple points?

For[i=1,i<=5,i++,Print[i]", "Timestamp" -> DateObject[{2024, 2, 22,

11, 22, 5.627397}, "Instant", "Gregorian", -6.], "Annotations" -> <|{1,

129} -> "Prompt"|>|>, <|"Role" -> "Assistant", "Content" ->

"1. This code is telling the computer to count from 1 to 5.

2. It is using the \"for\" loop to make this happen.

3. Every time it counts a number, it will print that number on the \

screen.", "Timestamp" -> DateObject[{2024, 2, 22, 11, 22, 6}, "Instant",

"Gregorian", -6.], "Annotations" -> <|{1, 184} -> "Completion"|>|>}

Out[70]= 92 tokens

Like the previous example, you can set a prompt with a specific configuration with

LLMConfiguration evaluated with LLMEvaluator, like the base model, temperature, stop

tokens, and so forth. It can also be used to generate text (LLMSynthesize), retrieve text

(LLMPrompt), or use a template function (LLMFunction), as the following code shows.

In[70]:= llmConfig = LLMConfiguration[<|"Prompts" -> LLMPrompt["ELI5"],

"Model" -> "GPT-3.5-Turbo", "Temperature" -> 0.1, "MaxTokens"

-> 5|>]; LLMSynthesize["Break down this code in 3 simple points?

For[i=1,i<=5,i++,Print[i]", LLMEvaluator -> llmConfig]

Out[71]= Sure! Here's a

Note T he default LLM configuration is in $LLMEvaluator but can be overridden.

In[72]:= $LLMEvaluator=LLMConfiguration[<|"Prompts"-> LLMPrompt["ELI5"],

"Model"->"GPT-3.5-Turbo", "Temperature"->0.1,"MaxTokens"-> 5|>]

Out[72]= LLMConfiguration[Model: <|Service->Automatic,Name-

>GPT-3.5-Turbo|>]

Chapter 10 Neural Networks Framework

446

�GTP-1 and GPT-2 Models
Besides external LLM services, open models like GPT-1 and GPT-2 are accessible in

Mathematica. These models are predecessors to recent GPT models. GPT –1 is one of

the initial models trained on a large book dataset, and GPT-2 is an improved version of

GPT-1, trained on the WebText dataset. Let’s look at some information about GPT-1 and

GPT-2; note that the output here is truncated, given the large text.

In[72]:= Row[{Short[NetModel["GPT Transformer Trained on BookCorpus

Data", #] & /@ {"Details", "ShortName"} // Column, 4], Short[NetModel[

"GPT2 Transformer Trained on WebText Data", #] & /@ {"Details","ShortName"}

// Column, 4]}]

Out[72]= Released in 2018, this Generative Pre-Training Transformer (GPT)

model is pre-trained in an unsupervised fashion on a large corpus of

English text. This model can be further fine-tuned with additional output

layers to create highly accurate NLP models for a wide range of tasks.

It uses bi-directional causal self-attention, often referred to as a

transformer decoder.

GPT-Transformer-Trained-on-BookCorpus-Data

Released in 2019, this model improves and scales up its predecessor

model. It has a richer vocabulary and uses BPE tokenization on UTF-8

byte sequences and additional normalization at the end of all of the

transformer blocks.

GPT2-Transformer-Trained-on-WebText-Data

You can try to retrieve other data, like in the LeNet example. Let’s look at model

variants and task types examples.

In[73]:= NetModel["GPT Transformer Trained on BookCorpus Data", #] & /@

{"ParametersAllowedValues", "Variants"}

NetModel["GPT2 Transformer Trained on WebText Data", #] & /@

{"ParametersAllowedValues", "Variants"}

Out[73]= {<|Task->{FeatureExtraction,LanguageModeling}|>,{{GPT Transformer

Trained on BookCorpus Data,Task->FeatureExtraction},{GPT Transformer

Trained on BookCorpus Data,Task->LanguageModeling}}}

Out[74]= {<|Task->{FeatureExtraction,LanguageModeling},Size-

>{117M,345M,774M}|>,

Chapter 10 Neural Networks Framework

447

{{GPT2 Transformer Trained on WebText Data,Task->FeatureExtraction,Size->117M},

{GPT2 Transformer Trained on WebText Data,Task->FeatureExtraction,Size->345M},

{GPT2 Transformer Trained on WebText Data,Task->FeatureExtraction,Size->774M},

{GPT2 Transformer Trained on WebText Data,Task->LanguageModeling,Size->117M},

{GPT2 Transformer Trained on WebText Data,Task->LanguageModeling,Size->345M},

{GPT2 Transformer Trained on WebText Data,Task->LanguageModeling,Size->774M}}}

As seen in the output, variants have different task types and a specific number of

parameter sizes, like 117M, 354M, and 774M million parameters. You can pick a model

by specifying the parameters, for instance, picking the language-trained model and

trying to generate text based on the prediction of the next token (see Figure 10-37).

In[75]:= gpt1=NetModel[{"GPT Transformer Trained on BookCorpus

Data","Task"-> "LanguageModeling"}]

gpt2=NetModel[{"GPT2 Transformer Trained on WebText Data","Task"->

"LanguageModeling"}]

Out[75]=

Figure 10-37.  GPT-1 and GPT-2 embedded architectures

Chapter 10 Neural Networks Framework

448

For the token function, the input parameters are the initial text, token count (default

10), and temperature (default 1). In simple terms, this function samples predictions. It

attaches each new token to the original string for the fixed token count and returns the

initial text plus the generated tokens text.

In[76]:= generateText[LLmodel_][initialText_, tokenCount_ :

10, temperature_ : 1] := Fold[StringJoin[#1, LLmodel[#1, {"RandomSample",

"Temperature" -> temperature}]] &, initialText, Range[tokenCount]]

Where a token refers to a unit of text that the model reads. It can be as short as one

character or as long as one word, like “a” or “app.” The model looks at these tokens

individually to understand and generate text based on them. So, for GPT-2, BPE

tokenization is a method used to break down words into smaller parts.

In[77]:= generateText[gpt1]["Alan Turing was a British mathematician

and logician who is considered a pioneer in the field of computer

science.",20,0.5]

Out[77]= Alan Turing was a British mathematician and logician who is

considered a pioneer in the field of computer science.he is a physicist and

is a very good scientist .

 he is also a friend of george w.

In[78]:= generateText[gpt2]["Alan Turing was a British mathematician

and logician who is considered a pioneer in the field of computer

science.",20,1]

Out[78]= Alan Turing was a British mathematician and logician who is

considered a pioneer in the field of computer science. At the time of his

independence he was selected to pen one of the first (173) contributions to

As seen comparing both responses, there is still room for improvement. GPT-1

output seems incoherent with unrelated elements. In contrast, GPT-2 shows more

context talking about Turing’s career but still lacks clear, complete sentences.

�Final Remarks
In summary, the following road map for the general schematics, construction, testing,

and implementation of a machine learning or a neural network model within the

Wolfram Language scheme are in Figure 10-38.

Chapter 10 Neural Networks Framework

449

Figure 10-38.  Model overview for training and testing

The diagram shows a route that can be followed directly; despite this, there may be

intermediate points between each process within the route since the route may vary

depending on the type of task or problem being solved. However, the route focuses on

exposing the important and general points to construct a model using the Wolfram

Language. Within the data preparation phase are previous processes, such as data

integration, the type of data collected (structured or unstructured), transformations in

the data, cleaning in data modules, and so on. So before moving on to the next phase,

there must be a pre-processing of the data, to have data ready to be fed to the model.

Model preparation covers aspects such as the choice of the algorithm or the methods

to use, depending on the type of learning; establishing or detecting the structure of the

model; and defining the characteristics, input parameters, and type of data that is used,

whether it be text, sound, numerical data, and tools to be used. All this is linked to a

process called feature engineering, whose primary goal is to extract valuable attributes

from data. This is needed to move on to the next point, the training phase.

The evaluation phase and model assessment consists of defining the evaluation

metrics, which vary according to the task or problem being solved, and preparing the

validation used later. The model’s output is converted back to a clear, interpretable

format at the decoding phase, readying for practical use. At this point, it is necessary to

Chapter 10 Neural Networks Framework

450

emphasize that the preparation of the model, training, evaluation, and assessment can

be an iterative process, including tuning of hyperparameters, adjustments on algorithm

techniques, and model configurations such as internal model features. The purpose is

to establish the best possible model capable of delivering adequate results and finally

reaching the model deployment phase, which defines the model chosen and tested on

new data.

Chapter 10 Neural Networks Framework

451
© Jalil Villalobos Alva 2024
J. Villalobos Alva, Beginning Mathematica and Wolfram for Data Science,
https://doi.org/10.1007/979-8-8688-0348-2

Index

A
AccuracyRejectionPlot, 336
Activation functions, 368, 370, 372, 427
Algebraic equations, 34–37
Algebraic expressions, 33, 34
Algorithm specifications tooltip, 330
Alphas, 307
AND operator, 32, 36
Arithmetic mean, 239, 341
Arithmetic operations, 18, 89–91
ArrayPath, 399
Arrays

arrangements, 69
Array command, 68
characteristics, 70
ConstantArray function, 69
data array, 69
F function, 69
MatrixForm, 71
sparse array, 71
SparseArray command, 70

ArraysCount, 395
AspectRatio, 190
Assigning values to variables, 19–21
Assistance

autocomplete pop-up menu, 50, 51
documentation, 51
functions output, 52, 53
Head command, 52
RandomPolygon function, 51

Associations

Association command, 101
associations, 102
AssociationThread, 102
complex structures, 103
entries, 101
error, 102
forms, 101
position, 101
semicolon, 101
uses, 101
values and keys, 102

AtomQ function, 26, 33

B
Bar chart grid, 244
Bar graphs, 242, 243
Basic plotting

AxesLabel option, 29, 30
cubic plot, 27, 28
dashed tangent function, 29
multiple functions, 28
PlotLabel option, 29

BatchEvaluationSpeed, 355
BlockRandom, 235
Boolean operators, 31, 32
Boston Homes data, 309
Boston Homes price dataset, 309
Box plot, 252, 253

BoxWhiskerChart, 252
multiple, 254
Whiskers, 253

https://doi.org/10.1007/979-8-8688-0348-2#DOI

452

Box whiskers plot, 294, 298, 299
Built-in functions, 22, 23, 32
Business and Minimal plot themes, 229

C
CapsNet, 401
CapsNet neural net model, 402
Ceiling function, 63
ChartElementFunction option, 258
Chart Element Schemes

palette, 256, 257
Chart Type, 258, 259
Chat-Driven Notebooks, 438
ClassAveraging, 431
Classifier function, 332
ClassifierFunction object, 328
ClassifierMeasurements, 332
ClassifierMeasurementsObject, 333
Classify command, 327
Cluster classification model, 354, 356, 357
ClusterClassify, 353
ClusteringCompnents, 343
Clusters, 340
CodeAssistant chat, 441
Code efficiency, 41
Code performance, 42, 43
ColorData object, 217
ColorFunction, 222, 227
Color palette, 216
Column graphics, 212
Combining plots

Column command, 208
cosine and sine plot, 207
graphic objects, 206
graphics, 206
graphs, 206

Comma-separated value (CSV),
148–150, 275

Complex numbers, 57
Computations

FullForm, 48
HoldForm command, 49
InputForm, 47
StandardForm, 47
Trace command, 49, 50
TreeForm, 47–50

ComputeUncertainty, 317
ConfusionMatrixPlot, 334, 435, 436
ContentElements property, 280
Contour lines, 223
ContourPlot command, 222
CrossEntropyLossLayer, 373, 430
Cross-hatching fillers, 204
Customized 3D plot, 220
Customizing plots

labeled axes and functions, 198
PlotLabel, 197
3D plots, 197
Wolfram Language, 197

D
Databases, 184, 186
Data clustering method, 338
Data exploration

column’s class and sex, 325
elements, 325

Datasets, 103, 274, 303
adding values

associations, 116
AssociationThread, 114
column, 114, 115
ID column dataset, 114, 115
ReplacePart function, 116
row, 113

associations, 107
column headers, 105

INDEX

453

column name, 105, 106
columns and values, 111, 112
create, 109
customization, 134

animal dataset, 135, 137, 138
Background option, 135
bold style, 136
ExampleData, 134
HiddenItems, 136
mixing colors, 135, 136
options, 136
suppressed rows and columns,

136, 137
Dataset function, 104
decimal form, 124
dropping values, 117, 118
filtering values

clear symbols, 122
count data, 121
filtered data, 120
grouping, 121, 122
pure functions, 120, 121
selected subjects, 120
tagged dataset, 119

forms, 104
joining/merging, 132–134
labeled rows, 107
list of association, 104, 106
name/age, 110
Normal function, 111
numeric dataset, 122, 123
position, 104
quantities

DateObject, 162
ID/sales per day, 161, 162
magnitudes, 161
Normal command, 161
price column, 161

quantity type, 160
Rule command, 163
timeline, 163

queries, 111
reversed elements, 124, 125
rows and columns, 108
row selection, 107, 108
select data, 109
sorted data, 123, 124
square root function, 125, 126
Take function, 112
uses, 103
Values command, 109–111
value selection, 108

Data visualization
AspectRatio, 190
DateListPlot, 195
Date plot, 195
ListLinePlot, 195
logarithm scale, 187
Mathematica, 187
PlotRange, 188, 189
tools, 187
2D plots, 187
types of graphs, 187

Date and time
date format, 24
DateObject command, 23, 24
DatesString, 25
Natural language, 24
sunrise and sunset times, 24
TimeObject, 25
time zone, 24

DateListPlot, 195
3D bar charts grid, 245
Debugging, 45, 47
Decoded house, 383
Decoder, 380, 381

INDEX

454

DensityHistogram, 259, 260
Density plots, 225, 226
Descriptive statistics

function, 287
grid view, 291
Irisis data and computations, 287
TabView, 288
versicolor species, 292
Wolfram Language, 293

DescriptiveStats variable, 289
Digits, 60, 61
Dimensionality problems, 345
DimensionReducerFunction, 345
DimensionReduction, 345
Dispersion measurements, 240
DistanceFunction, 340, 349
Distribution chart plot, 293
Documentation, 50, 51

E
EchoTiming function, 43
ElementwiseLayer, 368, 369, 371, 374
ElemewiseLayer, 375
Encoder, 375, 377

Boolean type NetEncoder, 375
Class type, 376
and decoder, 382
NetEncoder, 376

Encoding, 375, 382
Equivalent operator, 32
EuclideanDistance, 340, 355
ExampleData, 346
Exponentials, 62
Export

CarStoppingDistance, 171, 172
ColumnDescriptions, 171
ContentObject function, 177

CSV format, 170, 172
DAT format, 169
ExampleData command, 170
Export command, 167
file extensions, 179
FileNames command, 178
files, 170, 173
FindFile, 178
JSON format, 174–176
list of names, 170
NotebookDirectory command,

167, 178
prime numbers, 167
SetDirectory, 167, 178
sheets name, 168
SystemOpen, 168
tables, 169
tabular data, 168
TVS format, 170
working directory, 167
XLS format, 173
XLSX format, 173

$ExportFormat, 166
Expressions, 19
External connections, 179, 180
External resources

arrow function, 182
custom functions, 182
FindExternalEvaluators[“NodeJS”], 182
Math.sqrt, 182
node.jsfunction, 183
registered key, 182

Extracted trained net, 406

F
Factorial, 63, 123
File operations, 184, 186

INDEX

455

Filled horizontal style, 204
Filled plots, 203
FindClusters function, 338, 342
Fisher’s dataset, 284, 285
Fisher’s Irises data, 277
Fisher’s Irises dataset object,

274, 279, 344
Flattened chain, 387
Floor function, 63
Framed ListPlot, 201
Frame option, 200
FromDigits function, 61
FunctionLayer, 374, 375
Functions, 122

column/row
ceiling function, 127
DeleteDuplicates function, 129–131
DuplicateFreeQ function, 130
GroupBy, 132
MapAt function, 128
output, 127, 128

G
Generative pre-trained

transformers (GPT)
AI models, 437
architecture, 436
LLM category, 437

GPT-1 and GPT-2 embedded
architectures, 447

Gradient color, 217
Gradient descent algorithm, 303, 307
Gradient technique, 205
GraphicsColumn, 213
GraphicsGrid, 213, 214, 251
GraphicsRow, 213
Grid command, 67

Gridded plot, 201
GridLines command, 202, 222

H
Handling errors, 43, 44
Hash tables, 138

add row, 145
assigned value, dataset, 144
associations, 139, 140
dataset representation, 141, 142
framed levels, keys, 142, 143
graphic representation, 139
KeyDrop, 144
KeyExistQ, 143
KeyMemberQ, 143
Keys command, 140
KeySelect, 144
KeyTake, 144
Lookup, 143
MapIndexed, 140, 141
operations, 140
User key, 141
uses, 139

Histograms, 245, 261
density, 258
origin, 246
origins, 248
PairedHistograms, 247
PDF and CDF plots, 249
random real numbers, 246
shapes grid, 247
variable classes, 245
for versicolor, 295

Hue color function, 220
colored Hue values, 221
3D scatter plots, 221

Hyperbolic cosine plot, 191

INDEX

456

I
imensionReductionFunction, 345
Import command, 148
Infix notation, 30, 59
Input Assistant, 50
IntegerDigits function, 60
Integers, 56
Integrated Global Radiosonde

Archive (IGRA), 156
InterquartileRange function, 242
Iris data, 282

J
JavaScript Object Notation (JSON)

files, 153–156

K
k-means method, 343

classifier information, 354
elements, 344
FindClusters, 347
principal components, 348
vmathematical foundation, 344

k-means technique, 353

L
Large language model (LLM)

AI settings, 438
API, 438
Chatobject, 444
framework, 437
GPT-1 and GPT-2, 446
LLMEvaluator, 445
parameter sizes, 447
scope applications, 437

tasks, 438
Wolfram code, 441
Wolfram Language, 437
Wolfram tools, 444

Lasso regression name, 319
Learning curve, 307
LearningRateMultipliers, 362
LeNet, 423, 446

architecture, 425–427
MNIST dataset, 424
NetModel command, 423
neural network, 423, 434
RoundMeasurements, 432
training, 432
vNetGraph, 428
Wolfram Language, 428

LinearLayer object, 360, 361, 363, 364, 377
Linear model, 306
LinearModelFit command, 265
Linear regression model, 308, 312, 333

correlation matrix, 311
MEDV and RM scatter plots, 310
model creation, 310
predict function, 308

Linear relationship, 266
ListContourPlot, 224
ListLinePlot, 192, 193, 307
ListPlot, 191, 342
Lists, 55

alternatives, 87
Apply function, 92
ArrayReshape function, 83
arrays, 67
assigning/removing values

Append/Prepend, 80
ArrayPad function, 81, 82
Delete command, 80
Drop, 80

INDEX

457

Insert function, 81
item position, 79
new values, 80
one-sided terms, 81
Replace function, 80

Cases function, 84–87
commands, 92
computations, 91
conditional matching, 87
definition, 55, 56
elements, 65
Flatten function, 83
functions, 68
Grid command, 67
identifier/symbol, 65
increment/decrement operators, 68
iterator, 67
joining, 91
level of specification, 87
list of lists, 66
manipulation, 77
Map function, 92
nested lists, 71, 72, 82, 83
objects, 65
partitions, 82, 83
pattern shape, 84
Pick command, 84
PrimeQ function, 93
RandomChoice function, 85
random integers, 68
Range functions, 65
retrieving data

backward indices, 78
elements, 77
in-depth list, 79
index notation, 77
nested list, 78
Part function, 77

Rest function, 79
span notation, 78
Take function, 79

Reverse command, 82
Select command, 84
SortBy, 83
sorting, 82
TableForm, 67
Table functions, 65–67
underscore function, 86
to variables, 65

Logarithmic functions, 62
Logical operators, 30
Logistic regression, 321

DeleteMissing command, 323
learning curve and accuracy

curve, 330
missing data, 323
standard deviation and r-squared, 322
TopProbabilities, 331
variable, 321

LogProbabilities, 331

M
Machine learning, 314, 327, 357

gradient descent, 303
hyperparameter, 304
RandomReal function, 304
Wolfram Language, 303

Machine precision, 59, 60
Manhattan distance, 347
Mathematica, 218, 264, 265, 275, 301, 315,

369, 411, 441
capacity, 4
cells, 7
computation, 7
definition, 1

INDEX

458

expression, 19
input, 7
interface, 6
kernel, 6
notebook, 5, 7, 8
precision, 18
preferences window, 8
structure

cells, 5
input types, 5, 6
notebook, 4
welcome screen, 3

suggestion bar, 7
uses, 2

Mathematica version, 198
Matrix

definition, 73
drawn lines, 74
list of lists, 74
MatrixQ, 74
operations, 75
restructuring, 76
transpose, 74

MatrixPlot, 311, 312
Max and Min functions, 64
Mean function, 240
MeanSquare, 413
Mean squared layer

MeanSquaredLossLayer, 366
NetEncoder, 367
parameters, 365

MeanSquaredLossLayer,
366, 413

MeansSquaredLoss, 373
Median function, 240
MersenneTwister method, 235
Mesh option, 192

MethodOption, 318
MNIST database, 424
Model deployment phase, 450
Model preparation, 449
MultiAxisArrangement, 210
Multiple plots, 197, 207
MXNet format, 400
MXNet framework, 361, 426
MXNet network, 399
MXNet operation, 359
MXNet ops plot, 401
MXNet symbols, 398

N
National Oceanic and Atmospheric

Administration (NOAA), 156
Negation operator, 32
Nest command, 289
Nested chain, 386
Net2 classification plot, 410
NetChain, 384–387, 392, 393
NetChain NetCH2, 386
Net classification plot, 407
NetDecoder, 380
NetEncoder, 376, 377
NetEvaluationMode, 385
NetExtract, 364
NetFlatten, 387
NetGraph command, 383, 388–394
NetInitialize, 429
NetMeasurements, 435
NetPort, 390
NetPortGradient, 365
NetResultsObject, 415
NetTrainResultsObjec, 406
Neural network

batch size, 408

Mathematica (cont.)

INDEX

459

containers, 383
data, 360
layers, 359
LeNet, 423
linear layer, 360
MaxTrainingRounds, 408
model implementation, 406
MXNet operation, 359
Net2, 409
NetChain, 384
NetTrain, 403
perceptron model, 404
progress information panel, 405
ResourceSearch, 420
Standardize function, 404
training data, 404
WLNet format, 417
Wolfram Language, 360, 403

N function, 59
NormalEquation, 319
Notches, 254
Notebook, 1, 4, 12

feature, 15–17
security, 53
style, 15–17
UI, 9

abort options, 9, 10
application toolbar menu, 11
cell management functions, 10
code input cell, 11
extensive options, 9, 10
options, 10
prominent toolbar Ruler, 12
text cell options, 10
toolbar, 9

NotebookObject, 277
Number notations, 59
Numeric expressions, 380

O
OptimizationMethod, 319
Ordinary least squares method, 262

equations, 262
points, 263
summation, 262

OR operator, 32, 36
OrthanWiseNewton, 319

P
PaddingSize, 379
Palettes, 14, 15
ParameterConfidenceIntervalTable

property, 268
ParameterTable property, 267
Pattern matching, 84
Pearson coefficient, 264
Pie charts, 250, 326
PlotMarkers, 193
PlotStyle, 193
PlotTheme, 227, 228
Plotting commands, 196
Plotting graphs, 191
PoolingLayer, 379
Predict function, 308, 315, 328
PredictorFunction, 313
PredictorMeasurements, 316
PredictorMeasurementsObject, 317
Prefix notation, 59
Probability density functions (PDFs), 248
ProbabilityHistogram, 336
Pure functions, 95

Q
Quantity function, 297
Quartile calculation, 241
Query command, 286

INDEX

460

R
Ramp function, 369
Random data, 338
RandomInteger function, 233, 234
Random numbers, 123

BlockRandom function, 235
functions, 233
MersenneTwister method, 235
sublist, 234

RandomReal function, 23
Random sampling

expression, 236
RandomChoice function, 235
replacement, 237
weights and elements, 236

RandomSeeding, 339, 363
Rational numbers, 56, 58, 64
RawJSON, 153, 155
R2D2 code comment, 444
RealDigits, 60
Real numbers, 57
Rectified linear unit (ReLU), 369
ReducedVectors, 346
Relational operators, 30, 31
ReLU activation, 427
ResidualHistogram, 318
ResidualPlot, 318
Residuals, 266
ResourceData command, 278, 280
Resource Dataset, 421
ResourceObject, 275, 422
ResourceObject Fisher’s Irises, 276
Retraining model hyperparameters

graphs and metrics, 320
plots, 320

Root mean squared error (RMSE), 317
Round function, 63

RoundLossList, 415
RoundMeasurementsLists, 415
r-squared value, 317

S
Sector chart, 251
SectorChart command, 251
SeedRandom, 234
SemanticImport

comparison, 164
costume import, 164–166
CSV file, 157
datasets (see Datasets)
import data, 158
quantities, 158–160
Semantic objects, 158

SepalLength, 282, 283
SetPrecision, 60
SinglePredictionConfidenceInterval

Table option., 267
Six-digit precision, 60
Softmax function, 372
SoftmaxLayer, 372, 373
SoftPlus function, 370
Solve function, 35
Standard deviation, 241
Standard normal distribution, 249
Standard score, 241
Statistical Charts

bar graph, 242
Mathematica, 242
qualitative variable, 243

Statistical measures
data analysis, 239

StatsFun function, 124
StochasticGradientDescent method,

319, 328

INDEX

461

Stochastic gradient
descent (SGD), 412

Adam optimizer, 413
mathematical, 413

Strings, 25–27
SummationLayer, 388
Syntax notations, 68
System sampling, 237

elements, 237, 238
interval, 237
MapAt and Style, 238
non-random numbers, 239

T
TableRows, 290
Tables

automated forms, 98
Background option, 100
contents, 96
dividers and spacers, 100
Grid, 99
headers, 99
labeling, 98
rows and columns, 97
TableForm, 96
Titles, 97

Tab-separated value (TSV), 148–150, 275
Tanh[x] function layer, 369
Text, 25
Text cells, 25
Text formats, 25
Text processing, 12, 13
3D graphics, 219
3D grid charts, 252
3D plot figure, 218
3D scatter plot, 228, 300, 301
Titanic dataset, 321, 324, 327

Tooltip, 200
curve expression, 199
plot expression, 199

Tooltips, 199
ToString command, 26
Trained classifier function, 329
TrainingProgressMeasurements, 430
TrainingProgressReporting, 313
Training set measurements, 433
Transcendental numbers, 58
Transpose function, 126
Trigonometric functions, 61, 62
2D and 3D plots, 301
2D graphics, 219
2D plot theme, 229
2D scatter plot, 296, 300, 305
Two-variable function, 222

U
UninitializedNet, 417
UntrustedPath directories, 54
User-defined functions, 93, 94, 196
User interfaces (UIs), 9

V
Validation set measurements, 434
Variables, 19, 21
Vectors, 72, 73
Violin diagram, 254
Violin plots, 255, 256

W
Web data, 156, 157
Wolfram Alpha, 37

algebraic equations, 37

INDEX

462

input code, 38, 39
population of Australia, 39
query, 37, 38, 40
Tesla stock, 39

Wolfram Data Repository, 271, 275, 281,
301, 419, 424

HTTP response object, 272
life Science category, 273
Mathematica, 275
website, 272

Wolfram Documentation Center, 50, 52
Wolfram ImageIdentify Net V1, 421
Wolfram Language, 2, 3, 6, 226, 269, 297,

305, 327, 360, 361, 370, 373, 397
and MXNet, 399

Wolfram Neural Net Repository, 418,
425, 437

AudioSet Data, 419

neural network models, 418
Wolfram Neural Network, 362
Wolfram Prompt Repository, 441

X, Y
Xavier method, 363
XLSX files

CharacterEncoding option, 151
grocery list dataset, 152
import data, 150
NaN-filled dataset, 152, 153
SheetCount and Sheets, 151
TableView command, 151, 152

XOR operator, 32

Z
z-score, 241

Wolfram Alpha (cont.)

INDEX

	979-8-8688-0348-2
	1 (2)
	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction

	979-8-8688-0348-2_1
	Chapter 1: Introduction to Mathematica
	Why Mathematica?
	The Wolfram Language
	Structure of Mathematica
	Design of Mathematica

	Mathematica Environment
	Notebook Interface
	Text Processing
	Palettes
	Notebook Style and Features

	Expression in Mathematica
	Assigning Values
	Built-in Functions
	Dates and Time
	Strings
	Basic Plotting
	Logical Operators and Infix Notation
	Algebraic Expressions
	Solving Algebraic Equations
	Using Wolfram Alpha Inside Mathematica
	Delayed and Immediate Expressions

	Improving Code
	Code Performance
	Handling Errors
	Debugging Techniques

	How Mathematica Works
	How Computations are Made (Form of Input)
	Searching for Assistance
	Notebook Security

	Summary

	979-8-8688-0348-2_2
	Chapter 2: Data Manipulation
	Lists
	Types of Numbers
	Working with Digits
	A Few Mathematical Functions
	Numeric Function

	Lists of Objects
	List Representation
	Generating Lists
	Arrays of Data
	Nested Lists
	Vectors
	Matrixes
	Matrix Operations
	Restructuring a Matrix

	Manipulating Lists
	Retrieving Data
	Assigning or Removing Values

	Structuring List
	Criteria Selection

	Summary

	979-8-8688-0348-2_3
	Chapter 3: Working with Data and Datasets
	Operations with Lists
	Arithmetic Operations to a List
	Addition and Subtraction
	Division and Multiplication
	Exponentiation
	Joining a List

	Applying Functions to a List
	Defining Own Functions
	Pure Functions

	Indexed Tables
	Tables with the Wolfram Language
	Associations

	Dataset Format
	Constructing Datasets
	Accessing Data in a Dataset
	Adding Values
	Dropping Values
	Filtering Values

	Applying Functions
	Functions by Column or Row
	Joining and Merging Datasets
	Customizing a Dataset
	Generalization of Hash Tables

	Summary

	979-8-8688-0348-2_4
	Chapter 4: Import and Export
	Importing Files
	CSV and TSV Files
	XLSX Files
	JSON Files
	Web Data

	Semantic Import
	Quantities
	Datasets with Quantities
	Costume Import (Dealing with Large Datasets)

	Export
	Other Formats
	XLS and XLSX Formats
	JSON Formats
	Content File Objects
	Searching Files with Wolfram Language

	Connecting to External Services
	External Connections
	External Resources
	Database and File Operations (SQL)

	Summary

	979-8-8688-0348-2_5
	Chapter 5: Data Visualization
	Basic Visualization
	2D Plots
	Plotting Data
	Plotting Defined Functions

	Customizing Plots
	Adding Text to Charts
	Frame and Grids
	Filled Plots
	Filling Patterns and Gradient

	Combining Plots
	Multiple Plots
	Multiaxis Plots
	Coloring Plot Grids

	Colors Palette
	3D Plots
	Customizing 3D Plots
	Hue Color Function and List3D

	Contour Plots
	3D Plots and 2D Projections

	Plot Themes
	Summary

	979-8-8688-0348-2_6
	Chapter 6: Statistical Data Analysis
	Random Numbers
	Random Sampling
	Systematic Sampling

	Commons Statistical Measures
	Measures of Central Tendency
	Measures of Dispersion

	Statistical Charts
	Bar Charts
	Histograms
	Pie Charts and Sector Charts
	Box Plots
	Distribution Chart
	Charts Palette

	Ordinary Least Squares Method
	Pearson Coefficient
	Linear Fit
	Model Properties

	Summary

	979-8-8688-0348-2_7
	Chapter 7: Data Exploration
	Wolfram Data Repository
	Wolfram Data Repository Website
	Selecting a Category

	Extracting Data from the Wolfram Data Repository
	Accessing Data Inside Mathematica
	Data Observation and Querying

	Descriptive Statistics
	Table and Grid Formats
	Dataset Visualization
	Data Outside Dataset Format
	2D and 3D Plots

	Summary

	979-8-8688-0348-2_8
	Chapter 8: Machine Learning with the Wolfram Language
	Gradient Descent Algorithm
	Getting the Data
	Algorithm Implementation
	Multiple Alphas

	Linear Regression
	Predict Function
	Boston Dataset
	Model Creation
	Model Measurements
	Model Assessment
	Retraining Model Hyperparameters

	Logistic Regression
	Titanic Dataset
	Data Exploration
	Classify Function
	Testing the Model

	Data Clustering
	Clusters Identification
	Choosing a Distance Function
	Identifying Classes
	K-Means Clustering
	Dimensionality Reduction
	Applying K-Means
	Changing the Distance Function
	Different k’s
	Cluster Classify

	Summary

	979-8-8688-0348-2_9
	Chapter 9: Neural Networks with the Wolfram Language
	Layers
	Input Data
	Linear Layer
	Weights and Biases
	Initializing a Layer
	Retrieving Data
	Mean Squared Layer
	Activation Functions
	Softmax Layer
	Function Layer

	Encoder and Decoders
	Encoder
	Pooling Layer
	Decoders
	Applying Encoder and Decoders

	NetChains and Graphs
	Containers
	Multiple Chains
	NetGraphs
	Combining Containers
	Network Properties
	Exporting and Importing a Model

	Summary

	979-8-8688-0348-2_10
	Chapter 10: Neural Networks Framework
	Training a Neural Network
	Data Input
	Training Phase
	Model Implementation
	Batch Size and Rounds
	Training Method (NetTrain)
	Measuring Performance
	Model Assessment
	Exporting a Neural Network

	Wolfram Neural Net Repository
	Selecting a Neural Net Model
	Accessing Inside Mathematica
	Retrieving Relevant Information

	LeNet Neural Network
	LeNet Model
	MINST Dataset
	LeNet Architecture
	MXNet Framework
	Preparing LeNet
	LeNet Training
	LeNet Model Assesment
	Testing LeNet

	GPT and LLM Basics
	A Brief Overview
	LLM in the Wolfram Language
	Chat Notebooks
	Wolfram Prompt Repository
	LLM Functionalities
	GTP-1 and GPT-2 Models

	Final Remarks

	1
	Index

