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Introduction

Welcome to Beginning Mathematica and Wolfram for Data Science.

Why is data science important nowadays? Data science is an active topic that is
evolving daily; new methods, techniques, and data are created daily. Data science
is an interdisciplinary field involving scientific methods, algorithms, and systematic
procedures to extract data sets and thus better understand the data in its different
structures. It is a continuation of some theoretical data analysis fields such as statistics,
data mining, machine learning, and pattern analysis. With a unique objective, to extract
quantitative and qualitative information of value from the data being recollected from
various sources, and thus be able to objectively count an event for decision-making,
product development, pattern detection, or identification of new business areas.

Data Science Roadmap

Data science carries out a series of processes to solve a problem, which includes data
acquisition, data processing, model construction, communication of results, and

data monitoring or model improvement. The first step is to formalize an objective in
the investigation. From the object of the investigation, you can proceed to the data
acquisition sources. This step focuses on finding the right data sources. The product of
this path is usually raw data, which must be processed before it can be handled. Data
processing includes transforming the data from a raw form to a state in which it can

be reproduced to construct a mathematical model. Proceeding to the construction

of the model, a stage that intends to obtain the information by making predictions in
accordance with the conditions established in the early stages. Here, the appropriate
techniques and tools, which consist of different disciplines, are used. The objective is
to obtain a model that provides the best results. The next step is to present the outcome
of the study. Which consists of reporting the results obtained and whether they are
congruent with the established research objective. Finally, it comes to data monitoring,
with the intention of keeping the data updated because data can change constantly and
in different ways.
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Data Science Techniques

Data science includes analysis techniques from different disciplines, such as
mathematics, statistics, computer science, and numerical analysis. The following are
some disciplines and techniques used.

o Statistics (linear, multiple regressions, least squares method,
hypothesis testing, analysis of variance (ANOVA), cross-validation,
resampling methods)

e Graph theory (network analysis, social network analysis)
o Artificial intelligence
e Machine learning

e Supervised learning (natural language processing, decision trees,
naive bayes, nearest neighbors. support vector machine)

o Unsupervised learning (cluster analysis, anomaly detection, K-means
cluster)

e Deep learning (artificial neural networks, deep neural networks)

e Stochastic processes (Monte Carlo methods, Markov chains, time
series analysis, nonlinear models)

Even though many techniques exist, this list only shows a part of it since research on
data science, machine learning, and artificial neural networks is constantly increasing.

Prerequisites

This book is intended for readers who want to learn about Mathematica / Wolfram
Language and implement it in data science; it focuses on the basic principles of data
science as well as for programmers outside of software development, that is, people who
write code for their academic and research projects, including students, researchers,
teachers, and many others. The general audience is not expected to be familiar with
Wolfram Language or with the front-end program Mathematica, but little or any
experience is welcome. Previous knowledge of the syntax would be an advantage in
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understanding how the commands work in Mathematica. If this is not the case, the
book provides the basic concepts of the Wolfram Language syntax. The fundamental
structure of expressions in the Wolfram Language. Basic handling and understanding of
Mathematica notebooks.

Prior knowledge or some experience with programming, mathematical concepts
such as numbers, trigonometric functions, and basic statistics are useful, along
with some understanding of mathematical modeling, which is also helpful but not
compulsory.

Wolfram Language is different from many other languages but very intuitive and
user-friendly to learn.

The book aims to teach the general structure of the Wolfram Language, data
structures, objects, and rules for writing efficient code, and at the same time, teach data
management techniques that allow them to solve problems in a simple and effective
way. Provide the reader with the basic tools of the Wolfram Language, such as creating
structured data, to support the construction of future practical projects.

For this new version, all the programming was carried out on a MacBook Air M1
with Sonoma 14 environment with the installation of version 13.3.1.0 and 14 of Wolfram
Mathematica. Wolfram Mathematica is currently supported in other environments such
as Linux, Windows, and macOS. The code found in the book works with both the Pro and
Student versions.

Book Conventions

Throughout the book, you may come across different words written distinctly from
others. Throughout the book, the words command, built-in functions, and functions may
be used as synonyms that mean Wolfram Language commands written in Mathematica.
So, a function will be written in the form of the real name; for example, RandomInteger.

The evaluation of expressions appears in the Mathematica In/Out format; the same
applies to blocks of code.

In[#]:= “Hello World!”
Out[#]= “Hello World!”
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The Layout

The book is written in a compact and focused way to cover the basic ideas behind the
Wolfram Language and cover details on more complex topics. Some chapters have been
revised and redesigned in this new version to focus on novice and advanced topics.

Chapter 1 discusses the starting topics of the Wolfram Language, basic syntax,
and basic concepts with some example application areas, followed by an overview of
the basic operations and debugging techniques, and concludes by discussing security
measures within a Mathematica session.

Chapter 2 provides the key concepts and commands for data manipulation,
sampling, types of objects, and some concepts of linear algebra—the introduction to
lists, an important concept to understand in the Wolfram Language.

Chapter 3 discusses how to work properly with data and the initiation of the core
structures for creating a dataset object, introducing concepts like associations and
association rules are discussed with a conclusion remarking how associations and
dataset constructions can be interpreted as a generalization of a hash table aiming to
expose a better understanding of internal structures inside the Wolfram Language,
including an overview of performing operations on a list and between lists and then
discussing various techniques applied to dataset objects.

Chapter 4 exposes the main ideas behind importing and exporting data with
examples throughout the chapter with common and newly added file formats. It also
presents a very powerful command known as SemanticImport, which can import data
elements that are natural language.

Chapter 5 covers the topic areas for new data visualization, common data plots, data
colors, data markers, and how to customize a plot. Basic commands for 2D plots and 3D
plots are presented, too.

Chapter 6 introduces the statistical data analysis. Starting with random data
generation begins by introducing some standard statistical measures, followed
by a discussion on creating statistical charts and performing an ordinary least
square method.

Chapter 7 exposes the basis for data exploration and reviews a central discussion on
the Wolfram Data Repository. Performing descriptive statistics and data visualization
inside Fisher’s Irises dataset objects is also covered.
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Chapter 8 starts with machine learning concepts and techniques, such as gradient
descent, linear regression, logistic regression, and cluster analysis, including examples
from various datasets like the Boston and Titanic datasets and newly implemented
features.

Chapter 9 introduces the key ideas and the basic theory to understand the
construction of neural networks in the Wolfram Language, such as layers, containers,
and graphs. The MXNet framework in the Wolfram Language scheme is also discussed.

Chapter 10 concludes the book by discussing training neural networks in the
Wolfram Language. In addition, the Wolfram Neural Net Repository is discussed with
an example application, examining how to access data inside Mathematica and the
retrieval of information, such as credit risk modeling fraud detection, and concluding
with the example of the LeNet neural network, reviewing the idea behind this neural
network and exposing the main points on the architecture with the help of the MXNet
graph operations and a final road map on the creation, evaluation, and deployment of
predictive models with the Wolfram Language. In this new version, LLM (large language
model) features are introduced with the connection to GPT services, use of chat cells,
and presentation of the GPT-1 and GPT-2 models.
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CHAPTER 1

Introduction
to Mathematica

The chapter begins with a preliminary introduction to why Mathematica is a useful and
practical tool. It explores the core concepts of the Wolfram Language and its syntax.

It starts by explaining the internal structure of Mathematica and how to add code
effectively. The concept of a notebook is introduced, which is important to understand
the type of format that Mathematica handles. The chapter examines this interface class
and demonstrates how notebooks simultaneously support code and text. In this way,
anotebook is a computable text file. Next, you inspect various add-ons that can be
employed within a notebook to help the user maximize their code’s capabilities.

The next section demonstrates how to write expressions in Mathematica, examining
topics such as arithmetic, algebra, symbols, global and local variables, built-in functions,
date and time formats, plotting functions, logical operators, performance measures,
delayed expressions, and accessing Wolfram Alpha. You then look at how Mathematica
performs code computations, including its accepted varieties of inputs and the
evaluation of these inputs. This chapter concludes with tips for seeking support within
Mathematica, managing and handling errors, searching for solutions, and safely dealing
with security concerns in notebooks that incorporate dynamic content.

Why Mathematica?

Mathematica is a mathematical software package created by Stephen Wolfram more
than 35 years ago. Its first official version (Mathematica 1.0) emerged in 1988 and
was created as an algebraic computational system capable of handling symbolic
computations. However, Mathematica has established itself as a tool capable of
performing complex tasks efficiently, automatically, and intuitively. Mathematica is

© Jalil Villalobos Alva 2024
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widely used in many disciplines like engineering, optics, physics, graph theory, financial
engineering, game development, and software development.

Mathematica provides a complete, integrated platform to import, analyze, and
visualize data. Mathematica does not require plug-ins. It also has a mixed syntax,
performing both symbolic and numerical calculations. It provides an accessible way
to read the code with the implementation of notebooks as a standard format, which
also serves to create detailed reports of the processes carried out. Mathematica can
be characterized as a powerful platform enabling efficient and concise forms of work.
Among computer languages, the Wolfram Language falls into the group of programming
languages classified as a high-level, multi-paradigm interpreted language. Unlike
conventional programming languages, the Wolfram Language adheres to unique rules,
facilitating order and clear, compact code composition.

The Wolfram Language

Mathematica is powered by the Wolfram Language, an interpreted high-level
programming language that covers both symbolic and numeric capabilities. To
understand the Wolfram Language, it is necessary to remember that the language’s
core nature resembles a normal mathematical text, as opposed to other programming
languages’ syntax. The following describes some remarkable features of the Wolfram
Language.

o The first letter of a built-in function word is uppercase and is also
human-readable.

e Any element introduced in the language is taken as an expression.

o Expressions take values consisting of the Wolfram Language atomic

expressions.
— A symbol made up of letters, numbers, or alphanumeric contents
— Four types of numbers: integers, rational, real, and complex

— The default character string is written within the quotation marks (“ ")
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e In Mathematica, there are three ways to group expressions.
— Parentheses group terms within an expression (exprl + expr2) + (expr3).

— Command entries are enclosed by brackets [ |. Also, square brackets enclose
the arguments of a built-in function, F[x].

— Mathematica uses curly braces {} (e.g., {a, b, c}) to represent lists, arrays,
matrixes, and other collections.

Structure of Mathematica

Before entering code, you need to get the layout of Mathematica. To launch
Mathematica, go to your Applications folder and select the Mathematica icon. This
action brings up the new welcome screen, illustrated in Figure 1-1.

[ ] Welcome to Wolfram Mathematica

SIGN IN to access your # WOLFRAM 14.0
Wolfram Cloud services... FOR DESKTOP

RECENT FILES
|#] 1. SourceCode...pter_10.nb M‘ \ I I IEM‘ \ I IC‘ \

|#] 2. SourceCode...pter_09.nb
[#] 3. SourceCode...pter_08.nb

[#] 4. SourceCode...pter_08.nb

Hello, %
[#] 5. SourceCode...pter_07.nb ®! ¥
[# 6. SourceCode...pter_06.nb Getting Started v Dac C ity Open Courses
B3 open...
) Version: 14.0.0.0 Show atstartup ()

& Open from Cloud

b >

Figure 1-1. The default welcome screen for Mathematica’s latest version
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Tip The startup window offers valuable information for new and adept users,
including the Mathematica version, access to documentation, resources, and the
Wolfram community, among other things.

After the startup screen appears, you can create a new notebook by selecting the New
Document button, and a blank page should appear like the one shown in Figure 1-2.
New documents can also be created by selecting File » New » Notebook or with the
38+N (macOS) or Ctrl+N (Win) keyboard shortcut command.

[ XN | untitled-1 125%
B v [ v [+ msentcell.. vim B % Pd @ FEZ2L DOEQ

Figure 1-2. A blank notebook ready to receive input

The blank document that appears is called a notebook, and it’s the core interaction
between the user and Mathematica. Notebooks can be saved locally from the menu bar
by selecting File » Save (or Save as). Initializing Mathematica always exhibits an untitled
notebook. Notebooks serve as the standard document format. They can be customized
to display text alongside computations. However, the key feature of Mathematica lies
in its capacity to perform computations, extending beyond numerical calculations,
regardless of the notebook’s purpose.
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Note Mathematica version 13.1 introduced a new default assistant toolbar.

Mathematica’s notebooks are separated into input spaces called cells. Cells are
represented by the square brackets on the notebook’s right side. Each input and output
cell has its bracket. Brackets enclosed by larger brackets are related computations,
whether input or output. Grouped cells are represented by nested brackets that contain
the whole evaluation cell. Other cells can be grouped by selecting and grouping them
with the right-click option. Cells can also have the capability to show or hide input by
simply double-clicking the cells. To add a new cell, move the text cursor down, and a flat
line should appear, marking the new cell ready to receive input expressions. The plus
tab in the line is the assistant input tab, showing the various types of input supported by
Mathematica. Figure 1-3 displays grouped input (In[-]) and output (Out[-]) cells.

Inf- = "Hello World"
outf = Hello World ]

Figure 1-3. Expression cells are grouped by input and output

There are four main input types. The default input is the Wolfram Language code
input. Free-form input is involved with Wolfram knowledge-base servers, and the results
are shown in Wolfram Language syntax. Wolfram Alpha query is associated with results
explicitly shown on the Wolfram Alpha website. External Language Input is built-in
support for common external programming supported by Mathematica.

There are four main input types.

e Default input: Wolfram Language code input

o Free-form input: involved with Wolfram knowledge-base servers and
the results are shown in Wolfram Language syntax

¢ Wolfram Alpha query: associated with results explicitly shown on the
Wolfram Alpha website

» External language input: built-in support for common external
programming supported by Mathematica

These are illustrated in Figure 1-4.
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B v [ v |4 msertcell.. vim g ¥ @ Ea
l1+1(x — This 1is Wolfram code 1input =x)

E —» This is Free-form input

ﬁ —» This is Wolfram Alpha Query input

— This 1is External language 1input
a4
(Ruby)

@ Wolfram Language Input (default)

E Free-form Input =
% Wolfram|Alpha Query =

External Language Input >

T Plain Text $7

“A Other Style of Text...

Figure 1-4. Main input types in Mathematica

Tip Keyboard shortcuts for front-end instruction commands are shown on the
right or left side of each panel.

Design of Mathematica

Now that you have the lay of the land of Mathematica’s basic format, you can learn

the internal structure of how Mathematica works. Inside Mathematica, there are

two fundamental processes: the Mathematica kernel and the graphical interface.

The Mathematica kernel is the one that takes care of performing the programming
computations; it is where the Wolfram Language is interpreted and is associated with
each Mathematica session. The Mathematica interface allows the user to interact with the
Wolfram Language functions and, at the same time, document your progress.

6
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Each notebook contains cells, where the commands that the Mathematica kernel
receives are written and then evaluated. Each cell has an associated number. There are
two types of cells: the Input cell and the Output cell. These are associated with each other
and have the following expressions: In[n]:= Expression and Out [n]: = Result or (“new
expr”). The evaluations are listed according to which cell is evaluated first and continue
in ascending order. When quitting the kernel session, all the information, computations
made, and stored variables are relinquished, and the kernel is restarted, including the
cell expressions. To quit a kernel session, select Evaluation » Quit Kernel » Local.

Tip To start a new kernel session, click Evaluation » Start Kernel » Local.

To begin, try typing the following computation.

In[1] (11*17) + (4/2)
Out[1] = 189

The computation shows that In and Out have a number enclosed. This number is the
number associated with the evaluated expression.

A suggestion bar appears after every expression is evaluated (see Figure 1-5).
The suggestion bar in Mathematica is always visible unless the user hides it. But the
suggestion bar offers suggestions for possible new commands or functions to be applied
to the generated output. The suggestion bar can sometimes be helpful if you are unsure
what to code next; if used wisely, it might be helpful.

prime factorization (*| divisors (*' name (*/ binary form (*| more =1 =

Figure 1-5. Suggestion bar for more possible evaluations

The input form of Mathematica is intuitive; to write in a Mathematica notebook,
you just have to put the cursor in a blank space, and the cursor indicates that you are
inside a cell that has not been evaluated. To evaluate a cell, click the keys [Shift + Enter],
instructing Mathematica kernel to evaluate the expression written. The next chapter
looks at the new form to evaluate expressions using the new toolbar.

To evaluate the whole notebook, go to the Evaluation tab on the toolbar and
select Evaluate Notebook. If the execution of calculations takes more time than
expected, you make a wrong execution of code, or if you want to seize a computation,
Mathematica provides several ways to stop calculations. To abort a computation, go to
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Evaluation » Abort Evaluation. Alternatively, use the keyboard shortcut in Windows
[Alt +.] or macOS [38 + .].

When a new notebook is created, the default settings are applied to every cell (input
style). Nevertheless, preferences can be edited in Mathematica with various options. To
access them, go to Edit » Preferences. On macOS, the Preferences (settings) menu is
located in the application menu, go to Mathematica » Settings.

Once opened, a pop-up window appears (see Figure 1-6) with multiple tabs
(Interface, Appearance, Al Settings, etc.). Basic customizations involve magnification,
language settings, and other general instructions. The Appearance tab is related to code
syntax color (i.e., symbols, strings, comments, errors, etc.). The Al Settings tab is the new
tab associated with the LLM (large language model) evaluator. Other options belong to
advanced settings that are not used in this book. Feel free to navigate each option.

® Preferences

Interface

L2 st saown Interface Settings

2 A.DEIeﬁ’!a_ncf e Global Magnification: 100% [5]

— Al Settings Language Settings

oo Language: English ]

-',-l Secunty . Translations for user interface may not be ovailable in some longuoges.

: . T Code caption language: Same as user interface language 8

Y Kernels Enabled (non-English languoges only)

Smart quotes: Enable for normal text editing and pasting
7 Internet & Mail

i Advanced Input Assistance Settings

Use fuzzy matching for autocompletions
List only case-sensitive matches for autocompletions
Automatically insert matching delimiters while typing

Check spelling as you type

General Settings

Show at startup: Welcome screen a

Ruler units: Inches 8

Show cell group opener icons:  Inline 8

Recently opened files history length: 15

Figure 1-6. Preferences window
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Later, you learn about in-depth settings and customization options for the notebook
interface that allow you to tailor preferences.

Mathematica Environment

This section explores the user interface of Mathematica, with a focus on the notebook
interface, as well as the other user experience functionalities.

Notebook Interface

Mathematica is always on the quest to improve user experience and boost productivity.
In version 13.1, a big enhancement has been introduced—the seamless integration of a
default toolbar (see Figure 1-7) across all standard notebook user interfaces (UIs).

E} v (8] v |4 insertCel v| m) | 9 % d @ @ = [F B S P m @[:] Q

Figure 1-7. The new Ul default toolbar showcases essential tools and
functionalities for efficient code development. Toolbar icons may vary by
Mathematica version

This new toolbar (described left to right) includes several new features to enhance
user experience. Evaluate allows users basic and costume code evaluation. Abort
lets users cancel queued cells and remove chosen ones; both options are shown
in Figure 1-8. These features can also be accessed via the keyboard, as previously
mentioned.



CHAPTER 1 INTRODUCTION TO MATHEMATICA

= [a v E v :_-|- Insertal:.__ B

Evaluate: fo) v |+ msertcell... vim 8] b &

J Selected Cells {r«J T AbortEvaluation

¥ Abort All Cells in Queue
§ Initialization Cells

Jx Remove Selected Cells from Queue
is] Notebook
Evaluation Controls

s Parallel Kernel Status...

i3]t Localize Symbols to Notebook

© Global Notebook

Figure 1-8. Extensive options for code evaluation and abort options in a notebook
interface; the double arrow-like shape hides the toolbar

The other options integrate text cell formatting, offering styling options like cell style
(title, subtitle, etc.) and cell color background. Users also benefit from the convenient
cell management functions, such as grouping, dividing, merging cells, and inserting
input/output of cells, all reduced to simple buttons. Continuing to options like extend
selection, convert natural language into Wolfram Language code, collapse cells, insert
comment, math form input, and LATEX rendering, users also have access to drawing
canvas and hyperlink features. Finally, the rightmost section of the toolbar includes
buttons for chat notebooks (utilizing LLM features), saving or publishing to the Wolfram
Cloud, accessing documentation (local or web-based), and searching within the

notebook.

Note Different buttons may appear based on the selected cell type where the
cursor resides, ranging from text to code formatting. Figure 1-7 shows for Wolfram
Language code input cell. Figure 1-9 shows for text display cell.

B I | U|v H

Figure 1-9. Text cell options for bold, italic, and underline and insert code text
evaluation and abort options in a notebook interface

10
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This essential addition provides a coherent user experience and fosters a more
streamlined, productive programming environment within Mathematica. For example,

Figure 1-10 shows a code input cell with a colored background.

HEE JE Bl %% s vy FBYL, DEQ
(11%17) + (4/2) Cell Appearance
Out[-]= 189 Background
In[ = 0+0 fFramesy [l (20t 2 O
ti-]= @ v
Code f[x] :

&/ Edit all edges together

Dingbat | Mone

Cancel

Figure 1-10. Light-green code input cell, with a 2pt black top margin

Besides the default toolbar, more improvements were made to the other toolbars,
Ruler, Formatting, Templating, and Testing, as Figure 1-11 shows. The last two are not
shown since they are more associated with a specific type of programmatic notebook,

which is beyond the scope of this book.

Input (]

100% @ ?

B &~ |+ mence ) Bl B P e O PRSP D®EBEQ

2 a 4 s [ 7 8 L] % 1 1 L)
i - 4 ] 3

Figure 1-11. Notebook application toolbar menu showcasing three distinct
toolbars: formatting (upper), default (central), and ruler (lower)

Note To show or hide any toolbar, go to Window » Toolbar. Toolbar availability
varies by version.

11
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The prominent toolbar Ruler indicates and adjusts the text margins of specified cells
using draggable marks, offering control over the text format. The Formatting toolbar
brings advanced textual design options, while the Templating and Testing toolbars
(not shown in the image) facilitate the efficient creation of new templates and testing
programmatic notebooks.

Text Processing

Notebooks can include explanatory text, titles, sections, and subsections. The
Mathematica notebook resembles a computable document rather than a programming
command line. Text is useful for describing code and can be inserted into cells as text
cells, which often relate to the corresponding computations. Mathematica allows you to
work with multiple forms of text cells, including lines of text, chapters, formulas, items,
bullets, and more. Like a word-processing tool, notebooks can have titles, chapters,
sections, and subsections. By selecting Format » Style, additional options become
available. For more control over style cells, use the formatting toolbar (see Figure 1-12)
found by navigating to Window » Toolbar Formatting in the menu bar. The formatting
toolbar streamlines cell styling, allowing users to justify text left, center, right, or fully.

Input =l Aa 128 @ ?

Back Style Alignment Fonts Magnification Print Help

Figure 1-12. The Style Format toolbar has a user-friendly interface for
customizing text appearance

The cell types can be arranged in different forms, depending on the notebook’s
format. There are numerous forms to add text in a cell; the most straightforward is
to type the text in the input cell, and the Assistant tab input automatically suggests
converting it to text. Another alternative is to choose the cell type from the toolbars, with
the input chooser or the shortcut (§8+7 or Ctrl+7).

Styled text can be created with the formatting toolbar or by selecting the desired style
in Format » Style » (title, chapter, text, code, input, etc.). In the Style menu, note the
keyboard shortcuts for all the available text styles. It can be used instead of going into
the menu bar every time. Plain text can also be converted into input text by formatting
the cell in the Input style. There is no restriction in converting text; text can be converted
into whatever style is supported in the format menu.

12
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Note To convert text, highlight the text or select the cell that contains the text.

As shown in Figure 1-13, styled cells look different from others. Each style has
a unique order by which a notebook is organized into cell groups. A title cell has a
higher order in a notebook, so the other cells are anchored to the title cell, as shown
in Figure 1-13, but it does not mean that if another title cell is added, both titles are
grouped. If the title cell is collapsed, the title is the only displayed text.

( XN ] |# Untitled-1.nb 100% v

B [ v |+ insertcell... vim 8 5 % a9 @ ¥ 0O&®EQ

Thisis a Title

This is a subtitle

This is a Section Header

This is a subsection header

This is a subsubsection header

This is a common text cell

= jtem list

= sub item list

Figure 1-13. A notebook with different format styles; this includes title, subtitle,
section, subsections, plain text, item list, and subitem list

Text can be given a particular style, changed, and different formats applied
throughout the notebook. By selecting Font or Show Fonts (macOS users) from the
Format menu, a pop-up window appears, allowing you to change the font, font style,
size, and other characteristics.

13
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Tip To clear the format style of a cell, select the cell and then the right-click
button and choose Clear Formatting.

Palettes

Palettes show different ways to enter various commands into Mathematica. A

diverse quantity of special characters and typesetting symbols are used in the

Wolfram Language, which can be typed within expressions to more closely resemble
mathematical text. The best way to access these symbols is by using the pallets built

into Mathematica. To select a simple pallet, go to Pallets »Basic Math Assistant. Each
pallet has different tabs that stand for different categories with distinct commands and a
variety of characters or placeholders that can be inserted using the pallets. To enter the
symbol, type ESC followed by the name of the symbol, then ESC again. Try typing (ESC a
ESC) to type the lowercase alpha Greek letter. Figure 1-14 shows the basic math assistant
pallet in Mathematica.

14



CHAPTER 1 INTRODUCTION TO MATHEMATICA

®
+ Calculator
> Basic Commands
- Typesetting ®
f | B X | e | ¥
ST R A EECNEC
s ; ': sl &l ol @] @
“m||om | Ow| = | & | & |[=] | |s]
oo (o o) El IE) o
o o oo oo o
o ( o ) ( oo ) { oo -
[ a a
8y 0 fgp0 e ;}
Ind‘n _E odo Eg=uu ]'E=DD
Help and Settings

Figure 1-14. The Basic Math Assistant palette

Note Hovering the mouse cursor over a symbol or character, an information tip
pops up, showing the keyboard shortcut. This also applies to placeholders.

Notebook Style and Features

In the new versions comprising version 13.0 and beyond, Mathematica has been
refining and polishing its notebook interface by adding new features for a smoother user
experience. One considerable enhancement involves the handling of extensive outputs
within the user interface. Users can efficiently manage and interpret sizable outputs
without overwhelming the notebook display or causing memory issues. The following

15
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example generates a large amount of data, which can be suppressed, displayed, or even
stored in the notebook (see Figure 1-15).

In[2]:= Table[i"12,{i,1,10"4}]
Out[2]=

{1, 4096, 531441, 16777216, 244140625, 5
995210 545932 663 893 703406 711 545 535240 D98 300 297216,
996 485 934064 807 576 113422 822 672 620129 702 142 891441,
997 602 638240 791 746 619 125 863 667 087 366 758 154 244096,
998 800 659 780 049 492 080923 920 804 949 780 D6 599 880001,
1000 000 960 006 660 000 000 0O 600 0O OO BOO BB BO OOE B0 |

Size inmemory: 0.7 ME 4 Showmore | i Showall | [-++ Iconize ¥ @

—»| Store full expression in notebook

Figure 1-15. Large output menu displaying additional user control

Figure 1-15 shows that the input code returns a responsive output. Users can expand,
show, iconize, or select to store the whole data expression. Additionally, the data can
be fully stored in the notebook, preserving the entire output for future manipulation
and consuming 0.7MB of memory. If you iconize large outputs, a summary of the data
structure, length, and size is displayed. See Figure 1-16.

In2):= Table[iA12, (i, 1, 1044}]
out[2]= [{.-} -

Head: List
Length: 10000
Byte count: 682 696

% Uniconize
Figure 1-16. List structure with 10,000 items and a byte count of 682,696

Another aspect that has been renewed is the preference settings. The whole settings
display has undergone notable refreshment in terms of customization options, as
illustrated in Figure 1-6. Specifically, regarding the notebook front end, by selecting
the Appearance tab (see Figure 1-17), users can tailor their choices to optimize their
notebook code style, resulting in a more personalized experience.

16



— Interface

- Appearance
Syritax, graphics, variables

— Al Settings

o Security

- Kemnels

rz, Internet & Mail

7 Advanced

CHAPTER 1 INTRODUCTION TO MATHEMATICA

Preferences

Appearance Settings

Syntax Coloring Debugger Numbers Graphics

@ Enable automatic syntax coloring

Local Variables Errors and Warnings Other

The local variables of Medule and With
Module[{x =2, y=3, e}, e =2; {x, y)**"]

Function arguments and pattern names
Option: [ Italic

funclx_, p_]:={x, x?, x*}
Variables made special by use in arguments

Table[x", {x, 1, 6), {p, 1, 5)]

U Reset to Defaults...

Figure 1-17. Notebook settings customization

Figure 1-17 shows Appearance Settings window. The Syntax Coloring tab is related
to the visual representation of code elements (variables, errors, automatic coloring,
highlighting, etc.). The Debugger tab includes coloring options about debugger

highlights, breakpoints, and evaluation points. The Numbers tab offers multiple choices

based on formatting and configuration choices, a few mentions are digits control

numerical notation, among others. The Graphics tab allows you to choose the render of

2D and 3D graphics, from lowest to highest quality.

Note To change the colors of the code syntax options in the Appearance
windows. Select the variables checkbox and click the green square. A color wheel
pops up, allowing you to change the color. This process is the same for the three
code setting options. Also, as you can see, there are different tabs.

17
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Expression in Mathematica

Basic arithmetic operations can be performed in Mathematica with a common,
intuitive form.

In[3]:= (3*3) + (4/2)
Out[3] = 11

Mathematica also provides the capability to use a traditional mathematical notation.
To insert a placeholder in the form, click [Ctrl + 6]. To indicate the product operation, use
a space between expressions or add an asterisk (*) between.

In[4]:=100%* 10
Out[4]= 100000

In[5]:
out[5]

=21
=2

The standard Mathematica format aims to deliver the value closest to its regular
form, so when dealing with decimal numbers or general math notation, Mathematica
always gives you the best precision (involving, in some circumstances, infinite

precision). However, it allows you to manipulate expressions numerically, to display
numeric values, you use the N function. To insert the square root, type [Ctrl + 2].

In[6]:= 1/2 +42
Out[6]= 1/2 ++/2

In[7]:= N[1/2++2]
Out[7]= 1.91421

You can manage the number precision of a numeric expression. In this case, you

establish 10 decimal places.

In[8]:= N[77/13,10]
Out[8]= 5.923076923

For a shortcut to work with the decimal point, just type a dot (.) anywhere in the
expression, and with this, you are telling Mathematica to calculate the value with
machine precision.

18
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4. 2
In[9]:= 5 + I
Out[9]= 2.15385
Mathematica performs the sequence of operations from left to right, in line with the
written expression, while adhering to the standard order of mathematical operations. To
evaluate an expression without showing the result, you add a semicolon (;) after the end
of the first term. In the following example, the 11/7 is evaluated but not shown, and the

other term is displayed.

In[10]:= 11/7; Sqrt[4]
Out[10]= 2

The last form of code is called a compound expression. Expressions can be written in
a single line of code, and with compound expressions, they are evaluated in the intended
sequence. If you write the semicolon in each expression, Mathematica does not return
the values, but they are evaluated.

In[11]:= 3*4; 100*100; Sqrt[4];Power[2,2];
Out[11]=

There is no output, but all the expressions have been evaluated. Later, you use
compound expressions to understand the concept of delayed expressions. This basic
feature of the Wolfram Language makes it possible for expressions to be evaluated but
not displayed to save memory.

Assigning Values

In the Wolfram Language, each variable requires a unique identifier that distinguishes
it from the others. A variable in the Wolfram Language can be a union of more than one
letter and digits; it must also not coincide with protected words—reserved words that
refer to commands or built-in functions. Keep in mind that the Wolfram Language is
case-sensitive. User variables are advised to be lowercase to avoid confusion with built-
in symbols.

Note Mathematica supports assigning values to variables, which enables the
effective handling of algebraic variables.
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Undefined variables or symbols appear in blue font, while defined or recognized
built-in functions appear in black. It is also true that the previously mentioned
characteristics can be changed in the preferences window.

Use the keyboard shortcut Esc pi Esc (pi number) to write special constants and
Greek letters. A symbol of a vertical ellipsis (:) should appear every time Esc is typed.
Another choice is to write the first letter of the name, and a sub-menu showing a list of
options should appear.

In[12]:= a=Pi

x=11
zZ+y

Out[12]= =
Out[13]= 11

Out[14]= y+z

In the previous example, Mathematica expresses each output with its cell, even
though the input cell is just one. That is because Mathematica gives each cell a unique
identifier. To access previous evaluations, the symbol (%) is used. Additionally,
Mathematica lets you retrieve previous values using the cell input/output information by
the % # command and the number of the cell or by explicitly writing the command with
In [# of cell] or Out [# of cell]. As demonstrated in the next example, Mathematica gives
the same value for each expression.

In[15]:=
%12
In[12]
Out[12]

Out[15]
Out[16]
Out[17]

T
P
T

To determine whether a word is reserved within the Wolfram Language, use the
Attributes command; this displays the attributes to the associated command. Attributes
are general aspects that define functions in the Wolfram Language. When the word
“Protected” appears in the attributes, it means that the word of the function is reserved.
The next example shows whether the word “Power” is reserved.

20
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In[18]:= Attributes[Power]
Out[18]= {Listable,NumericFunction,Oneldentity,Protected}

As seen in the attributes, “Power” is a protected word. Importantly, most of the built-
in functions in Mathematica are listable—that is, the function is interleaved to the lists
that appear as arguments to the function.

Variables can be presented in a notebook in the following ways: (1) global variables,
or those that are defined and can be used throughout the notebook, like the ones in
the earlier examples; and (2) local variables, which are defined in only one block that
corresponds to what is known as a module, in which they are only defined within
amodule. A module has the following form: Module [symboll, symbol 2... body of
module].

In[19]:= Module[{1=1,k=2,h=3},h Sqrt[k+1l] + k + 1]
out[19]= 3 + 3.3

Variables inside a module turn green by default; this is a handy feature for seeing the
code inside a module block. A local variable only exists inside the module, so if you try to

access them outside their module, the symbol is unassigned, as shown in the following

example.

In[20]:= {1,k,h}
Out[20]= {1,k,h}

Variables can be cleared with multiple commands, but the most suitable command
is the Clear[symbol], which removes assigned values from the specified variable or
variables. So, if you evaluate the variable after Clear, Mathematica treats it as a symbol,

and you can check it with the command Head; Head always gives you the head of the
expression, which is the type of object in the Wolfram Language.

In[21]:= Clear[a,x]
And if you check the head a, you see that “a” is a symbol.

In[22]:= Head[a]
Out[22]= Symbol

Symbols or variables assigned during a session remain in the memory unless they
are removed or the kernel session ends.
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Note Remove is an alternative to Clear.

Built-in Functions

Built-in commands or functions are written in common English with the first letter
capitalized. Some functions have abbreviations, while others employ PascalCase
notation with two capital letters. Here, different examples of functions are presented.
Built-in functions and group expressions often require arguments, which are values that
the function needs to execute the correct operation. Functions may or may not accept
arguments; they are separated by commas.

In[23]:
Out[23]

RandomInteger| ]
0

Note Randominteger, with no arguments, returns a random integer from the
interval of 0 to 1, so do not panic if the result is not the same.

In[24]:= Sin[90 Degree] + Cos[0 Degree]
Out[24]= 2

In[25]:= Power[2,2]

Out[25]= 4

Built-in functions can also be assigned symbols.

In[26]:= d=Power[2,2]
F=Sin[n] + Cos[x]

0ut[26]= 4

Out[27]= -1

In[28]:= Clear[d,F]

Some commands or built-in functions in Mathematica have options that can be
specified in a particular expression. To see whether a built-in function has available
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options, use Option. In the next example, the RandomReal function creates a pseudo-
random real number between an established interval.

In[29]:= Options[RandomReal]
Out[29]= {WorkingPrecision — MachinePrecision}

RandomReal has only one option for specifying specific instructions within the
WorkingPrecision command. The default value for this option is MachinePrecision.
WorkingPrecision defines the number of digits of precision for internal computations,
while MachinePrecision is the symbol used to approximate real numbers, denoted by
$MachinePrecision. To see the value of MachinePrecision, type $MachinePrecision. The
next example observes the difference between using default values for an option and
employing custom values.

In[30]:= RandomReal[{0,1},WorkingPrecision->MachinePrecision]
RandomReal[{0,1},WorkingPrecision->30]

Out[30]= 0.19858

Out[31]= 0.451259323577871140781571594337

Tip In the Wolfram Language, global constants, which can be considered
environmental variables, always start with a dollar sign (e.g., $MachinePrecision).

The first one returns a value with six digits after the decimal point, and the other
returns a value with 30 digits after the decimal point. However, some built-in functions,
such as Power, do not have any options associated with them.

In[32]:
Out[32]

Options[Power]

{}

Dates and Time

The DateObject command provides results for concretely manipulating dates and times
(see Figure 1-18). Date and time input and basic words are supported.

In[33]:=DateObject]]
Out[33]=
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Wed 13 Sep 2023 12:44:31 GMT -6

Figure 1-18. The date of Wed 13 Sept 2023 and time zone

DateObjects with no arguments give the current date, as shown in Figure 1-19.
Natural language is supported in Mathematica—for instance, getting the date after Wed
13 Sept 2023.

In[34]:= Tomorrow
Out[34]=

Thu 14 Sep 2023

Figure 1-19. The date of Thu 14 Sep 2023

The date format is entered as year, month, and day. It also supports string date
formats and different calendars, as the next code dates show.

In[35]:= DateString[DateObject[{2020,6,10}]]
Out[35]= Wed 10 Jun 2020

In[36]:= DateString[DateObject[Today,CalendarType->"Julian"]]
DateString[DateObject[Today,CalendarType->"Jewish"]]

Out[36]= Wed 31 Aug 2023

Out[37]= Yom Revi'i 27 Elul 5783

The command also supports options that are related to a time zone.

In[38]:
out[38]

DateString[DateObject[{2010,3,4},TimeZone->"America/Belize"]]
Thu 4 Mar 2010

Your current location’s sunrise and sunset times can be calculated (support data is
downloaded).

In[39]:= DateString[Sunset[Here,Now]]
DateString[Sunrise[Here,Yesterday]]

Out[39]= Wed 13 Sep 2023 18:41:27
Out[40]= Tue 12 Sep 2023 06:23:34
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To get the current time, use TimeObject with zero arguments (see Figure 1-20). It can
be entered in the format of 24h or 12h. To introduce the time, enter the hour, minute,
and second.

In[41]:= TimeObject[]
Out[41]=

13:22:37

Figure 1-20. Wed 13 Sep GMT-6 time

Time zone conversion is supported; convert 5 p.m. from GMT-5 Cancun time to
Pacific Time Los Angeles. You can also use DatesString to use pure string objects.

In[42]:=

DateString[TimeZoneConvert[TimeObject[{17,0,0},TimeZone-> "America/
Cancun"],"America/Los_Angeles"]]

Out[42]= 15:00:00

Strings

Text can be useful when a description of the code is needed. Mathematica allows you to
input text into cells and create a text cell related to your computations. Mathematica has
different forms to work with text cells. Text cells can have lines of text, and depending on
the purpose of the text, you can work with different text formats, like creating chapters,
sections, or just general text. In contrast, to text cells, you can introduce comments to
expressions that need an explanation of their purpose or just a description. For that, you
simply write the comment within the symbols (* *). And the comments are shown with
different colors; comments also always remain as unevaluated expressions. Comments
can be single-line or multiline.

Mathematica can work with strings. To input a string, enclose the text in quotation
marks “text”; Mathematica knows that it is dealing with text. Characters can be whatever
you type or enter into the cells.

In[43]:
Out[43]

"Hello World" (*This is a comment*)
Hello World
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Mathematica assumes that what you enter is text by being enclosed in quotation
marks, although you can always impel it to explicitly treat it as text using the ToString
command. You can check the head of the expression to make sure you are dealing with

strings.

In[44]:= ToString[23.423563]

Out[44]= 23.4236

In[45]:= % // Head(*We use Head to know what type of object is*)

Out[45]= String
Strings appear without apostrophes when entered because it is the default format.

In[46]:= "Welcome to Mathematica"

Out[46]

Welcome to Mathematica

Whenever you put the type cursor over a string in Mathematica and enter input, it
automatically appears surrounded by apostrophes. In this way, you can know you are
working with strings.

Later, you learn about the functionality of AtomQ. The following demonstrates that
strings cannot have subexpressions in the Wolfram Language. The output, true, indicates
that the string input is a single, indivisible unit.

In[47]:
Out[47]

AtomQ["The sky is blue and tomorrow is expected to rain"]
True

You can also separate a string by characters.

In[48]:= Characters["Hello World"] (*Function that breaks the string into
its characters*)
OUt[48]= {H,e,l,l,o, ,W,O,I,l,d}

Replace particular characters in a string with a rule operator (— or ->, in plain text).

In[49]:= StringReplace["Hello this is a string ",{"h","H"}->"4"] (*This
function replaces the string each time it appears for rule of the
pattern,that is 4*)

Out[49]= 4ello t4is is a string
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Convert a text string to uppercase or lowercase.

In[50]:= ToUpperCase["hello my name is"]
Out[50]= HELLO MY NAME IS
In[51]:= ToLowerCase["HELLO MY NAME IS"]

Out[51]= hello my name is

Join a text string.

In[52]:= StringJoin["Nice","to","have","you","back"]
Out[52]= Nicetohaveyouback

Or with the string join symbol (<>).

In[53]:= "Nice"<>"to"<>"have"<>"you"<>"back"
Out[53]= Nicetohaveyouback

Basic Plotting

The Wolfram Language offers a basic description to easily create two-dimensional

and three-dimensional graphics. It has a wide variety of graphics, such as histograms,
contour, density, and time series. To graph a simple mathematical function, use the Plot
command, accompanied by the variable symbol and the interval where you want to
graph (see Figure 1-21).

In[54]:= Plot[x"3,{x,-20,20}]
Out[54]=
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5000 -

-5000

Figure 1-21. A cubic plot

The plot function also supports handling more than one function; simply gather the
functions inside curly braces. Figure 1-22 shows the two functions in the same graph;
each with a unique color.

In[55]:
Out[55]

Plot[{Tan[x],x},{x,0,10}]

15¢

10+

=10}

Figure 1-22. Multiple functions plotted
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You can also customize graphics in color if the curve is thick or dashed; this is done

with the PlotStyle option (see Figure 1-23).
In[56]:= Plot[Tan[x],{x,0,10},PlotStyle->{Dashed,Purple}]

out[56]=

L}
]
[}
[}
L}
L ]
]

-6
Figure 1-23. Dashed tangent function

The PlotLabel option allows you to add basic descriptions to your graphics by adding
a title. On the other hand, the AxesLabel option lets you add names to axes, both x and y,

as depicted in Figure 1-24.
In[57]:= Plot[E"x,{x,0,10},PlotStyle->{Blue}, PlotLabel -> "ex ,AxeslLabel->

{"x-axis","y-axis"}]

Out[57]=
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y-axis

8000 -
6000
4000

2000

2 4 6 8 10

Figure 1-24. A plot with title and labeled axes

Logical Operators and Infix Notation

Infix notation and logical operators are commonly used in logical statements or
comparisons of expressions, and the result values are either true or false. Table 1-1
shows the relation operators of the Wolfram Language.

Table 1-1. Operators and Their Definitions

Definition Operator Form
Greater than >

Less than <

Greater than or equal >

Less than or equal <

Equal =

Unequal I=or #

Structural Equality ===

Relational operators, also called comparison operators and logical binary operators,
check the veracity or falsity of certain relationship proposals. The expressions that
contain them are called relational expressions. They accept various types of arguments,
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and the result can be true or false—that is, they are Boolean results. As you can see, they
are all binary operators, of which two are of equality condition == and !=. These serve to
verify the equality or inequality of expressions.

In[58]:= 6*1>2
Out[58]= True

In[59]:= 6*1<2
Out[59]= False
1

In[60]:=§->=1/2
Out[60]= True

1
In[61]:= 1/4<=5
Out[61]= True

In[62]:
out[62]

3.12 == 2.72
False

x l=~-1

True

In[63]:
out[63]

Ul
N

In[64]:= 2===2.
Out[64]= False

Boolean operands produce a true or false result or test whether a condition is
satisfied. Table 1-2 shows Boolean operators of the Wolfram Language.

Table 1-2. Boolean Operators and Their

Definitions

Definition Operator Form
AND &&or A

OR II'or v

XOR Y

Equivalent =

Negation =
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The AND operator returns a true value if both expressions are true. Otherwise, the
result is false.

In[65]:= 2==1 &% 3.12==2
Out[65]= False

The OR operator returns true if any of the expressions is true. Otherwise, it returns
false. This operator has an analogous operation to the previous one.

In[66]:= 2*2==3]||23%*2==1
Out[66]= False

The XOR operator is an exclusive “or” operator that returns true when both
expressions differ. Otherwise, it returns false when the expressions have the same value.

In[67]:
Out[67]

2==1 \[Xor] 2==2
True

The equivalent operator returns true if expressions are powered from each other.
Otherwise, it returns false.

In[68]:
0ut[68]

Power[1,2] \[Equivalent] 1”2
True

The negation operator, also called logical negation, returns a value that can be an
expression that evaluates to a result. The result of this operator is always a Boolean type.

In[69]:= \[Not]2==1
Out[69]= True

Another approach, instead of using Boolean operators, is to use different functions
with postfix (Q), which consists of testing whether an object meets the condition of the
built-in function. A few honorable mentions are SameQ, UnsameQ, AtomQ, IntegerQ,
and NumberQ. The next example tests whether a number is a float expression or an
integer.

In[70]:=
IntegerQ[1]
IntegerQ[1.]
Out[70]= True
Out[71]= False
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The valuable application of the AtomQ function can tell you whether an expression
is subdivided into subexpressions. Later, you are shown how to deal with subexpressions
with lists. If the result is true, then the expression cannot be subdivided into subterms,
and if it is false, then the expression has subterms.

In[72]:= AtomQ[12]
Out[72]= True

As shown, numbers cannot be subdivided because a number is a canonic
expression; the same applies to strings, as seen before.

Algebraic Expressions

The Wolfram Language can work with algebraic expressions. For instance, perform
symbolic computations, algebraic expansions, and simplifications. Many words used
in common language in algebra are preserved in Mathematica. To expand an algebraic
expression, use Expand.

In[73]:= Expand[ ((x"2)+y"2)*(x+y)]
Out[73]= X"3+x"2 y+x y"2+y"3

Adding a space between variables is the same as adding the multiplication operator.
This can be checked by a*x==a x.

In[74]:= Expand[a x"2*(a x)"3]
Out[74]= a”4 x"5

But be careful when writing algebraic expressions because the ax symbol is not
the same as an x. This also is checked using the SameQ[ax, a x] or the short notation a
X === ax.

To simplify an expanded expression, use Simplify or FullSimplify.
In[75]:= Simplify[x"3+x"2 y+x y~2+y"3]
FullSimplify[x"3+x"2 y+x y"2+y"3]
Out[75]= X"3+x"2 y+x y*2+y"3
Out[76]= (x+y) (x"2+y”2)
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The difference is that the latter tries transformations to simplify the expression more
broadly. To unite terms over a repeated denominator, use Together. To expand into
partial fraction decomposition, use Apart.

In[77]:=

Together[}_+
z z+1 z+2

1 1 ]

2+4z+7°
Z(1+Z)(2+z)
Out[77]= (2+4 z+z°2)/(z (1+z) (2+z))
Out[78]= 1/z+1/(1+z)-1/(2+2)

Apart] ]

Solving Algebraic Equations

Various functions are accessible for finding solutions to algebraic equations. The most
common is the Solve function. The first argument is the equation or expression to be
solved, and the second is for the variable to be solved.

In[79]:
Out[79]

Solve[z"2+1==2,7]

{{z - -1},{z > 1}}

Note As you might remember, equal is expressed as double equal ( == ); do not
use one equal ( =) because that means assigning a value to a symbol or variable.

The result means that z has two solutions: one is -1, and the other is 1. Each result is
expressed in the form of a rule. A rule expression changes the assignment of the left side
to the one on the right side (left — right) whenever it applies. For example, z — 1 is the
same as Rule [z, 1].

To verify the solution, the values of z (-1, 1) must be replaced in the original
equation. For this, you can use the ReplaceAll operator (/.) along with the rule command
— or Rule, which is used to apply a transformation to a variable or a pattern with other
expressions.

In[80]:
Out[80]

z"2+1 /.Rule[z,{1,-1}]

{2,2}

34



CHAPTER 1 INTRODUCTION TO MATHEMATICA

The other option is to type the solutions explicitly in the equation.

In[81]:= {172+1==2, (-1)"2+1==2}
Out[81]= {True,True}

Multiple equations can be solved, too, given a system of equations and a list of
interested variables. To solve the equations, place the system of equations in one list and
the variables in another.

For example, solve the next system of equations.

X+y+z==
6x-4y+5z==3
5x+2y+2z==

The solution is

In[82]:= Solve[{x+y+z == 2, 6x-4y+5z == 3, x+2y+2z == 1},{x,y,z}]
Out[82]={{x—>3,y a%,z a—%}}

Note The results are listed. Lists are essential structures in the Wolfram
Language and are discussed in the next chapter.

The latter process is also applicable to equations assigned to variables. You can write
this with the use of compound expressions.

In[83]:=

EQ1=x+y+z==2;

EQ2=6 x-4 y+5 z==3;

EQ3=x+2 y+2 z==1;
Solve[{EQ1,EQ2,EQ3},{x,y,z}]

OUt[83]={{x—>3,y—>%,z—>—%}}

The Solve function also works with pure algebraic equations.

In[84]:= Solve[{x + y+ z==a, 6 X -4y +52z==Db, xX+2y+22z-==c},
{x, y, z}]

Out[84]= {{x —>2a-c,y —)é(7a—b—c),z —>é(—16a+b+10c)}}
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The Solve function supports expressions with a mixture of logical operators,
expressing y and x in terms of z.

In[85]:= Solve[EQ1 && EQ2, {x, y}]

Out[85]={{x—>%(ll—9z),y - 91_02}}

It also uses the OR operator.

In[86]:= Solve[x"2 + y*2 ==0 || x - 2y == 1, Xx]
Out[86]={{x— — iy}, {x— iy}, {x—> 1 +2y}}

The Solve function returns the solution for each of the equations entered.

Establishing a condition with the AND operator lets you return solutions that satisfy
a condition; for example, the following equation has two solutions 1 and -1, but you can
solve the equation with the condition that z must be different from 1.

In[87]:= Solve[z*-2 + 1 == 2 && z != 1, z]
out[87]= {{z —» -1}}

To obtain more general results, Reduce is used, as shown in the following example.

In[88]:= Reduce[Cos[x]==-1,x]
Out[88]=c,€Z& & (x= = —n+2nc || x= =n+27rc,)

Here, the alternative solutions are separated by the OR operator, and the condition
is established by the AND. So this means that there are two possible solutions —z + 27cl
or 7 + 2zcl and that the constant c1 must be a number that belongs to the integers (Z). In
addition, Reduce can also solve inequalities.

In[89]:= Reduce[h”2+k2<11,{h,k}]

Out[89]= Vil <h< 11 &&-11-h <k<11-}

Here, the simultaneous equations are for h and k. Furthermore, Reduce can show the
combination of equations with certain conditions.

In[90]:=Reduce [a+f*a2= =E,a|

BE0&&  —1=4J1+4ep —1+ 1+4eﬁ
o == 25

0ut[90]= (B ==0& &a ==¢)
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The first solution is that « and  must be the number e and zero. The second solution
is in terms of a and the condition that p must differ from zero.

Using Wolfram Alpha Inside Mathematica

A really good application inside Mathematica uses the Wolfram Alpha computable
knowledge base. Wolfram Alpha can be called from Mathematica with the Wolfram
Alpha query. To enter the Wolfram Alpha query, type the double equal sign before typing
any expression; an orange asterisk with a white equal sign should appear, meaning that
the input typed is a query with natural language. To execute the cell, click the Enter key.

So, for example, algebraic equations can be solved using the Wolfram Alpha query.
Type the double equal sign (==) in an input cell, and the Wolfram Alpha query symbol
should appear (see Figure 1-25). Alternatively, select Wolfram Alpha query as a new
input from the + menu (left of the horizontal line) for a new cell.

In[91]:=

B Solve xA2+y*2== 1 && y+2x==0 ,for {x,y}

Figure 1-25. Wolfram Alpha query input

Out[91]=

Figures 1-25 and 1-26 show the input and output of the Wolfram Alpha query.
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Input interpretation:

e +y2 =1
solve for X,y
y+2x=0
Results: Approximate forms
1 N 2
A== Y = ——
5 ]
1 i 2
Xr= — F=e—
5 5
e_1Ae_2A..is the logical AND function »
Implicit plot:
\
2 \
\
\
\\
\
| \
= 0
1 \
\
\
210 05 00 05 10
F 4
s
X*min & Xmax e
¥min ¥max —2x+y=0

WolframAlpha

Figure 1-26. Wolfram Alpha query output

As shown, the system returns the solutions for x and other calculations. The cell
represents the calculations in the Wolfram Alpha form. Clicking the plus icon shows a
list of different forms of input. To see the equivalent in the Wolfram Language, select the
Input option. The other related way to use Wolfram Alpha is with free-form input. It is
worth mentioning that words associated with Mathematica commands, like Reduce, can
be used too. Figure 1-27 shows the input cell in the free-form input. Clicking the plus
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icon shows more calculations, like in the Wolfram Alpha query. The following code is the
equivalent in the Wolfram Language of input typed. Clicking the code, replace it with the
Wolfram Language syntax.

E] Reduce x"2+y/2== 1 && y+2x==0 ,for {x,v}

Reduce[{x"2 + y"*"2 = 1, ¥ + 2Z%«xX == 0}, {xX, v¥v}]
Figure 1-27. Input code in the free-form input

In[91]:=

Out[91]= (x . L

1
NCRRN -

A clarification here, not just calculations can be made. With Wolfram Alpha, access

)&&y==—2x

to curated data for various topics is available; for example, getting the financial data for a
particular stock in March (see Figure 1-28) or the population of Australia, as depicted in
Figure 1-29.

In[93]:=
Out[93]=

in[o3]:= ] Tesla Stock March

[ Tesla Motors FiuanciaL ent ][ closing price Mar 2023 ]

out[93]= TimeSeri esl ’\.V(" Time: 01Mar2023 to 31Mar 2023 ]
Data points: 23

Figure 1-28. Input and output of the Tesla stock in March 2023. Identified by the
financial entity and returns a TimeSeries object, made possible by the latest version
of Mathematica

In[94]:
out[94]

in[94]:= ] Population of Australia »

Australia -0 [ population ]

Out[94]= 26 400 000 people

Figure 1-29. Input for the population of Australia
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Both free-form input and Wolfram Alpha queries can be useful and practical tools.
For example, if you do not know the appropriate syntax of a function or command, try
using the free-form input in natural language so that, when evaluated, you can get the
equivalent Wolfram Language syntax of that function. Nevertheless, a downside of the
Wolfram Alpha query is that the computations are done outside Mathematica, meaning
that the computations are made on the Wolfram Alpha servers. In contrast, calculations
with free-form input can be reproduced inside Mathematica. Sometimes it is preferable
to work directly with the Wolfram Language to better manage the results, as extracting
results from Wolfram Alpha can be tedious. It should be noted that to access these two
features from Mathematica, it is necessary to have access to Wolfram servers via an
online network.

Delayed and Immediate Expressions

The Wolfram Language has two important features. First, let’s look at how the Set
mechanism works. The symbol = is the script for Set, and :=is for SetDelayed. The Set
mechanism is represented by W = expr. W is the variable you are assigning a value to,
and expr is the expression or value you are assigning to W. This means that Mathematica
evaluates the expression straightaway, then each time the variable or defined function is
called, the value of W is written, and the result is shown. On the contrary, using W:= expr
means that the expression is not evaluated until called, so each time the W is called, it
evaluates the stored expression every time.

In[95]:= W=RandomReall ]
Out[95]= 0.536369

Test whether W equals W.

In[96]:= W==W
Out[96]= True

The condition is true in this case because Set is used for declaring the W variable
with the RandomReal function, which returns a pseudo-random choice from 0 to 1.
The same approach is used for SetDelayed, and the result is false because every time
W appears, the function is called for a new evaluation. You can write the code as a

compound expression.

40



CHAPTER 1 INTRODUCTION TO MATHEMATICA

In[97]:= Clear[W];W:=RandomReal[];W
Out[97]= 0.550058
Let’s check.
In[98]:= W==W
Out[98]= False

The result is false since the RandomReal function is evaluated again each time
W s called. So, the first W evaluates RandomReal, and the second W again evaluates
RandomReal, even though they are the same symbol.

The same approach applies to Rule (—) for immediate evaluation and RuleDelayed
(:>) for evaluation only when used. Consider the following example.

In[99]:=

z=2; (*Assigning 2 to z*)
R=z->z"3; (*Rule example*)
RD=z:>z"3; (*RuleDelayed example*)
R

RD

Out[102]=2— 8

Out[103]=2 > Z°

The expression returns 2 — 8 since z is evaluated immediately, while the expression
7= zA3 delays the evaluation of z/A3 until it is applied. These operators can be used with
the ReplaceAll operator (/.) as previously seen with algebraic equations.

Improving Code

Code efficiency is essential to achieve performance and decrease resource consumption,
leading to faster execution times and improved maintenance. One specific context where
these matters are improving code for increased efficiency and reliability in Mathematica
and Wolfram Language. As a developer, you can achieve greater readability and facilitate
easier troubleshooting by using the built-in functions. Also, built-in symbols are
optimized for efficiency, making them preferable to defining your own.
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Code Performance

In Mathematica, there are many ways to write an expression in the same form. However,
when you carry out long code operations, there may be a better notation to improve the
performance of the code and thus not consume too many computational resources. This
can be achieved by the relative performance of different functions for the development
of the same result. The Wolfram Language provides a measure of this. The timing
function shows the performance in units of seconds to each process in relation to the
value of $TimeUnit, which is the CPU time it takes for the Wolfram Language kernel

to carry out the process. $TimeUnit varies from system to system, so you might get
something different—such as 1/1000.

Note A lower value of $TimeUnit would be considered more precise than using it,
as it provides a higher granularity or resolution in the time measurements.

The following example shows how long it takes to calculate the expression with
a built-in function and a common power expression. Timing returns two values: the
unit time and the calculation result, but the output is suppressed because it is a very
big value.

In[104]:= Timing[Power[10,10"8];]
Out[104]= {1.1401,Null}

In[105]:= Timing[10710"8; ]
Out[105]= {1.54863,Null}

As you see, there is a difference between each; this has to do with how the Wolfram
Language processes each computation and your computer specs. To look at the absolute

In[106]:= AbsoluteTiming[1071078;]; ]
Out[106]= {1.213833,Null}

In[107]:= AbsoluteTiming[Power[10,10"8];]
Out[107]= {1.13189,Null}

There is a difference, too, as in the case with Timing. To restrain a computation by
time, use TimeConstrained. With this command, time constraints can be added to a
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calculation. The evaluation is aborted if the code is still running and the time limit has
been reached. For example, abort the evaluation after 1 second has passed.

In[108]:= TimeConstrained[10710"8,1]
Out[108]= $Aborted

The EchoTiming function has been improved and can display the timing information
of an evaluated expression. EchoTiming supports the latter methods of Timing and
AbsoluteTiming.

In[109]:=

EchoTiming[Power[10,10"8];,"Time in seconds:",Method->Timing]
EchoTiming[Power[10,10"8];,"Time in seconds:",Method->AbsoluteTiming]
Out[109]= Time in seconds: 1.13813

Out[110]= Time in seconds: 1.12619

Handling Errors

Mistakes may be commonplace, as you most commonly develop code as you continue
to learn. When a function fails, Mathematica displays a message below the written
function. The message form provides the name of the function associated with the error,
along with a possible description of the cause of the error.

Next, let’s look at how this works (see Figure 1-30).

In[111]:
Out[111]

StringJoin["hello","I am ",Jeff]
helloI am <>Jeff

==+ StringJoin: String expected at position 2 in hellol am <> Jeff.
Figure 1-30. Error message for the code entered

The associated function in the message appears in red (see Figure 1-20). What
happens here is that the StringJoin function works only for strings, and you are writing a
Jeff variable, not a string, hence the error.

To learn more about the error, click the red ellipsis icon. A menu appears, listing the
different options available to handle the error. To review the error in the documentation,
you must click the error option, which is the option that has an open book icon. This
option takes you to the documentation of the associated function.
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Another option from the pop-up menu that appears is Show Stack Trace. This
option shows you graphically and in blocks how the function and its expressions are
being evaluated. This option is analogous to the Trace command. Let’s look at the next
example error and Figure 1-31.

In[112]:= Power[x/0,2]
Out[112]= ComplexInfinity
1
=+ Power: Infinite expression O' encountered.

Figure 1-31. Error message for infinite expression

Here, the error is that Mathematica encounters a division by zero, which is
undefined, and you can see the trace of the function with Stack Trace in Figure 1-32.

Stack Trace for Power::infy

h g
Message|Power: :infy, z

N
=

Pop Out Copy All

Figure 1-32. Show Trace Stack pop-up window
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Debugging Techniques

In Mathematica, debugging practices help programmers identify, diagnose, and
fix errors or unusual behavior in their written segments of code. Traditional code
operations using the Wolfram Language built-in functions like Trace, Echo, and Print,
among others, let you follow each step of your code as it runs. This makes it easier to
focus on the specific implementation details and not the whole abstract operations
that the code does, providing a flexible and robust sense of what the code or code block
should do.

Since version 13, a few improved built-in functions, like EchoLabel and
EchoEvaluation, have been added to the repertoire, as seen in the following example.

In[113]:=

X=2;
Echo[x];x=x"2+1;
Echo[x];x=x"2+1;
Echo[x];

Out[114]=
> 2

>> 5

>> 26

Let’s go over what happened here. Initially, the value 2 is assigned to x. The first Echo
prints the value of x, which is 2. Then, in the 2nd operation, x is updated based on its
original form. Subsequently, the second Echo prints the new value, 5, which continues
until the final value of 26 is reached (572 + 1).

The same can be achieved using EchoLabel and EchoEvaluation but tagging
costume messages.

In[117]:=

X=2;

Echo[x,"Initial Value: "];

X=X"2+1;

EchoLabel["First Iteration: "][x];

X=X"2+1;

EchoEvaluation[x=x"2+1,"Second Iteration: "->"Output :"];
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Out[118]=

>> Initial Value: 2

>> First Iteration: 5§

<< Second Iteration:  x=x"2+1
<< Output : 677

The previous example performs three iterations of the same operation on the same
initial value. The first Echo prints the value of x. The second EchoLabel prints the output
of the first iteration with a costume label and finalizes with the last evaluation and label
association. Before evaluation, the initial label is printed, followed by the second label
being printed once the evaluation is complete. Throughout the process, it displays
results next to symbols with different colors: orange (>>) and blue (<<). The first symbol
represents output, and the second symbol represents input.

Now, by utilizing operations to measure the time, as seen before, you can combine
them to pinpoint which stages demand more time to compute, as exemplified in the
following example.

In[123]:=

X=2;

EchoTiming[Echo[x,"Initial Value: "]];

X=X"2+1;

EchoTiming[EchoLabel["First Iteration: "][x]];

X=X"2+1;

EchoTiming[EchoEvaluation[x=x"2+1,"Second Iteration: "->"Output :"]];
Clear[x];

Out[124]=

>> Initial Value: 2

® 0.013603

>> First Iteration: 5§

® 0.018695

<< Second Iteration: x=x"2+1
>> Output : 677

© 0.031909
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As seen, the last evaluation took the longest time (0.031909 seconds), while the initial
value estimation was the fastest (0.013603 seconds). These techniques are useful when
program flow is broken into small chunks of digestible code, like visualizing variable
values at key points and gauging computation time for performance breakdown.

How Mathematica Works

This section explores the internal workings of computations and discovers ways to
visualize data using multiple basic yet powerful commands.

How Computations are Made (Form of Input)

Each time Mathematica receives a computation in the input cell, it uses the
StandardForm, which is the output representation of expressions in the Wolfram
Language and has many aspects of common mathematical notation. Input can be
written in various forms, but to know how the expression is written in the Wolfram
Language, StandardForm is used.

In[130]:= StandardForm[1/x+x"2]
Out[130]//StandardForm=
—+x°
X
InputForm works similarly but produces the output acceptable to be entered as
Wolfram Language input.

In[131]:

{InputForm[l+x2], InputForm[a*], InputForm[a,], InputForm[,/2]}
X

Out[131]

{x*(-1) + x*2,a"x, Subscript[a, x], Sqrt[2]}

Every type of format has its equivalent in one line of code text, like the square root
symbol (\/ ), which means the same as Sqrt[ ]. To convert input into StandardForm,
InputForm, and other forms, select the cell block and head to Cell » Convert To »
StandardFrom, and InputForm, among others. StandardForm and InputForm apply to
every expression in the Wolfram Language. Try using InputForm on the previous plots
to see how the expression is written completely. To understand better how Mathematica
works, you want to know how symbolic or numeric computations are performed or

written. The FullForm and TreeForm commands can be applied to view how expressions
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are represented symbolically. TreeForm represents the command in a graphical format,
while FullForm represents the form of the expression managed internally by the Wolfram
Language.

In[132]:= FullForm[%+2A2]
Out[132]//FullForm= Plus[4,Times[Rational[1,2],t]]

FullForm also represents the input as a one-line output code, like InputForm. But
even if InputForm also returns a one-line output code, why not use InputForm? The
reason is that FullForm represents what Mathematica understands as input. With this in
mind, FullForm is useful because it lets you know what Mathematica interprets about
the written input. In Mathematica, the mathematical order of operations is preserved.
So the previous output is as follows: first, Mathematica detects the rational number 1/2
(Rational[1,2]) and the symbol t, followed by the multiplication of these two elements
(Times[Rational[1,2],t]) followed by the addition of 22 (Plus[4, Times[Rational[1,2],t]]).

Another type of command that helps in creating a visualization of how Mathematica
manipulates expressions is TreeForm. TreeForm returns the expression as a tree plot
(see Figure 1-33). Alternatively, you can apply commands using the postfix form ‘expr //
function, rather than writing in the canonical form ‘F[expression]’

In[133]:=L 4 2 A2//TreeForm
2

Out[133]//TreeForm=
Plus
BEC
/ LY
// \\
Fd
/ b
/ \
L . -
4 Times
f/)r \\\
// N
:/ \‘-\
/.rr \\
P N
s N,
it \
2] ¥

Figure 1-33. Tree plot representation
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In short terms, Mathematica detects the multiplication of 1/2 times t and then proceeds
to add the result of the product with the result of two squared. The tree graph is read
from bottom to top until you reach the top of the tree.

One more helpful command is Trace. Trace returns individual forms corresponding
to the evaluation line, which contains the sequence of forms of the evaluated expression.

In[134]:= Trace[Plus[4,Times[Rational[1,2],t]]]
Out[134]= {{{Rational[1,2], %},%},M%}

So here, the sequence of operations is as follows: first use the term Rational [1, 2],
followed by 1/2, then 1/2 is multiplied by t, and the result is added to 4. Using FullForm
in Trace lets you see how the internal structure changes.

In[135]:= FullForm[Trace[Plus[4,Times[Rational[1,2],t]]]]
Out[135]//FullForm= List[List[List[HoldForm[Rational[1,2]],HoldForm[Rationa
1[1,2]]],HoldForm[Times[Rational[1,2],t]]],HoldForm[Plus[4,Times[Rational]

1,2],t]]]]

It can be seen that the terms change each step. The HoldForm command is
used to see the output in an unevaluated form. As a complement to Trace, FullForm
and TreeForm can be combined to see the hierarchy of operations in an expression
internally, as seen in Figure 1-34.

In[136]:= Trace[é~+2’\2]//TreeForm

Out[136]//TreeForm=
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List

. L‘T*“:raxxj
Pl L.

‘List HeldForm HoldForm ! HoldF HoldForm || Plus Plus
. HoldF HoldForm | Times | Times Power || 4 || Times ’74 4 || Times
T g W e
Power x ‘ T 2 ‘ 2 t t
_;7_‘(_ 2 LS| 7 2 = s S 2 ) 2 =
2 -1

Figure 1-34. TreeForm and Trace combined

Here, the tree shows how changes are made and read from left to right. Reading the
tree, you see that Mathematica recognizes that 1/2 is 2A-1; this is followed by t times 1/2,
followed by 272, which is 4, and so on until the end. Moving the cursor over each block
displays a representation of the operation being held. There may be occasions when you
encounter operations or expressions you do not understand. A solution to this would be
using the previous commands, which allow you to see the expression’s inner structure
and thus understand how the operation is performed.

Searching for Assistance

The Wolfram Documentation Center contains the registry of all built-in functions.
Documentation of functions can be accessed through the front end by opening a new
window, clicking the Help tab on the toolbar, or entering expressions. Since version 13.1,
the documentation can also be accessed through the toolbar’s rightmost icon, which is
an open book icon. The Input Assistant is displayed as an autocomplete or suggestion
bar when a command or related sensible options are written. When writing a built-in
function or command, Mathematica tries to automatically complete the phrase.

Like in Figure 1-35, type the word Random, and different associated commands
appear as suggestions. If the desired command is listed, you can select it with the cursor
pointer.
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Random
RandomReal

RandomInteger
RandomChoice
RandomSample
RandomWord

Figure 1-35. Autocomplete pop-up menu

“usn

To access the documentation for a particular command, click the “i” document icon
next to the command name, and the documentation windows should appear.

Note Autocomplete also works for assigned symbols.

When writing the built-in function or command followed by the left square bracket,
the completion menu appears; if you click the double-down arrow, it displays the input
forms supported by that command, as shown in Figure 1-36.

RandomPolygon|
¥ 0@

RandomPolygon([n]
gives a pseudorandom simple polygon with n vertex points.

RandomPolygon [spec]

gives a pseudorandom polygon
with the specified specification spec.

RandomPolygon [spec, k]
givesalistof k pseudorandom polygons.

RandomPolygon[d - spec, ...]
gives a pseudorandom polygon indimensiond.

Figure 1-36. Built-in function RandomPolygon with different input forms

As seen in the example, the RandomPolygon function has four types of input forms;
also, in the menu, you can see text related to the different forms of the input.
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To learn how a function works or how built-in functions are written, the best
resource is to consult the Wolfram Documentation Center. You can also check if an
alternative input expression can be used. So, if you need help understanding how the
Head function works, you input a question mark (?) before the function’s name, giving
you a simple understanding of how the command works (see Figure 1-37). If you want
additional information related to the attributes of the function, a double question mark
(??) can be employed. As a piece of advice, the Wolfram Documentation Center can be
used for more in-depth options. Use the F1 shortcut, which opens the Documentation
Center. If you highlight the symbol name and press F1, you are taken directly to the
documentation page for that symbol.

In[137]:= ?Head
Out[137]=

Symbol

Head[expr] gives the head of expr.
Head[expr, h] wraps the result with h.

v

Figure 1-37. Output information for the Head command

The previous command showed how to show information related to a specific
function. But if you don’t recall the exact spelling, you can write the first letters of the
name followed by an asterisk (*), and Mathematica provides a list that matches your
query. In the following example, the output is the functions whose names start with
“Hea” (see Figure 1-38). The Wolfram documentation can be used in a scenario that
needs more in-depth knowledge.

In[138]:= ?Hea*
out[138]=
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? Heax
v System’

Head HeatlnsulationValue
HeadCompose HeatOutflowValue
HeaderAlignment HeatRadiationValue
HeaderBackground HeatSymmetryValue
HeaderDisplayFunction HeatTemperatureCondition
HeaderLines HeatTransferPDEComponent
Headers HeatTransferValue
HeaderSize HeavisideLambda
HeaderStyle HeavisidePi
Heads HeavisideTheta

HeatFluxValue
Figure 1-38. Output information for the commands starting with the letters Head

Notebook Security

The Wolfram Language provides creation and the ability to run dynamic content. These
contents allow the user to create programs that can perform useful and complex tasks;
on certain occasions, unwanted content may be executed or code misused. A notebook
may or may not contain dynamic content as part of its code. Notebooks containing
dynamic content can be instantly downloaded without any user action. Sometimes,
Mathematica alerts the user when a notebook contains dynamic content, displaying a
message like that shown in Figure 1-39.

A This file contains potentially unsafe dynamic content. More Details » .
Figure 1-39. Warning message of dynamic content

If the notebook is not found in a trusted directory, a message warns the user that
the notebook contains unreliable dynamic content. The dynamic content is executed
without displaying a previous message to the user if the notebook is located in a
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reliable directory. To find out if a notebook is located in a trusted directory with the
name TrustedPath, check out the trusted math directories, which are found in (1) $
BaseDirectory, (2) $ UserBaseDirectory, and (3) $ InitialDirectory.

In[139]:= $BaseDirectory

Out[139]= /Library/Mathematica

In[140]:= $UserBaseDirectory

Out[140]= /Users/macosx/Library/Mathematica
In[141]:= $InitialDirectory

Out[141]= /Users/macosx

In this case, these are the trusted directories; yours may defer. By default, the
directories called UntrustedPath are those from which you can store files that can
be potentially harmful, such as files downloaded from the Internet. For this, in the
Wolfram Language, the user’s writing directories and configuration directories are called
UntrustedPath. To add, change, or remove the trusted and untrusted directories, go to
the Preferences menu and then to the Security tab. There are options to edit unreliable
and trusted directories.

Summary

This chapter served as an introduction to Mathematica, a comprehensive software used
for mathematical computation and analysis. The chapter also introduced the unique
Wolfram Language used within the software, focusing on its notebook interface, text
processing, palettes, and various styles and features. It also delved into expressions

in Mathematica and concluded with topics related to code performance, error and
debugging management, and ensuring security.

54



CHAPTER 2

Data Manipulation

This chapter reviews the basics of data creation and data handling in the Wolfram
Language. The chapter begins with the concept of lists and structures within the
language. Numbers, digits, and simple ways to use them with common math functions
are discussed. Next, you are introduced to lists of objects, representing, and generating
lists, delving into data arrays and examining nested lists, vectors, matrixes, and relevant
operations for various purposes. The chapter ends with study list manipulation
techniques—retrieving, assigning, or removing data—and structuring lists to offer a
general guide to understanding list manipulation in the Wolfram Language.

Lists

Lists are the core of data construction in the Wolfram Language. Lists can gather objects,
construct data structures, create tables, store values or variables, make elementary to
complex computations, and characterize data. A list can represent any expression in
the Wolfram Language (numbers, text, data, images, graphics, etc.)—that is, any set of
whichever data.

If you access the information structure of a list, as demonstrated in Figure 2-1, you
can see the typical format to form a list. Lists are represented by curly braces or the List
command. In the Wolfram Language, almost every data object result can be listable; in
other words, lists allow you to group data that maintain some type of relationship, even
if they are of a different type, by manipulating all together (using the same identifier) or
each separately.

??List

In[1]:
Out[1]=
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Symbol
{e1, ez, ...} is alist of elements.

Documentation Local » | Web »
Attributes {Locked, Protected}
Full Name System’List

-~

Figure 2-1. List definition in the Wolfram Language

As seen in the evaluation, commas separate elements, and the whole list is between
curly braces. Also, List is a protected variable, meaning you cannot assign values to the
name List.

Types of Numbers

The fundamental number types in the Wolfram Language are represented by integers,
rational, real, and complex numbers.

First, the integers have an exact result since they are numbers that cannot be
represented by a decimal point.

In[2]:= {10, InputForm[10]}
Out[2]= {10,10}

Therefore, integers in the Wolfram Language are handled with infinite precision and
infinite accuracy.

In[3]:= {10//Accuracy, InputForm[10]//Precision}
Out[3]= {0, oo}

Second, rational numbers can be represented as a quotient of two integers.

In[4]:= {5/10,InputForm[10/12]}
Out[4]= {1/2, 5/6}

Mathematica treats rational numbers exactly as with integers, so whenever
Mathematica deals with rational numbers, it returns the minimum expression in which

that number is represented.

In[5]:= {5/10 //Accuracy,InputForm[10/12] //Precision}
Out[5]= {oco, oo}
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Third, real numbers—typically known as floating-point numbers—are represented
in the Wolfram Language by any number with a decimal point.

In[6]:= {2.72 //Precision, InputForm[2.72]}
Out[6]= {MachinePrecision,2.72}

Since real numbers are approximate, they do not have an exact precision.
These numbers are considered machine numbers, which have the precision of the
$MachinePrecision variable. It should be noted that in the Wolfram Language, numbers
1 and 1.0 are treated differently. Although Mathematica recognizes that they are
equivalent expressions, it must be taken into account that they are not the same object
within the Wolfram Language.

To corroborate this, let’s look at the following example, where you use SameQ to test
if the expressions are the same for 1 and 1.0.

In[7]:= SameQ[1,1.0]
Out[7]= False

The heads of the expressions are different because one is an integer and the other a
real number.

In[8]:= {Head[1],Head[1.0]}
Out[8]= {Integer, Real}

Complex numbers are numbers that contain a real part and an imaginary part. The
form of a complex number is a + bi, where “a” is the real part and “b” is the imaginary

“us:n
1

part. The symbol “i” represents the square root of the negative number -1.

In

[9]:= 10+191I
Out[

9]= 10+191

The type of precision in these numbers can be exact or approximate since these
numbers can be built from the numbers described previously.

In[10]:= {Precision[I], Precision[1 + 0.3I], FullForm[11+1I]}
Out[10]= {oco, Machineprecision, Complex[11, 1]}

Though complex numbers appear as a single atomic expression, these numbers
can be subdivided into different expressions, such as when extracting the real or
imaginary parts.
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In[11]:= 2+I //AtomQ
Out[11]= True
In[12]:= {ReIm[1+3I],Re[1+0.3I],Im[Complex[1,0.2]]}

Out[12]= {{1,3},1.,0.2}

When you deal with transcendental numbers like pi and the golden ratio, these
numbers are treated as symbols—that is, Mathematica has reserved these symbols since
they are important numerical constants. Therefore, they have an exact precision despite
being real numbers.

In[13]:= {Accuracy[\[Pi]],Precision[E],Accuracy[I],Precision[GoldenRatio]}
//NumberQ
Out[13]= False

To determine whether a given value is considered a number within the Wolfram
Language, use the NumberQ command. It returns “True” if the expression is a number
and “False” if not. This can be observed in the previous command (for transcendental
numbers) and the following examples.

In[14]:
Out[14]

{NumberQ[1/2],NumberQ[1],NumberQ[E]}
{True,True,False}

As aresult, you can see how a rational number and an integer are numbers, but the
number E is not. In fact, E is a type of symbol.

In[15]:= {Head[E],FullForm[E]}
Out[15]= {Symbol,E}

Generally speaking, there is no restriction on combining the different types
of numbers within the Wolfram Language. You can perform operations between
different types.

In[16]:= {1+0.2+1/2+1+11+11}
Out[16]= {13.7 +1. I}

Conversion between approximate numbers to exact numbers is carried out with
Rationalize.

In[17]:= Rationalize[2.72]
Out[17]= 68/25
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Also, alternative number notations like scientific notation are supported. Scientific
notation is a useful tool to represent large numbers in powers of ten.

In[18]:= {ScientificForm[N@E/1000000],2.71828*"-6}
Out[18]={2.71828 x 10-%, 2.71828 x 10-°}

You know that the N function is used to calculate approximate numbers. It converts
an exact expression to an approximate one, keeping in mind that the desired precision
can also be specified.

Different forms can generally be extrapolated to all the built-in function notations of
the Wolfram Language.

« Employing the direct application of the N function [ ] to the
expression

In[19]:= N[13/7]
Out[19]= 1.85714

o Utilizing the infix notation, ~N~

In[20]:= E~N~E
Out[20]= 2.72

e Through the postfix notation, // N

In[21]:= E//N
Out[21]= 2.71828

e Using the prefix notation, N@

In[22]:= N@E
Out[22]= 2.71828

When the precision is not defined, Mathematica uses the value of $MachinePrecision
to determine the standard precision of the approximate number. The value of
$MachinePrecision varies since it is a float number established by Mathematica
according to the characteristics of each computer.

In[23]:= $MachinePrecision
Out[23]= 15.9546
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Setting arbitrary precision with SetPrecision or using machine precision.

In[24]:
Out[24]

SetPrecision[E, 17]
2.7182818284590452

The following uses machine precision.

In[25]:
Out[25]

SetPrecision[E,MachinePrecision]
2.71828

When precision is not introduced, Mathematica uses MachinePrecision numbers.

In[26]:= SetPrecision[e,MachinePrecision] == N@e
Out[26]= True

Another way to enter approximate numbers with some precision is by adding the
grave accent symbol (‘) after the real number, followed by the precision. For example,
use it for six-digit precision.

In[27]:= 77/376
Out[27]= 25.6667

Working with Digits
To extract digits that make up an exact number, use the IntegerDigits function.

In[28]:= IntegerDigits[234544553]
OUt[28]= {213)415)4)4)515)3}

RealDigits for approximate numbers.

In[29]:= {RealDigits[321.4546554],RealDigits[N@E]}
OUt[29]={{{3J2)1)4) 5)4)6J 5)5)4)030)0J0)O)O}’3}){{2) 7)1)8)2)8J1)8)2)8)4) 5J9)
0,4,5},1}}

In the case of a complex number, it would consist of extracting its real and imaginary
parts and then extracting the digits of each part, as the case may be.

In[30]:= RealDigits[ReIm[113+2.72131]]
OUt[3O]= {{{1J1)3)0’0’0)OJO)O)O’O’OJOJO)O)O})3}J{{2)7)2’1’3JOJOJO)O’O’OJOJ
0,0,0,0},1}}
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By default, the two previous functions give results in the decimal base. To define
a base, enter the base you want as the function’s second argument; for example,
using base 2.

In[31]:= RealDigits[321.4546,2]
OUt[31]= {{110)1)0)030)010)1)0)1’1)110)1)0)030)1)1)0)0)030)0J1)0)1)031)0J1)
0,0,1,1,0,0,1,0,0,1,1,0,0,0,0,1,1,0,0,0,0},9}

Specifying the three digits of the number e in base-10 notation.

In[32]:= RealDigits[N@E, 10, 3]
OUt[32]= {{2J7J1})1}

Reconstructing a number from the representation of their integers is possible with
the FromDigits function.

In[33]:
Out[33]

FromDigits[{2,7,1,1}]
2711

Also, it is possible to form a float point number.

In[34]:
Out[34]

NeFromDigits[{{2,7,1,1},1}]
2.711

and to measure the length of an integer number.

In[35]:= IntegerlLength[2711]
Out[35]= 4

A Few Mathematical Functions

The Wolfram Language offers a wide repertoire of mathematical functions, ranging from
the most basic to the most specialized. These functions can be managed numerically or
symbolically, facilitating pure analytical manipulation.

Trigonometric functions are available either in radians or in degrees. Typing a
number alone calculates and returns the value in radians.

In[36]:= Cos[Pi]
Out[36]= -1
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Entering the number followed by the Degree unit or the symbol of degrees (°)
calculates and returns the value in degrees.

In[37]:= Sin[90 Degree]==Sin[90\[Degree]]
Out[37]= True

In[38]:= Sin[90\[Degree] ]

Out[38]= 1

The same applies to hyperbolic trigonometric functions and inverse trigonometric
functions.

In[39]:= N[Cosh[Pi]]
N[Tanh[45 Degree]]
Out[39]= 11.592
Out[40]= 0.655794

In[41]:= N[ArcTan[Pi]]
N[ArcSinh[45 Degree]]
Out[41]= 1.26263
Out[42]= 0.721225

Logarithmic functions and exponential functions are written like common math
notation. Logarithms with only a number compute the natural logarithm.

In[43]:= Log[E]
out[43]= 1

To specify a base, type the number as the first argument and the base as the second

argument.
In[44]:= Log[10,10]
Out[44]= 1

Exponentials can be written with Exp or with the constant E.

In[45]:= Exp[2]==E"2
Out[45]= True
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The factorial is represented by either typing the exclamation mark after the number
or by using Factorial.

In[46]:= 12!
Out[46]= 479001600

In[47]:= Factorial[12]
Out[47]= 479001600

Numeric Function

In the Wolfram Language, functions are available for manipulating numerical data, these
functions can work with any types of numbers, including real, integer, rational, and
complex. Users can handle precision either exactly or using floating-point precision.

To truncate a number, z, to its closest integer (z), use the Round function with no
arguments. By adding a second argument, the Round function rounds z to the nearest
multiple of the second provided number.

In[48]:=Round[8.9](*Rounds to 9 because it is the closest number*)
Out[48]= 9

In[49]:=Round[8.9,2](*Rounds to 8 because it is the closest multiple of
2, 2°3%)
Out[49]= 8
Other similar functions that can truncate numbers given a number z are Floor and
Ceiling. The Floor function rounds to the largest integer less than or equal to the number

typed. The Ceiling function rounds to the smallest integer larger than or equal to the
typed number.

In[50]:= Floor[Pi]
Out[50]= 3

In[51]:= Ceiling[Pi]
Out[51]= 4
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The Floor and Ceiling functions can be written in their mathematical notation, |z]
for Floor and [z] for Ceiling, by typing the key ESC If ESC for the left Floor and ESC rf
ESC for the right Floor. The same applies to Ceiling—just change If for Ic (left Ceiling)
and rf for rc (right Ceiling).

In[52]:= |Pi]
Out[52]= 3
In[53]:= [Pi]
Out[53]= 4

Converting a float point number to a rational approximation can be done with
Rationalize. However, adding the number 0 as the second argument can force the
calculation to find the most exact form of a float point number; for example, a rational
approximation to the number E.

In[54]:= Rationalize[N[E],0]
Out[54]= 325368125/119696244
The Max and Min functions return the maximum and minimum number of a list of

numbers.

In[55]:= Max[{9,8,7,0,3,12}]

Out[55]= 12

In[56]:= Min[{0987,32,9871}]

Out[56]= 32

Lists of Objects

This section extends the concept of lists in the Wolfram Language, focusing on
techniques for creating and managing lists, nesting them through specialized functions,
and effectively storing data in a variable. The topic covers how to create datasets and
how they can be derived from various functions, as the composition of a list can include
a wide range of elements, such as sets of numbers, text strings, equations, arithmetic
operations, or any expression in Mathematica. Despite this, you explore concepts like
arrays and sparse arrays and their respective object types. Additionally, this section
discusses the nested lists and multiple ways to create data in a nested form.
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List Representation

The curly braces denote a list of general objects, with each member separated by a
comma. The simplest form to create a list is to enclose data in curly braces, or by using
the List function. The following examples demonstrate how to assign lists to variables
and gather objects in a list.

In[57]:= {x2+1, "Dog", =}

List[1,P,Power[3,2]] (* Power[3,2] represents 3 raised to the power of 2 *)
Out[57]= {x2+1, "Dog", =}

Out[58]= {1,P,9}

The list identifier or symbol is an optional name to create the structure.

In[59]:= List["23.22","Dog", =,2,4,6,456.,56,2==3 8& 3==2]
Out[59] = {23.22,Dog, =,2,4,6,456.,56,False}

Inside a list, between the braces, you can define all the elements that you consider
suitable to be listed.

In[60]:= {1+I, = + =, "number 4",Sin[23 Degree],425+I-413-31,24,4456., "dog"
+ "cat"}
Out[60]= {1+I, 2m,number 4,Sin[23°],12-2 I,24,4456.,cat+dog}

In Mathematica, there are different types of objects. To identify an object type, you
have to use the Head function. The returning value is the head of the expression, known

as the data type. If you apply Head to a list, you get that the head of the expression
is a list.

In[61]:= % //Head
Out[61]= List

This means that the object you have created is a List object.

Generating Lists

Lists can be created with costume values, but Mathematica has a variety of functions to
create automated lists, such as Range and Table. Both Range and Table functions create
an equally spaced list of numbers. However, the Table generates a list with specified
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“sn

intervals, like when “i” goes from 1 to 10. Wolfram Language also lets you incorporate
built-in functions inside a list.

In[62]:= Range[10]

Table[i,{i,1,10}]

Table["Soccer",{i,1,15}]

out[62]= {1,2,3,4,5,6,7,8,9,10}

out[63]= {1,2,3,4,5,6,7,8,9,10}

Out[64]= {Soccer,Soccer,Soccer,Soccer,Soccer,Soccer, Soccer,Soccer,Soccer,
Soccer, Soccer, Soccer,Soccer, Soccer, Soccer}

The Table function can also be used to create indexed lists. Each interval is specified
within the curly braces { }, as shown in the previous and following examples.

In[65]:= Table["Red and Blue",5]

Range[-5,5]

Out[65]= {Red and Blue,Red and Blue,Red and Blue,Red and Blue,Red and Blue}
Out[66]= {-5,-4,-3,-2,-1,0,1,2,3,4,5}

The Table function can work with or without an inner iterator, but to create

structured lists, using an iterator is recommended.

In[67]:
out[67]

Table[i*i,{i,1,5}]
{1,4,27,256,3125}

This shows the function without an iterator.

In[68]:
0ut[68]

Table[10"3,{5}]
{1000, 1000,1000,1000,1000}

Note When using the iterator, make sure to properly write the expression to avoid
errors. When the table recognizes the iterator, it changes colors because the letter
is no longer a symbol.

You can create a list of lists. This type of structure is considered a nested list.

In[69]:= {Range[5], Table[h, {h, -6, 2}]}
OUt[69]= {{1J 2) 3) 4: 5}1 {'6) '5) '4J '3) '2) '1J O) 1; 2}}
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The iterator can also be an alphanumeric variable.

In[70]:= Table[data2, {data2, 0, 6}]
OUt[7O]= {0: 1, 2, 3, 4, 5, 6}

Structures of arrays with the same data can also be created, such as an array of 2x2.

In[71]:= Table[11,{2},{2}]
Out[71]= {{11,11},{11,11}}

The Table function supports multiple iterators, which is useful when constructing
tabular data.

In[72]:= Table[i+j+k,{i,1,4},{j,1,4},{k,1,4}]
out[72]1-{{{3,4,5,6},{4,5,6,7},{5,6,7,8},{6,7,8,9}},{{4,5,6,7},{5,6,7,8},
{6,7,8,9},{7,8,9,10}},{{5,6,7,8},{6,7,8,9},{7,8,9,10},{8,9,10,11}},
{{e,7,8,9},{7,8,9,10},{8,9,10,11},{9,10,11,12}}}

To display a list in a more structured way using the Grid command.

In[73]:= Table[i-j,{i,1,2},{j,1,2}]//Crid
Out[73]= 0 -1
1 0

An alternative to the Grid command is the TableForm command, which lets you
display the list created as a table. This command is explained in detail later.

In[74]:= Table[i+j,{i,1,2},{],4,6}]//TableForm
Out[74]//TableForm= 5 6 7
6 7 8

“usn

There is no limitation on the intervals of the iterators. You can choose that “i” goes

“sn

from 0 to 3 and “j” from

wsn
1

to 3 and use TableForm to view it.

In[75]:= Table[{i,j},{i,3},{j,1,3}]//TableForm
Out[75]//TableForm= 1 1 1

123

2 2

23

3

3
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You can even use other syntax notations like the increment (++) or decrement (--) in
the interval iterator.

In[76]:= Table[{i,]j},{i,2},{],i++,2}]
out[76]= {{{2,1},{2,2}},{{3,2}}}

The increment (++) and decrement (--) operators can also be used in assigned
variables; this operator can have precedence or posteriority. When written before the
variable, they are called PreIncrement or PreDecrement.

In[77]:= x=0;x++;x (*applied on the current value and shown next time x is
called*)
Out[77]= 1

In[78]:= Clear[x];x=0;--x (*applied on the current value and shown when x
is called*)
Out[78]= -1

Alternatively, you can apply replacement rules with the symbol (/.). For example,
you create a list of random integers consisting of 0s or 1s, then replace the 1s with 2s
whenever they appear. Add a space between the condition expressions to avoid a typo
error and the correct right arrow (\[Rule]). Another form of Table can also be used with
explicit values for the iterator.

In[79]:= Table[RandomInteger[],{i,1,10}]/. 1->2
OUt[79]= {2:0)2)0)2)2:0:0)2)2}
In[80]:= Table[i*2,{i,{1,2,3,4,5}}]

Out[80]= {1,4,9,16,25}

Arrays of Data

There are different forms to create an array. The most used form is a list, as you saw in
the previous section. But as an alternative to the Table command or Range command,
arrays can be created with the Array command, which generates a list with a specific
function applied to the elements created. The Array, ConstantArray, and SparseArray
functions can also be used to build lists. The form of these functions is analogous to the
previous ones.
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In[81]:
Out[81]

Array[Cos[90 Degree],{3,3}]//Grid
0[1,1] 0[1,2] 0[1,3]
0[2,1] 0[2,2] 0[2,3]
0[3,1] 0[3,2] 0[3,3]

What happens with Array is that it constructs an array from a function. In the
previous example, you generated an array from the numerical value of the cosine of 90
degrees, followed by the structure of the array, which is 3x3. The indices on the right side
of the array values are the positions of each element in the array.

If you generalize to any function, you can better see how Array works.

In[82]:= Array[F,{2,2}]//Crid
Out[82]= F[1,1] F[1,2]
F[2,1]  F[2,2]

As you can observe, the F function is applied and is respective to each element of the
arrangement.

To create an array of constant values the ConstantArray function is used. To write the
function, first write the value you want to repeat, followed by the times you want it to repeat.

In[83]:= ConstantArray[\[Pi],5]
Out[83]= {m,n,n,n,n}

You can also create arrangements with defined dimensions.

In[84]:= ConstantArray[\[Pi],{4,4}]
OUt[84]= {{n,n,n,n},{n,n,n,n},{n,n,n,n},{n,n,n,n}}

To display a data array, there is the MatrixForm command, which, as its name
suggests, shows the array in matrix form.

In[85]:= ConstantArray[\[Pi],{4,4}]//MatrixForm

T

Out[85]//MatrixForm=

a2 a a 3
a2 a a 3

A sparse arrangement is one in which the elements generally have the same value.
The SparseArray command lets you define the values of the array positions. By standard,
if any position is not defined, the value is 0.
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The SparseArray command generates an object of type SparseArray, shown in
Figure 2-2, with the name of the command and a gray box that appears.

In[86]:= SparseArray[{{1,1},{2,2}}->{1,2}]
0ut[86]=

Specified el ts: 2
SparseArray[ r Ry

Dimensions: {2, 2}

Figure 2-2. SparseArray object

Ifyou click the + icon, you see the array’s characteristics and its rules; this is shown
in Figure 2-3.

Specified elements: 2
[ r Dimensions: {2, 2}

Default: 0

Density: 0.5

Elements:

{1,1-1

{2,2}->2

Figure 2-3. Specifications of the array

In the Wolfram Language, there is no limitation on the content of a SparseArray.

Furthermore, you can create an array with the same values on its diagonal.

Figure 2-4 illustrates elements of the same values in the array appear in one color,
and different values appear in another.

In[87]:= SpArray=SparseArray[{{1,1}->"A",{2,2}->"A",{3,3}->"A",{4,4}->

"A"},{4,4}]
Out[87]=

Specified elements: 4
Dimensions: {4, 4}

Figure 2-4. Sparse Array with more elements
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With the help of MatrixForm, you can visualize the arrangement as a matrix.

In[88]:= MatrixForm[%]
Out[88]//MatrixForm=

o o o »
o O©O O
S P O O
> o o o

To convert the sparse array object to a list object, use Normal to normalize into
expression form.

In[89]:= Normal[SpArray]
OUt[89]= {{AJOJO)O}’{OJAJOJO}){O)OJAJO}){O)O)OJA}}

And now you deal with a list.

In[90]:= Head[%]
Out[90]= List

Nested Lists

A nested list is a list of lists where the elements of the lists correspond to another list,
and so on. Nested lists can be used for ordered or unordered data structures. To create a
nested list, you can use curly braces within curly braces or built-in functions.

In[91] := {{"Thisll) Ilisll’ llAll},{llNested"’ ||Listll,ll. ll}}
Out[91]= {{This,is,A},{Nested,List,.}}

You can also use the Table function.

In[92]:= Table[Prime[i]+Prime[j],{i,1,3},{j,2,4}]
OUt[92]= {{517)9}){6:8)10}){8)10:12}}

To measure a list, you must use the Length command.

In[93]:= NestL=Table[Prime[i]+RandomReal[j],{i,1,3},{j,1,3}];
Length[NestL]
Out[93]= 3
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The length of the list is 3 because Length is properly used with flattened lists. To
properly measure the depth of a nested list, Dimensions is more suited for the task.

In[94]:= Dimensions[NestL]
out[94]= {3,3}

Dimensions provide a general aspect of the dimensions of the nested list, meaning
that a list of three sublists constitutes your list and that the sublists each have three
elements. Mathematica constructs a list with three elements, in which those three
elements are also a list, and those lists have three elements, and each element
corresponds to a specific value form.

Note You might want to use TreeForm to explore how Mathematica deals with
nested list expressions; for instance, (*TreeForm[NestL]*).

The ArrayDepth command measures the depth of a nested list or an array.

In[95]:= ArrayDepth[NestlL]
Out[95]= 2

Now you know programmatically that NestL has a depth of 2.

Vectors

Mathematica handles vectors the same way as with lists. Usual calculations of linear
algebra can be symbolic or numeric.

In[96]:= V={6,3,2}
Out[96]= {6,3,2}

A vector is always shown as a list. To see a vector in regular notation, the MatrixForm
command is used.

In[97]:= MatrixForm[V]
Out[97]//MatrixForm=
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The VectorQ command can tell you if the list you are dealing with is a vector.

In[98]:= VectorQ[V]
Out[98]= True

To see the rank of the vector, use either ArrayDepth or TensorRank.

In[99]:= {TensorRank[V],ArrayDepth[V]}
Out[99]= {1,1}

Vectors are created with the same commands that create a list: Table, Array, Range,
curly braces, SparseArray, ConstantArray, and so forth. Also, common operations of
vectors are performed like normal lists.

In[100]:=

Print["Addition: "<>ToString[V+V]]
Print["Subtraction: "<>ToString[V-V]]
Print["Scalar product: "<>ToString[2*V]]
Print["Cross product: "<>ToString[Cross[V,{1,3,2}]]]
Print["Norm: "<>ToString[Norm[V]]]
Addition: {12, 6, 4}

Subtraction: {0, 0, 0}

Scalar product: {12, 6, 4}

Cross product: {0, -10, 15}

Norm: 7

Matrixes

A matrix is a square list or list of lists arranged in n-rows and m-columns, where n and m
are the dimensions of the matrix.

all alZ aln
a a a
21 22 2n
Amxn - . :
aml amz T amn
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The easiest form is to create a list of lists.

In[105]:= {{3,3,1},{7,8,7}}//MatrixForm
Out[105]//MatrixForm=

3 3 1

7 8 7

Another way is to go to Insert » Table/Matrix » New. A pop-up menu appears;
select Matrix and specify the rows and columns within this menu. With this option, you
can also specify to fill contents and the diagonal and add a grid or frames, such as in the
next example that has drawn lines between columns.

In[106]:=A=

S O -
S = O
- O O

OUt[106]:= {{110)0}){0)110}){0)0,1}}
To test whether a list of lists is a matrix, use MatrixQ.

In[107]:= MatrixQ[A]
Out[107]= True

Transpose returns the transpose of a matrix—that is, changing its rows by columns.
For matrix A, the transpose is denoted by A”.

In[108]:= Transpose[{{0,1,0},{0,1,0},{0,1,0}}]//MatrixForm
Out[108]//MatrixForm=

S = O
S = O
S = O
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Matrix Operations

Common operations between matrixes are performed by the rules of linear algebra:
addition, subtraction, and multiplication. Remember that when multiplying two
matrixes, A and B, the number of columns in A must match the number of rows in B. In
mathematical terms: A,,,,, X B,x;=Cix:

In[109]:= B={{0,1,0},{0,1,0},{0,1,0}};
Print["Addition: "<>ToString[A+B]]
Print["Subtraction: "<>ToString[A-B]]
Print["Product: "<>ToString[Dot[B,V]]]

Addition: {{1, 1, o}, {o, 2, o}, {0, 1, 1}}
Subtraction: {{1, -1, o}, {o, o, o}, {0, -1, 1}}
Product: {3, 3, 3}

To calculate the determinant, use Det.

In[113]:= {Det[A],Det[B]}
Out[113]= {1,0}

To construct a diagonal matrix, use the DiagonalMatrix command; for the identify
matrix, use the IdentityMatrix command. DiagonalMatrix is for costume values, and
IdentityMatrix returns a matrix with a diagonal with the same elements.

In[114]:= DiagonalMatrix[{X,Y,Z}]//MatrixForm
IdentityMatrix[{2,2}]//MatrixForm(*Identity matrix of 2 by 2%*)
Out[114]//MatrixForm=

X
0
0

o < o©
N © ©

Out[115]//MatrixForm=

o )
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Restructuring a Matrix

Matrix restructuring is done with the same commands to restructure a list, like replacing

an element with a new value.

In[116]:= ReplacePart[A,{{1,1},{2,2}}-> 3]//MatrixForm
Out[116]//MatrixForm=

oS O W
S w O
- o O

Also, it can be done by assigning the value. To access the elements of a matrix, enter
the symbol followed by the subscript of the element of interest with the double bracket
notation ([[ ]]). Later, you see the proper functionality of this short notation. In this case,
you change the value of the element in position 1,1 of the matrix.

In[117]:= A[[1,1]] = 2;
MatrixForm[A]
Out[118]//MatrixForm=

S O N
o = O
- o O

If matrix A is called again, the new value is preserved. To invert a square matrix, use

Inverse.

In[119]:= Inverse[A]//MatrixForm

Out[119]//MatrixForm=
/2 0 0
0 1 0
0 01

Measuring the dimensions of a matrix is done by using Dimensions.

In[120]:= Dimensions[A]
Out[120]= {3,3}
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Manipulating Lists

The previous section demonstrated different ways to create lists, including arrays, nested
lists, and tables. This section describes how to manipulate these lists through referenced
names, functions, and compact notation. You learn how to access the data of a list
depending on its position. You learn how to add and delete elements in a list, replace
single parts, and change the value of a specific element. You also examine restructuring
lists once it has been built, ordering them, and converting nested lists to linear lists
based on their depth. Finally, the section investigates how to see data from a list through
patterns and examine pattern behavior in the Wolfram Language.

Retrieving Data

Several functions exist for handling elements of a list. The Part [“list’, i] function allows
you to select index parts of a list with index i.

Note The index in a list starts at 1. Index 0 is for the head of the list.

For example, let you define a list called list1 and use Part to access the elements inside
the list. The Part function works by defining the position of the element you want.

In[121]:= list1={1,2};
Part[{1,2},1]
Out[122]= 1

It also works with index notation.

In[123]:= {1,2}[[1]]
Out[123]= 1

Lists can be fully referenced by using their assigned names. Elements inside the
structure can be accessed using the notation of double square brackets [[ i ]] or with the
special character notation of double brackets, [[].

Tip To introduce the double square bracket character, type Esc [[ Esc and
Esc ]] Esc.
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In[124]:= 1lista[[1]] (*[[i]] gives you access to the element of the list in
the position i.*)
Out[124]= 1

Note Square brackets ([[ ]] ) are the short notation for part Esc.

To access the elements of the list by specifying the positions, you can use the span
notation, which is with a double semicolon ;).

In[125]:= list2=List[34,6,77,4,5,6];
Part[list2,1;;4] (*from items 1 to 4*)
Out[126]= {34,6,77,4}

You can also use backward indices, where the counts start from right to left, which is
from the last element to the first. Let you now select from position -6 to -4.

In[127]:= 1list2[[-6;;-4]]
Out[127]= {34,6,77}

For the nested list, the same process is applied. The concept can be extended into a
more general aspect. The next example creates a nested list with three levels and select a

unique element.

In[128]:= list3=List[2"3,2.72,{\[Beta],ex,{Total[1+2],"Plane"}}];
list3[[3,3,2]]
Out[129]= Plane

In the previous example, you created a nested list of depth three. Next, you select the
third element of the list {8, 2.72, {p, ex, { Total[1 + 2], “Plane”}}, then from that list, select
the third element of the previous list, which is {Total[1 + 2], “Plane”}. Finally, you select
the element in the second position of the last list, which is “Plane”.

If you are dealing with a nested list, use the same concept you saw with the span
notation. The next example selects the third element of the list3 and then display from
position 1 to 2.

In[130]:= list3[[3,1;;2]]
Out[130]= {p, ex}
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The same is done to a more in-depth list; you use the list’s third element, then
display from position 3 to 3 and select part 1.

In[131]:= 1ist3[[3,3;;3,1]]
Out[131]= {3}

Segments of data can be displayed based on what parts of the data you are interested
in. For example, the Rest function shows the data elements, except for the first. Most
display the whole list except for the last element(s), depending on the type of list.

In[132]:= Rest[list3]
Out[132]= {2.72,{ B,ex,{3,Plane}}}

In[133]:= Most[list3]
Out[133]= {8,2.72}

An alternative to the previous functions is the Take function, which lets you select
more broadly the data in a list. There are three possible ways to accomplish this.

e By specifying the first i elements

In[134]:= Take[list3,2]
Out[134]= {8,2.72}

o By specifying the last -i elements
In[135]:= Take[list3,-1]
Out[135]= {{ B,ex,{3,Plane}}}

o Byselecting the elements fromitoj

In[136]:= Take[list3,{1,3}]
Oout[136]= {8,2.72,{ B,ex,{3,Plane}}}

Assigning or Removing Values

Once a list is established—if you have defined a name for it—it can be used just like any
other type. This means that elements can be replaced by others. To change a value or
values, select the position of the item, and then set the new value.
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In[137]:= list4={"Soccer","Basketball",0,9};

lista[[2]]=1 (*position 2 corresponds to the string Basketball and we
change it for the number 1*)

Out[138]= 1

You can check that the new values have been added.

In[139]:= lists
Out[139]= {Soccer,1,0,9}

In addition to using the abbreviated abbreviation notation, you can use the Replace
function part of specific values and choose the list, the new element, and the position.

In[140]:= ReplacePart[list4,Exp[X],4]
Out[140]= Soccer, 1, 0, &

To add new values, use PrependTo and AppendTo; the first adds the value on the
left side of the list, whereas the second adds it by the right side of the list. Append and
Prepend operate the same but with storing the new value in the original variable.

In[141]:= PrependTo[list4,"Blue"]
Out[141]= {Blue,Soccer,1,0,9}

In[142]:= AppendTo[list4,4]
Out[142]= {Blue,Soccer,1,0,9,4}
In[143]:= list4(*we can check the addition of new values.*)

Out[143]= {Blue,Soccer,1,0,9,4}

To remove the values of the list, you use Drop. Drop can work with the level of the
specification or the number of elements to be erased.

In[144]:= Drop[list4,3]; (*first 3 elements,Delete[list3,3]*)
Drop[list4,{5}](*or by position,position, number 5*)
Out[145]:= {Blue,Soccer,1,0,4}

The Delete command can also do the job by defining the particular positions on the
list—for example, deleting the contents in positions 1 and 5.

In[146]:= Delete[list4,{{1},{5}}]
Out[146]= {Soccer,1,0,4}
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As an alternative to Append and Prepend, there is the Insert function, with which
you can add elements indicating the position where you want the new data. Given the
expression (list4), insert the new element (2/43.23) at the third position. Consequently,
the number 2/43.23 now occupies the list’s third slot.

In[147]:= Insert[list4,2/43.23,3]
Out[147]= {Blue,Soccer,0.0462642,1,0,9,4}

The Insert function allows the use of several positions at the same time; for example,
inserting the number 0.023 at positions -6 (second) and 7 (the last position).

In[148]:= Insert[list4,0.023,{{-6},{7}}]
Out[148]= {Blue,0.023,Soccer,1,0,9,4,0.023}

If you want to add repetitive terms or remove terms to a list or an array, you can use
the ArrayPad function. The standard value is zeros if the term to be added is not defined.

In[149]:= ArrayPad[list4,1](*number 1 means one zero each side*)
Out[149]= {0,Blue,Soccer,1,0,9,4,0}

If you want to add one-sided terms, it is written as follows.

In[150]:= ArrayPad[list4,{1,2}](*1 zero to the left and 2 zeros to
the right*)
Out[150]= {o0,Blue,Soccer,1,0,9,4,0,0}

To add values other than zero, you must write the value to the right of the number of
times the value is repeated.

In[151]:= ArrayPad[list4,{0,3},"z"](*Adding the letter z three times only
the right side*)
Out[151]= {Blue,Soccer,1,0,9,4,z,z,z}

With ArrayPad you can add reference lists; for example, add a new list of values
either left or right.

In[152]:= newVal={0,1,4,9}; (*Here we add them on the left side*)
ArrayPad[list4,{4,0},newVal]
Out[153]= {4,9,0,1,Blue,Soccer,1,0,9,4}
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ArrayPad also can remove elements from a list symmetrically using negative indices.

In[154]:= ArrayPad[list4,-1](*it deletes the first and last elements*)
Out[154]= {Soccer,1,0,9}

Note With ArrayPad, addition and deletion are symmetric unless otherwise
specified.

Structuring List

When you work with lists, in addition to the different forms of access and removing its
content, you might encounter cases where a list needs to be accommodated, sectioned,
or restricted. The following explores several forms to achieve these tasks.

To sort a list into a specific order, use Sort followed by the sorting function.

In[155]:= Sort[{1,12,2,43,24,553,65,3},Greater]
Out[155]= {553,65,43,24,12,3,2,1}

Sort by default sorts values from less to greater, either numbers or text.

In[156] := Sort[{llbll’ IIC", IIZZII, IIsall’ ll't", llpll}]
Out[156]= {b,c,p,sa,t,zz}

To reverse a list, use the Reverse command.

In[157]:= Reverse[{1,12,2,43,24,553,65,3}]
Out[157]= {3,65,553,24,43,2,12,1}

To create a nested list in addition to that previously seen, you can generate partitions
to a flat list by rearranging the elements of the list. For example, you create partitions of a
list to subdivide the list into pairs.

In[158]:= Partition[{1,12,2,43,24,553,65,3},2]
out[158]= {{1,12},{2,43},{24,553},{65,3}}
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You can choose a partition with successive elements included.

In[159]:= Partition[{1,12,2,43,24,553},3,1]
Out[159]= {{1,12,2},{12,2,43},{2,43,24},{43,24,553}}

Depending on how you want a nested list, you can add an offset to the partition; for
example, a partition in two with an offset of four.

In[160] o= Pal’tition[{"b", "C", IIZZ", "Sa", "t", "p"}, 2,4]
OUt[16O]= {{ch}){t)p}}

To return to a flat list, the Flatten function is used.

In[161]:= Flatten[{{1,12},{2,43},{24,553},{65,3}}]
Out[161]= {1,12,2,43,24,553,65,3}

Depending on the depth of the list, you can decide how deep the Flatten should be.

In[162]:= Flatten[{{{{1},1},1},1},1] (*here we flatten a list with a level
1 depth.*)
OUt[162]= {{{1})1})1:1}

The ArrayReshape function lets you reshape data into a specific rectangular array
with; for example, create an array of 3x3.

In[163]:= ArrayReshape[{1,12,2,43,24,553,65,3},{3,3}]
out[163]= {{1,12,2},{43,24,553},{65,3,0}}

Elements that complete the array form are zeros. This is shown in the next example
using ArrayShape to create an array of 2x2 from one element in the list.
In[164]:= ArrayReshape[{6},{2,2}]
Out[164]= {{6,0},{0,0}}

When dealing with a nested list, SortBy is also used, but instead of a sorting

function, a built-in function is used. For example, order a list by the result of their

approximate value.

In[165]:= SortBy[{1,4,553,12.52,4.3,24,7/11},N]
Out[165]= {7/11,1,4,4.3,12.52,24,553}
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Criteria Selection

Particular values of a list can be selected with certain conditions; conditions can be applied
to lists by using the Select command. The function selects the elements of the list that are
true to the criteria established; the functions used for criteria can be order functions.

In[166]:= nmbrlList=List[12,5,6,345,7,3,1,5];

Select[nmbrList,EvenQ] (*only the values that return True are selected, in
this case values that are even*)

Out[167]= {12,6}

Pick is also an alternative to Select.

In[168]:= Pick[nmbrList,PrimeQ @ nmbrList]
Out[168]= {5,7,3,5}

Pattern matching is used in the Wolfram Language to decree whether a given
criterion should be associated with an expression. In the context of the Wolfram
Language, three distinct types of patterns exist.

e The underscore symbol (_) represents any expression within the
Wolfram Language.

e The double underscore symbol (__) represents a sequence
containing one or more expressions.

e The triple underscore symbol (___) represents a sequence containing

Zero or more expressions.

Every pattern has its built-in function name. One underscore is Blank, two
underscores are BlankSequence, and three underscores are BlankNullSequence.

To better understand the following examples in the channels, you use the Cases
function, which allows you to select data that corresponds to the pattern.

The following is a list of data pairs where you write the selection pattern (_).

In[169]:= Cases[{{1,1},{1,2},{2,1},{2,2}},{_}]
Out[169]={}

It does not choose any element because it does not have the form of the list pattern;
for example, the form {a, b}. Now if you change this shape, you see that it selects all the
elements that match the shape of the pattern.
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In[170]:= Cases[{{1,1},{1,2},{2,1},{2,2}},{_,_}]
OUt[17O]= {{1J1}){1)2}){211}){2)2}}

The same result can be obtained if you use the double underscore.

In[171]:= Cases[{{1,1},{1,2},{2,1},{2,2}},{__}]
OUt[171]= {{1J1}){1’2}J{211}){2’2}}

The following example shows how to select data from a list that contains numerical

and categorical data. You use the RandomChoice function, which gives you a random

selection from a list. In this case, it is a random selection between the words Red or Blue.

The next chapter explains how this random function works in the Wolfram Language.

In[172]:= SeedRandom[1234]; (*Employ SeedRandom[s] to ensure the same
sequence of pseudorandom in the following examples.*)
tbl=Table[{i,j,k,RandomChoice[{"Red", "Blue"}]1},{i,1,3},{j,1,3},{k,1,3}]//

21

2 2

2

TableForm
Out[173]//TableForm=
11 1 Blue 1
1 1 2 Blue 1
1 1 3 Blue 1
1 1 Blue 2
2 1 2 Blue 2
2 1 3 Red 2
3 1 1 Blue 3
2 Red 3
3 1 3 Blue 3

2

Red
Red
Red

1 Blue
2 Red

Red

Red

2 Blue

3

Red

NN

w w w
w

Red
Red
Red

Blue
Red
Blue

Red

2 Red

33

Red

The numbers on the right side are named Red or Blue. For example, you can use

Cases to choose the values in the Blue or Red category. Since this is a nested list of depth

four, you must specify the level ({4}) at which Cases should search for patterns.

In[174]:= Cases[tbl,{ , , ,"Blue"},{4}]

Out[174]=

{{1,1,1,Blue},{1,1,2,Blue},
{1,1,3,Blue},{2,1,1,Blue},{2,1,2,Blue},
{2,2,1,Blue},{2,3,1,Blue},{2,3,3,Blue},
{3,1,1,Blue},{3,1,3,Blue},{3,2,2,Blue}}
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Furthermore, the same result can be obtained using the double underscore. Using
only the number 4, search in levels from 1 through 4.

In[175]:= Cases[tbl,{ ,"Blue"},{4}]
Out[175]=

{{1,1,1,Blue},{1,1,2,Blue},
{1,1,3,Blue},{2,1,1,Blue},{2,1,2,Blue},
{2,2,1,Blue},{2,3,1,Blue},{2,3,3,Blue},
{3,1,1,Blue},{3,1,3,Blue},{3,2,2,Blue}}

You can even count how much of the Blue category you have.

In[176]:= Count[Tbl,{ ,"Blue"},{4}]
Out[176]= 11

Count works in the next form, Count[“list’, pattern, level of spec].

Now that you understand the underscore function, you can use the Cases function
to check conditions and filter values. To attach a condition, use the form (/; “condition”),
where the symbol /; followed by a rule or pattern indicates that the subsequent
expression is a condition or pattern in Mathematica. In the next example, the x_
represents an arbitrary element x, which represents the list’s elements in this case. The
condition that x is greater than 5 is then applied.

In[177]:= Cases[nmbrList,x /;x>5]

(*only the values greater than 5 are selected.*)

(*x can be replaced by any arbitrary symbol try using z_ and z > 5, the
result should be the same *)

Out[177]= {12,6,345,7}

As you saw in the previous example, what happens when you use _ means that the
expression x_ must be applied to the condition > 5 since _ means any expression, which
is the list.

Cases can also select data where the condition is true for the established pattern
or set of rules. The next example selects data that are integers. The pattern objects are
represented by an underscore or a rule of expression.
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In[178]:=mixList={1.,1.2,"4",\[Pi],{"5.2","Dog"}, 3,66,{0range,Red}};
Cases[mixList, Integer]

(*We now select the numbers that are integers*)

Out[179]= {3,66}

The underscore can be applied to patterns that check the head of an expression,
which is an integer. Cases compare each element to see if they are integers.

As for conditional matching, if the blanks of a pattern are accompanied by a question
mark (?) and then the function test, the output is a Boolean value.

In[180]:= MatchQ[mixList, ?ListQ](*we test if mixlist has a head of List*)
Out[180]= True

You can select the level of specification with Cases. The next example selects the
cases that are a string; you write two as a level of specification because mixList is a nested
list with two sublists.

In[181]:= Cases[mixList, ?StringQ,2]
Out[181]= {4,5.2,Dog}

You can include several patterns with alternatives. To test different alternatives, place
a (|) between patterns, so it resembles the form “pattern1

”l“

pattern2” |"pattern3 “| ...

In[182]:= Cases[mixList, _?NumberQ| _?String] (*We select the numbers and
the strings*)
Out[182]= {1.,1.2,3,66}

Summary

This chapter serves as an opening to the concept of lists, which are a core structure
employed in Mathematica. It emphasizes the utility of lists and presents the unique
Wolfram Language syntax. The chapter covers diverse types of objects that can be
represented as lists. It concludes with basic functionalities for manipulating lists based

on data requirements.
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Working with Data
and Datasets

This chapter reviews the basics of working with data and datasets in the Wolfram
Language. It starts by reviewing how to apply functions to a list, followed by how to
define user functions that can be used throughout a notebook. Next, you are introduced
to how to write code in one of the powerful syntaxes used in the Wolfram Language,
called pure functions. Naturally, you then delve into associations, explaining how to
associate keys with values and why they are fundamental for proper dataset construction
in the Wolfram Language. The chapter concludes with an overview of how associations
are abstract constructions of hierarchical data representations.

Operations with Lists

Let’s look at how to perform operations on and between lists. This is important since, for
the most part, results in Mathematica can be treated as lists. This section explains how to
perform arithmetic operations, addition, subtraction, multiplication, division, and scalar
multiplication. You also learn how to apply functions to a list using Map and Apply.
These tools are helpful when dealing with linear and nested lists because they allow

you to specify a function’s depth level of application. This section also discusses how to
make user-defined functions, their syntax, term grouping, receive groups, and apply the
function like any other. It reviews an important concept of the Wolfram Language, which
is pure functions, since these are very important for carrying out powerful tasks and
activities and compactly writing code.
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Arithmetic Operations to a List

This section discusses how lists support different arithmetic operations between
numbers and between lists. You can perform basic arithmetic operations like addition,
subtraction, multiplication, and division with lists.

Addition and Subtraction

The following are examples of addition and subtraction operations.

In[1]:= List[1,2,3,4,5,6]+1
Out[1]= {2,3,4,5,6,7}
In[2]:= List[1,2,3,4,5,6]-5
Out[2]= {-4,-3,-2,-1,0,1}

Division and Multiplication

The following are examples of division and multiplication operations.

In[3]:= List[1,2,3,4,5,6]/x
12345 6}

Scalar multiplication operations can also be performed.

In[4]:= List[1,2,3,4,5,6]*2
Out[4]= {2,4,6,8,10,12}
Exponentiation

The following is an example using exponentiation.

In

[5]:= LiSt[1)2)3)4)5)6]A3
Out[

5]= {1,8,27,64,125,216}
Lists can also support basic arithmetic operations between lists.

In[6]:= List[1,2,4,5]-List[2,3,5,6]
Out[6]= {-1,-1,-1,-1}
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You can also use mathematical notation to perform operations.

{"Dog",2}

{2.1}
Out[7]={D;g ,2}

To perform computations between lists, the length of the lists must be the same;

In[7]:=

otherwise, Mathematica returns an error specifying that lists do not have the same
dimensions, like in the following example.

In[8]:= {1,3,-1}+{-1}

During evaluation of In[8]:= Thread::tdlen: Objects of unequal length in
{1,3,-1}+{-1} cannot be combined.

Out[8]= {-1}+{1,3,-1}

Joining a List

To join one list with another—that is, to join the two lists—there is the Union command,
which joins the elements of the lists and shows it as a new list.

In

[9]:= Union[List["1","v","c"],{13,4,32},List["adfs",3,1,"no"]]
Out[

9]= {1,3,4,13,32,1,adfs,c,no,v}

In addition to the Union command, there is the Intersection command, which has a
function analogous to what it represents in set theory. This command lets you observe
the common elements in the list or lists.

In[10]:= Intersection[{7,4,6,8,4,7,32,2},{123,34,6,8,5445,8}]
Out[10]= {6,8}

As seen the lists only have in common the numbers 6 and 8.

Applying Functions to a List

Functions can be concisely applied and automated to a list. The most used functions are
Map and Apply. A short notation is to use the symbol @ instead of the square brackets | |;
f@ “expr” is equivalent to flexpr].

91



CHAPTER 3  WORKING WITH DATA AND DATASETS

In[11]:= Max@{1,245.2,2,5,3,5,6.0,35.3}
Out[11]= 245.2

Map has the following form, Map(f, “expr”]; another way of showing it is with the
shorthand notation using the symbol @. f /@ “expr” and Map|f, “expr”] are equivalent.
This function also supports nested lists.

In[12]:= Factorial/@List[1,2,3,4,5,6]
Out[12]= {1,2,6,24,120,720}

Map can be applied to nested lists.

In[13]:= Map[Sqrt,{{1,2},{3,4}}]
Out[13]= {{1,Sqrt[2]},{Sqrt[3],2}}

The Map function is applied to each element of the list. Map can also work with
nested lists, as in the previous example. The next example creates a list of 10 elements
with Table. Those elements are random numbers between 0 and 1, and then you map a

function to convert them to string expressions.

In[14]:= data=Range[RandomReal[{0,1}],10]; (*List*)

ToString/@data (*mapping a to convert to string*)

Head/@% (*Checking the data type of every element*)

Out[15]= {0.526418,1.52642,2.52642,3.52642,4.52642,5.52642,6.52642,7.52642,
8.52642,9.52642}

Out[16]= {String,String,String,String,String,String,String,String,String,
String}

Let’s look at how to apply a function to a list with additional functions. Apply has the
form Apply [f, “expr”] and the shorthand notation is f @@ “expr”.

In[17]:= Apply[Plus,data](*It gives the sum of the elements of Data*)
Out[17]= 50.2642

In[18]:
out[18]

Plus@@data
50.2642

Also, commands can be applied to a list in the same line of code, which is helpful
when dealing with large lists. For example, if you want to know whether an element
satisfies a condition, instead of going through each value, the element can be gathered
into a list and tested for the specified condition.
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In[19]:= primelist=Range[100];Map[PrimeQ,primelist]

Out[19]= {False,True,True,False,True,False,True,False,False,False,True,False,
True,False,False,False,True,False,True,False,False,False,True,False,False,
False,False,False,True,False,True,False,False,False,False,False,True,False,
False,False,True,False,True,False,False,False,True,False,False,False,False,
False,True,False,False,False,False,False,True,False,True,False,False,False,
False,False,True,False,False,False,True,False,True,False,False,False,False,
False,True,False,False,False,True,False,False,False,False,False,True,False,
False,False,False,False,False,False,True,False,False,False}

The previous example created a list from 1 to 100 and then tested which of the
numbers satisfies the condition of being a prime number with the PrimeQ function.
Other functions can be used to test different conditions with numbers and strings. Also,
a more specific function for testing logical relations in a list can be used (MemberQ,
SubsetQ).

Defining Own Functions

User functions can be written to perform repetitive tasks and reduce the size of a
program. Segmenting the code into functions allows you to create pieces of code that
perform a certain task. Functions can receive data from outside when called through
parameters and return a fixed result.

A function can be defined with the set or set delayed symbol, but remember, using
the set symbol assigns the result to the definition. To define a function, first write the
name or symbol, followed by the reference variable and an underscore. As with cases,
the underscore tells Mathematica that you are dealing with a dummy variable. As a
warning, defined functions cannot have space between letters. Functions can also
receive more than one argument.

In[20]:= MyF[z_]:=12+2+z;MyF2[x_,z_]:=z/x

Now, you can call the function with different z values.

In[21]:= List[MyF[1],MyF[324],MyF[5432],MyF2[154,1],MyF2[14,4],MyF2[6,9]]
Out[z1]={15,338,5446,L, 3, 3}
154”77 2
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Also, another way to write functions is to write compound functions. This concept is
similar to compound expressions; expressions of different classes are written within the
definition. Each computation can or cannot be ended with a semicolon. The following
example shows the concept.

In[22]:= StatsFun[myList ]:={Max@myList,Min@myList,Mean@myList,Median
@myList,Quantile@@{myList,1}(*25 percent*)(*to write a function with
multiple arguments with shorthand notation use curly braces*)}

You can also send a list as an argument.

In[23]:= myList=Table[m-2,{m,-2,10}];
StatsFun[myList]
OUt[24]= {8:'4)2)2)8}

You can have multiple operations within a function, with the option to create
conditions for the arguments to meet. To write a condition, use the dash and semicolon
(/;) symbols. When the condition is true, the function is evaluated; otherwise, if the
condition is not true, the function is not evaluated. Compound functions need to be
grouped; otherwise, Mathematica treats them as though they are outside the body of the
whole function.

The next example creates a function that tells you if an arbitrary string is a
palindrome, which is when the word is the same when written backward.

In[25]:= PalindromeWord[string /;StringQ@string==True]:=(*we can check if
the input is really a string*)
(ReverseWord=StringJoin[Reverse[Characters[string]]];

(*here we separate the characters,reverse the list and join them into a
string*)

ReverselWord==string (*then we test if the word is a palindrome,the output
of the whole function will be True or False*))

Let’s test the new function.

PalindromeWord/@{"hello", "room","jhon","kayak","civic","radar"}
{False,False,False,True,True,True}

In[26]:
out[26]
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When you have a local assignment on a compound function or functions, the
symbols used are still assigned, so if the symbol(s) are called outside the function, it can
cause coding errors. One thing to consider is that you can clear the function and local
symbols when the function is no longer used. Clearing only the function name does not
remove local assignments. Another solution is to declare variables inside a module since
the variables are only locally treated, as shown in the following form.

In[27]:= MyFunction[a0 ,b0 ]:=Module[{m=a0,n=bo}, (*local variables*)m+n
(*body of the module*)](*end of module*)

In[28]:= Clear[MyF,MyF2,StatsFun,Palindromelord,Reverselord] (*To remove
tag names of the functions and local symbols *)

Pure Functions

Pure functions, also known as anonymous functions, are a powerful feature of the
Wolfram Language. They allow the execution of a function without referencing a name
and can be explicitly assigned to an operation. Arguments within pure functions are
denoted with a hashtag (#). To refer to a specific argument, append a number to the
hashtag (e.g., #1, #2, (#3, ... for the first, second, third, ... argument). An ampersand (&)

is used at the end of the definition to signify the use of the hashtag references. Pure
functions can be constructed with the Function keyword or using the shorthand notation
of hashtag and ampersand.

In[29]:= Function[#"-1][z]==#"-18[z]
#7-1&[z] (*both expression mean 1/z*)
Out[29]= True

Out[30]= 1/z

Some examples of pure functions.

In[31]:= {#"-1&[77],#1+#2-#3&[x,y,z] (*we can imagine that #1,#2,#3 are the
1st,2nd and 3rd variables*),Power[E,#]&[3]}
Out[31]= {1/77,x+y-z,E*3}

You can use pure functions along with Map and Apply to pass each argument of a list
to a specific function. The # represents each element of the list, and the & represents that
# is filled and tested for the elements of the list.
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In[32]:= N[#]&/@ {1,1,1,12,3,1}
Sqrt[#]&/@{-1,2,4,16}

Out[32]= {1.,1.,1.,12.,3.,1.}
Out[33]= {I,Sqrt[2],2,4}

Code can be written more compactly using Apply and pure functions, as shown in
the next example. You can select the numbers bigger than 10.

In[34]:= Select@@{{1,22,41,7,62,21},#>10&}
out[34]= {22,41,62,21}

Indexed Tables

You can create and display results in tables to provide a quick way to observe and
manage a group of related data, which leads to how to create tables in the Wolfram
Language, such as giving titles to columns and names to rows. A series of examples
to help you learn the essentials of using the tables so that you can present your data
properly are featured in this section.

Tables with the Wolfram Language

Tables are created with nested lists, and those lists are shown with TableForm.

In[35]:= table1={{"Dog","Wolf"},{"Cat","Leopard"},{"Pigeon","Shark"}};
TableForm[table1]

Out[36]//TableForm=

Dog Wolf

Cat Leopard

Pigeon Shark

The format of TableForm is [“list’, options]. Formatting options let you justify the
columns of tables in three ways: left, center, and right. In the next example, the contents
of the table are centered.

96



CHAPTER 3  WORKING WITH DATA AND DATASETS

In[37]:= TableForm[table1,TableAlignments\[RightArrow]Right]
Out[37]//TableForm=

Dog Wolf

Cat Leopard

Pigeon Shark

Titles can be added with the TableHeadings option command and by specifying
whether the rows and column labels are exposed or just one of them. Choosing the
Automatic option gives index labels to the rows and columns. Remember to write strings
between the apostrophes or to use ToString

In[38]:= TableForm[table1,TableHeadings->{{"Row 1","Row 2","Row
3"},{"Column 1","Column 2"}}]
Out[38]//TableForm=
| Column 1 Column 2
|
Row 1 | Dog Wolf
Row 2 | Cat Leopard

Row 3 | Pigeon Shark
Labeled rows and columns can be customized with desired names.

In[39]:= colname={"Domestic Animals","Wild Animals"};
rowname={"Animal 1","Animal 2","Animal 3"};
TableForm[table1,TableHeadings->{rowname,colname}]
Out[41]//TableForm=

| Domestic Animals  Wild Animals

Row 1 | Dog Wolf
Row 2 | Cat Leopard
Row 3 | Pigeon Shark

The same concept applies to labeling just columns or rows by typing None on the

rows or columns option.
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In[42]:= TableForm[table1,TableHeadings->{None,{"Domestic Animals","Wild
Animals"}}]

Out[42]//TableForm=

Domestic Animals  Wild Animals

Dog Wolf
Cat Leopard
Pigeon Shark

Automated forms of tables can be created with the use of Table and Range. By
applying the Automatic option in the TableHeadings, you can create indexed labels for
the data.

In[43]:=tabData={Table[i,{i,7}],Table[5"1,{i,7}]};TableForm[tabData,TableHe
adings->Automatic]

Out[43]//TableForm=

|12 3 4 5 6 7
_

1]1 2 3 4 5 6 7
2 |5 25 125 625 3125 15625 78125

For exhibit reasons, a table can be transposed too.
In[44]:= TableForm[Transpose[tabData],TableHeadings->Automatic]
Out[44]//TableForm=

3125
15625
78125

~N oA WN R
N OO UV B WN R
o
N
Ul
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Another useful tool is Grid, which displays a list or a nested list in tabular format.
Like TableForm, Grid can also be customized to exhibit data more properly.

Note Grid works with any expression.

In[45]:= tabData2=Table[{i,Exp[i],N@Exp[i]},{i,7}];

Grid[tabData2]

Out[46]=

i Exp? Numeric approx.
1 e 2.71828

2 e’ 7.38906

3 e 20.0855

4 et 54.5982

5 e’ 148.413

6 e’ 403.429

7 e’ 1096.63

To add headers, insert them in the original list as strings and in position 1.

In[47]:= Grid[Insert[tabData2,{"i","Exp*","Numeric approx."},1]]
Out[47]=
i Exp? Numeric approx.

1

1 e  2.71828
2 e 7.38906
3 e 20.0855
4 e 54.5982
5 e 148.413
6 e  403.429
7 e  1096.63
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You can add dividers and spacers too. With Dividers and Spacing, you can divide or
space the y and x axes.

In[48]:= Grid[Insert[tabData2,{"i","Exp*","Numeric approx."},1],
Dividers->{All,False},Spacings->{1,1}]

Out[48]=

| i | Exp* | Numeric approx.
| 1] e | 2.71828

| 2 | e | 7.38906

| 3] e | 20.0855

| 4 | e | 54.5982

| 5] e | 148.413

| 6 | e | 403.429

| 7| e | 1096.63

Background can be added with the Background option. This option allows specific
parts of the table or column table to be colored.
In[49]:= Grid[Insert[tabData2,{"i","Exp i","Numeric approx."},1],Dividers ->

{All,False},Spacings -> {Automatic,@},Background -> {{LightYellow,None,LightBlue}}]
out[49]=

i Exp? Numeric approx.
1 e 2.71828
2 e? 7.38906
3 e3 20.0855
4 et 54.5982
5 e® 148.413
6 et 403.429
7 e’ 1096.63
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Associations

Associations are fundamental in developing the Wolfram Language; associations

are used to index lists or other expressions and create more complex data structures.
Associations, much like dictionaries in many other programming languages, are a more
structured construct that allows you to provide a process for creating pairs of keys and
values. Later, you see that they are important for handling datasets in the Wolfram
Language.

Associations are of the form Association[“key_1" — val_1, key_2 —val_2 ...] or <|
“key_1"— “val_1’) “key_2" — “val_2” ...| >; they associate a key to a value. Keys and
values can be any expression. The Association command is used to construct an
association, or you can use the symbolic entry <| --- |>.

In[50]:= Associt=<|1->"a",2->"b",3->"c"|> (*is the same as Association
[a\[RightArrow]"a",b\[RightArrow]"b",c\[RightArrow]"c"]*)
Associt2=Association[dog->"23","score"->\[Pi]*\[Pi],2*2->Sin[23 Degree]]
Out[50]=<|1—>a,2—>b,3—>c|>

Out[51]=<| dog — 23, score —> n%, 4 — Sin[23°] | >

Entries in an association are ordered, so data can be accessed based on the key of the
value or by the position of the entries in the association, like with lists. The position is
associated with the values (position of the entries), not the keys, as the order of the keys
is not always preserved.

In[52]:= Associt[1](*this is key 1 *)

Associt2[[2]] (*this is position of key 2, which is =? *)
Out[52]= a

Out[53]= =?

As seen in the latter example, the position is associated with the values, not the key.
So, if you want to show parts of the association, use the semicolon.

In[54]:= Associt[[1;;2]]
Associt2[[2;;2]]
Out[54]= <|1—a,2-b]|>
Out[55]= <|score— =* |>
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Values and keys can be extracted with the Keys and Values commands.

In[56]:= Keys@Associt2
Values@Associt2

Out[56]= {dog, score, 4}
Out[57]= {23, =?,Sin[23 °]}

You get an error if you ask for a key without a proper reference.

In[58]:= Associt["a"](*there is no "a" key in the association, thus
the error*)
Out[58]= Missing[KeyAbsent,a]

Associations can also be associations. The next example shows how to associate
associations, thus producing an association of associations. This concept is basic for
understanding how a dataset works in the Wolfram Language.

In[59]:= Association[Associt,Associt2]
Out[59]= <|1—>a,2— b,3 - ¢, dog— 23, score > %, 4 — Sin[23°] |>

You can also make different associations with lists using AssociationThread. The
keys correspond to the first argument and the values to the second. AssociationThread
threads a list of keys to a list of values like the next form: < | {“key_1’, “key_2’, “key_3" ...}
— {“val_1’, “val_2’, “val_3” ...}| >. The latter form can be seen as a list of keys marking
a list of values. When you have defined the lists of keys and values, the command can
associate a list with another list. You can also create a list of associations to read keys as a
row and a column.

In[60]:=AssociationThread[{"class","age", "gender","survived"},{"Economy",2
9,"female",True}]
Out[60]= <| class — Economy, age — 29, gender — female, survived — True | >

You can construct the list of keys and values.

In[61]:= keys={"class","age","gender","boarded"};
values={"Economy",29,"female",True};
AssociationThread@@{keys,values}

Out[63]= <| class — Economy, age — 29, gender — female,
boarded — True |>
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More complex structures can be created with associations. For example, the next
association creates a data structure based on the information about a sports car, with the
model name, engine, power, torque, acceleration, and top speed.

In[64]:= Association@{"Model name" -> "Koenigsegg CCX",
"Engine" -> "Twin supercharged V8",
"Power" -> "806 hp",
"Torque" -> "5550 rpm",
"Acceleration 0-100 km/h" -> "3.2 sec",
"Top speed" -> "395 Km/h"}
Out[64]= <|Model name—Koenigsegg CCX, Engine—Twin supercharged V8,
Power—806 hp, Torque—5550 rpm, Acceleration 0-100 km/h—3.2 sec, Top
speed—395 Km/h|>

You can see how labels and their elements are created in a grouped way. In addition
to that, it is shown how the curly braces mark how each row can arrange the key/
value pair.

Dataset Format

Associations are an essential part of making structured forms of data. Datasets in the
Wolfram Language offer a way to organize and exhibit hierarchical data by providing

a method for accessing data inside a dataset. This section features examples of how to
convert lists, nested lists, and associations to a dataset. It also covers how to add values,
access values in a dataset, drop and delete values, map functions over a dataset, deal
with duplicate data, and apply functions by row or column.

Constructing Datasets

Datasets are for constructing hierarchical data frameworks, where lists, associations, and
nested lists have an order. Datasets are useful for exhibiting large data in an accessible,
structured format. Datasets can show enclosed structures in a sharp format with row
headers, column headers, and numbered elements. Having the data as a dataset allows
you to look at the data in multiple ways.
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Datasets can be constructed in four forms.
o Alist of lists; a table with no denomination in rows and columns

o Alist of associations, a table with labeled columns; a table with
repeated keys and different or same values

e An association of lists, a table with labeled rows; a table with different
keys and different or same values

e Association of associations; a table with labeled rows and columns

The most common form to create a new dataset is from a list of lists. Create a list
within the curly braces {} using the Dataset function. Each brace represents the parts of
the table. Figure 3-1 shows the output of the Dataset function.

In[65]:= Dataset@{{"Jhon",23,"male","Portugal”},{"Mary",30,"female","USA"},
{"Peter",33,"male", "France"},{"Julia",53, " "female", "Netherlands"},{"Andrea",
45,"female","Brazil"}, {"Jeff",24,"male", "Mexico"}}

Out[65]=

Jhon 23  male Portugal
Mary 30 female USA

Peter 33 male France

Julia 53 female Netherlands
Andrea 45 female Brazil

Jeff 24  male Mexico

Figure 3-1. Dataset object created from the input code

By hovering the mouse cursor over the elements of the dataset, you can see their
position in the lower-left corner. The name France corresponds to row 3 and column 4.
The notation of a dataset is first rows, then columns. If you have labeled columns, rows,
or both, you see the column name and row name instead of the numbers.

Constructing a dataset with a list of associations is performed by creating
associations first with repeated keys and then enclosing them in a list. First, create the
associations; the repeated keys specify each column header. The values represent the
contents of the columns. Datasets have a head expression of Dataset.
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In[66]:=
Dataset@{
<|"Name"->"Jhon","Age"->23, "Gender"->"male", "Country"->"Portugal”|>,

<|"Name"->"Mary", "Age"->30, "Gender"->"female", "Country"->"USA" |>,

<|"Name"->"Peter","Age"->33, "Gender"->"male", "Country"->"France"|>,

<|"Name"->"Julia","Age"->53, "Gender"->"female", "Country"->"Netherlands" |>,

<|"Name"->"Andrea","Age"->45,"Gender"->"female", "Country"->"Brazil" |»,
<|"Name" -> "Jeff", "Age" -> 24, "Gender" -> "male", "Country" -> "Mexico"
[>}(*Head @ % *)

Out[66]=

As seen in Figure 3-2, Mathematica recognizes that Name, Age, Gender, and Country
are column headers, which is why the color of the box is different.

Name Age Gender Country
Jhon 23 male Portugal
Mary 30 female USA

Peter 33 male France

Julia 53 female Netherlands
Andrea 45 female Brazil

Jeff 24  male Mexico

Figure 3-2. Dataset with column headers

When passing the cursor over the column labels, they are highlighted in blue, thus
making it possible to click the name of the label, and then it produces only the selected
label and not the whole dataset, as seen in Figure 3-3.
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B2 All» Name

Jhon
Mary
Peter
Julia
Andrea

Jeff

Figure 3-3. Column name selected in the dataset

When this happens, the name of the column also appears. To return to the whole
dataset, hit the spreadsheet icon “ in the upper-left corner or the name All. This type of
layout is practical when dealing with a big set of rows and columns, and you want to
focus only on a few sections of the dataset.

In an association of lists, the keys represent the label of the rows, and the values are
the list of the elements of the rows; then, you associate the whole block. The next block
of code generates an association of a list.

Note The same is true here. Whenever you click a row’s name, it only displays
that row.

In[67]:= Dataset@

<|"Subject A"->{"Jhon",23,"male","Portugal”},
"Subject B"->{"Mary",30,"female","USA"},

"Subject C"->{"Peter",33,"male","France"},
"Subject D"->{"Julia",53,"female", "Netherlands"},
"Subject E"->{"Andrea",45,"female","Brazil"},
"Subject F"->{"Jeff",24,"male","Mexico"}|>
Out[67]=
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As seen in Figure 3-4, the rows are now labeled.

Subject A Jhon 23 male Portugal
Subject B Mary 30 female USA
Subject C Peter 33  male France
Subject D Julia 53 female  Netherlands
Subject E Andrea 45 female Brazil

Subject F Jeff 24 male Mexico

Figure 3-4. Dataset with labeled rows

Row labels are recognized and displayed in the color box. When selecting the row’s
label, it display only that row, as shown in Figure 3-5.

EH > subject E

Andrea 45 female  Brazil

Figure 3-5. Subject E row selected

In an association of associations, the repeated keys of the association of associations
are the column labels and the values of the dataset. In the second association, the
keys are the labels of the rows, and the first associations are the values of the second
association. The next example clarifies this.

In[68]:= Dataset@
<|"Subject A"-><|"Name"->"Jhon","Age"->23,"Gender"->"male", "Country"->

"Portugal”|>,"Subject B"-><|"Name"->"Mary","Age"->30,"Gender"->
"female","Country"->"USA"|>,"Subject C"-><|"Name"->"Peter","Age"->33,

"Gender"->"male","Country"->"France" |>,

"Subject D"-><|"Name"->"Julia","Age"->53,"Gender"->"female","Country"->

"Netherlands"|>,"Subject E"-><|"Name"->"Andrea","Age"->45,"Gender"->

"female","Country"->"Brazil"|>,"Subject F"-><|"Name"->"Jeff","Age"->

24,"Gender"->"male", "Country"->"Mexico" |>|>
Out[68]=
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Name Age Gender Country
Subject A Jhon 23 male Portugal
Subject B Mary 30 female USA
Subject C Peter 33 male France
Subject D Julia 53 female Netherlands
Subject E Andrea 45 female Brazil
Subject F Jeff 24 male Mexico

Figure 3-6. Dataset with names in rows and columns

As can be seen in Figure 3-6, the rows and columns are now labeled. Like the
previous examples, the column and row labels are recognized and displayed in the color
box. When selecting the label of the row or a column, it displays only that row or column,
as seen in Figure 3-7.

ES : subject F

Name Age Gender Country

Jeff 24 male Mexico
Figure 3-7. Only a row selected

If you select only a particular value, then that value is solely displayed. Figure 3-8
shows its form.

EH Subject F> Name

Jeff

Figure 3-8. Name for subject F

Creating a dataset from associations of associations is best for compact datasets
because sometimes it can get messy to extract values and keys. However, the best
approach is the one that works best for you.
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Accessing Data in a Dataset

Mathematica gives each element a unique index; so if you are interested in selecting data
from a dataset, assign a symbol to the dataset and proceed to specify each output in the
next form. The first and second positions of the arguments represent row and column
[nth row, mth column]. So, to extract data based on a column name or a set of columns,
enclose the columns in brackets. You can also use double-bracket notation. If only one
argument is received, it is only the rows. First, let’s create the dataset.

In[69]:=Dst=Dataset@{

<|"Name"->"Jhon","Age"->23, "Gender"->"male", "Country"->"Portugal”|>,

<|"Name"->"Mary", "Age"->30, "Gender"->"female", "Country"->"USA" |>,

<|"Name"->"Peter","Age"->33, "Gender"->"male", "Country"->"France"|>,

<|"Name"->"Julia","Age"->53, "Gender"->"female", "Country"->"Netherlands" |>,

<|"Name"->"Andrea","Age"->45, "Gender"->"female", "Country"->"Brazil"|>,

<|"Name"->"Jeff","Age"->24,"Gender"->"male", "Country"->"Mexico" |>};

The notation [[ ]] works the same as the special character for double brackets ([ []).
Also, you can select data using the specific keys of the value, as shown in Figure 3-9.

In[70]:= Dst[[1,2]](*This is for row 1,column 2%)
Dst[1](*row 1*)

out[70]= 23

Out[71]=

Name Jhon
Age 23
Gender male

Country Portugal

Figure 3-9. Row 1 for Dst

Let's look at the following and Figure 3-10.

In[72]:
Out[72]

Dst[1;;3](*to manipulate data of the column try Dst[1;;3,1;;3]*)
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Name Age Gender Country
Jhon 23 male Portugal
Mary 30 female USA

Peter 33 male France

Figure 3-10. Values from rows 1 to 3 and columns 1 to 3

This case selected data from positions 1 to 3, from John to Peter. The same is applied
to columns.

You can also show specific columns and maintain all the fixed rows with their keys.
The same process is applied when having a label in each row. Typing All means all the
elements in the column or the row. The output is shown in Figure 3-11.

In[73]:= Dst[All,{"Name","Age"}] (*If more than 1 column label is added
then enclosed the labels by curly braces.*)
Out[73]=

Name Age

Jhon 23
Mary 30
Peter 5
Julia 53
Andrea 45
Jeff 24

Figure 3-11. Values for column name and age
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Alternatively, you can extract a column or a row as a list to better manipulate them in
the Wolfram Language. To do that you need to use the Normal function and the Values
command. Remember that you are dealing with associations, so if you want the values,
you use the Values command and then Normal to convert it to a normal expression.

In[74]:= Normal@values@Dst[All,{"Name","Age"}](*values of the name and age
columns*)
Out[74]= {{3hon,23},{Mary,30},{Peter,33},{Julia,53},{Andrea,45},{Jeff,24}}

It is the same idea for the rows: if they have a label, you can use them.

In[75]:= Normal@Values@Dst[[1,A11]]
Out[75]= {Jhon,23,male,Portugal}

The result is the same if you first do Normal and then Values.

In[76]:= Values@Normal@Dst[[1,A11]]
Out[76]= {Jhon,23,male,Portugal}

Another function that can be used is Query, a specialized function that works with
datasets. Queries must be applied to the symbol of the dataset or directly to the dataset.
Queries are helpful because they allow easy selectivity of the values; you can extract rows
or columns and get individual records.

In[77]:= Query[All,"Country"]@Dst
Query[3]@%
Out[77]=

Figure 3-12 shows that you can extract columns and values with Query.
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Portugal
USA

France
Netherlands
Brazil

Mexico

Figure 3-12. Country values

Out[78]= France

Another function that works more intuitively is Take, in which you can specify the
symbol of the dataset and then how many rows and columns to display. Take comes
in handy when dealing with large datasets, and you want to only view a specific part of
the data.

In[79]:= Take[Dst,2] (*First 2 rows*)
(*Take[Dst,3,3] First 3 rows and columns*)
out[79]=

Figure 3-13 shows you can use Take as an alternative.

Name Age Gender Country
Jhon 23 male Portugal
Mary 30 female USA

Figure 3-13. First two rows of a dataset
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Adding Values

Now that you have examined how to access the elements of a dataset, you can add new
values to the dataset. You can add rows with Append or Prepend, but remember that
AppendTo and PrependTo can be used too. However, they assign the new result to the
assigned variable. Append adds at the last and Prepend at the first.

To add a row, you would need to write the new row like you write the associations
with repeated keys, calling the dataset and then the function, followed by the new row,
as shown in Figure 3-14.

In[80]:= Dst[Append[<|"Name"->"Anya","Age"->19,"Gender"->
"female","Country"->"Russia"|>]]
Out[80]=

Name Age Gender Country
Jhon 23 male Portugal
Mary 30 female USA

Peter 33 male France

Julia 53 female Netherlands
Andrea 45 female Brazil

Jeff 24 male Mexico

Anya 19 female Russia

Figure 3-14. New row added at the end of the dataset

The operator form of the Append function was used in this case. Operator forms
in the Wolfram Language allows for a more concise and readable code syntax. They
essentially allow function to be used directly without square brackets. This form
can be used with other function, like Apply, to make expression with a more natural
representation. For example, to add a new row at the top of the dataset, try using the
code, Dst@Prepend|[<|“Name”->“Anya’, “Age”->19, “Gender”->“female’, “Country”->

“Russia”[>], which is the same as Dst[Prepend[<| "Name"->"Anya", "Age"->19,
"Gender"->"female", "Country"->"Russia"|> ]].
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Adding a new column of only single values can be done by simply assigning a value
to the side of the columns of the dataset with the key name, which is the column name.
Figure 3-15 shows the new column added.

In[81]:
out[81]

Dst[All,Prepend["ID number"->1]]

ID number  Name Age Gender Country

1 Jhon 23 male Portugal

1 Mary 30 female USA

1 Peter 33 male France

1 Julia 53 female Netherlands
1 Andrea 45 female Brazil

1 Jeff 24  male Mexico

Figure 3-15. ID column added

To add a list of values as a column, first create a list of values. Next, use
AssociationThread to associate each value with the same key, creating an association
of values for the repeated key. Then you create a dataset of the new association and
combine it with the original dataset with the Join function. This merges expressions of
the same head.

In[82]:= Id={1,2,3,4,5,6};(*our list of values*)
ID=AssociationThread["ID"->#]&/@Id (*the process is threaded in the list*)
Out[82]= {<|ID->1|>,<|ID->2|>,<|ID->3|>,<|ID->4|>,<|ID->5|>,<|ID->6]>}

Each element needs to be associated one by one for the later block because
AssociationThread suppresses repeated keys, so you would only have one association,
and you need to have a repeated key marking different values.

Next, create the new dataset with the same key shown in Figure 3-16.

In[83]:= Dataset[ID]
Out[83]=
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Figure 3-16. ID column dataset

Finally, join the same objects; here, Join is used with a level of specification of 2
because the new dataset is a sublist of depth 2. If you want to add the column on the
left side, the new column goes first, followed by the dataset; for the right side, it is the

CHAPTER 3
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opposite. Figure 3-17 shows the output dataset.

In[84]:= Join[%,Dst,2]
Out[84]=

ID Name
Jhon
Mary
Peter
Julia

Andrea

(=2 T I S VI S R

Jeff

Figure 3-17. ID column added

Age | Gender
23 male
30 female
33 male
53 female
45 | female
24 male

Country
Portugal
USA

France
Netherlands
Brazil

Mexico

WORKING WITH DATA AND DATASETS
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The previous cases worked with a dataset from a list of associations; since you are
working with tagged rows only or tagged rows and columns, adding a row or column
is preserved by adding the same structure to the dataset. So, adding a new row to an
association of lists would take the form < | “key” — {elem, ... } |>; for columns, this
would be the process of creating a dataset and joining them. In the case of a list of lists,
adding a row would be the same approach but without a key. For the case of association
of associations, to add a row would be <| “key” — <|"key 1” - “val 1, ... | > |>, and for
columns, it would be the same as before, a key associated with a value. Nevertheless,
there is no restriction on how data can be accommodated.

Finally, to change unique values, select the item and give it the new content. In
the case that you have labels on rows and columns, the original form is still preserved:
“rows’, “columns”}. So, if you want to replace Jhon'’s age, use the ReplacePart function
by calling the symbol of the dataset and specifying the column tag and then with the
new value, which is 50. If you were working with only a row label or a column label, the
process would be the same, but using the row or column label and then the number
position of the element. Figure 3-18 shows the new value is 50.

In[85]:= ReplacePart[Dst,{1,"Age"}->50](*Also using the index will produce
the same output,that would be {1,2} -> 50%)
Out[85]=

Name Age Gender Country
Jhon 50 male Portugal
Mary 30 female USA

Peter 33 male France

Julia 53 female Netherlands
Andrea 45 female Brazil

Jeff 24 male Mexico

Figure 3-18. Jhon age value changed to 50
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Dropping Values

You can eliminate the contents of a row or column without deleting the entire table
structure. To accomplish this, use the Drop function or the Delete function. When using
Drop, you enclose the number of the row or column with { } to delete a unique row or

column (see Figure 3-19).
In[86]:= Drop[Dst,{1}](*in the instance we want to delete more than one
then we write m through n dropped {m,n}*)
Out[86]=
Name Age Gender Country
Mary 30 female USA
Peter 33 male France
Julia 53 female  Netherlands
Andrea 45 female Brazil

Jeff 24 male Mexico

Figure 3-19. Drop row 1

Figure 3-19 shows that the first row has been dropped. You can also drop rows and
columns at the same time. Figure 3-20 shows the second row and last column dropped.

In[87]:= Drop[Dst,{2},{4}]
Out[87]=
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Name Age
Jhon 23
Peter 33
Julia 53
Andrea 45
Jeff 24

Gender
male
male
female
female

male

Figure 3-20. New dataset after dropping row 2 and column 4

Another way is to use Delete on a row or column label, as shown in Figure 3-21.

In[88]:= Dst[All,Delete["Age"]] (*to delete a row use["label of row",All]*)

Out[88]=

Name
Jhon
Mary
Peter
Julia
Andrea

Jeff

Gender
male
female
male
female
female

male

Figure 3-21. Age column deleted
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Filtering Values

Having the data as a dataset allows you to look at the data in multiple ways. Let’s now
work with the tagged dataset to better expose how filtering values work. For starters, you
use the labeled dataset shown in Figure 3-22.

In[89]:= Clear[Dst];(*Let's clear the symbol "Dst" of previous
assignments*)

Dst=Dataset@

<|"Subject A"-><|"Name"->"Jhon","Age"->23,"Gender"->"male","Country"->

"Portugal”|>,"Subject B"-><|"Name"->"Mary","Age"->30,"Gender"->

"female","Country"->"USA"|>,"Subject C"-><|"Name"->"Peter","Age"->33,

"Gender"->"male","Country"->"France"|>,

"Subject D"-><|"Name"->"Julia","Age"->53, "Gender"->"female","Country"->

"Netherlands"|>,"Subject E"-><|"Name"->"Andrea","Age"->45,"Gender"->

"female","Country"->"Brazil"|>,"Subject F"-><|"Name"->"Jeff","Age"->24,

"Gender"->"male", "Country"->"Mexico"|>
|>
Out[90]=

Name Age Gender Country
Subject A Jhon 23  male Portugal
Subject B Mary 30 female USA
Subject C Peter 33 male France
Subject D Julia 53 female Netherlands
Subject E Andrea 45 female Brazil
Subject F Jeff 24 male Mexico

Figure 3-22. Tagged dataset
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As with lists, you can create one or more filter conditions; for example, you can select
an age greater than 30 and get a dataset object (see Figure 3-23).

In[91]:= Cases[Dst[All,"Age"],x /;x>30](*also we can select data that
matches exactly 30 with the==sign*)
Out[91]=

33
53
45

Figure 3-23. Filtered data from the age column

Figure 3-23 shows the filtered data. Data can be selected based on True or False
results. For that, you can use the Select function. Figure 3-24 shows the selected subjects.

In[92]:= Select[Dst[All,"Age"],EvenQ]
Out[92]=

Subject B 30
Subject F 24

Figure 3-24. Selected subjects

The use of pure functions can be applied too. Remember that the #Age resembles the
elements in the Age column, as shown in Figure 3-25.

In[93]:= Dst[Select[#Age>30&]]
Out[93]=
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Name Age Gender  Country
Subject C Peter 33 male France
Subject D Julia 53 female  Netherlands
SubjectE Andrea 45 female  Brazil

Figure 3-25. Selected values using pure function syntax

Also, you can count categorical data values, as shown in Figure 3-26. This is helpful
when you want to identify how many types of a class you have in the data. For example,
you can count how many females and males are in the dataset.

In[94]:= Counts[Dst[All,"Gender"]] (*alternative
form:Dst[Counts, "Gender" ]*)
Out[94]=

male 3

female 3

Figure 3-26. Count data for class male and female

More complex groups can be made based on a class; for instance, you can group the
dataset by gender, as shown in Figure 3-27.

In[95]:= Dst[GroupBy["Gender"],Counts, "Age"]
Out[95]=
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male 23
33 |1
24 1
female 30 1
53 |1
45 1

Figure 3-27. Data arranged by class and age

As a good practice, clear symbols when they are no longer used.

In[96]:= Clear[Dst]

Applying Functions

Functions can be applied to the dataset to get statistics, determine dimensions, or
transform the data. Functions can be applied to single columns or a unique element in
the data structure. First, let’s create a dataset comprising 10 items, whose columns are
the factorial of 1 to 10, a random real number from 1 to 0, and the natural logarithm from
1 to 10. Figure 3-28 shows the new dataset.

In[97]:= DataNumbr=Dataset@Table[<|"Factorial”->Factorial[i], "Random
number"->RandomReal[{0,1}], "Natural Logarithm"->Log[E,i]|>,{i,1,10}]
Out[97]=
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Factorial Random number Natural Logarithm

1 0.556204 0

2 0.747067 0.693147
6 0.986582 1.09861
24 0.905028 1.38629
120 0.395201 1.60944
720 0.507363 1.79176
5040 0.5893 1.94591
40320 0.168404 2.07944
362880 0.904704 2.19722
3628800 0.211938 2.30259

Figure 3-28. Numeric dataset

And now you can compute basic operations on the data, like getting the mean of the
factorials and random numbers, as shown in Figure 3-29.

In[98]:= DataNumbr[Mean,{"Factorial"”,"Random number"}]//N
out[98]=

Factorial 403 791.
Random number  0.597179
Figure 3-29. Mean for values in Factorial and Random number columns

Parenthesis and the composition of functions can also be used to relate operations
applied to the data by using the @ *(composition) symbol. Figure 3-30 shows the data for
random numbers sorted from less to greater.
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In[99]:= DataNumbr[All,"Random number"]@(Sort@*N)
Out[99]=

0.168404 0.211938 0.395201 0.507363 0.556204
0.5893  0.747067 0.904704 0.905028 0.986582

Figure 3-30. Sorted data in canonical order

You can apply different functions to the data. As shown in Figure 3-31, the dataset
shows numbers in decimal form; otherwise, it would not fit in the square box.

In[100]:= DataNumbr[{Total,Max,Min},"Natural Logarithm"]
Out[100]=

15.1044 2.30259 0

Figure 3-31. Total, Max, and Min value for Natural Logarithm column

You can also apply your own functions; let’s use a previously constructed function.
Figure 3-32 shows the function you created previously applied to a dataset column.

In[101]:= DataNumbr[{StatsFun},"Natural Logarithm"]
Out[101]=

2.30259 0 1.51044 1.7006 2.30259

Figure 3-32. StatsFun applied to the Natural Logarithm column

Functions to restructure the dataset can be applied too, like Reverse, as shown in
Figure 3-33.

In[102]:= DataNumbr[Reverse,All]
Out[102]=
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Figure 3-33. Reversed elements of the dataset

Factorial Random number Natural Logarithm

3628800 0.211938
362880 0.504704

40320 0.168404

5040 0.5893

720 0.507363
120 0.395201
24 0.905028
6 0.986582
2 0.747067
1 0.556204

2.30259
2.19722
2.07944
1.94591
1.79176
1.60944
1.38629
1.09861
0.693147
0
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Map can also apply functions, as you saw with lists in the previous sections. The next

example maps a function directly into the dataset, as shown in Figure 3-34.

In[103]:= Map[Sqrt,DataNumbr]

Out[103]=
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Factorial Random number Natural Logarithm

1 0.745791 0
1.41421 0.86433 0.832555
2.44949 0.993268 1.04815
4.89898 0.95133 1.17741
10.9545 0.62865 1.26864
26.8328 0.712294 1.33857
70.993  0.767659 1.39496
200.798 0.410371 1.44203
602.395 0.951159 1.4823
1904.94 0.460367 1.51743

Figure 3-34. The square root function mapped in the dataset

Transposition is an operation that consists of converting columns to rows and rows to
columns and can sometimes help you observe data differently. To obtain the transposition
of the dataset, use the Transpose function applied to the dataset. Figure 3-35 shows all
columns are now rows and displayed compactly because it is a large row.

In[104]:= DataNumbxr//Transpose
Out[104]=

Factorial {...10}
Random number {...;0}

Natural Logarithm {...,,}

Figure 3-35. Dataset values by Mathematica due to large contents

Ifyou click a row, you should get the values for the corresponding row.
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Functions by Column or Row

Another approach is to directly apply a function to the values of a column, and you can
specify a rule of transformation. For example, you can round to the smallest integer
greater than or equal to all the values in the Natural Logarithm column. Figure 3-36
shows the output.

In[105]:= DataNumbr[All,{"Natural Logarithm"->Ceiling}](*The same can be
done using the index number of the columns,DataNumbr*)
Out[105]=

Factorial Random number Natural Logarithm

1 0.54158 0
2 0.223704 1
6 0.473125 2
24 0.726243 2
120 0.371648 2
720 0.37111 2
5040 0.581207 2
40320  0.316827 3
362880 0.254744 3
3628800 0.463658 3

Figure 3-36. Ceiling function applied as a rule
You can apply the square root to the first row. Map can also be used to apply

functions to rows. Figure 3-37 shows the output generated

In[106]:= DataNumbr[1,Sqrt] (*Map[Sqrt,DataNumbr[1;;2,A11]] can also do the
work for the first 2 rows*)
Out[106]=
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Factorial 1
Random number 0.735921

Natural Logarithm 0

Figure 3-37. Output generated from the earlier code

When you want to apply a function to a defined level, you can use MapAt. MapAt has
the form MapAt[f, “expr’) {i, j, ...}], where {i, j} means the level of the position, as shown in
Figure 3-38.

In[107]:= MapAt[Exp,DataNumbr,{1}](*for first position of row 1 only*)
(*Double semi-colon can be used to define from row to row,try using 4;;6.
Caution you might get big numbers*)

Out[107]=

Factorial Random number Natural Logarithm

2.71828 |1.71872 1

2 0.223704 0.693147
6 0.473125 1.09861
24 0.726243 1.38629
120 0.371648 1.60944
720 0.37111 1.79176
5040 0.581207 1.94591
40320  0.316827 2.07944
362880 0.254744 2.19722
3628800 0.463658 2.30259

Figure 3-38. Exponentiation for the first row only with MapAt
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Occasionally, you might encounter duplicate data, making it hard to understand the
data, especially if something goes wrong. One approach can be to remove an entire row
or column, as you saw in previous sections; but as an alternative, you can use built-
in functions that can do the job. The DeleteDuplicates function is the most common.
DeleteCases can be used, too, but it removes data that matches a pattern, in contrast to
DeleteDuplicates. Let’s create a dataset for the example.

In[108]:= Sales = Dataset@{

<|"Id" -> 1, "Product" -> "PC", "Price" -> "800 €", "Sale Month" ->
"January"|>,

<|"Id" -> 2, "Product" -> "Smart phone", "Price" -> "255 €", "Sale Month"
-> "January"|>,

<|"Id" -> 3, "Product" -> "Anti-Virus", "Price" -> "100 €", "Sale Month"
-> "March"|>,

<|"Id" -> 4, "Product" -> "Earphones", "Price" -> "78 €", "Sale Month" ->
"February"|>,

<|"Id" -> 5, "Product" -> "PC", "Price" -> "809 €", "Sale Month" ->
"March"|>,

<|"Id" -»> 5, "Product" -> "PC", "Price" -»> "809 €", "Sale Month" ->
"March"|>,

<|"Id" -> 6, "Product" -> "Radio", "Price" -»> "60 €", "Sale Month" ->
"January"|>,

<|"1d" -> 7, "Product" -> "PC", "Price" -> "700 €", "Sale Month" ->
"February"|>,

<|"Id" -> 8, "Product" -> "Mouse", "Price" -> "100 €", "Sale Month" ->
"March"|>,

<|"Id" -> 9, "Product" -> "Keyboard", "Price" -> "125 €", "Sale Month" ->
"January"|>,

<|"Id" -> 10, "Product" -> "USB 64gb", "Price" -> "90 €", "Sale Month" ->
"March"|>,

<|"Id" -> 11, "Product" -> "LED Screen", "Price" -> "900 €", "Sale Month"
-> "February"|>,

<|"Id" -> 11, "Product" -> "LED Screen", "Price" -> "900 €", "Sale Month"
-> "February"|>}
Out[108]=
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Figure 3-39 reveals two duplicated rows in the dataset: ID numbers 5 and 11. The
DuplicateFreeQ function can detect whether the dataset appears to have duplicates. The
function returns False when there is duplicate data and True when there is not. It can be
applied straight to the dataset, or you can detect the rows that appear to be duplicated.

Id  Product Price  Sale Month
1 PC 800€ | January
2 Smart phone 255€  January
3 Anti-Virus 100€ March

4 Earphones 78 € February
5 PC 809€  March

5 PC 809€ March

6 Radio 60 € January
7 PC 700 €  February
8 Mouse 100€ March

9 Keyboard 125€  January
10 USB 64gb 90 € March
11  LED Screen 900€  February
11 | LED Screen 900€  February

Figure 3-39. Dataset example for duplicate data

Let’s check if there are duplicates in rows 1 through 7.

In[109]:= DuplicateFreeQ[Sales[1;;7,A11]]
Out[109]= False
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Duplicate data was programmatically found in the dataset. You can also check for
duplicates by column.

In[110]:= Sales[All,{"Id"}]@DuplicateFreeQ
Out[110]= False

To delete duplicates, the DeletDuplicates function is used. It can be applied to the
dataset, column, or row as a function. The output generated is shown in Figure 3-40.

In[111]:= DeleteDuplicates[Sales] (*Datas[All,{"ID"}]@DuplicateFreeQ*)
Out[111]=

Id  Product Price  Sale Month
1 PC 800€ January
2 Smart phone 255€  January
3 Anti-Virus 100€ March

4 Earphones 78 € February
9 PC 809 € March

6 Radio 60 € January
7 PC 700€  February
8 Mouse 100€ March

9 Keyboard 125€  January
10 USB 64gb 90 € March

11  LED Screen 900 € February

Figure 3-40. Dataset without duplicates
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An alternative is to use GroupBy to identify which data is duplicated in the dataset.
Notice in Figure 3-41 that the repeated data is stacked together.

In[112]:= GroupBy[Sales,"Id"]
Out[112]=

Id Product Price Sale Month
PC 800€  January

Smart phone 255€  January

n A W N =
n ke W N

Anti-Virus 100€ March
Earphones 78€ February
PC 809€ March
6 6 Radio 60 € January
7 T PC 700€  February
8 8 Mouse 100€ March
9 9 Keyboard 125€  January
10 10 USB64gb 90 € March
11 11  LED Screen 900€ February

2 total »

Figure 3-41. Dataset grouped by duplicates

Joining and Merging Datasets

Combining multiple datasets into one based on shared attributes is a frequent task.
This process can be achieved depending on how a dataset should be joined. The three
different functions that operate on datasets are Join, JoinAcross, and Merge.

132



CHAPTER 3  WORKING WITH DATA AND DATASETS

The first function combines two datasets end-to-end, effectively concatenating them
into a single dataset (see Figure 3-42).

In[113]:= dataset1={<|"a"->1,"b"->2|>,<|"a"->3,"b"->4|>};
dataset2={<|"a"->5,"b"->6|>};
Join[dataset1,dataset2]//Dataset

Out[116]=

b
i |2
4
6

Figure 3-42. Dataset grouped by the Join function

The second function combines datasets on a specified key or keys, similar to how
relational databases join tables based on common keys (see Figure 3-43). Similar to
operations from relational databases like join, left join, right join, inner join, outer join,
and more.

In[117]:= dataset3={<|"ID"->1,"Value"->"A"|>,<|"ID"->2,"Value"->"B"|>};
dataset4={<|"ID"->1,"Score"->95|>,<|"ID"->2,"Score"->90|>};
JoinAcross|[dataset3,dataset4,"ID"]//Dataset

Out[119]=
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ID Value Score
1 A 95
2 B 90

Figure 3-43. Dataset combined by the JoinAcross function

The third function combines datasets, using a function f to combine values with the
same key, returning a single value (see Figure 3-44).

In[120]:= Merge[Dataset[JoinAcross[dataset3,dataset4,"ID"]],Total]
Out[120]=

ID 3
Value "A" +"B"
Score 185

Figure 3-44. Dataset combined by the Merge and Total functions of each key

Customizing a Dataset

Datasets can be customized depending on how you want to show the data. Working with
datasets can be personalized based on preferences. To explore this, the next block loads
example data from the Wolfram reference servers to discover how to personalize data for
your needs. When loading data from the server, depending on your Internet connection,
it might pop up a loading frame trying to access the Wolfram servers.

Let’s load the data by using ExampleData and then choosing statistics of animal
weights and converting the list into a dataset. By using the MaxItem option, you can
display how many rows or columns to exhibit from the dataset. The first four rows and
the first three columns are shown in this example. When viewing the dataset, scroll
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bars appear on the left and top sides; use them to move over the dataset. Alternatively,
you can align the contents on the left, center, or right sides. In Figure 3-45, only the left
scrollbars appear.

In[121]:= AnimalData=ExampleData[{"Statistics","AnimalWeights"}];
Dataset[AnimalData,MaxItems->{4,3},Alignment->Center] (*To align a
sole column,Alignment-> “Col name" -> Left}*)

Out[121]=

MountainBeaver 1.35 8.1
Cow 465 423
GreyWolf 36.33 |1195
Goat 27.66 115

7~ /N rowsl-4o0f28 VvV N

Figure 3-45. Animal dataset

The Background option is used to color the dataset’s contents; the colors of the
notation {row, col} are preserved. To paint the whole data, enter only the color. To paint

” o«

by row or column, enter the colors as a nested list—that is, {{“color_row1’, “color_row2’,
... }, {“color_coll’; “color_col2’, ... } }. Mixing colors can also be done by nesting the nested
colors. For specific values, the position of the values would need to be entered. The next

example colors the first two columns, as shown in Figure 3-46.

In[122]:= Dataset[AnimalData,MaxItems->{4,3},Background-> {{None},{LightBlue,
LightYellow}},ItemSize->{12}]
Out[122]=
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MountainBeaver 1.35 8.1
Cow 465 423
GreyWolf 36.33 119.5
Goat 27.66 115

75 A rowsl-4of28 WV M
Figure 3-46. Columns 1 and 2 colored

For particular values, the position of the values would need to be entered. Another
option is the size of the items, which is controlled with the ItemSize option. If you want
to edit the same options but with headers, you would use HeaderAlignment for placing
the text left, center, or right; HeaderSize for the size of the titles; and ItemStyle for the
style of the font of the items. Figure 3-47 shows the dataset in bold style.

In[123]:= Dataset[AnimalData,MaxItems->{4,3},Background->{{4,3}->
Yellow},ItemSize->{12},ItemStyle->Bold]
Out[123]=

MountainBeaver 1.35 8.1
Cow 465 423
GreyWolf 36.33 119.5
Goat 27.66 115

7% /N rowsl-4o0f28 Vv N

Figure 3-47. Dataset with bold style

Another useful option is HiddenlItems, which hides items that should not be
displayed. Therefore, to hide row 1 and column 1, use HiddenItems — {“row #’, “col #”}.
Columns can be hidden with their associated labels. Figure 3-48 illustrates the form of
suppressed rows and columns in the dataset. For specific values, nest the value’s position
and try HiddenItems — {{2,3}}.
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In[124]:= Dataset[AnimalData,MaxItems->{4,3},HiddenItems->{1,1}]
Out[124]=

@ [ L J

* | 465 423

]

36.33 118.5

®

27.66 115

7N /N rowsl-4o0f28 VvV N

Figure 3-48. Column 1 and row 1 suppressed

You can add headers to each column in the new dataset with the Query command.
To rename the columns, the same procedure is applied; the new names would be ruled
to the old names—that is, “New name” — “Animal Name,” as shown in Figure 3-49.

In[125]:= Query[All,<|"Animal Name"->1,"Body Weight"->2,"Brain
Weight"->3|>]@Dataset[AnimalData]

(*for display motives we put row 7 to 9,use All for the whole data set*)
(*or "symbol of the dataset"[All,<|"Animal Name"-> 1,"Body Weight"->2,
"Brain Weight"->3|>]%*)

Out[125]=
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Animal Name Body Weight Brain Weight
MountainBeaver 135 8.1
Cow 465 423
GreyWolf 36.33 119.5
Goat 27.66 115
GuineaPig 1.04 55
Diplodocus 11700 50
AsianElephant 2547 4603
Donkey 187.1 419
Horse 521 655
PotarMonkey 10 115
Cat 3.3 25.6
Giraffe 529 680
Gorilla 207 406
Human 62 1320
AfricanElephant 6654 5712
Triceratops 9400 70
RhesusMonkey 6.8 179
Kangaroo 35 56
GoldenHamster 0.12 1
Mouse 0.023 0.4
D

Figure 3-49. Animal dataset with added column headers

Generalization of Hash Tables

A hash table is an associative data structure that allows data storage and, in turn,

the rapid retrieval of elements (values) from objects called keys. Hash tables can be
implemented inside arrays, where the main components are the key and the value. The
way to search for an element in the array is by using a hash function, which maps the
keys to the pairs of values and gives you the place where it is in the array (index).
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In other words, the hash function searches for a certain key, evaluates that key, and
returns an index. This process is known as hashing. Figure 3-50 shows a representative
schema of a hash table.

Key 1 ) 0 Value_1
Key 2 P 1 Value_2
Key 3 —
—p! 2 Value_3
Key 4 |
Key 5 | A M1—» 3 Value_4&
—p 4 Value_5

Figure 3-50. Graphic representation of a hash table

Inside the hash table, the number of keys and values can go on and on, which is one
of the reasons hash tables are very useful; they can store large amounts of information.
Inside the Wolfram Language, associations can represent hash tables. Primarily, this is
because associations are an abstract data structure with fundamental components such
as keys and values, just like a hash table. This combines the structure of an associative
array and an indexed list, more like a nest of hash arrays. With the crucial property that
associations are immutable, each association-type object is unique and the reference
to one association has no link to another, even though they are referenced to the
same symbol.

Other special commands are available. Let’s first create an association. Nested
associations are defined as associations that have associations within them—in other
words, a key that points to a bucket of values that correspond to keys that have other
values inside (see Figure 3-51).

In[126]:= Asc=<|"User"-»>

<|"Edgar"-> <|"id"->01, "Parameters"-><|"Active"->True,"Region"->
"LA","Internet Traffic"->"1 GB"|>|>,
<|"Anya"-><|"id"->02,"Parameters"-><|"Active"->False, "Region"->
"MX","Internet Traffic"->"3 GB"|>|>
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I>1>1>;
Dataset[%]
Out[127]=

id Parameters

Active Region Internet Traffic
User Edgar 1 True LA 1GB
Anya 2 False | MX 3GB

Figure 3-51. Nested associations in the dataset format

Executing operations like accessing items, updating values, and deleting is
supported by the commands associated with keys and values. Remember that Keys
returns the keys of the association and Values the values. Keys only work at the surface
level inside a nested association, as seen in the following code.

In[128]:= Keys[Asc]
Out[128]= {User}

Applying the Keys command returns only the key user. The Keys command needs to
be applied to deeper levels to see the keys inside a nested association, which is achieved
with Map by specifying the sublevel only.

In[129]:= Map[Keys,Asc,#]&/@{{0},{1},{2}}//Column
Out[129]= {User}

<|User->{Edgar,Anya}|>
<|User-><|Edgar->{id,Parameters},Anya->{id,Parameters}|>|>

As seen on the surface level (0), the key is User. The next sublevel has the keys Edgar
and Anya, and the last level has the keys ID and parameters for each of the keys Edgar
and Anya. MapIndexed lets you look inside the whole association and apply Keys to
sublevels to show the predecessors of the keys.
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In[130]:=

Print["Level 0: "<>ToString@MapIndexed[Keys,Asc,{0}]]

Print["Level 1: "<>ToString@MapIndexed[Keys,Asc,{1}]]

Print["Level 2: "<>ToString@MapIndexed[Keys,Asc,{2}]]

Out[130]=

Level 0: {{}[User]}

Level 1: <|User -> {{Key[User]}[Edgar], {Key[User]}[Anya]}|>

Level 2: <|User -> <|Edgar -> {{Key[User], Key[Edgar]}[id], {Key[User],
Key[Edgar]}[Parameters]}, Anya -> {{Key[User], Key[Anya]}[id], {Key[User],
Key[Anya]}[Parameters]}|>|>

Atlevel 0, only the User key exists, and the predecessor is {}. At level 1, the User
predecessor and the Edgar and Anya keys are values of the User key. At level 2, the
predecessor keys are Edgar/Anya and User for the ID and Parameters keys. In other
words, the expression {Key[User], Key[Anya]|}[id] means that ID corresponds to the Anya
key and Anya to the User key, and so on. This is also useful because it means that access
to a value or values of a key is done with the operator form applied to the association
specifying the keys.

In[133]:= Asc["User"]["Edgar"]["id"](*{Key[User],Key[Anya]}[id],*)
Out[133]= 1

As shown, you get the value that corresponds to the ID inside Edgar inside User key.
To see a graphical representation of the previous expression, you can use MapIndexed
to label the positions of the keys and dataset applied, for example, in sublevel 4 (see
Figure 3-52).

In[134]:= Dataset@MapIndexed[Framed[Labeled[#2,#1],FrameMargins->0,
RoundingRadius->5]8&,Asc,{4}] (*Try changin the number to see how the
expression changes*)

Out[134]=
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id Parameters

User | Edgar |1 | Active rKey[User], Key[Edgar], Key[Parameters], Key[Actlve]}J
True

Region rKey[User], Key[Edgar], Key[Parameters], Key[Region]}}
g IILAII

iSRaE TR FKey[User], Key[Edgar], Key[Parameters], Key[Internet Traﬁlc]ﬂ
It1 GBI!
Anvat |2 [Active Key[User], Key[Anyal], KFe;gZarameters], Key[Active]}

Key[User], Key[Anya], Key[Parameters], Key[Region]]]
IIMxII

Internet Traffic

!‘
I’

Key[User], Key[Anya], Key[Parameters], Key[Internet Traffic]}J
II3 GBII

Figure 3-52. Dataset representation marking the keys inside the nested
association

Each box contains the values of the predecessor key. This is why 1 GB corresponds
to {Key[User],Key[Edgar]|,Key[Parameters|,Key[Internet Traffic]}. To see the whole
expression, the level of specification is Infinity (see Figure 3-53).

In[135]:=MapIndexed[Framed[Labeled[#2,#1,ImageMargins->0,Spacings->0],
FrameMargins->0,RoundingRadius->5]&,Asc,Infinity]
Out[135]=

142



CHAPTER 3  WORKING WITH DATA AND DATASETS

{|User-> {Key[user]} |)

(lEdgar - {Key[User], Key[Edgar]} , Anya >

(lid»EKey[User], Key[Edgar], Key[id]}], Parameters -
1

{Key[User], Key[Edgar], Key[Parameters]} |}

{IActive-) {Key[User], Key[Edgar], Key[Parameters], Key[Active]}|, Region >

True

[{Key[User], Key[Edgar], Key[Parameters], Key[Reg"lon]}], Internet Traffic -
LA

FKey[User], Key[Edgar], Key[Parameters], Key[Internet Traffic]ql}
LG8

{Key[User], Key[Anya]} |)

(lid-»[{Key[User], Key[Anya], Key[id]}|, Parameters -
2

{Key[User], Key[Anya], Key[Parameters]} I)

(IActive-)[{Key[User], Key[Anya], Key[Parameters], Key[Actw‘ve]}], Region &
False

[{Key[User], Key[Anya], Key[Parameters], Key[Region]}|, Internet Traffic >

MX

[{Key[User], Key[Anya], Key[Parameters], Key[Internet Traffic]}l’)

368

Figure 3-53. Framed levels of the keys in a nested association

Values use the same approach as with Keys. To test if a key exists, use KeyExistQ; this
returns true if the key exists. Otherwise, it is false. To test inside deeper levels, use Map.

In[136]:={KeyExistsQ[Asc,"User"],Map[KeyExistsQ["Anya"],Asc,{1}],Map
[KeyExistsQ["Anya"],Asc,{2}]}
Out[136]= {True,<|User->True|>,<|User-><|Edgar->False,Anya->False|>|>}

Another way to test whether a key in a particular form exists inside an association,
use KeyMemberQ—for example, if there is a string pattern key.

In[137]:
out[137]

KeyMemberQ[Asc[ "User"]["Anya"], String]
True

To test if a value exists given a key, use Lookup.

In[138]:= Lookup[Asc["User"]["Anya"],"Parameters"]
Out[138]= <|Active->False,Region->MX,Internet Traffic->3 GB|>
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To select a key based on criteria, use KeySelect.

In[139]:= KeySelect[Asc["User"]["Anya"],StringQ]
Out[139]= <|id->2,Parameters-><|Active->False,Region->MX, Internet
Traffic->3 GB|>|>

Or use KeyTake to grab a particular key.

In[140]:= KeyTake[Asc["User"]["Anya"]["Parameters"],{"Region","Internet

Traffic"}]
Out[140]= <|Region->MX,Internet Traffic->3 GB|>

To remove a key, use KeyDrop.

In[141]:= KeyDrop[Asc["User"],"Edgar"]
Out[141]= <|Anya-><|id->2,Parameters-><|Active->False,Region->MX,Internet
Traffic->3 GB|>|>|>

To assign a new value, the value associated with the key is assigned with the
new value

In[142]:= Asc["User"]["Edgar"]["Parameters"]["Region"]="CZ"
Out[142]= CZ

Passing this into a dataset, you can look for the new assigned value (see Figure 3-54).

In[143]:= Dataset[Asc]
Out[143]=

id Parameters

Active Region Internet Traffic
User Edgar 1 True CZ 1GB
Anya 2 False = MX 3GB

Figure 3-54. Dataset with the region value changed to CZ
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To add a key and a value to the association, you can insert the new expression by
specifying the position to insert it with the key (see Figure 3-55).

In[144]:= Insert[Asc["User"],"Alexandra"-><|"id"->0,"Parameters"-
><|"Active"->False, "Region"->"RS","Internet Traffic"->"12
GB"|>|>,Key["Edgar"]]//Dataset

Out[144]=

id Parameters
Active Region Internet Traffic
Alexandra 0 False RS 12 GB
Edgar 1 True |CZ 1GB
Anya 2 False MX 3GB

Figure 3-55. New row added by the key position

Summary

This chapter continued to build upon the list operations introduced in Chapter 2. You
explored the unique syntax of pure functions in the Wolfram Language and delved
into several methods for creating indexed tables and associations. Additionally, you
transitioned to the powerful capabilities of datasets, which provide a structured and
organized way to handle and analyze data. The chapter wrapped up by providing
insights into the essential components of associations and key-value management.
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CHAPTER 4

Import and Export

This chapter reviews the import and export of data, including the relevant Wolfram
Language commands and the import and export formats that Mathematica supports.
Experimental data can come from different sources; the way to process this external data
is to import it through Wolfram Language. Data that has been calculated or obtained
externally can be transferred to Mathematica and exported for use on other platforms.
However, Mathematica has tools to handle different data types (numbers, text, audio,
graphics, and images). This chapter focuses on working with numerical and categorical
data, the most frequently used data types for analysis.

Importing data from multiple sources into Mathematica allows you to load data into
a notebook for analysis. The Wolfram Language supports numerous import formats; to
see which are supported, type the dollar symbol ($) accompanied by the ImportFormats
command. Currently, Mathematica supports 256 file formats. As shown in the following
code, new formats have been added and updated since the last version of this book.

In[1]:= Short[$ImportFormats,4](* Length[$ImportFormats] --> 256 formats*)
Out[1]//Short= {3DS,7z,AC,ACO,Affymetrix,AgilentMicroarray,AIFF,Apachelog,
ArcGRID,ASC,ASE,AU,AVI,Base64,BDF,Binary,BioImageFormat,Bit,BLEND,BMP,
<<216>>,WAV, Wave64, WDX, WebP, WL, WLNet ,WMLF , WXF ,X3D, XBM, XGL , XHTML , XHTMLMathML,
XLS, XLSX, XML, XPORT, XYZ, ZIP,ZSTD}

There are a lot of formats in the list, including audio, image, and text. But let’s focus
on the text-based formats. To import any file, the Import command is used. Import
receives two arguments: the file’s path and options. Options can vary between file
format, elements, and other types of objects in Mathematica, like cloud and local. To
select a file path, head to the toolbar and then to Insert » File Path. A file explorer should
appear; search the file you would like to import and select it. The path is enclosed in
apostrophes like a string.
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CHAPTER 4  IMPORT AND EXPORT

Another option is the named file in the Insert menu. In contrast to File Path, the File
option introduces the file’s contents directly without receiving prior formatting from
Mathematica. File is better suited for importing notebooks or other Wolfram formats.

Note The next series of imported files are included in the source code. The files
are located in the host Desktop folder for ease of use.

Let’s look at transferring a simple text file. First, select the HelloWorld.txt file path
using the Import command.

In[2]:= Import["/Users/macosx/Desktop/Hello World.txt"]
Out[2]= Hello world!

Note Based on your operating system, the file path shows forward slashes
(Linux, macOS) or back slashes (Windows file system delimiter).

You have imported your first file. Mathematica recognizes it based on the file extension
and then imports it automatically. If you import a file with no file extension but you know
the type of format used in the file, you can choose the proper format as an option.

In[3]:= Import["/Users/macosx/Desktop/Hello World.txt","Text"]
Out[3]= Hello world!

Importing Files

Importing simple text files is easy and intuitive. However, based on the type of file you
want to import, the options and format to display the data inside Mathematica can vary.

CSV and TSV Files

This section focuses on how to import files into Mathematica. The examples work

with comma-separated value (CSV) files, tab-separated value (TSV) files, and Excel
spreadsheet-style files. CSV and TSV files are files that include text and numeric values.
In CSV files, fields are separated by a comma; each row is one line record. Meanwhile, in
TSV files, each record is separated with a tab space.
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With Import, you can import TSV or CSV files with the .tsv or .csv file extension,
respectively. Let’s first import a regular CSV file by introducing the file path and then the
CSV option.

In[4]:= Import["/Users/macosx/Desktop/Grocery List.csv","CSV"]

Out[4]= {{id,grocery item,price,sold items,sales per day},{1,milk,4$,4,4
Jun 2019},{2,butter,3%$,2,6 Jun 2019},{3,garlic,2$,1,7 Jun
2019},{4,apple,2%$,4,1 Jun 2019},{5,0range,3$,5,8 Jun 2019},{6,0range
juice,5$,2,8 Jun 2019},{7,cheese,5$,2,6 Jun 2019},{8,cookies,2$,5,9 Jun
2019},{9,grapes,4$,3,21 Jun 2019},{10,potatoe,2$,5,26 Jun 2019}}

Now that the contents of the file are imported, depending on the format of the
contents, the data is presented as a nested list or not. The elements of the nested list
represent rows, and the elements of the whole list represent columns.

When importing data, parts of the data can be imported—that is, if you only need a

row or a column.

In[5]:=Import["/Users/macosx/Desktop/Grocery List.csv",{"Data",5;;10}]
Out[5]= {{4,apple,2$,4,1 Jun 2019},{5,0range,3$,5,8 Jun 2019},{6,0range
juice,5$,2,8 Jun 2019},{7,cheese,5%,2,6 Jun 2019},{8,cookies,2$,5,9 Jun
2019},{9,grapes,4$,3,21 Jun 2019}}

The previous example imported data from row 5 to row 10.
You can use the following form when you are only interested in single values.

In[6]:=Import["/Users/macosx/Desktop/Grocery List.csv",{"Data",6,2}]
Out[6]= orange

Depending on the maximum bytes of the expression, Mathematica truncates the
imported data and shows you a suggestion box of a simplified version of the whole data.
To see the maximum byte size, go to Edit » Advanced tab, and in “Maximum output size
before truncation,” enter the new number of bytes before truncation. This preference
applies to every output expression in Mathematica.

Let’s use the same approach to import TSV files. With the short command, you can
show a part of the data, just in case the data is extensive.

In[7]:= Short[Import["/Users/macosx/Desktop/Color table.tsv","TSV"]]
(*Rest,to view the remain*)
Out[7]//Short= {{number,color},{1,red},<<7>>,{9,magenta},{10,brown}}
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Consequently, in the result, a seven appears among the elements of the imported
file. This result happens because the file contains seven elements that are not visible.
Now that you have learned how to import CSV and TSV files, you can display the
imported data in table format using Grid or TableForm.

In[8]:= Import["/Users/macosx/Desktop/Grocery List.csv","CSV"];
Grid[%]

Out[9]=

id grocery item price sold items sales per day
1 milk 4% 4 4 Jun 2019

2 butter 3% 2 6 Jun 2019

3 garlic 2% 1 7 Jun 2019

4 apple 2% 4 1 Jun 2019

5 orange 3% 5 8 Jun 2019

6 orange juice 5% 2 8 Jun 2019

7 cheese 5% 2 6 Jun 2019

8 cookies 2% 5 9 Jun 2019

9 grapes 4% 3 21 Jun 2019
10 potato 2% 5 26 Jun 2019

Once you have imported the file, data can be treated as a list or any other structure
inside the notebook. Parts of the data are named after the imported data, and the
contents can now be extracted, as discussed in later chapters.

XLSX Files

The following example shows how to import data, display data as a spreadsheet, and
transform it into a dataset. Let’s use the XLSX grocery list file rather than the CSV file for
exemplification purposes. To start, you need first to import the data. To start, you need
first to import the data.

In[10]:= path="/Users/macosx/Desktop/Grocery List.xlsx";
Import[path,"Data"]

Out[11]= {{{id,grocery item, price, sold items,sales per day},{1.,milk,4
$,4.,4-Jun-2019},{2.,butter,3%,2.,6-Jun-2020},{3.,garlic,2
$,1.,7-Jun-2021},{4.,apple,2 $,4.,1-Jun-2022},{5.,0range,3
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$,5.,8-Jun-2023},{6.,0orange juice,5 $,2.,8-Jun-2024},{7.,cheese,5
$,2.,6-Jun-2025},{8.,cookies,2 $,5.,9-Jun-2026},{9.,grapes,4 $,3.,21-Jun-20
27},{10.,potatoe,2 $,5.,26-Jun-2028}}}

As can be seen, the imported data appears as a nested list because Excel files can
have multiple sheets inside a file. For this case, you have only one sheet. To see the
number of sheets and the name of the sheets, use SheetCount and Sheets, respectively.

In[12]:
Out[12]

Import[path,#]&/@{"SheetCount","Sheets"}
{1,{Grocery List}}

To show data as a spreadsheet, you use the TableView command (see Figure 4-1).
The following format is used as an option to select a sheet: {“Data,” # of sheet}. To select
a character encoding, use the CharacterEncoding option. Also, custom rows or columns
can be imported, preserving the format: {“Data,” # of the sheet, # row, # column}.

In[13]:= TableView[Import[path,{"Data",1},CharacterEncoding->"UTF-8"]]
Out[13]=
1 [ 2 ' 3 4 ' 5

1 id grocery price sold sales per day
2 1. milk 4% 4.4 -3Jun-2019
3 2. butter 3% 2.6 - Jun - 2020
4 3. garlic z25 1.7 - Jun - 2021
5 4. apple 2.8 4.1 <k ~2022
6 5. orange 3§ 5. 8 - Jun - 2023
7 6. orange 5% 2. 8- Jun - 2024
8 7. cheese 5% 2. 6 - Jun - 2025
o 8. cookies 2§ 5.9 -Jun - 2026
o 9. grapes 4% 8.121 = Jun=2027
11 10. potatoe 2§ 5. 26 - Jun - 2028

Figure 4-1. Spreadsheet view with TableView command

Note With “Data”, import the data as a nested list.
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You can now see the data in spreadsheet format. Now, with TableView, you can view
the data like in spreadsheet software, with selection tools, scrollbars, and text editing of
the contents. However, one of the downsides is that with TableView, you cannot directly
access the file’s contents; neither can calculations be performed. To do the latter, you can
transform it into a dataset.

You can convert data into a dataset for better handling in Mathematica. By typing
the “Dataset” as the option instead of “Data’; the imported file becomes a dataset but
without headers (see Figure 4-2). To add the headers, use the HeaderLines option and
choose the specification of the header by row or column type HeadLines — {# row, #
column}. The file used is Grocery List 2.xIxs.

In[14]:=file="/Users/macosx/Desktop/Grocery List 2.x1sx";Import[file,
{"Dataset",1},HeaderLines->1]

Out[14]=
id grocery item price sold items
1.0 milk 45 4.0
2.0 butter 3%
3.0 garlic 25 |10
4.0 apple 25 4.0
5.0 orange 5.0

6.0 orange juice |55 2.0

7.0 cheese 5% 2.0
8.0 cookies 5.0
9.0 grapes 45

10.0 | potato 2% 5.0

Figure 4-2. Incomplete Grocery List dataset

You have imported incomplete data. EmptyField is implemented as a rule of
transformation to treat empty spaces. If the data has empty spaces and no rule is
expressed, the spaces are treated as empty strings. Figure 4-3 shows the output.
In[15]:= Import[file,{"Dataset",1},"EmptyField"->"NaN",HeaderLines->1]
Out[15]=
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id grocery item price sold items
1.0 milk 43 4.0

2.0 butter 38 | NaN

3.0 garlic 25 10

4.0 apple 25 4.0

5.0 orange NaN | 5.0

6.0 orange juice | 5% 2.0

7.0 cheese 58 2.0
8.0 cookies NaN | 5.0
9.0 grapes 45 | NaN
10.0 | potato 25 5.0

Figure 4-3. NaN-filled dataset

JSON Files

The JavaScript Object Notation (JSON) file extension is a data representation file. JSON
files store data as an ordered list of values, and a collection of value pairs constitutes
each list. To import a JSON file, specify the two options: JSON or RawJSON

In[16]:=json=Import["/Users/macosx/Desktop/Sports cars.json","ISON"]
Out[16]=

{{Model->Enzo Ferrari,Year->2002,Cylinders->12,Horsepower HP->660,Weight
Kg->1255},{Model->Koenigsegg CCX,Year->2000,Cylinders->8,Horsepower HP->
806,Weight Kg->1180},{Model->Pagani Zonda,Year->2002,Cylinders->12,
Horsepower HP->558,Weight Kg->1250},{Model->McLaren Senna,Year->2019,
Cylinders->8,Horsepower HP->800,Weight Kg->1309},{Model->McLaren 675 LT,
Year->2015,Cylinders->8,Horsepower HP->675,Weight Kg->1230},{Model->
Bugatti Veyron,Year->2006,Cylinders->16,Horsepower HP->1001,Weight Kg->
1881},{Model->Audi R8 Spyder,Year->2010,Cylinders->10,Horsepower HP->525,
Weight Kg->1795},{Model->Aston Martin Vantage,Year->2009,Cylinders->8,
Horsepower HP->926,Weight Kg->1705},{Model->Maserati Gran Turismo,Year->
2010,Cylinders->8,Horsepower HP->405,Weight Kg->1955},{Model->Lamborghini
Aventador S,Year->2017,Cylinders->12,Horsepower HP->740,Weight Kg->1740}}
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Given the nature of the JSON file structure, Mathematica recognizes each structure
and interprets each key to its values when importing them. As you saw in the previous
output, keys correspond to Model, Year, Cylinders, Horsepower, and Weight, and each
key has its values. Everything said so far explains that all records are in a nested list.
This outcome leads you to conclude that if you want to present it in a dataset, you
cannot directly apply Association, and Association suppresses repeated keys. You
must create an association for each record since it is a nested list, which you achieve
with Map, specifying the depth level of the Association command. This is shown in the
following code.

In[17]:= Map[Association,Json,1]

Out[17]= {<|Model->Enzo Ferrari,Year-»2002,Cylinders->12,Horsepower HP->
660,Weight Kg->1255|>,<|Model->Koenigsegg CCX,Year->2000,Cylinders->8,
Horsepower HP->806,Weight Kg->1180]|>,<|Model->Pagani Zonda,Year->2002,
Cylinders->12,Horsepower HP->558,Weight Kg->1250]>,<|Model->

McLaren Senna,Year->2019,Cylinders->8,Horsepower HP->800,Weight Kg->
1309|>,<|Model->McLaren 675 LT,Year->2015,Cylinders->8,Horsepower HP->675,
Weight Kg->1230]|>,<|Model->Bugatti Veyron,Year->2006,Cylinders->16,
Horsepower HP->1001,Weight Kg->1881|>,<|Model->Audi R8 Spyder ,Year->2010,
Cylinders->10,Horsepower HP->525,Weight Kg->1795|>,<|Model->Aston Martin
Vantage, Year->2009,Cylinders->8,Horsepower HP->926,Weight Kg->1705]|>,
<|Model->Maserati Gran Turismo,Year->2010,Cylinders->8,Horsepower HP-
>405,Weight Kg->1955|>,<|Model->Lamborghini Aventador S,Year->2017,
Cylinders->12,Horsepower HP->740,Weight Kg->1740|>}

You already have each record as an association, and now you can convert it to a
dataset, as shown in Figure 4-4.

In[18]:= Dataset[%]
Out[18]=
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Model Year Cylinders Horsepower HP Weight Kg
Enzo Ferrari 2002 12 660 1255
Koenigsegg CCX 2000 8 806 1180
Pagani Zonda 2002 12 558 1250
McLaren Senna 2019 8 800 1309
McLaren 675 LT 2015 8 675 1230
Bugatti Veyron 2006 16 1001 1881
Audi R8 Spyder 2010 10 525 1795
Aston Martin Vantage 2009 8 926 1705
Maserati Gran Turismo 2010 8 405 1955
Lamborghini Aventador S 2017 12 740 1740

Figure 4-4. Cars dataset

You can now handle a JSON file as a dataset. However, there is another way to do
it without requiring as much calculation as before. When importing the file, you must
import it as RawJson because, with RawJson, the Wolfram Language identifies and
imports each record as a list of associations rather than a sole nested list, as shown here.
This reason is because of the nature of the key and value of the JSON file extension.

In[19]:= Import["/Users/macosx/Desktop/Sports cars.json","RawISON"]
Out[19]=

{<|Model->Enzo Ferrari,Year->2002,Cylinders->12,Horsepower HP->660,Weight
Kg->1255|>,<|Model->Koenigsegg CCX,Year->2000,Cylinders->8,Horsepower HP->
806,Weight Kg->1180]|>,<|Model->Pagani Zonda,Year->2002,Cylinders->12,
Horsepower HP->558,Weight Kg->1250|>,<|Model->McLaren Senna,Year->2019,
Cylinders->8,Horsepower HP->800,Weight Kg->1309|>,<|Model->McLaren 675
LT,Year->2015,Cylinders->8,Horsepower HP->675,Weight Kg->1230]>,<|Model->
Bugatti Veyron,Year->2006,Cylinders->16, Horsepower HP->1001,Weight Kg->
1881|>,<|Model->Audi R8 Spyder ,Year-»>2010,Cylinders->10,Horsepower HP->
525,Weight Kg->1795|>,<|Model->Aston Martin Vantage,Year->2009,
Cylinders->8,Horsepower HP->926,Weight Kg->1705|>,<|Model->Maserati Gran
Turismo,Year->2010,Cylinders->8,Horsepower HP->405,Weight Kg->1955]|>,
<|Model->Lamborghini Aventador S,Year->2017,Cylinders->12,Horsepower
HP->740,Weight Kg->1740]>}
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The file is imported as an association in each record, and you can convert it into a
dataset.

In[20]:=Cars=Dataset[%];

As a complement, once the data is imported, you can perform operations on the
dataset, such as ordering the models by year from low to high.

In[21]:=Cars[SortBy[#Year&]];

Note The previous example is also possible using the query command. (Query
[SortBy[#Year &]][Cars]).

Web Data

On the other hand, web data is also supported with Import. Instead of inserting the file
path, the URL site is inserted as the argument of the Import command. The next example
imports a simple text file from the National Oceanic and Atmospheric Administration
(NOAA). The text file contains the list of country codes used for the Integrated Global
Radiosonde Archive (IGRA). The parent directory where files are located is https://
wwwl.ncdc.noaa.gov/pub/data/igra/, butlet’s only import the country list file. You
need an Internet connection to make this work.

In[22]:=Short[Import["https://wwwl.ncdc.noaa.gov/pub/data/igra/igra2-
country-list.txt","HTML"]]

Out[22]//Short= AC Antigua and Barbuda AE United Arab Emirates AF ... WS
Samoa YM Yemen ZA Zambia ZI Zimbabwe ZZ Ocean

The file is a plain text, but you can change how the data is imported by inserting a file
format as an option. You can import it as a CSV file, for instance.

In[23]:=Short[Import["https://wwwl.ncdc.noaa.gov/pub/data/igra/igra2-
country-list.txt","CSV"]]

Out[23]//Short= {{AC Antigua and Barbuda},{AE United Arab
Emirates},<<215>>,{ZI Zimbabwe},{ZZ Ocean}}
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This is useful when you try to make computations with the data imported.
Alternatively, you can use URL commands to check the status of an online file and then
download it. To check the status of the online file, use URLRead. When the file is online,
you should get an HTTP response object like the one shown in Figure 4-5. You can even
perform this approach before importing data, ensuring the content is available online.

In[24]:= URLRead["https://wwwl.ncdc.noaa.gov/pub/data/igra/igra2-country-
list.txt"]
Out[24]=

\ Status: OK ]

HTTPResponse[
Content type: text/plain

Figure 4-5. HTTPResponse object of the URL entered

Now that you know the status, you can download the data file with URLDownload.

In[25]:= URLDownload["https://wwwl.ncdc.noaa.gov/pub/data/igra/igra2-
country-list.txt"]
Out[25]=

You should get a file object with the file’s location (see Figure 4-6), the name, and the
extension; in this case, it is in a temporary folder.

F‘ile[ Iprivate/var/folders/zs/hxtbpijpdSxb0krb6581764xm0000gn/TAigra2-country-list-b7add4af-0al8-4cea-bbcd-3ec04b94f363.txt » ]

Figure 4-6. File object with the locations of the file downloaded

Click the double chevron icon to open the file in an external viewer.

Semantic Import

So far, you have seen how to import files of different formats, but there is another tool
called SemanticImport that allows you to import files semantically and returns a dataset
as aresult. Let’s looks at a simple example with the CSV file.

In[26]:= sImprt=SemanticImport["/Users/macosx/Desktop/Grocery List.csv"]
Out[26]=
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Figure 4-7 shows that when you use semantic import Mathematica, it imports the
data in the form of a dataset, and when it does this, it recognizes some quantities.

id  grocery item price sold items sales per day

1 milk $4 4 Tue 4 Jun 2019
2 butter $3 2 Thu 6 Jun 2019
3 garlic $2 1 Fri 7 Jun 2019
4 apple $2 4 Sat 1 Jun 2019
5 orange $3 5 Sat 8 Jun 2019
6 orange juice $5 2 Sat 8 Jun 2019
7 cheese $5 2 Thu 6 Jun 2019
8 cookies $2 5 Sun 9 Jun 2019
9 grapes $4 3 Fri 21 Jun 2019
10 | potato $2 5 Wed 26 Jun 2019

Figure 4-7. File imported as a dataset with SemanticImport

These quantities correspond to the magnitude and its units, such as in the case of
the elements of the column of price and sales per day. When dealing with quantities, the
color of the elements changes; as you see in the dataset, the elements appear differently
from the other contents because a semantic-type object now represents them. Semantic
objects include quantities, entities, dates, and geolocation. In other words, they are
interpretations made by the freeform interpreter related to the Wolfram Knowledgebase.

Note To check if the data is recognized as a quantity or semantic-type object,
use Normal[slmprt]; you should see the entities colored differently.

In the case of imported data, there are two date-type objects, which you saw in the
first chapter, and quantity type. It should be understood that to work with quantities, you
must understand where they come from.
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Quantities

The Quantity command converts a magnitude with units to a quantity type to convert
the magnitude with their respective units; the magnitude is entered first, followed by its
units in string type. When you do this, Mathematica displays the autocomplete menu as
on other occasions. The following example shows it.

In[27]:= Quantity[2,"USDollars"]
Out[27]= $2

Thus, it is transformed into a quantity type. When you hover over the result, an ad
is displayed, marking that a result is already a unit. In this case, it is a unit of US dollars.
Now, if you check the head of the expression, it shows that it is a type of quantity.

Note Quantities are shown in light brown color.

In[28]:
Out[28]

Quantity[2,"USDollars"]//Head
Quantity

You can also use the inline freeform input in the menu bar: Insert » Inline Freeform
Input. This input type is associated with the Wolfram Alpha search engine, so the inline
freeform input transforms natural language into Wolfram Language input.

Inside the box, you'll find the magnitude and quantity written. One of the advantages
of this type of input is that it allows for using natural language. The following example
writes the amount of 77 min, which means 77 minutes. Figure 4-8 shows the input cell of
the inline freeform input.

In[29]:=

877 min [/

Figure 4-8. Free inline freeform input for the quantity of 77 minutes

Out[29]= 77min
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To run the code, click ENTER since it gives you a result. Some tabs appear where
you can click a submenu or a checkmark. If you click the checkmark, it is to accept the
interpretation made. If you believe that the interpretation is different, you can click the
other option, which is alternate interpretations, and it shows a small pop-up where it
lists different interpretations. Figure 4-9 show the pop-up for the example.

. ( o
B77min | v
Alternate interpretations %
Assuming "min" is a unit | Use as referring to optimization or
a historical country instead

Assuming minutes of time for "min" | Use US minims of volume

or minutes of arc instead

Figure 4-9. Options for the quantity entered

Once the interpretation is accepted, the result changes color and is a quantity-type
object. And it can be used like any other quantity-type object.

When you have quantities, you cannot make operations between numbers; quantities
are already different types. For these, there are two options: convert the data to quantities
or extract the magnitude of a quantity. The QuantityMagnitude command is used to extract
the magnitude. Make sure to copy the entity (light brown output), not the pure text 77 min.

In[30]:= {QuantityMagnitude[77 min],Head[%]}
Out[30]= {77,Quantity}

You have already extracted the magnitude, and it is already an integer. In the
supposed case of wanting the units, the QuantityUnit command extracts the units.

In[31]:= QuantityUnit[77 min]
Out[31]= Minutes

Datasets with Quantities

Another aspect to emphasize: To carry out operations, the concept of performing
arithmetic operations among physical quantities is maintained; otherwise, the operation
is not possible, and you get an error in which the units do not agree. When you carry out
an operation between quantities, the result is also of the quantity type.
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In[32]:= {77min-77min, 77min+77min,77min*77min, 77min/77min,77min*3m}
Out[32]= {omin,154min,5929(min)"2,1,231m min}

This example shows how the results are of type quantity. Except for the division, it is
already a quotient between the same units. The last one is 231 meters per minute.

Returning to the imported data, you can extract the data from the price column, as
shown in Figure 4-10.

In[33]:= sImprt[[All,"price"]]
Out[33]=

54 $3 $2 $2 $3
$5 $5 $2 $4 $2

Figure 4-10. Price column

If you want to have them in a list, you must use the Normal command.

In[34]:= Normal[%]
OUt[34]= {$ 4)$ 3)$ 2)$ 2)$ 3)$ 5)$ 5)$ 2)$ 4)$ 2}

The result is the list but in quantity type. It is fair to say that you can do operations
with quantities, but if what matters are the magnitudes, you can extract them. It’s worth
noting that working with magnitudes alone is generally faster and more efficient, which
reduces the overhead or additional quantity processing. Unless a specific quantity is
required, converting to pure numbers may be preferable.

Let’s look at how.

In[35]:= QuantityMagnitude[#]8&[%]
OUt[35]= {4:312)2)3’515:214)2}
You are now working with only the magnitudes.

You can even work with dates and quantities, as shown in Figure 4-11, starting by
displaying the ID of the products and the date they were sold.

In[36]:= sImprt[[All,{"id","sales per day"}]]
Out[36]=
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=

sales per day

Tue 4 Jun 2019
Thu 6 Jun 2019
Fri 7 Jun 2019

Sat 1 Jun 2019
Sat 8 Jun 2019
Sat 8 Jun 2019
Thu 6 Jun 2019
Sun 9 Jun 2019

o [e-] | (23] w B w ] =

Fri 21 Jun 2019
Wed 26 Jun 2019

=
[=

Figure 4-11. ID and sales per day columns

Having done this, you can extract the values and work directly with the date
object types.

In[37]:= Normal[Values[%]]//InputForm

Out[37]//InputForm=
{{1, DateObject[{2019,
{2, DateObject[{2019,
{3, DateObject[{2019, 7}, "Day"l},
{4, DateObject[{2019, 1}, "Day"]},

6, 4}) "Day"]})
[ 61
[ 6)
[ 6)
{5, DateObject[{2019, 6, 8}, "Day"]},
[ 6)
[ 6)
[ 61
6)

6}, "Day"]},

{6, DateObject[{2019, 6, 8}, "Day"]},
{7, DateObject[{2019, 6, 6}, "Day"l},
{8, DateObject[{2019, 6, 9}, "Day"]},
{9, DateObject[{2019, 6, 21}, "Day"l},
{10, DateObject[{2019, 6, 26}, "Day"]}}

Each value represents a date using DateObject, which is easily converted to numeric
values using AbsoluteTime. It is handy for numerical operations involving dates, making
the data handling more flexible and efficient.

162



CHAPTER 4  IMPORT AND EXPORT

Note You should get the date object when testing the code instead of the pure
word; here, the InputForm is used to avoid image conflicts.

Knowing this, you can make an association between the IDs of each product and
when it was sold, applying the Rule command inside the nested list and creating the
associations.

In[38]:= Association[Apply[Rule,%,1]]//InputForm
Out[38]//InputForm=
<|1 -> DateObject[{2019, 6, 4}, "Day"],
2 -> DateObject[{2019, 6, 6}, "Day"],
-> DateObject[{2019, 6, 7}, "Day"],
-> DateObject[{2019, 1}, "Day"],
-> DateObject[{2019, 8}, "Day"],
DateObject[{2019, 8}, "Day"],
-> DateObject[{2019, 6}, "Day"],
-> DateObject[{2019, 6, 9}, "Day"],
-> DateObject[{2019, 6, 21}, "Day"],
10 -> DateObject[{2019, 6, 26}, "Day"]|>

-

-

-

O 00 N O U1 &~ W
1
v

A O O O O O O
-

To illustrate this, create a visualization in a timeline, as shown in Figure 4-12,
marking the product sold and the date of its sale.

In[39]:= TimelinePlot[%]
Out[39]=

Jun 03 Jun 10 Jun 17 Jun 24

Figure 4-12. Timeplot
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The date of each grocery item sold is shown by ID. A tooltip shows the exact date
when the cursor is passed over the number in the timeline.

The idea is that when you use SemanticImport, you can integrate different forms
of the Wolfram Language and how you can use this to your advantage when importing
data. Semantic import makes it possible to compare data with other selected data.
SemanticImport provides you with tools to work among various types of semantic
objects. What is essential to observe is that instead of importing standard text, you can
import currency types, dates, and any magnitude with the respective unit, as in the
previous examples. This allows that data to be associated with different commands
within the Wolfram Language.

Costume Import (Dealing with Large Datasets)

Having said all this about semantic import, you can import data and choose how each
column in the imported file should be interpreted. However, based on the same idea that
you saw earlier, with semantic import, you can also choose what data to import (e.g., if it
is only one column or several), as illustrated in Figure 4-13.

In[40]:= SemanticImport["/Users/macosx/Desktop/Grocery List.csv",{"Integer",
"String","Currency","Real","Date"}]

Out[40]=

id grocery item price sold items sales per day

1 milk $ 4 4.0 Tue 4 Jun 2019
2 butter $ 3 2.0 Thu 6 Jun 2019
3 garlic $ 2 1.0 Fri 7 Jun 2019
4 apple $ 2 4.0 Sat 1 Jun 2019
5 orange $3 5.0 Sat 8 Jun 2019
6 orange juice $°5 2.0 Sat 8 Jun 2019
7 cheese $5 2.0 Thu 6 Jun 2019
8 cookies $ 2 5.0 Sun 9 Jun 2019
9 grapes $ 4 3.0 Fri 21 Jun 2019
10 potato $ 2 5.0 Wed 26 Jun 2019
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id  groceryitem price sold items sales per day

1 milk $4 4 Tue 4 Jun 2019
2 butter $3 2 Thu 6 Jun 2019
3 garlic s2 1 Fri 7 Jun 2019

4 apple 52 4 Sat 1 Jun 2019
5 orange $3 5 Sat 8 Jun 2019
6 orange juice 45 2 Sat 8 Jun 2019
7 cheese $5 2 Thu 6 Jun 2019
8 cookies $2 5 Sun 9 Jun 2019

Figure 4-13. Dataset with excluded rows

With this result, observe that the first column imported contains integers, the second
contains text, the third contains a currency type quantity, the fourth contains a real
number, and the last contains a date object. Having done this, it is possible in the same
way that with spreadsheet files, you can import certain types of information in list form,
either by column or by row. The following example imports rows 1 through 5.

In[41]:=SemanticImport["/Users/macosx/Desktop/Grocery List.

csv",Automatic, "Rows"][[1;;5]]//InputForm

Out[41]//InputForm= {{1, "milk", Quantity[4, "USDollars"], 4,
DateObject[{2019, 6, 4}, "Day"]}, {2, "butter", Quantity[3, "USDollars"],
2, DateObject[{2019, 6, 6}, "Day"]}, {3, "garlic", Quantity[2,
"USDollars"], 1, DateObject[{2019, 6, 7}, "Day"]}, {4, "apple", Quantity[2,
"USDollars"], 4, DateObject[{2019, 6, 1}, "Day"]}, {5, "orange",
Quantity[3, "USDollars"], 5, DateObject[{2019, 6, 8}, "Day"]}}

As indicated, columns can also be imported from columns 1 to 2.

In[42]:=SemanticImport["/Users/macosx/Desktop/Grocery List.

csv",Automatic, "Columns"][[1;;2]]

Out[42]= {{1,2,3,4,5,6,7,8,9,10},{milk,butter,garlic,apple,orange,orange ju
ice,cheese,cookies,grapes,potato}}

It is necessary to emphasize that if you want to exclude data, importing with the
ExcludedLines statement is recommended. For example, exclude rows 9 and 10,
remembering that the titles are in row 1, as shown in Figure 4-13.
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In[43]:=SemanticImport["/Users/macosx/Desktop/Grocery List.csv",ExcludedLin

es->{{10},{11}}]
Out[43]=

When working with large datasets, it’s crucial to manage memory usage. Review if
your system can handle big sizes of data. If it’s too large to import at once, try importing
it in smaller pieces and filtering/managing the data as needed. The following example
effectively selects the first ten buildings (see Figure 4-14) from the buildings.dat dataset
based on the specified condition using a pure function within Select.

In[44]:= SemanticImport["ExampleData/buildings.dat",<|"Name"->
Automatic,"City"->Automatic, "Country"->Automatic, "Year"->
Automatic|>,HeaderLines->1];

Select[%,#[[4]]<=2000&][[1;;10]]

Out[45]=
Name City Country Year
Petronas Tower 1 Kuala Lumpur Malaysia 1998
Petronas Tower 2 Kuala Lumpur Malaysia 1998
Sears Tower Chicago United States 1974
Jin Mao Building Shanghai China 1999
CITIC Plaza Guangzhou  China 1996
Shun Hing Square Shenzhen China 1996
Empire State Building New York City United States 1931
Central Plaza Hong Kong  China 1992
Bank of China Hong Kong  China 1983
Emirates Tower One Dubai United Arab Emirates 1999

Figure 4-14. Buildings dataset with selected rows

To filter the data dataset based on the condition that the Year column (index 4) is less
than or equal to 2000. Then, use [[1;; 10]] to select the first ten elements from the filtered
dataset, which are the first ten buildings that meet the condition.

Export

Mathematica supports many formats; to view all supported formats, type
$ExportFormat.
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In[46]:= Short[$ExportFormats,5]

Out[46]//Short= {3DS,AC,ACO,AIFF,ASE,AU,AVI,Base64,Binary,Bit,BLEND,BMP,
BREP,BSON,Byte,BYU,BZIP2,C,CDF,<<167>>,WDX, WebP, WL ,WLNet, WMLF ,WXF, X3D, XBM,
XGL , XHTML , XHTMLMathML ,XLS , XLSX, XML , XPORT,XYZ, ZIP,ZPR,ZSTD}

Exporting data is carried out using the Export command. Export has the form
Export[“directory path,” expr, “format”].

First, you need to set up a working directory. If not, the file is exported to the default
Mathematica working directory. To see the working default directory, use Directory.

In[47]:= Directory[]
Out[47]= /Users/macosx

In this case, the default directory is the Desktop folder.

Two commands are key; one is SetDirectory, whose argument is the path of the new
working directory, and the other is NotebookDirectory, which is the file’s location.

First, let’s set the new working directory to export files to the notebook location.
Using the notebook directory as the argument on SetDirectory, you tell Mathematica
that the new working directory is the location of the notebook in which you are currently
working.

In[48]:= SetDirectory[NotebookDirectory[]]
Out[48]= /Users/macosx/Desktop

Now that you have set up a new directory, you can export data created in
Mathematica. The next example exports a list of prime numbers from 1 to 10 as a table
in a text file and a CSV file. An option applies as well as Import, but if the file extension is
added, it is not compulsory to write the format option.

Note There is no restriction about whether to assign a name to the list of data or
to create the data directly in the export.

In[49]:= mydata=Table[Prime[i],{i,1,10}];
{Export["New File.txt",mydata,"Table"], Export["New File.csv",mydata]}
Out[50]= {New File.txt,New File.csv}
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The output generates the name of the new file exported. An alternative is manually
entering the desired location of the file instead of setting a new working directory; in this
case, Desktop was set as the new location.

In[51]:= Export["/Users/macosx/Desktop/New_File.TSV",mydata,"TSV"]
Out[51]= /Users/macosx/Desktop/New File.TSV

Now that you have exported the data into a new location, the output is the full path
of the new file. If you want to open the file from Mathematica, you can use SystemOpen.
This command opens the operating system explorer.

In[52]:= SystemOpen["/Users/macosx/Desktop/New File.TSV"]

SystemOpen lets you open the notebook directory folder to open other files inside
the notebook directory.

In[53]:= SystemOpen[NotebookDirectory[]]

On the other hand, when dealing with tabular data, it can be exported as a
spreadsheet. The next example export a tabular data structure and then export it into a
spreadsheet format.

To create tabular data, let’s use the Table command.

In[54]:=
tabD1=Table[i,{i,4}];
tabD2=SetPrecision[Table[i/11,{i,4}],3];

Now that you have a set of coordinates, you can export the data to different sheets by
typing the reference name of the data into a list of options: {data_sheet 1,data_sheet 2, ...}

In[56]:
Out[56]

Export["Tabular data.x1s",{{tabD1},{tabD2}}]
Tabular_data.xls

By opening the file with a spreadsheet viewer, you should get that TabD1 is in sheet 1
and TabD2 is in sheet 2.

To customize the name of the sheets, you need to enter the names as a list of rules
with the rule operator (»).

In[57]:= Export["Tabular data 2.x1s",{"Page number 1"->tabD1,"Page number
2"->tabD2}]
Out[57]= Tabular data 2.xls
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If you open the file, now you should have two sheets with the names you have set.

In addition to this, there is the possibility to add the same data in a single
spreadsheet. You only have to enclose the data you want in the same sheet in curly
braces to do this.

In[58]:= Export["New data.x1s",Transpose[{tabD1,tabD2}]]
Out[58]= New data.xls

After opening the file, you should see something like the following code.

In[59]:= Grid[Transpose[{tabD1,tabD2}]]

Out[59]=

1 0.0909
2 0.182

3 0.273

4 0.364

You can even export tables.

In[60]:= table1={{"Dog","Wolf"},{"Cat","Leopard"},{"Pigeon","Shark"}};
Export["Animal table.x1s",table1]
Out[61]= Animal table.xls

Other Formats

By advancing the topic, it is possible to export the data to simple formats such as TXT, DAT,
CSV, and CSV. To do this, you only have to put the path of the file where you want it to be
exported, along with the name of the new file, followed by the extension of the desired file.
The second argument writes the data to be exported or the variable that contains the data.
The third argument is what designates the format you want the data to import.

Let’s look at the following example, which exports new data to text and DAT formats.
In this case, you only write the file’'s name, which indicates that you want it to be
exported to the working directory established earlier, corresponding to the notebook’s
directory.

In[62]:= newD=Table[{i+],i*j},{1,1,5},{4,1,5}1;
{Export["File text.txt",newD,"Text"],Export["File dat.dat",newD,"Table"]}
Out[63]= {File text.txt,File dat.dat}
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It is advisable to pause for a moment. As shown in the earlier code, the Table format
is used for the DAT file. This is because a Table is used so that the exported data becomes
an expression in the Wolfram Language. After you have exported, verify that the files
have been exported. Likewise, you can choose the format for a file. For example, instead
of typing text, you export it in the TSV format.

In[64]:= Export["File text.txt",newD,"TSV"]
Out[64]= File text.txt

Similarly, you can export CSV and TSV files.

In[65]:={Export["File csv.csv",newD,"CSV"],Export["File tsv.
tsv",newD, "TSV" ]}
Out[65]= {File csv.csv,File tsv.tsv}

It is possible to add titles to the columns of the data for when they are exported,
either CSV or TSV.

In[66]:= Export["File csv.csv",newD,"CSV",TableHeadings->{"column

1","column 2","column 3","column 4","column 5"}]
Out[66]= File csv.csv

It is also possible to define a list of names for the columns as follows.

In[67]:= labels={"Coordinates 1","Coordinates 2","Coordindates
3","Coordinates 4","Coordindates 5"};Export["File csv.csv",newD,"CSV",
TableHeadings->labels ]

Out[67]= File csv.csv

In the same way, you can export datasets to known formats. Let’s use automobile
braking distance statistics based on speed. For this, the data is loaded using
the ExampleData command. Inside this, search “Statistics”; within that, search
“CarStoppingDistances”.

In[68]:= spData=ExampleData[{"Statistics","CarStoppingDistances"}]
out[68]={{4,2},{4,10},{7,4},{7,22},{8,16},{9,10},{10,18},{10,26},{10,34},
{11,17},{11,28},{12,14},{12,20},{12,24},{12,28},{13,26},{13,34},{13,34},
{13,46},{14,26},{14,36},{14,60},{14,80},{15,20},{15,26},{15,54},{16,32},
{16,40},{27,32},{17,40},{27,50},{18,42},{18,56},{18,76},{18,84},{19,36},
{19,46},{19,68},{20,32},{20,48},{20,52},{20,56},{20,64},{22,66},{23,54},
{24,70},{24,92},{24,93},{24,120},{25,85}}
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To get the dataset’s columns and a description, add Description and
ColumnDescriptions.

In[69]:= ExampleData[{"Statistics","CarStoppingDistances"},#]&/@{"Descripti
on","ColumnDescriptions"}
Out[69]= {Car stopping distances as a function of speed.,{Speed in miles

per hour.,Stopping distance in feet.}}

Continuing the exploration, you see that the first numbers represent the speed in
miles per hour, and the second numbers represent the distance in feet.

Note For more information, add properties as the second argument to
ExampleData.

Moving forward in the exercise, you can add the column titles. This distinguishes
each data type when you build the dataset (see Figure 4-15).

In[70]:= spDataset=Dataset[spData,Background->LightBlue][All,< |#1->1,#2->

2|>]&["Speed in miles per hours","Stopping distance in feet"]
Out[70]=
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Speed in miles per hours Stopping distance in feet

4 2

4 10
7 4

7 22
8 16
9 10
10 18
10 26
10 34
11 17
11 28
12 14
12 20
12 24
12 28
13 26
13 34
13 34
13 46
14 26

75 A rows1-200f50 Vv M\

Figure 4-15. CarStoppingDistances dataset

You have finished the creation of the dataset. This data and the respective column
titles can now be exported to a CSV format.

In[71]:
Out[71]

Export["Dataset csv.csv",spDataset,"CSV"]
Dataset_csv.csv
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If the export is successful, you should have a CSV file in the correct format. For the
case of a TSV file, see the following form.

In[72]:= Export["Dataset tsv.tsv",spDataset,"TSV"]
Out[72]= Dataset tsv.tsv

XLS and XLSX Formats

It is worth distinguishing that to export datasets to spreadsheet formats such as XLS or
XLSX, you should work the dataset as a list since exporting the dataset directly would
result in exporting associations in a single cell, and you are not interested in that.
Regarding the second point, since you have the dataset, to extract the values, you use
the Normal command, which converts the dataset into a normal expression, followed by
extracting the values from the braces with Values.

In[73]:= Values@Normal@spDataset
out[73]={{4,2},{4,10},{7,4},{7,22},{8,16},{9,10},{10,18},{10,26},{10,34},
{11,17},{11,28},{12,14},{12,20},{12,24},{12,28},{13,26},{13,34},{13,34},
{13,46},{14,26},{14,36},{14,60},{14,80},{15,20},{15,26},{15,54},{16,32},
{16,40},{17,32},{17,40},{17,50},{18,42},{18,56},{18,76},{18,84},{19,36},
{19,46},{19,68},{20,32},{20,48},{20,52},{20,56},{20,64},{22,66},{23,54},
{24,70},{24,92},{24,93},{24,120},{25,85}}

Now that you have the data, you can add the column titles and export the extracted
data from the dataset.

In[74]:= colTitles={"Speed in miles per hours","Stopping distance
in feet"};

To attach the two lists, let’s use Prepend and assign the name exprtData to
new values.

In[75]:= Short[exprtData=Prepend[%%,colTitles],1]
Out[75]//Short= {{Speed in miles per hours,Stopping distance in feet},{4,2},
{4,10},<<45>>,{24,93},{24,120},{25,85}}

You do not define variables to put together this data list and titles. A percentage
notation is used to simplify the code. Now that you have complete data, you can export it
to an XLS or XLSX format.
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In[76]:
Out[76]

Export["Stopping distance Dataset.xlsx",exprtData,"XLSX"]
Stopping_distance Dataset.xlsx

If you verify the file, you should have something like the dataset created earlier.

JSON Formats

It is also possible to export information to formats such as JSON. The following example
creates a JSON structure from an association.

In[77]:= Association@{"Name"->"Ellis","Date of birth"->
"1990,01,04","Height"->"180 cm","Favorite color"->"Red","Hobbies"->"Soccer,
Pc gaming, Board games","Social netwoks"->"Twitter, Facebook"};
Export["File json.json",%,"JSON"]

Out[78]= File json.json

If you open the new JSON file, you see that it has a structure corresponding to a JSON
file. It is the same process for the case where you have a nested list, although you can also
use the “Rawjson” format when exporting. The idea is that you can export data to JSON
formats from associations; as you have seen, the braces and values of an association can
be any expression. This leads you to say that more associations can be added, and these
can be exported. The vital thing to note is that given the nature of the JSON format of
containing braces and values in pairs, it is possible to export data in JSON format from
associations. Examining the case for when you have a dataset (see Figure 4-16), proceed
as noted here.

In[79]:=Association@{"Name"->"E1lis","Date of birth"->
DateObject[{1990,01,04}], "Height"->Quantity[180,"Centimeters"], "Favorite
color"->"Red","Hobbies"->"Soccer, Pc gaming, Board games","Social netwoks"->
"Twitter, Facebook"};

user=Dataset[%]

Out[80]=
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Name Ellis

Date of birth | Thu 4 Jan 1990

Height 180 cm

Favorite color Red

Hobbies Soccer, Pc gaming, Board games

Social netwoks Twitter, Facebook
Figure 4-16. JSON file dataset

The dataset is built, but in some cases, the dataset may contain quantities or other
semantic objects, as in this case, the date and height. So, exporting them would be the
same way as before but using the JSON option format, not Rawjson, since this does not
allow exporting dataset objects. To use Rawjson, you must convert the semantic objects
to strings or numbers.

In[81]:= Export["Dataset json.json",user,"JSON"]
Out[81]= Dataset json.json

If you have a dataset of repeated keys, you can export it to the JSON format (see
Figure 4-17).

In[82]:= associ=<|"Log in Date"->DateObject[{2020,06,29}],"User ID"->
123,"Status"->"Active"|>;

assoc2=<|"Log in Date"->DateObject[{2020,06,28}],"User ID"->122,"Status"->
"Not Active"|>;Dataset[{assocl,assoc2}]

Export["Dataset2 json.json",%,"JSON"]

0ut[83]=

Log in Date User ID Status
Mon 29 Jun 2020 123 Active
Sun 28 Jun 2020 122 Not Active

Figure 4-17. User Dataset
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Out[84]= Dataset2_json.json

To be precise, you can export shapes where the dataset contains complex structures,
such as an association of associations. Let’s look at the following example, which builds a
dataset (see Figure 4-18).

In[85]:= assoc3="Player A"->Association["Date"->DateObject[{2020,06,29}],
"User ID"->123,"Status"->"Active"];assoc4="Player B"->Association["Date"->
DateObject[{2020,06,28}],"User ID"->122,"Status"->

"Not Active"];Dataset[{<|assoc3,assoc4|>}]

Out[85]=

Date User ID Status
Player A Mon 29 Jun 2020 123 Active
Player B Sun 28 Jun 2020 122 Not Active

Figure 4-18. Tagged dataset

Subsequently, proceed to export the dataset.

In[86]:= Export["Dataset3 json.json",%,"ISON"]
Out[86]= Dataset3 json.json

Let’s try to better understand how to export in JSON format. When you export
information such as a rule list or a single association, the structure of the content in
the exported JSON file is through a collection of pairs between braces and values. On
the contrary, when you have ordered structures, such as an association of lists and an
association of associations, the structure of the content in the JSON file is as an ordered
array within the array of the collections of associated pairs between braces and values.
Quite the opposite; however, exporting a nested list is already in the form of sorted
arrays. To clarify this, the reader can observe how a list of rules is exported through the
following code.

In[87]:= rules={"apple"->3,"car"->"3","2"->2};
Export["Rules.json",rules,"JSON"]
Out[88]= Rules.json
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In addition, for a nested list or list of lists.

In[89]:= arry=Array[{#1,#2}8,{4,4}]

Export["Array.json",arry,"JSON"]

out[89]= {{{1,1},{1,2},{1,3},{1,4}},{{2,1},{2,2},{2,3},1{2,4}},{{3,1},{3,2},
{3,3},13,4}},{{4,1},{4,2},1{4,3},{4,4}}}

Out[90]= Array.json

If the created file is observed, it must contain an array of arrays inside the JSON file.

Content File Objects

It should be concluded that for all the exported files, you can create a content object
showing you the properties of the created files. This is done with the ContentObject
function, which provides content from a file. Let’s use the association’s example to create
a JSON file to do this.

In[91]:= Association@{"Name"->"Ellis","Date of birth"->DateObject[{1990,01,04}],
"Height"->Quantity[180,"Centimeters"],"Favorite color"->"Red", "Hobbies"->
"Soccer, Pc gaming, Board games","Social netwoks"->"Twitter, Facebook"};
user=Dataset[%];

jsonFile=Export["Dataset json 2.json",user,"JSON"];
Now, you need to get the path where the file is located with AbsoluteFileName.

In[94]:= AbsoluteFileName[jsonFile]
Out[94]= /Users/macosx/Desktop/Dataset json 2.json

Let’s now use the file to create the file object type representation. Then,
ContentObject is applied to the file object.

In[95]:= ContentObject[%]
Out[95]=

A content-type object appears (see Figure 4-19).

. Plaintext: /Users/macosx/Desktop/Dat
- aset_json_2.json

ContentObject [ :T:
CreationDate: Tue 21 Nov 2023 20:56:53

Figure 4-19. ContentObject for the JSON files created
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Pressing the + icon provides you with the exported file’s properties, such as name,
size, creation dates, and file localization. You can access the properties programmatically
using the following form.

In[96]:= ContentObject[%%]["Properties”]
Out[96]= {CreationDate,Plaintext}

This can be applied to other exported files.

Searching Files with Wolfram Language

With the Wolfram Language, you can look at the location of the file or files.
The NotebookDirectory command is used to see the path of the notebook directory.
It shows the full directory containing the notebook in which you work.

In[97]:
Out[97]

NotebookDirectory[ ]

/Users/macosx/Desktop/

Now, SetDirectory is used to set a working directory as the current directory. You can
enter the path of the desired directory and establish it as the working directory. However,
now set the notebook directory as the new working directory.

In[98]:
Out[98]

SetDirectory[NotebookDirectory[]]

/Users/macosx/Desktop

With this new directory set, you can locate files in the new directory, the notebook
location. Here, the FileNames command lets you explore files in the working directory,
which, in this case, is the notebook’s directory because it was set up in the previous code.

In[99]:= FileNames[]
Out[99]= {Color table.txt,Grocery List.csv,Hello World,Hello World.
txt,import export.nb,weather.csv}

FileNames show all types of files available in the directory. If you have many files in
the directory, you can search for a particular file by using FindFile and entering the file’s
name as a string. The full path of the file is displayed.

In[100]:= FindFile["Color table.txt"]
Out[100]= /Users/macosx/Desktop/Color Table.txt
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File extensions can be searched, too.

In[101]:= FileNames["*.txt"]
Out[101]= {Color table.txt,File text.txt,Hello World.txt,New File.txt}

Note Other types of File commands exist; to look for more commands associated
with the name file, enter ??File*.

Remember, this is when you set the working directory as the notebook directory. If
you have not set a directory previously, Mathematica searches the default directories of
your machine, which are the ones shown entering $Path.

Connecting to External Services

Besides export and import capabilities, Mathematica can connect to various external
services, like external resources, external connectivity, and database management
through external evaluations.

External Connections

With the launch of Mathematica version 13, improvements have been put together,
especially in connecting with external services. One notable feature is external
evaluators, which enable interaction with various languages such as Julia, Ruby, R,
Python, Java, Octave, Node.js, Shell, and SQL. To discover and utilize installed evaluator
systems, use FindExternalEvaluators, which scans standard directories for use in any
local evaluation.

Executing FindExternalEvaluators[], with no arguments, searches for all available
languages installed on your computer. Let’s find the version of the Shell evaluator. On
macOS§, it usually refers to the Bash shell; on Windows, it’s typically PowerShell.

In[102]:= FindExternalEvaluators["Shell"]//Normal//Print

Out[102] =

<|4ce695dd-ef6a-7006-f30d-b4320329bbd7 — <|System — Shell,
Version — 3.2.57, Target :» /bin/bash, Executable — /bin/bash,
Registered — Automatic|>,
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b217afb1-d97f-3cfa-3c52-19ec78df64bc — <|System — Shell,
Version — 3.2.57, Target — /bin/sh, Executable :» /bin/sh,

Registered —Automatic|>,

342330ff-7009-e5ec-c00a-86949f3c0f7a — <|System — Shell,
Version — 5.9, Target :» /bin/zsh, Executable :» /bin/zsh,

Registered — Automatic|>|>

In this case, the output lists three shell versions: Bash (Bourne Again SHell), Sh
(Bourne Shell), and Zsh (Z Shell).

Note The external language cannot be used if the Registered value is not set
to True or Automatic. For troubleshooting, go to the Wolfram documentation
page at https://reference.wolfram.com/language/workflowguide/
ConnectingToExternalSoftware.html.

Once the external evaluator has been registered, it can be used with
ExternalEvaluator. You can use ExternalEvaluate by applying the function directly or, in
anew cell, by typing ‘>’ to initiate a command line, where a yellow block line appears.
Choose your language from a drop-down list on the left icon or input it directly as a
string and then the code, as shown in Figure 4-20.

ExternalEvaluate["Shell", "echo 'Hello World!:'"]
) echo 'Hello, World!'

Figure 4-20. External evaluation for Z shell code using the ExternalEvaluate and
the >’ type command block

Executing the code following prints “Hello World!” using the Z shell. The resulting
exit code is 0, signifying success, and is displayed as standard notebook output (see
Figure 4-21).

In[103]:=
Out[103]=
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) echo 'Hello World!'
Hello World!

. 1 II
Success[ ‘/ Command: echo 'Hello World! ]

ExitCode: 0

StandardError:
StandardOutput: Hello World!
Tag: ExecutionCompleted

Figure 4-21. External evaluation using Z shell code Hello World!

Different prerequisites may be required, such as additional libraries and the
language executable, depending on the external language you intend to use. While
language cells are handy, ExternalEvaluate offers more programmatic output flexibility.

External Resources

The prior section highlights ExternalEvaluate’s role in integrating outer languages in a
notebook. Despite this, Mathematica can generate and utilize outer resources like outer
functions. Node.js version 21.2.0 was used while creating this book. It can be installed
from the official site or approved repositories. In this case, the Homebrew package
installer was used. Using Node.js required the zeromgq library, installed using npm, as
stated in the Wolfram documentation.

Note For detailed info, visit Wolfram documentation. NodeJS for
ExternalEvaluate: https://reference.wolfram.com/language/workflow/
ConfigureNodeJSForExternalEvaluate.html

To automatically identify Node.js, use FindExternalEvaluators[“Node]S”], similar
to the shell language process. If successful, Registered shows as Automatic, indicating
complete setup. If MissingDependencies appears, Mathematica can’t find the necessary
dependencies, requiring manual registration. Regardless, it’s advised to manually
register the external evaluator by adding the executable’s path to ensure proper function.
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Like in the shell process, to autodetect Node.js, use FindExternalEvaluators[“Node
JS”]. If Registered shows as Automatic, all setup is done. If MissingDependencies shows,
Mathematica lacks needed dependencies, requiring manual registration. Regardless,
you should manually register the external evaluator by adding the executable’s path to
ensure proper function.

In[104]:= RegisterExternalEvaluator["NodelS","/opt/homebrew/bin/node" ]
Out[104]= 629bab2a-8d17-e9fe-6cd9-870f94c7933c

Then, trying to find it again.

In[105]:= FindExternalEvaluators["NodelS"] // Normal // Print

Out[105]=

<|629ba62a-8d17-e9fe-6cd9-870f94c7933c — <|System — NodelS,
Version — 21.2.0, Target > /opt/homebrew/bin/node,
Executable — /opt/homebrew/bin/node, Registered — True|>|>

The Registered key has a value of True, meaning successful manual registration. To
test it, calculate the square root of 25.

In[106]:= ExternalEvaluate["NodelS","Math.sqrt(25)"]
Out[106]= 5

With Node.js set, custom functions can be implemented—for instance, a primary
function to find the square root of a number.

In[107]:= jsFunil =ExternalFunction["NodelS","Math.sqrt"]
Out[107]= ExternalFunction[System : NodeJS Command : Math. sqrt
Session : Automatic ]

The outer Node.js system calculates using Math.sqrt. If no external session is
manually set, it is automatic. The function is now at hand in the notebook.

In[108]:= jsFuni[#]&/@{25,36,49,64}
Out[108]= {5)6,7)8}

The Function syntax can vary, but the process is the same; for example, using an
arrow function.
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In[109]:= jsFun2 =

ExternalFunction["NodeJS", "(number) => Math.sqrt(number);"];
jsFun2[#] &/@ {25,36,49,64}

Out[109]= {5,6,7,8}

Using the external block is also at hand. Figure 4-22 shows that the node.js function
is linked to a default external node.js session.

In[111]:=
Out[111]=
(numl, num2) => {
@) var sum = numl + num2;
> return Math.sqrt(sum);
}
ExternalFunct‘ion[ = Syston: blotess ]

Command: (numl, num2) => {
var sum = numl + num2;
return Math.sgrt(sum);
}
Type: NodeJSFunction
NumberArguments: 2

System: NodeJS  Version: 21.2.0
Name: DefaultNedeJSSession

Session: ExtemalSessionObiect[ ) @

Figure 4-22. Node.js function to return the square root of the sum of two numbers

In[113]:= %[18,18]
Out[113]= 6

Note To ensure that a function can be called in NodeJS using ExternalFunction, it
must be explicitly returned.

To unregister an external evaluator, type the system language and the executable
path. In this case, it is the same path used when registered.

In[114]:= UnregisterExternalEvaluator["NodelS","/opt/homebrew/bin/node" ]
Out[114]= 629ba62a-8d17-e9fe-6cd9-870194c7933c
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Database and File Operations (SQL)

Database and file operations can be performed in Mathematica using external languages
like SQL. By leveraging ExternalEvaluate, it is possible to execute SQL queries and work
directly with dataset formats.

You can generate a reference object for the database by utilizing a table from the
example data folder.

In[115]:= DatabaseReference[FindFile["ExampleData/ecommerce-database.
sqlite"]];

Shallow[%]

Out[116]//Shallow=

DatabaseReference[<|Backend — SQLite, Name — /Applications/Mathematica.
app/Contents/Documentation/English/System/ExampleData/ecommerce-database.
sqlite|>]

The reference of the retrieved file with FindFile associates the .sqlite local file
with the backend SQL engine set as SQLite, which performs operations and data
management.

Note SQL should be available within Mathematica, but check that it appears as
a registered external evaluator FindExternalEvaluator[“SQL"]. If not, make sure to
register the evaluator.

After referencing, view all database table names (see Figure 4-23). Choose a table
(offices) (see Figure 4-24) and select territory and city, ordering by territory (see
Figure 4-25).

In[117]:=
Out[117]=
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%) SELECT name FROM sqlite_master WHERE type='table'

name
offices
productlines
employees
products
customers
orders
payments

orderdetails

Figure 4-23. Listing all tables

In[118]:=
Out[118]

) SELECT = FROM offices;

officeCede city phone addresslinel addressline2 state country postalCode territory
1 San Francisco +1 650 219 4782 100 Market Street Suite 300 CA USA 94080 NA

2 Boston +1 215 837 0825 1550 Court Place Suite 102 MA Usa 02107 NA

3 NYC +1 212 555 3000 523 East 53rd Street apt. 5A NY USA 10022 NA

4 Paris +33 14723 4404 43 Rue Jouffroy D'abbans France 75017 EMEA

5 Tokyo +81 33 224 5000 4-1 Kioicho Chiyoda-Ku Japan 102-8578  Japan

6 Sydney +61 2 9264 2451 5-11 Wentworth Avenue Floor 12 Australia NSW 2010 APAC

7 London +44 20 7877 2041 25 0ld Broad Street Level T UK EC2N IHN  EMEA

Figure 4-24. Fetching all office data

In[119]:=
Out[119]=
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_H‘) SELECT territory, city FROM offices ORDER BY territory;

territory city
APAC Sydney
EMEA  Paris
EMEA  London
Japan  Tokyo

NA San Francisco
NA Boston
NA NYC

Figure 4-25. Sorting offices by territory

Summary

This chapter explored essential aspects of importing and exporting various file
formats, including costume imports. It provides the basics of semantic import,
dealing with quantities and large datasets. The chapter also offered a deep dive into
data management and the search of content file objects within a notebook. The
chapter concluded with a discussion on connecting to external elements, establishing
connections, and working with external resources, databases, and files.
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Data Visualization

This chapter discusses data visualization in more depth, showing the different ways of
visually representing data, using different commands, and creating a range of different
types of graphs. It also explains how to customize plots and use predefined plot themes.

Basic Visualization

Data visualization is key for understanding information about data. Visual tools such

as 2D plots, contour plots, 3D plots, and time series provide a handy form to view and
understand trends and patterns of the data. One of the things about Wolfram Language
is that it contains commands that enable you to plot graphs in a simple form. Now, you
can better learn how plotting works. Mathematica treats every plot as a graphic object,
that is because every graphic is created of primitive elements (points, lines, polygons,
geometric figures, etc.), directives (style, shape, size, width, blurriness, etc.), and options
(visual modifications, styles, frames, aspects, text, etc.). However, let’s focus on the area
of 2D and 3D plots.

2D Plots

Simple 2D plots over a specified range are relatively simple to create, as you saw in
Chapter 1 with the Plot function. The Wolfram Language gives you accurate control over
your plots; for example, you can define the range of your plot’s range and many options.
For instance, you can add a title to the next plot, a LogPlot, which is a function in a
logarithm scale (see Figure 5-1).

In[1]:= LogPlot[Log[x]/x,{x,1,20},PlotLabel->"New Log plot"]
Out[1]=
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New Log plot
04,
0.3
0.2
0.1
5 10 15 20

Figure 5-1. LogPlot

Figure 5-1 shows that a title has been added.

When plotting points over an interval, the default plot range to show is produced
automatically by Mathematica. But with PlotRange, you can override the option and
enter a desired range (see Figure 5-2).

In[2]:= LogPlot[x+(6/x),{x,1,20},PlotLabel->"New Log
plot",PlotRange->{0,14}]
Out[2]=
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New Log plot
14
12,
10
8.
6
05101520

Figure 5-2. LogPlot of x+(6/x), with custom range

By selecting All in PlotRange, the y axis increases. Alternatively, you can choose the
limits by entering them in the form {y min, y max}. Sometimes, a graphic may not pass
through a desired set of coordinates; to force this, AxesOrigin is used (see Figure 5-3).
Intersections are written in the form {x,y}, where the coordinates denote the x and y
origin points.

In[3]:= Plot[Abs[x],{x,-2,2}, AxesOrigin->{0,2}]
out[3]=
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N
Figure 5-3. The absolute value of x on origin 0, 2

AspectRatio is used to control the aspects using their height and width. This option
allows you to specify how big or small a graphic can be, calculating the height and width
ratio (h/w). However, when using ImageSize to directly select the width and height of a
graphic, if you specify the height alone, it is better to set AspectRatio to Full. This ensures
proper scaling as the width adjusts accordingly. Both options are shown in Figure 5-4.

In[4]:=GraphicsRow[{Plot[Cos[x],{x,0,2\[Pi]},ImageSize->Small],
Plot[Cos[x],{x,0,2\[Pi]},AspectRatio->0.5]}]
Out[4]=

Figure 5-4. First graphic with ImageSize; second with AspectRatio
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Plotting Data

When plotting graphs, a set of points can be represented in a plot. Data can be plotted
with different commands, depending on their purpose. To plot a list of coordinates,
ListPlot is used, and the arguments of the plot are represented as x, y coordinates
({x1,y1}, {x2,y2} ... ). You can create a list of values and pass them as the arguments. The
following example creates a table of values to resemble a hyperbolic cosine, with one
step between each point (see Figure 5-5).

In

[5]:= ListPlot[Table[Cosh[i Degree],{i,1,20}]]
Out[

5]=

1.06. =
1.05 .

104 o
133. °
102 s
1.01 °

1000 o © *®
i 5 10 15 20

Figure 5-5. Hyperbolic cosine plot, ranging from 1 to 20

In this case, you only generate points in {1, y1}, {2, y2}, but you can also plot x and
y values. Let’s generate the x points with Table and then thread each element ofxtoay
element and plot (see Figure 5-6) the new set of coordinates.

In[6]:= xcoor=Table[i,{i,1,5}];
ycoor={12,5,35,20,55};
coordinates=Thread[ {xcoor,ycoor}];
ListPlot[coordinates]

out[9]=
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50 -

40.-

30.

20. -
10

R T T
Figure 5-6. ListPlot of x and y coordinates

Another useful command is ListLinePlot, which plots points through points
by joining them with a line. ListLinePlot (see Figure 5-7) can also plot predefined

coordinates. You can show how many points to display to understand how the plot is
constructed with the Mesh option.

In[10]:= ListLinePlot[coordinates,Mesh->20]
Out[10]=

192



CHAPTER 5  DATA VISUALIZATION

50?
405
305
205

10

7 e ; -
Figure 5-7. ListLinePlot with mesh option set to 20

A plot can be represented with different colors and markers. Colors and markers
are convenient to distinguish among different plots. To introduce markers, enter the
PlotMarkers option followed by the markers symbol. Markers can be special characters
or letters; use the special character pallet for a complete list of symbols and characters.
By default, different sets are colored differently, but to choose a specific color, use
PlotStyle. With PlotStyle the thickness of a line can be changed too, as shown in
Figure 5-8.

In[11]:=
ListLinePlot[{Table[Cos[i], {i, 0, 2 \[Pi], 0.2}],
Table[Sin[i], {i, 0, 2 \[Pi], 0.2}]}, PlotMarkers -> {"\[CloverLeaf]", "\
[FilledDownTriangle]"}, PlotStyle -> {Green, Black}]
Out[11]=
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1.0} 3%g

0.5~

_1_0:
Figure 5-8. Plots with different marker points

Another general option is Ticks. With this option, you can modify the indicators on
the axes for both x and y. For example, in Figure 5-9, the plot ticks are marked on the x
axis; the ticks are -1 and 1. And the y axis is set to automatic (see Figure 5-9).

In[12]:= Plot[x"3,{x,-5,5},Ticks->{{-1,0,1},Automatic}]
Out[12]=

100 |

50|

-100|

Figure 5-9. Plots with ticks marked on -1 and 1 for the x axis
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Additionally, plots containing dates can be displayed with DateListPlot. The
DateListPlot has the following form, DateListPlot[{v1,v2, ... }, “date specification”]. With
DateListPlot, the x axis is converted into a timeline, and the y axis corresponds to the
values (v1.v2, ...). Figure 5-10 shows a DateListPlot, starting in June and finishing in
November.

In[13]:= datai=Table[Power[i,2],{i,0,5}];
data2=Table[Power[i,3],{i,0,5}];
DatelistPlot[{data1,data2},{2006,06}]
Out[15]=

o
50; /
40
a0} ;J
20?

10Ff

0: e —— ' = I i 1 I'j
Jul Sep Nov

Figure 5-10. Date plot, starting the plot from June 2006 to November 2006

Additionally, you can use ListLinePlot or ListPlot to create date plots. Employing the
ScalingFunction option with {“Date’, Identity} allows a proper scaling along the date axis,
for good data visualization over time, as the following code and Figure 5-11 show.

In[16]:= datai=Table[{DateObject[{2006,i}],Power[i,2]},{i,3,9}];
data2=Table[{DateObject[{2006,i}],Power[i,3]},{1,3,9}];
ListLinePlot[{data1,data2},ScalingFunctions->{"Date",Identity},PlotStyle->
Automatic,Frame->True,PlotLegends->{"Data 1","Data 2"}]

Out[17]=
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700} /
600 / 1

500 o
4005 — Data 1
300/ | — Data2
pi 1
//
t e ————
OkT : 4 . i . e
Mar May Jul Sep

Figure 5-11. Date plot using ListLinePlot with ScalingFunctions

Plotting Defined Functions

You can define and plot custom functions (see Figure 5-12). User functions can also
be used as arguments for plotting commands. Functions can have a single or multiple
variables, as with 3D plots.

In[17]:= F[x_]:=Exp[x];
Plot[F[x],{x,-10,10}]
Out[18]=

1500 |
1000 |

500 |

-10 -5 5 10

Figure 5-12. User-defined function for Exp of x
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Also, multiple defined functions are supported. When multiple plots are in the same
graphic, each plot is colored differently (see Figure 5-13).

In[18]:= X[x_]:=x;Y[y_]:=-Sqrt[y];Z[z_]:=1/z;
PlOt[{X[X])Y[X]JZ[X]}){XJ-1OJ10}]
Out[19]=

Figure 5-13. Multiple plots

Customizing Plots

The Wolfram Language lets users customize plots based on their needs, like adding
text, changing color style, adding fill, presenting on tabular frameworks, and so forth.
Many commands used in the 2D plots are also preserved in 3D plots. Depending on the
graphical representation, options can vary between commands.

Adding Text to Charts

Adding text to charts, like markers and the range of values, can make a chart more
informative. Many other elements can be added too.

PlotLabel adds a title to a chart. In addition to this option, there is AxesLabel and
PlotLegends. The first allows you to add labels to your axes in the form {“x_label,” “y_
label”}; the second enables you to add text related to each expression within the graph
(see Figure 5-14).
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In[20]:= Plot[{Abs[x], x"2}, {x, -2, 2}, AxesLabel -> {"x", "y"},
PlotLegends -> "Expressions”]
Out[20]=

_.2..._.1.. 12

Figure 5-14. Plots with labeled axes and functions

You can use Labeled to add costume text expressions on plots (see Figure 5-15). As
for the new Mathematica version, passing the cursor over the plot displays the x and y
coordinates without creating an explicit tooltip.

In[21]:= Labeled[Plot[x"2, {x,-2,2}], 'f(x) = 'x?,, Left]
Out[21]=

1.22,1.49

=2 -1 1 2

Figure 5-15. Label placed on the left side of the graphic
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Even with the Labeled command, Tooltips can be constructed. Tooltips display a
label tooltip for any expression (see Figure 5-16). Tooltips are displayed when the mouse
pointer is passed over the tooltip expression. The difference between Tooltips and
PlotLegends is that PlotLegends is an option and not a command.

In[22]:= Tooltip[{Plot[x"2,{x,-2,2}]}]
out[22]= {}
Tooltip[{Plot[x*2, {x, -2, 2}]1}]

Vg

w

%]
=

=

Figure 5-16. Tooltip created for the plot expression

When you hover over the entire graph, it shows you the tooltip of the entire graph
since you specify it. But you can do it just for the expression of the function (see
Figure 5-17).

In[23]:= Plot[Tooltip[x"2],{x,-2,2},ImageSize->200]
Out[23]=

Figure 5-17. Tooltip for the curve expression
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If you hover over the curve, it shows you the tooltip of xA2; this function also works
with the other types of plots. You can add what the tooltip style should look like with the
ToolTipStyle option (see Figure 5-18).

In[24]:=ListPlot[Tooltip[Range[10], TooltipStyle -> {Bold,Red,
Background -> LightBlue}], ImageSize -> 250]

Out[24]=
10/ .
8 3
6 {7..7.}
4 .
2| .
2 4 6 8 10

Figure 5-18. Tooltip for every point plotted

If you move the cursor to the points, you get the coordinates of the points written in
red and the tooltip’s background in light blue.

Frame and Grids

Plots can be framed and gridded. The Frame option is used, and to add labels to the
frame, use FrameLabel, which receives instructions like AxesLabel (see Figure 5-19).

In[25]:= ListPlot[Table[Prime[i],{i,1,10}],Frame->True,FramelLabel->
{"X Framed Axis ","Y Framed Axis"}]
Out[25]=
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30[T
25

20}

Y Framed Axis
o

0 2 4 6 8
X Framed Axis

Figure 5-19. Framed ListPlot

To add a grid (see Figure 5-20), use the GridLines option.

10

In[26]:= ListPlot[Table[Prime[i],{i,1,10}],GridLines->Automatic,AxesLabel->

{"X Framed Axis ","Y Framed Axis"}]
out[26]=

Y Framed Axis
30
25_-
20;
153-
10;

5 .

e e e w0 b X Framed Axis
10

2 4 6 8

Figure 5-20. Gridded plot
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To modify the grid style, use the GridLinesStyle option, which can have a particular
thickness using Directive (see Figure 5-21).

In[27]:= ListPlot[Table[Prime[i], {i, 1, 10}], GridlLines -> Automatic,
GridLinesStyle -> Directive[Thickness[0.0002], LightRed]]
Out[27]=

30
25
20
15

10

Figure 5-21. GridLines colored in light red

Filled Plots

Plots can be filled in various forms—for example, between the x axis, from the bottom
and top of a curve (see Figure 5-22).

In[28]:= ListLinePlot[Table[Mod[i,2],{i,0,5}],Filling->Bottom]
Out[28]=
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10
08/
0.6
04

0.2

1 2 3 4 B 6

Figure 5-22. Filled plot from plotted points to the bottom of the axis

A specified region between curves can also fill them by introducing Filling — {“1st
curve” — {“2nd curve”},’2nd curve” — {“3rd curve”}, as shown in Figure 5-23.

In[29]:= Plot[{x"2, x"3, x"4},{x,0,5}, Filling->{1->{2}, 2->{3}}]
Out[29]=

200

150

100 -

50

Figure 5-23. Filled plots
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Filling Patterns and Gradient

The updated version has added new features, such as cross-hatching fillers. This
enhancement is used like the standard options illustrated in Figure 5-24.

In[30]:= ListLinePlot[Table[Mod[i,2], {i,0,5}], Filling -> Bottom,

FillingStyle -> HatchFilling["Horizontal"]]

Out[30]=
1.0/
08
06/
04

0.2

1 2 3 4 5 6

Figure 5-24. Filled horizontal style

New function additions are implemented by a style or a pattern, as seen in
Figure 5-25.

In[31]:= ListLinePlot[Table[Mod[i,2], {i, 0, 5}], Filling -> Bottom,
FillingStyle -> PatternFilling["ChevronLine", ImageScaled[1/20]]]
Out[31]=
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Figure 5-25. Filled Chevron horizontal line style

The same applies to shading functions; additions are implemented by the gradient
technique, as seen in Figure 5-26.

In[32]:= Plot[{x"2,x"3,x"4}, {x,0,5},FillingStyle -> LinearGradientFilling
[{Red,Blue},Top],Filling -> {1->{2},2->{3}}]
Out[32]=

200 -
150
100

50 -

Figure 5-26. Linear Filled Gradient red, blue, line style
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Combining Plots

To display overlap graphics, there are ways to display the graphs even if they are not of
the same type. The following example assigns names to plots without showing the result
of each one and finally shows the three graphs. The Show command shows previously
defined plots; the arguments are graphic objects followed by options. This is an
alternative to doing multiple listable subplots.

In[33]:= ploti=Plot[x,{x,0,10},PlotStyle->Red];
plot2=Plot[Cos[x],{x,0,10},PlotStyle->Black];
plot3=ListPlot[Table[Sin[i]+1,{i,1,10}],PlotStyle->Brown];
Show[plot1,plot2,plot3,PlotRange->Automatic]

Out[33]=

As shown in Figure 5-27, Show changes the appearance of the graphics; the order
in which they are entered is preserved when displayed. Although making the graphics
within Show is possible, you can add colors within the Plot command to distinguish the
different graphs (see Figure 5-28).

In[34]:= Show[Plot[Cos[x],{x,0,10},PlotStyle->0range],
Plot[Sin[x],{x,0,10},PlotStyle->Purple],PlotRange->Automatic]
Out[34]=

-1

Figure 5-27. Combined plots shown in the same graphic
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Figure 5-28. Cosine and Sine plot in the same graphic

There are several ways to create a list of graphs. You can assign variables to graphs
and deploy them as a list.

In[35]:= {Plot1,Plot2,Plot3}
Out[35]=
As seen in Figure 5-29, these three graphs are separated by commas since it is a list.

20

15

b 1.0/ ’ }
L af s 10’ :
-0.5 05 #

> & e & 1w T2 4 e 8 w0

Figure 5-29. List of three different plots

Multiple Plots

Multiple plots can be shown in a single output cell. To do this, use the Row command;
this command allows the graphs to be displayed horizontally, with each graph on one
side of the other (see Figure 5-30). However, Row generally displays expressions in row
form, not just graphs.

In[36]:= Row[{plot1,plot2,plot3}]
Out[36]=
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-

Moo o O

-0.5
2 4 6 8 10-1.0

Figure 5-30. Plots expressed as a row

By entering a second argument for Row (see Figure 5-31), you have the option to add
a separator between the graphs.

10 1.0 =
8 05 15
6
L LE T 3 *h == i‘1‘o
4 6 10
2 -05 et
2 4 & 8 W -1.0 0 T 4 6 8 10

Figure 5-31. Separator (**--**) added between each plot

In[37]:
Out[37]

Row[{plot1,plot2,plot3}, "**--**"]

Alternatively, there is the Column command, which acts similarly to Row but
displays expressions or graphs in column form (see Figure 5-32).

In[38]:= Column[{plot1,plot2,plot3}]
Out[38]=
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10

N e @

-0.5

-1.0
20

1.5
1.0

0.5

Figure 5-32. Graphics expressed as a column

If you look at the following example, it is possible to add frames over the entire chart
(see Figure 5-33) for both columns and rows.

In[39]:={Column[{plot1,plot2,plot3},Frame-> True],
Row[{plot1,plot2,plot3},Frame->True, FrameMargins->Medium]}
Out[39]=
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Figure 5-33. Exhibit of column and row expression for the three plots

Multiaxis Plots

Since the new version, creating a single graph with multiple coordinate systems into a
single pack requires linking the axes with different styles using MultiAxisArrangement.
So, the curves connect through the same axis (see Figure 5-34).

In[40]:= ListLinePlot[{Table[{x,x"2},{x,0,1,0.1}],Table[{x,x"3}, {x,0,2,0.1}],
Table[{x,x"4},{x,0,3,0.1}]},MultiaxisArrangement-> All]
Out[40]=
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Figure 5-34. An exhibit of column and row expression for the three plots

Coloring Plot Grids
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Column and Row allow you to customize graphs. There are various ways of changing the

color of the frame and adding shading to the graphs (see Figure 5-35).

In[41]:= Column[{plot1,plot2,plot3},Frame->True,Background->LightCyan,
FrameStyle->Directive[Black,Dashed],Dividers->All]

Out[41]=
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....................................

—
[=]

Figure 5-35. Column graphics with multiple features

Some options are available depending on whether you use a Row or Column. With
Column, there is the option of dividers; in Row, there is no such option, but it is done via
a separator, as you saw earlier. Using Table, it is possible to create different shapes on the
graphs, either by color or frames, as shown in Figure 5-36.

In[42]:= Table[Row[{plot1,plot2,plot3},Frame->True,FrameStyle->0Opts],
{0pts,{Thick,Dashed,Dotted}}]
Out[42]=

||l VA% B g \VAV: B 11 e VAV

246810 0246810 E 246810 0248810: 24880 0246810

Figure 5-36. Table of multiple features implemented with the Row command
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Next, let’s address the existing alternative using GraphicsRow and GraphicsColumn.
Around these commands, there are also options for the image size (see Figure 5-37).

In[43]:= {GraphicsRow[{plot1,plot2,plot3},ImageSize->Medium],
GraphicsColumn[{plot1,plot2,plot3}, ImageSize->Small]}

Out[43]=
0 1.0 0
8 0.5 5
{ : 0.0\ 0 ,
) -0.5 6 i 1.5 )
0 -1.0 .0+ .
2 4 6 8 1 0 2 4 6 8 1

0 2 4 6 8 1

Figure 5-37. GraphicsRow vs. GraphicsColumn

GraphicsRow and GraphicsColumn are commands with specific shapes for
constructing graphics, whether polygons, lines, dots, and so on. In addition, with Rows
and Columns, the graphs are independent. With GraphicsRow or GraphicsColumn, if
you select the graph, it is a unique image containing (in this case) the three plots you
have made.

Another useful command shows you the graphs as a network, taking up the point
stated earlier—if you select the graph, it is a unique image. The following example adds
another chart to better illustrate why it’s helpful to use GraphicsGrid (see Figure 5-38).

In[44]:=plot4=LoglogPlot[Cos[x],{x,0,10},PlotStyle->Yellow];
GraphicsGrid[{{plot1,plot2},{plot3,plota}},Frame->All,FrameStyle->Purple,
Background->LightCyan]

Out[44]=
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2
2 4 6 10
2.0 1.0
X 09
1.5 0.8
0.7
10
06
0.5
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2 - 6 10 0.01 0.05 0.10 050 1 5 10

Figure 5-38. GraphicsGrid showing four different plots

As shown in Figure 5-38, this shape can help you compactly visualize four graphs

at once. Without a doubt, the graphs do not have to be so simple. The options you have

seen throughout this chapter can also be added, such as titles and labels on the axes,

grid lines and colors, and more, as shown in the following example.

In[45]:=

newPlot1=Plot[x,{x,0,10},PlotStyle->{Purple,Thick},PlotLabel->"X"];
newPlot2=Plot[Cos[x],{x,0,10},CGridLines->{{-1,0,1},{-1,0,1}},GridLinesSty
le->Directive[Dotted,Blue],PlotLabel->"Cos[x]",ColorFunction->"Rainbow"];
newPlot3=ListPlot[Table[Sin[i]+1,{i,1,10}],Frame->True,FrameLabel->{Style[
"X",Bold],Style["Y",Bold]},PlotStyle->Red,PlotMarkers->"X",PlotLabel->"2D

Scatter Plot"];

newPlot4=LoglLogPlot[Cos[x],{x,0,9},Filling->Axis,ColorFunction->
"BlueGreenYellow",PlotRange->{0,1},PlotLabel->"Log Log Plot"];
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Now that you have the new plots, you can compare them by putting them as a nested

list in GraphicsGrid (see Figure 5-39).

In[46]:=Labeled[GraphicsGrid[{{newPlot1,newPlot2},{newPlot3,newPlot4}},
Frame->All,Background->White,Spacings->1],Style[ "Multiple Plots

Box",20,Italic],Top,Frame->True,Background->LightYellow]

Out[46]=
Multiple Plots Box
2D Scatter Plot Log Log Plot

- L S SR SR e M Lt SRS Al 1 1.0

20f X
P X o 0.9

1.5} 4 - 0.8
E X 0.7

> 1.0}

X 0.6

0.5}
% 05

BOELL o cng R 52 (R
0 2 4 6 8 0.01 0.050.10 0.50 1

X

Figure 5-39. Grid of multiple plots

This is not restricted to displaying 2D graphs; it also applies to 3D graphs and other

types of charts.
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Colors Palette

If you are interested in more colors, there is a gamma of various types of colors in
Mathematica. For this, go to the menu in Palettes » Color Schemes, as the color palette
in Figure 5-40 shows.

- Gradients
DarkRainbow

R |
Rainbow
I a2
Pastel
F ]
Aquamarine

BrassTones A
- |
DarkRainbow

0 0.5 1

Insert

> Physical
> Named

> Indexed

Figure 5-40. Colors palette

The tabs that appear are of the colors associated with the different classes. To defer
through the colors in the tabs, use the arrows, and the different names of the colors and
their color or gradient are displayed. If you want to introduce colors that are not reserved
words, then you use the insert button. For example, go to the Gradient tab and click the
Insert button, which inserts the function with the chosen color into the notebook.

To illustrate, let’s look at the following example. Select the Color BrownCyanTones,
insert it with the button, evaluate the expression, and get the result of the
ColorDataFunction (see Figure 5-41).
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In[47]:
Out[47]

ColorData[ "BrownCyanTones" ]

' Gradient: I 1
Domain: {0, 1}
Class: Gradients

g N : Bl CyanT
Co'LorDataFunct'lon[ B Iy LGS ]

Figure 5-41. ColorData object

This gives you a color data object showing the name, color type, class, and domain.
Gradient colors are intricate in text and work best with the ColorFunction function. So
now that you know the name, you can assign it a color (see Figure 5-42).

In[48]:= Plot[x,{x,0,10},ColorFunction->ColorData[ "BrownCyanTones"]]
Out[48]=
10,
[ /
8!
6
&L

Figure 5-42. Gradient color of straight line x

Note Plain colors are located in the named tab of the palette.
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3D Plots

Mathematica can perform various types of 3D graphics, many of which are simple. 3D
functions are displayed as surfaces in space. Figure 5-43 presents the example.

In[49]:= Plot3D[Sinc[x*8+y~2],{x,-1,2},{y,-1,3},ImageSize->Medium,
PlotPoints->20]
out[49]=

Figure 5-43. 3D plot figure

Mathematica allows you to observe the graph by moving with the cursor. Hovering
over the chart changes the cursor to rotating arrows, which means you can move the
chart to observe it from different points. One last observation is that when you press the
Ctrl or Cmd key, you can magnify the chart, keeping its position fixed.

Note that the cursor can manipulate 3D graphs so that you can visualize the angle
spread graph. Common standard Mathematica displays the graph as a mesh, which
can be modified with the Mesh option, as you saw earlier, or by adding more points
to evaluate with the PlotPoints option. This increases the number of points in both
directions in both x and y. It also serves to improve the quality of the chart.
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Customizing 3D Plots

3D graphics can also be customized as 2D graphics (see Figure 5-44) as labels to
axes, colors, grids, and so forth. Figure 5-44 shows a 3D plot with the AxesLabel,
ColorFunction, and FaceGrids options.

In[50]:= Plot3D[Sin[4(x"2+y~2)]/0.5,{x,-0.8,0.8},{y,-0.8,0.8}, AxeslLabel->

{"X axis","Y axis","Z axis"},ColorFunction->"Rainbow", FaceGrids->All]
Out[50]=

Figure 5-44. Gridded 3D plot

Table 5-1 shows general options for 3D graphics.

Table 5-1. Plot Options

Option Instructions

AspectRatio Height/width ratio
AxesLabel Add text to axes

PlotStyle Color, opacity, thickness, etc.
PlotRange Range of values

PlotLabel Plot title

Background Background Color
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Customization of graphics depends on how you plan to exhibit them. There is no
limit on how graphics are presented. The following example plots a 3D function and
colors the background light yellow (see Figure 5-45).

In[51]:= Plot3D[Sin[0.9(x"2+y"2)]/0.5,{x,-1,1},{y,-1,1},AxesLabel->
{"X axis","Y axis","Z axis"},FaceGrids->All,ColorFunction->Hue, PlotLabel->
"My 3D Plot",Background->LightYellow,ViewAngle->Pi/7]

Out[51]=

My 3D Plot

205 g, i
00 /-05
X axis 05 e [/

Figure 5-45. Customized 3D plot

Hue Color Function and List3D

The Hue color function is a directive that specifies that the values are colored depending
on the height they are at. There are three arguments for the Hue color function. The first
is for the tone of the color (hue); the second marks the saturation; the third marks the
bright one; and the fourth is the opacity. With hue, it is possible to adequately identify
the high and low areas from a graph (see Figure 5-46) in the four previous features. You
can mark these four different parameters. The hue parameters are in the range of 0 to 1.

In[52]:= Plot3D[Sin[0.9(x"2+y"3)]/0.5,{x,-1,1},{y,-1,1}, FaceGrids->
None,ColorFunction -> (Hue[0.5,1,0.6,0.5]8),PlotLabel->Style["My 3D
Plot",Italic,"Arial"], Background->Black]

Out[52]=
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Figure 5-46. 3D plot with colored Hue values

For 3D scatter plots (see Figure 5-47), you can do it using the same data. With
ListPlot3D, the points are joined together to create a surface represented by the height
values of each point. With ListPointPlot3D, a scatter plot is generated in 3D points.

In[53]:=Row[{ListPlot3D[Table[RandomReal[1,5],{i,5}],ColorFunction->
"SunsetColors",Ticks->None, PlotlLegends-> BarlLegend[Automatic,
egendMarkerSize->90], ImageSize-> Small,PlotlLabel->"ListPlot3D",Filling->
Bottom,BoxRatios-> Automatic] , ListPointPlot3D[Table[RandomReal[1,5],
{i,5}], ColorFunction->"Rainbow", PlotlLegends->BarlLegend[Automatic,
LegendMarkerSize->90], ImageSize->Small, PlotlLabel->" ListPointPlot3D",
Filling->Bottom,BoxStyle->Thick, BoxRatios->{1,1,1}]},Background->Lighter
[Gray,0.80],Frame->True]

Out[53]=
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ListPointPlot3D

0.8
0.6
0.4
0.2

Figure 5-47. ListPlot3D and ListPointPlot3D for random real numbers

Contour Plots

One way to visualize a two-variable function is to use a scalar field in which the scalar z =
f (x, y) is mapped to the point (x, y). A scalar field can be characterized by its contours (or
contour lines) along which the value of f (x, y) is constant. The trace lines of contour line

plots or contours can be done using the ContourPlot command, like in the next example.

In[54]:= ContourPlot[-((Pi*x)/(3+x"2+y*2)),{x,-5,5},{y,-5,5},ColorFunction-
>"Temperature",PlotLegends->Automatic,FrameLabel->{x,y}]
Out[54]=

Figure 5-48 plots a contour plot using the ColorFunction and PlotLegends options.
When you use PlotLegends, you specify what type of legends the chart should use; in
this case, you use automatic. This shows you the scale of the contours depending on the
color of each outline; for example, red is when it is at 0.8 or greater. When you pass the
cursor through the contour curves, the value of that curve appears. To label the values
of the contour curves in the graph image, add the ContourLabels option and assign
the value to true, as shown in Figure 5-49. To add lines that pass through the graph,
use the GridLines command, as you saw earlier, or use Mesh. Mesh can be joined with
MeshFunction or MeshStyle.

In[55]:= ContourPlot[-((Pi*x)/(3+x"2+y*2)), {x,-5,5}, {y,-5,5},
ColorFunction->"DeepSeaColors", PlotlLegends-> Automatic, Framelabel->
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{x,y}, ContourlLabels->True, Mesh->{10,10}, MeshStyle->{White},
MeshFunctions-> {#38}]
Out[55]=

-2

-4

-4 -2 0 2 4
X

Figure 5-48. Contour plot for the defined z function

| BR-08

0.4

Figure 5-49. Contour lines added to the contour plot
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To plot data into a contour plot (see Figure 5-50), use ListContourPlot.
ListContourPlot creates a contour plot from an array of values shown in heights.

In[56]:= ListContourPlot[Table[Exp[x]*Sin[y],{x,0,2,.1},{y,0,2,.1}],
ContourLines->True,Mesh->Full,ContourLabels->True]
Out[56]=

N S - —

20

|
]

15+

10

. 5 . ...1.0..‘ <1.5. .2.{) M

Figure 5-50. ListContourPlot

Another plot is DensityPlot (see Figure 5-51). DensityPlot works similarly to
ContourPlot.

In[57]:= DensityPlot[(Sin[2x]*Cos[3y])/5,{x,0,5},{y,0,5}, ColorFunction->
"SunsetColors", Mesh->Full]
Out[57]=

224



CHAPTER 5  DATA VISUALIZATION

Figure 5-51. Density plot

You can plot density plots from data with ListDensityPlot (see Figure 5-52).

In[58]:= ListDensityPlot[Table[x/3 + Sin[3 x + y*2], {x, o, 5, 0.1}, {y, O,
5, 0.1}],ColorFunction -> "LightTemperatureMap", Mesh -> 10, PlotlLegends ->
Placed[Automatic, Left]]

Out[58]=
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Figure 5-52. Data represented as a density plot

3D Plots and 2D Projections

With the Wolfram Language, it is possible to plot functions in 3D and, at the same time,
project the contour maps to planes as the axis, as shown in Figure 5-53.

In[59]:= Show[Plot3D[(Sin[2 x]*Cos[2 y])/4, {x, 0, 2}, {y, 0, 2},

PlotStyle -> Directive[Opacity[1]], AxesLabel -> {"X axis", "Y axis", "Z
axis"},ColorFunction -> "Rainbow", PlotTheme -> "Marketing"],SliceContourPlo
t3D[(Sin[2 x]*Cos[2 y])/4, {z == -0.15, z == 0.15}, {x, o, 2}, {y, o0, 2},
{z, -1, 1}, ColorFunction -> "Rainbow", Boxed -> False], ViewPoint ->

{1: -1, 1}]

Out[59]=
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Figure 5-53. 3D plot with contour plots along the xy plane

Let’s discuss what happens in the code. You plot a function in 3D (see Figure 5-53),
and to this function, you add color, using the command directive to define the type of
opacity, which is set to 1. This is followed by typing the name of the corresponding axes
for the x, y, and z axes. The ColorFunction option can help define a function for the color
type; in this case, it is Rainbow. The PlotTheme is an option to plot with various themes
for visualization. Coming to this point, you move on to the SliceContourPlot3D, which
gives you a graph of the function, either on a plane or a surface. you have plotted when z
isworth + 0.15. A cut is made on the xy plane. This occurs when x and y are in the range
of 0 to 2, and z is in the range of -1 to 1. In the end, you combine the two graphs with
the Show command; you use this command because you would not have the function’s
graph in 3D only by plotting on its slice contour plot.

Plot Themes

Preconstructed themes can be accessed using the PlotTheme option. You see the
autocomplete menu when you add the PlotTheme option, followed by the first
apostrophe. Figure 5-54 shows the different themes that exist.
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"yweb" M

"Minimal" FASEA
"Detailed" %l\{q
"Business"
"Marketing"

"Scientific"

"Monochrome"

"Classic"

"Default" #ﬂ“{ﬂ

? PlotTheme

) Plot

«

Figure 5-54. PlotTheme pop-up menu

PlotTheme supports 3D plots, as shown in Figure 5-55.

In[60]:= data=Flatten[Table[{x,y,Sin[10(x"2+y"2)]/10},
{x,-2,2,0.2},{y,-2,2,0.2}],1]; ListPointPlot3D[data,ColorFunction->
"LightTemperatureMap"”, PlotTheme->"Detailed",ViewPoint->{0,-2,0},
ImageSize->250,PlotLegends->Placed[BarLegend[Automatic, LegendMarkerSize->
90],Left], ImageSize->20]

0ut[60]=

Figure 5-55. 3D scatter plot

These themes can be used for both 2D and 3D graphics. Now, let’s look at another
type of theme for a two-dimensional chart (see Figure 5-56).
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In[61]:= Plot[Cos[x],{x,0,10},PlotLabel->"Cos[x]",PlotTheme-> "Detailed"]
Out[61]= cos(x)

1.0}
0.5}

0.0} { — cos(x)

Figure 5-56. 2D plot theme: Detailed

Let’s discuss a characteristic of PlotTheme. Some themes already have functions
within these themes. Figure 5-55 shows that the Detailed theme adds frames, plot
legends, and grid lines, even though you can add them manually.

It is also notable that other topics can only be used for explanatory and
demonstrative purposes—that is, no extra information is needed on the chart, but you
need to be able to express the information effectively and concretely, as in the Business
and Minimal themes (see Figure 5-57).

In[62]:= Table[Plot[Cos[x],{x,0,10},PlotLabel->"Cos[x]",PlotTheme->P1],{P1,
{"Business","Minimal"}}]
Out[62]=

Cos[x] Cos[x]
1.0

0.5

! | N !

-1.0 2 i . i .
0 2 L 6 8 10

Figure 5-57. Business and Minimal plot themes
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While there are also topics that show more details, like the Detailed theme you saw
earlier, other themes exist, like the Scientific theme, as shown in Figure 5-58. You can
add more options, such as ColorFunction and a view, with the ViewProjection option,
which allows you a fixed observation point.
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Figure 5-58. Orthographic point of view

Note PlotLegends can work together with ColorFunction, displaying how the
colors of the dots transition between blue and red, from lowest to highest.

In[63]:= data=Flatten[Table[{x,y,Sin[10(x"2+y"2)]/10},
{x,-2,2,0.2},{y,-2,2,0.2}],1]; ListPointPlot3D[data,ColorFunction->
"LightTemperatureMap”,PlotLegends-> Placed[BarLegend[Automatic,
LegendMarkerSize->90],Left], PlotTheme->"Scientific", ViewProjection->
"Orthographic"]

Out[63]=

If you want to observe through the coordinate measurements, use the Viewpoint
option, which is governed by {x coordinate, y coordinate, z coordinate}. These
coordinates are relative to the graph’s center, as Figure 5-59 shows.

230



CHAPTER 5  DATA VISUALIZATION

In[64]:= ListPointPlot3D[Data,ColorFunction->"LightTemperatureMap",
PlotLegends->Automatic,PlotTheme->"Scientific", ViewPoint->
{0,0,-2},ImageSize->Medium]

Out[64]=
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Figure 5-59. Viewpoint for x and y equal 0 and z equal -2

Summary

This chapter introduced the basics of data visualization, emphasizing 2D plots, plotting
data, and user-defined functions. As progress is made, the section on customizing plots
covers text to charts, frames, grids, and filled plots, including further content on fill
patterns and gradient filling, followed up by discussing how plot combinations are done,
focusing on multiple plots, and coloring plot grids and concentrating on new additions
like multi-axes plots. Furthermore, an overview of the color palette was presented,
followed by a segmentation of 3D Plots, elaborating on the customization, Hue coloring,
and contour plots. Finally, it culminates with an outlook on the variety of plot themes for
3D graphs.
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CHAPTER 6

Statistical Data Analysis

This chapter reviews concepts and techniques to analyze with the Wolfram Language,
perform a linear adjustment through equations, and implement specialized functions
of the Wolfram Language for the same purpose, using statistical functions. The Wolfram
Language is a useful tool for statistics and probability. Mathematica has the functions to
perform numerical and approximate calculations for descriptive statistics and random
distributions, random numbers, and random sampling methods, as you see in this
section.

Random Numbers

This section reviews the basic commands to generate random numbers—for the case of
integers, real and complex. You see the functions of performing random sampling with
replacement and without replacement and, in addition, ensuring that the results are
reproducible for random numbers.

To create random numbers, there are several functions to generate random integers
and real ones. The RandomInteger function generates entered random numbers; if no
arguments are entered in the function, the generation interval is 0 or 1.

In[1]:= RandomInteger| ]
Out[1]= o

To enter a range, you must define it within the function; for example, between
-land 1.

In[2]:= RandomInteger[{-1,1}]
Out[2]= 1
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To generate a list of random numbers, you must define how many numbers you want
within the list.

In

[3]:= RandomInteger[{-1,1},7]
Out[

3]= {_1J0)1J1)1)1)1}

To repeat the numbers, add the form of the list or nested list as a second argument.
For example, create a nested list of seven total items in each sublist with four items.

In[4]:= RandomInteger[{-10,10},{7,4}]
OUt[4]= {{'8:7)7)0}){'4:'8)10)'8}:{10)8)'8)0}:{'2)'6)8)'10}:
{SJ-1)-6)-4}){1J4)O)-1}){5J7J9)10}}

The function for generating random numbers with a decimal point is called
RandomReal. It works similarly to RandomInteger, where the interval is between

curly braces.
In[5]:= RandomReal[ ]
Out[5]= 0.020413

A command for complex random and prime numbers also exists.

In[6]:= RandomComplex] ]
Out[6]= 0.727318 +0.998602 I

You must define a minimum and maximum interval for random prime numbers—

for example, if it is a prime number of the first 100.

In

[7]:= RandomPrime[{1,100},6]
Out[

7]= {89,2,59,71,53,29}

This type of function generates pseudorandom numbers so that you can set a seed
to generate the numbers. This is done with SeedRandom. With a seed, you can ensure
that the starting sequence of random numbers generated is the same to make random
outputs reproducible. To set a seed, use the SeedRandom command. The following
example sets a seed followed by a sequence of random numbers; once the seed is
introduced, the results should be the same for that seed.

In[8]:= SeedRandom[6467789];RandomInteger[{-1,1},3]
Out[8]= {0,1,0}
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The seed must go in the same code block to generate the results. There is the option
to choose the method. The following example uses the MersenneTwister method, which
generates random numbers. Using another method allows you to generate sequences of

different random numbers.

In[9]:=SeedRandom[Method->"MersenneTwister"];RandomInteger[{-1,1},{3,3}]
// MatrixForm

Out[9]//MatrixForm
-1 -1 -1
0O 0 -1
0O 0 1

The seed enters the function without arguments to return to the original value.
In[10]:= SeedRandom[];

In addition to introducing a seed, you can create blocks of random numbers in which
functions can be used locally and not affect random behavior outside these blocks. This
is done with the BlockRandom function.

In[11]:= BlockRandom[RandomReal[1]]
Out[11]= 0.774569

If you run an algorithm that produces random numbers within the BlockRandom
and declare the seed, this should not impact other processes where random numbers
are generated outside the BlockRandom. To illustrate, let’s look at the example.

In[12]:= SeedRandom[121];
{RandomReal[ ],BlockRandom[RandomReal[]],RandomReal[ ] ,RandomReal[ ]}
Out[13]= {0.994955,0.788549,0.788549,0.957081}

As seen, the latter process generated different random numbers

Random Sampling

Use the RandomChoice function to make a sample with a replacement. To select a single
item, you write only the list. You set a seed to get the same results.
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In[14]:= SeedRandom[12345]; ranData=RandomReal[{0,1},10]
Out[15]={0.158069,0.599452,0.656143,0.918006,0.0805897,0.682397,0.638187,
0.431772,0.126333,0.973705}

This generated a list of 10 random numbers from 0 to 1, and now you randomly
choose an item of these numbers.

In[16]:= RandomChoice[ranData]
Out[16]= 0.973705

This gives you a single result from the list of 10 items. Similarly, you can choose the
number of samples with some elements, with the following form: RandomChoice[“data,”

“number of samples,” “several elements”]. You now pick three samples with one element
of the ten elements.

In[17]:= RandomChoice[ranData,{3,1}]
Out[17]= {{0.126333},{0.431772},{0.973705}}

Although, if you want it in the same sample, you only need to specify the number of
elements to choose from.

In[18]:= RandomChoice[ranData,5]
Out[18]= {0.0805897,0.158069,0.158069,0.0805897,0.973705}

To get a sampling without replacement, use RandomSample. This function only
chooses a list item from the data list once. To choose, you only specify the number of
elements in the sample as the second argument since the first one corresponds to the
data list.

In[19]:= RandomSample[ranData,9]
Out[19]={0.158069,0.682397,0.431772,0.599452,0.918006,0.638187,0.656143,
0.126333,0.0805897}

Looking at the details, you notice that there is no repeated value. Each item in the list
is equally likely to be selected in sampling.

In the case that each item in the list has a specific weight associated with it, then
to enter those terms, you use the following form of expression, {wl, w2, w3...} —
{elementl, element2, element3...}; the list of items is associated with a specific weight for
replacement sampling. You denote the list of weights and do the sampling by associating
the weights and elements.
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In[20]:=w={0.03,0.08",0.22,0.04",0.12>,0.3,0.12",0.03",0.04",0.02" };
RandomChoice[w->ranData,2]
Out[20]= {0.656143,0.638187}

They are chosen depending on how each element is assigned a weight. For sampling
without replacement, the process is analogous.

In[21]:= RandomSample[w->ranData,3]
Out[21]= {0.682397,0.656143,0.599452}

Systematic Sampling

To perform a system sampling, you must determine the sample size, M. To get the
sample size, you can list the items in the list or get the length of the list. To get started,
you create a list of 200 prime numbers.

In[22]:= SeedRandom[09876]; rPrime=RandomPrime[{1,100},200];
Length[rPrime]
Out[24]= 200

The sample size was already calculated, so you must determine the size of a specific
sample; for this case, you want a sample of 20 elements. Once the sample is determined,
you calculate the interval of the denoted sampling j; j is calculated through a ratio, the
original sample size divided by the total number of elements in the specified sample.

In[25]:= j=Length[rPrime]/20
Out[25]= 10

This means that the sampling interval for the new sample is from 1 to 10. From
here, you select a random number within the interval, and from there, you add j times
to choose the next element; that is, for the first element, it is a random h number of the
range [1,10], for the second it is h + j, and for the third h + 3j, and so on, until it reaches
the size of the original sample.

You chose a random number between 1 and 10.

In[26]:= RandomSample[Range[10],1]
Out[26]= {6}
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The result means that you select from the sixth element. You deploy the list to have a
better view of the data.

In[27]:= rPrime
out[27]={7,41,3,7,83,61,41,29,89,5,17,3,41,73,73,67,29,71,23,13,31,19,89,
41,79,19,47,83,13,73,37,67,59,29,13,17,83,43,17,71,89,11,71,23,29,37, 89,3,
89,11,41,59,2,37,41,31,59,79,61,13,59,53,53,59,2,43,11,73,41,37,3,31,13,
83,83,3,31,5,37,2,89,23,2,37,23,3,79,17,47,71,79,13,47,13,17,41,71,73, 2,
53,29,7,2,7,79,97,83,31,3,43,29,11,37,67,11,41,67,13,23,2,59,53,89,61, 29,
19,29,13,11,7,61,71,59,53,5,71,13,43,67,2,73,2,5,67,83,53,11,7,61,71,7,11,
83,59,47,67,17,83,43,53,17,59,11,11,61,2,11,97,2,73,41,7,41,19,41,71,53, 3,
3,41,29,5,73,53,79,43,13,19,29,2,73,67,29,41,13,3,43,23,59, 89}

To get the positions of the items to be selected, it would be the random number for
the selection, which is 6, plus n times j until you have 20 elements.

In[28]:= Table[6+n*j,{n,0,19}]
Out[28]= {6,16,26,36,46,56,66,76,86,96,106,116,126,136,146,156,166,
176,186,196}

Note Remember that the position index starts from 1 to n elements.

You must choose the positions shown in the previous output. To choose, you use the
double square bracket notation.

In[29]:= Table[rPrime[[6+n*j]],{n,0,19}]
Out[29]= {61,67,19)17,37,31)43)3,3)41)97)41)19)71)53)67)2171143)3}

Let’s take a closer look at the selected elements, highlighting them in red (here it is
plaintext) with the help of MapAt and Style.

In[30]:= MapAt[Style[#,FontColor-> ColorData["HTML"]["Red"]]8&,

RPrime, {#}&/@{61,67,19,17,37,31,43,3,3,41,97,41,19,71,53,67,2,71,43,3}]
out[30]={7,41,3,7,83,61,41,29,89,5,17,3,41,73,73,67,29,71,23,13,31,19,89,
41,79,19,47,83,13,73,37,67,59,29,13,17,83,43,17,71,89,11,71,23,29,37,89,3,
89,11,41,59,2,37,41,31,59,79,61,13,59,53,53,59,2,43,11,73,41,37,3,31,13,
83,83,3,31,5,37,2,89,23,2,37,23,3,79,17,47,71,79,13,47,13,17,41,71,73,2,
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53,29,7,2,7,79,97,83,31,3,43,29,11,37,67,11,41,67,13,23,2,59, 53, 89,61, 29,
19,29,13,11,7,61,71,59,53,5,71,13,43,67,2,73,2,5,67,83,53,11,7,61,71,7,11,
83,59,47,67,17,83,43,53,17,59,11,11,61,2,11,97,2,73,41,7,41,19,41,71,53,3,
3,41,29,5,73,53,79,43,13,19,29,2,73,67,29,41,13,3,43,23,59,89}

As you can see, system sampling does not create a completely random sample.
The random selection process comes in the first part when you select the first item to
create the new sample. Once the first item is selected, the other selections are from
a succession of non-random numbers. Another aspect to consider is the order of the
original sample; if the elements are periodic, this can lead to significant variability in the
selection of components.

Commons Statistical Measures

Grasping the commonly used statistical formulas is crucial to understanding how the
data behaves on a given set of conditions. Descriptive statistics are implemented once
data has been collected, and it is one of the first steps in the process of exploratory data
analysis, which allows you to find insights into the data collected in terms of discovering
patterns, anomalies, trends, seasonality, variations, and so forth.

Exploratory data analysis is a set of techniques to detect characteristics that are not
visible at first sight or revealed once the data has been collected. The basic structure of
this technique relies on numeric data analysis, graphical representation, and a statistical
model. Many reasons to use data exploratory analysis include reviewing for missing
data, describing a general and particular idea of the underlying structure, and analyzing
for different assumptions associated with the model creation, among many more.

The proposal for such a process was introduced by Jhon Tukey in 1977. To review this
technique in more depth, visit the following reference, Exploratory Data Analysis (Tukey,
J. W. [1977], Vol. 2, pp. 131-160).

Measures of Central Tendency

Given a sample of data, you can calculate the descriptive measures. Central trend
measures are those parameters that give you information on the average data values to
be studied. The mean, also known as arithmetic mean, is a parameter calculated from
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the sum of the values of the sample and divided by the sum of the number of elements.
The Mean function calculates the average.

In[31]:= listi=Table[Prime[i],{i,10}];

"Prime list :"<>ToString@list1

"Mean: "<>ToString@Mean@N@list1

Out[32]= Prime list :{2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
Out[33]= Mean: 12.9

Note The symbol <> is the short notation for StringJoin.

The median is the value that divides the sample into two equal parts; since it is the
data’s midpoint, the median is the symmetry value relative to the amount of data. The
Median function gives you this value.

In[34]:= "Median: "<>ToString@Median@list1
Out[34]= Median: 12

Mode is the most common value of the sample. You use the Counts command,
which gives you the number of occurrences of each item in the list.

In[35]:
Out[35]

Counts[list1]
<|2->1,3->1,5->1,7->1,11->1,13->1,17->1,19->1,23->1,29->1|>

In this case, the occurrence is 1. There are no repeated values; you can say there is no
mode in this data sample.

Measures of Dispersion

Dispersion measurements reveal information on the variability presented in the
sample. The range tells you about the interval in which the data varies. This is taken by
subtracting the max value and the minimum value. The Max and Min functions return a
list’s maximum and minimum values.

In[36]:= "Range: "<>ToString[Max[list1]-Min[list1]]
Out[36]= Range: 27
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Variance is a measure obtained by subtracting the mean of each element in the
sample. The result is squared, followed by adding the elements together. The summation
is divided by the size of the sample. Its function is Variance.

In[37]:
Out[37]

"Variance: "<>ToString[N[Variance[list1],3]]
Variance: 81.4

Standard deviation is a measurement obtained from the square root of the variance
or employing the StandardDeviation function.

In[38]:= {"Square root of Variance: " <> ToString[N[Sqrt[Variance[list1]],
2]],"StandardDeviation: " <> ToString[N[StandardDeviation[list1], 2]]}
Out[38]= {Square root of Variance: 9.0,StandardDeviation: 9.0}

The standard score, 7, is a score that measures how many standard deviations are
away from the arithmetic average for each sample element. The mathematical equation

is ;= YT H , where x is the measure, 1 the mean, and ¢ the standard deviation. If z is

o
positive, the element is greater than the mean. When z is negative, it is the opposite case.
You determine the z-score for the second item in the list.

In[39]:= z=N[(list1[[2]]-Mean@list1)/StandardDeviation@list1,3];
"z score: "<>ToString@z
Out[40]= z score: -1.10

This result means that the score for the second element is 1.10 times below average.

Quartile calculation divides data into four equal parts. The lower quartile
corresponds to the 25% quartile of the data, while the second quartile is 50%, the third
quartile (the upper quartile) is 75%, and the fourth quartile (100%). To calculate the
quartiles, you use the Quartiles function, which gives the values of the first, second, and
third quartiles.

In[41]:= "Quartiles: " <> ToString@Quartiles[list1]
Out[41]= Quartiles: {5, 12, 19}

If you want to get a single value, use the Quantile function, followed by the
percentile, to be calculated. Then, use the following for calculating the third quartile
(75th percentile).

In[42]:
Out[42]

Quantile[list1,0.75]
19
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To calculate the interquartile range, which is the difference between the upper and
lower quartiles, use the InterquartileRange function.

In[43]:= InterquartileRange[List1]
Out[43]= 14

Statistical Charts

Using charts to display data is a straightforward approach with Mathematica. Many times,
studies include various types of information. Mathematica has a repertoire of statistical
charts based on users’ needs for more visual and understandable presentations.

Bar Charts

Sometimes, when you conduct a statistical study, you can find quantitative and
qualitative variables and create a bar graph representation for these variables. A bar
graph (see Figure 6-1) is a graphical representation where the number of frequencies of a
discrete qualitative variable is displayed on an axis.

In[44]:= BarChart[{1,2,3,4},ChartLabels->{"feature 1","feature 2",
"feature 3","feature 4"}]
Out[44]=

0 1
feature 1 feature 2 feature 3 feature 4

Figure 6-1. Bar chart
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The different modalities of the qualitative variable are positioned on one of the
axes. The other axis shows the value or frequency of each category on a given scale. The
feature 2 bar has an associated value of 2. The orientation of the graph can be vertical,
where the categories are located on the horizontal axis, and the bars are vertical or
horizontal, where the categories are located on the vertical axis. The bars are horizontal
(see Figure 6-2).

In[45]:= GraphicsRow[{BarChart[{1,2,3,4},ChartLabels->{"feature 1",
"feature 2","feature 3","feature 4"},BarOrigin->Bottom,ChartStyle->
LightBlue],BarChart[{1,2,3,4},ChartLabels->{"feature 1","feature

2","feature 3","feature 4"},BarOrigin->Left,ChartStyle->LightRed]}]

out[45]=

feature 4

feature 3

feature 2

feature 1

feature 1 feature2 feature3 feature 4 0 | 2 3 4

Figure 6-2. Bottom and left origin bar chart

Bar graphs can be used to compare magnitudes of different categories and observe
how values change according to a fixed variable—for example, each feature. In addition,
you can choose how to show the bars, where you show a single series, as shown in
the earlier example; grouped, which contains several data series and is represented
by a different type of bar; or stacked, where the bar is divided into segments with
different colors representing various categories. The percentile layout is displayed on a
percentage scale, as shown in Figure 6-3.

In[46]:= Labeled[GraphicsGrid[{{BarChart[{{4, 3, 2, 1}, {1, 2, 3}, {3, 5}},
ChartLayout -> "Grouped", ColorFunction -> "SolarColors"], BarChart[{1, 2,
3, 4}, ChartStyle -> LightRed, ChartlLayout ->

"Stepped"]}, {BarChart[{{4, 3, 2, 1}, {1, 2, 3}, {6, 5}}, ChartlLayout ->
"Stacked"], BarChart[{{4, 3, 2, 1}, {1, 2, 3}, {6, 5}}, ChartLayout ->
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"Percentile", ColorFunction -> "DarkRainbow"]}},

Frame -> All, FrameStyle -> Directive[Black, Dashed], Background ->
LightBlue, ImageSize -> 500], "Bar Charts", Top]

Out[46]=

Bar Charts

Figure 6-3. Bar chart grid

There is also the counterpart to 3D graphics, with BarChart3D (see Figure 6-4).

In[47]:= SeedRandom[123];

Labeled[GraphicsGrid[{{BarChart3D[{{4, 3, 2, 1}, {1, 2, 3}, {3, 5}},
ChartLayout -> "Grouped", ColorFunction -> "SolarColors"],

BarChart3D[{1, 2, 3, 4}, ChartStyle -> LightRed, ChartlLayout ->
"Stepped"]}, {BarChart3D[RandomReal[1, {10, 5}], ChartLayout -> "Stacked"],
BarChart3D[{{4, 3, 2, 1}, {1, 2, 3}, {6, 5}}, ChartLayout -> "Percentile",
ColorFunction -> "DarkRainbow"]}}, Frame -> All, FrameStyle ->
Directive[Red, Thick],Background -> LightBlue, ImageSize -> 500], "3D Bar
Charts", Top, Frame -> True, Background -> White]

Out[48]=
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3D Bar Charts

Figure 6-4. 3D bar charts grid

Histograms

Histograms are a type of visualization that is commonly used in statistical studies. With
histograms, you can see how a sample is distributed. Histograms are used to represent
the frequencies of a quantitative variable. The variable classes are positioned on the
horizontal axis, and the frequencies are on the other axis. The following examples graph
a histogram from a population of 50 random values between 0 and 1 and set the number
of bins to 10. The second argument for histograms is to define the number of bins (see
Figure 6-5).

In[49]:= SeedRandom[4322];
histi=Table[RandomReal[{2,3}],{i,0,20}];
Histogram[hist1,10]

Out[51]=
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2.2 2.4 26 28 3.0

Figure 6-5. Histogram for random real numbers

Note When dealing with charts, if you put the pointer cursor on the graphic, an
info tip marks the value.

Just like with bar charts, there are ways to edit the histogram’s origin and how the
histogram is displayed—stacked or overlapped—as shown in Figure 6-6.

In[51]:= hist2=Table[Cos[i],{i,1,20}];
hist3=Table[Sin[i],{i,1,10}];
GraphicsColumn[{Histogram[{hist1,hist2},10,BarOrigin-
>Left,ChartStyle->"Pastel"”,ChartLegends->{"rand num",
"Cos(x)"}],Histogram[{hist2,hist3},10,ChartLayout->
"Overlapped",ChartStyle->"Pastel"”,ChartLegends-> {"Cos(x)","Sin(x)
"}],Histogram[{hist2,hist3},10,ChartLayout-> "Stacked",ChartStyle-
>"Pastel”,ChartLegends->{"Cos(x)","Sin(x)"}]}]

Out[54]=
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3
2! |
1 [C] rand num
[] Cos(x)
0
0 2 4 6 8 10 12
Y- -
3| -
| P [ cos(x)
I [[] sin(x)
1}
ol
-0.5 0.0 0.5 1.0
7 -
6
5/
& ] Bcos
3} — :
{ S
2| [ sin(x)
1|
ol :

-0.5 0.0 0.5 1.0

Figure 6-6. Histogram shapes grid

With this in mind, you can also graph bidirectional histograms using
PairedHistograms. These can be horizontal or vertical orientations and contain two data
series whose bars go opposite directions (see Figure 6-7).

In[55]:=SeedRandom[123] ;GraphicsRow[{PairedHistogram[{RandomReal[{0,1},20]},
{RandomReal[{0,1},20]},BarOrigin->Left], PairedHistogram[{RandomReal
[{0,1},20]}, {RandomReal[{0,1},20]},10,BarOrigin->Top, ChartStyle->"Pastel"]}]
Out[55]=
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Figure 6-7. Paired histograms with different origins

While histograms offer a powerful way to visualize data distribution, you can
enhance these visualizations by incorporating various statistical functions directly into
the notebook. By default, histograms in the Wolfram Language display data counts
within each bin. However, it’s often valuable to visualize cumulative distribution
functions (CDFs) and probability density functions (PDFs), like the following example
and Figure 6-8.

In[56]:= (*common options*)

continuousOpts = {Filling -> Axis, Frame -> True, FramelLabel -> {"X", #},
PlotLabel -> "Continuous " <> #} &;

(*Continuous PDF and CDF plots*)

continuousPlots =

Grid[{{Labeled[Plot[PDF[NormalDistribution[0, 1], x], {x, -3, 3},
Evaluate@continuousOpts["PDF"], PlotStyle -> Directive[Blue,
Opacity[0.5]]], "PDF", Top], Labeled[Plot[CDF[NormalDistribution[o,
1], x], {x, -5, 5}, Evaluate@continuousOpts["CDF"], PlotStyle ->
Directive[Red, Thick]], "CDF", Top]}}, Frame -> All]

Out[57]=
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PDF CDF
Continuous PDF Continuous CDF
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Figure 6-8. PDF and CDF plots for the standard normal distribution

The previous code generates the PDF and CDF plots for a continuous distribution,
for a standard normal distribution (mean 0, standard deviation 1). It uses the
distributions as arguments for the PDF and CDF functions. The plots are labeled
accordingly for clarity. Similarly, the process can be done to discrete distributions (see
Figure 6-9).

In[57]:= (*common options*)

discreteOpts = {ExtentSize -> Full, Frame -> True, FramelLabel -> {"x", #},
PlotLabel -> "Discrete " <> #} &;

(*Discrete PDF and CDF plots*)

discretePlots = Grid[{{Labeled[ DiscretePlot[PDF[BinomialDistribution

[10, 0.5], x], {x, 0, 10}, Evaluate@discreteOpts["PDF"], PlotStyle ->
Directive[Green, Opacity[0.5]]], "PDF", Top], Labeled[DiscretePlot[CDF
[BinomialDistribution[10, 0.5], x], {x, 0, 10}, Evaluate@discreteOpts["CDF"],
PlotStyle -> Directive[Orange, Thick]], "CDF", Top]}}, Frame -> All]
Out[58]=
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Figure 6-9. PDF and CDF plots for the binomial distribution with parameters
n=10 and p=0.5

Pie Charts and Sector Charts

Pie charts are circles that are divided into two or more sections. They represent
quantitative variables that make up a total; for example, the sector’s size is drawn
proportional to the value it represents and is expressed in percentages, which only
provides relative quantitative information. Pie charts are made with the PieChart
command (see Figure 6-10).

In[59]:= GraphicsRow[{PieChart[{1,1,1},ChartLegends->{"part a","part b",
"part c"},ChartStyle->{LightRed,LightBlue,LightYellow}], PieChart[{1,1},
ChartLegends->{"part a","part b"},ChartStyle-> "SunsetColors"]}]
Out[59]=

[ parta

M part
[ partb I’_’]part:
[ partc / g

= —rt’

Figure 6-10. Pie charts
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Sector charts are graphed with the SectorChart command (see Figure 6-11). They
are used to compare different data that occur in the same place. They are constructed
from the proportional size of x to the value of the radius of y. The dimension in which the
quantities are expressed must be the same for all the segments.

In[60]:= SectorChart[{{2,1},{1,2}},ChartLegends->{"Sector a","Sector b"},
ChartStyle->{LightRed,LightYellow}]
0ut[60]=

A

\ O Sector a
\ ,'| [ Sector b
/

Figure 6-11. Sector chart

For each graph seen, there is a corresponding command to create them in 3D, as
shown in Figure 6-12.

In[61]:=

GraphicsGrid[{{SectorChart3D[{{2, 1, 1}, {3, 1, 2}, {1, 2, 2}},

PlotLabel -> "3D Sector chart", ChartStyle -> {Red, Blue,

Yellow}], PieChart3D[{1, 1, 1}, ChartStyle -> "GrayTones", PlotLabel
-> "3D Pie Chart"]}, {Histogram3D[ Table[{i*3, i~-1}, {i, 20}], 10,
ChartElementFunction -> "GradientScaleCube", PlotLabel -> "3D
Histogram"], None}}, ImageSize -> 500, Frame -> True, FrameStyle ->
Directive[Thick, Dotted]]

Out[61]=
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Figure 6-12. 3D grid charts

Box Plots

The box plot is a way of representing and observing a data distribution. Fundamentally,
it highlights aspects of data distribution in one or more series. To graph a box plot, you
use the BoxWhiskerChart command (see Figure 6-13).

In[62]:= SeedRandom[1234] BoxWhiskerChart[{Table[RandomReal[],{i,0,50}],
Table[RandomReal[],{i,0,50}], Table[RandomReal[],{i,0,15}]},ChartLabels—
{"Chart 1","Chart 2","Chart 3"}]

out[62]=
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Chart 1 Chart 2 Chart 3

Figure 6-13. Box plot

The box is represented by a rectangle that marks the interquartile range of the
distribution. The first line from bottom to top marks the value of the first quartile (25%),
the line that crosses the box is the median, and the last line that delimits the box is the
third quartile (75%). Whiskers are the lines that mark the maximum and minimum
values. When passing the mouse cursor over the plot, information about the data is
shown; this includes minimum, maximum, median, 75th percentile, and first quartile.
Depending on the specification, this can affect the parameters displayed and how (see
Figure 6-14).

In[62]:= SeedRandom[123];

data = {Table[RandomReal[], {i,0,50}],Table[RandomReal[], {i,0,50}],
Table[RandomReal[], {i,0,15}]};

options = {ImageSize -> Medium, ChartStyle -> "MintColors", FrameStyle ->
Directive[White, 12]};

GraphicsGrid[{{BoxWhiskerChart[data, "Median", PlotlLabel -> Style["Median",
White], options], BoxWhiskerChart[data, "Basic", PlotLabel ->
Style["Basic", LightOrange], FrameStyle -> Directive[Orange, 12], options],
BoxWhiskerChart[data, "Notched",

PlotLabel -> Style["Notched", White], options]},

{BoxWhiskerChart[data, "Outliers", PlotLabel -> Style["Outliers",
LightOrange], FrameStyle -> Directive[Orange, 12], options],
BoxWhiskerChart[data, "Mean", PlotLabel -> Style["Mean",
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White], options],BoxWhiskerChart[data, "Diamond", PlotLabel ->
Style["Diamond", LightOrange], FrameStyle -> Directive[Orange, 12],
options]}},FrameTicksStyle -> 18, Frame -> {None, None, {{1, 1} -> True,
{2, 2} -> True, {1, 3} -> True}}, FrameStyle -> Directive[Thick, Red],
Background -> Black]

Out[63]=

Median Notched

Outliers Diamond

il el

Figure 6-14. Multiple box plots

Median is the default specification; it shows the median in the center of the box.
Basic is to show only the box. Notches show the confidence interval for the median.
Outliers show and mark the atypical points. The mean marks the average of the
distribution, and Diamond notes the confidence interval for the mean.

Distribution Chart

Aviolin diagram is used to visualize the distribution of the data and the probability
density. To plot a violin plot (see Figure 6-15), the DistributionChart command is used.

In[64]:= DistributionChart[Table[i"Exp[i],{i,0,1,0.01}]]
Out[64]=
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Figure 6-15. Violin plot

The graph in the figure combines a box-and-whisker plot and a density plot on each
side to show how the data is distributed. DistributionChart has different shapes to graph
(see Figure 6-16).

In[65]:= GraphicsGrid[{{DistributionChart[Table[i"Exp[i], {i, 0, 2, 0.1}],
ChartElementFunction -> "SmoothDensity", PlotLabel -> "SmoothDensity"],
DistributionChart[Table[i*Exp[i], {i, 1, 2, 0.1}], ChartElementFunction ->
"Density"”, Plotlabel -> "Density",

FrameStyle -> Directive[Red, 12]]}, {DistributionChart[ Table[i”Exp[i],
{i, 0, 1, 0.09}], ChartElementFunction -> "HistogramDensity", PlotlLabel ->
"HistogramDensity", FrameStyle -> Directive[Red, 12]], DistributionChart
[Table[i*Exp[i], {i, 0, 1, 0.0112}], ChartElementFunction -> "PointDensity",
PlotLabel -> "PointDensity"]}}, ImageSize -> Medium, FrameStyle ->
Directive[Thickness[0.02], LightGray], Dividers -> {2 -> Directive[Black,
Dotted], 2 -> Directive[Black, Dotted]}, Frame -> {1 -> False, False}]
Out[65]=
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Figure 6-16. Violin plots in different shapes

Charts Palette

Another way to add options to charts is through the Chart Element Schemes palette,
found within the Palettes menu (Palettes » Chart Element Schemes). This palette is
shown in Figure 6-17.
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Figure 6-17. Chart Element Schemes palette
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In the palette, you find three categories. Chart Type is where you choose the type
of chart. This contains four tabs: (1) general, where the graphics are found from bar
charts, sector, footer, and others; (2) statistical graphs associated with data distributions;
(3) financial, associated with charts for financial data; and (4) gauges, which are
diagrams of measures. The second category is to choose the shape of the graph with
the ChartElementFunction option. The third category is for the preview of the options
chosen from the previous categories.

To illustrate this, let’s look at the following exercises. First, make the graph of the
density of a histogram, and later, modify the shape of the graph with the help of the
palette. To graph the density of a histogram, use the DensityHistogram command (see
Figure 6-18).

In[66]:= DensityHistogram[Flatten[Table[{x"2+y"2,x"2-y"2},
{x,0,2,0.1},{y,0,2,0.1}],1],ChartBaseStyle->Red,ColorFunction->
"SolarColors",Background->Black,FrameStyle->Directive[White,Thick],
FrameLabel->{"X","Y"},ImageSize->300]

0ut[66]=

Figure 6-18. Density histogram
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Once the graph is done, add an option with the pallet head and open the Chart
Element Schemes palette. Within the chart type, you click the statistical tab and choose
the DensityHistogram chart. Once the chart has been selected, go to Chart Element and
select that the type of form is Bubble. Then go to Options Preview to see how the graph
would look; if you click Shape, a pop-up menu appears with other shapes; you choose
hexagon. Figure 6-19 shows how the preview of the selected chart elements should look.

Chart Element Schemes 125% v
- Chart Type

( General Statistical Financial Gauges

ile
4

w i

H.«
i
T
Gpn

> Chart Element
- Options Preview

Rectangle

~ Parameters
RoundingRadius

Insert Option

Figure 6-19. Density histogram options selected
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Once you finish selecting, click the insert button so that it inserts the following code:
ChartElementFunction » ChartElementDataFunction [“Bubble’, “Shape” » “Hexagon”].
To graph it correctly, add this code as an option and proceed to plot it (see Figure 6-20)
to observe the new option added.

In[67]:= DensityHistogram[Flatten[Table[{x"2 + y"2, x"2 - y"2}, {x, O,

2, 0.1}, {y, o, 2, 0.1}], 1], ChartBaseStyle -> Red, ColorFunction ->
"SolarColors", Background -> Black, FrameStyle -> Directive[White,

Thick], FrameLabel -> {"X", "Y"}, ImageSize -> 300, ChartElementFunction ->
ChartElementDataFunction["Bubble", "Shape" -> "Hexagon"]]

Out[67]=

Figure 6-20. Hexagon density histogram

The DensityHistogram command allows you to choose how to display the data
distribution along the axes; it can be the dimensions, box plots, or histograms if you
select the Method type as an option (see Figure 6-21).

In[68]:= hist = Flatten[Table[{x"2+y"2,x"2-y"2}, {x,0,2,0.1},

{y,0,2,0.1}],1];
densityHistogram[distAxes , colFunc_, baseStyle , plotlLabel ,
imgSize ] := DensityHistogram[Hist, Method -> {"DistributionAxes" ->

260



CHAPTER 6  STATISTICAL DATA ANALYSIS

distAxes},ColorFunction -> colFunc, ChartBaseStyle -> baseStyle, PlotLabel
-> Style[plotLabel, Bold], ChartLegends -> Automatic,

ChartElementFunction -> ChartElementDataFunction["Bubble", "Shape"

-> "Hexagon"],ImageSize -> imgSize] {MenuView[{densityHistogram

[True, GraylLevel, Directive[FaceForm[Opacity[0.5]], EdgeForm[Red]],
"Density Histogram 1", 200], densityHistogram["Histogram",

Automatic, Directive[EdgeForm[Thick]], "Density Histogram 2", 200],
densityHistogram[ "BoxWhisker", "BlueGreenYellow", Automatic, "Density
Histogram 3", 200]}], GraphicsRow[{densityHistogram[True, GraylLevel, Direct
ive[FaceForm[Opacity[0.5]], EdgeForm[Red]],

"Density Histogram 1", 130], densityHistogram["Histogram", Automatic,
Directive[EdgeForm[Thick]], "Density Histogram 2", 130],

densityHistogram[ "BoxWhisker", "BlueGreenYellow", Automatic, "Density
Histogram 3", 130]}]}

Out[70]=
18
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Figure 6-21. Menu view of the three different method plots

The plots are shown inside as a menu, so to access the different graphs, you have
to select each graph within the menu. Even so, you show the plots on a small scale
to demonstrate how they should look (see Figure 6-21). The first graph shows the
dimensions of the data distribution along the axes. The second shows the distribution of
the data in the form of histograms, and the third shows the box plots.
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Ordinary Least Squares Method

The ordinary least squares method finds the best-fitting line through data points. This
method is used to study the relationship between the dependent variable and the
independent variable. The process is based on the expression of finding a line of the
form y = mx + b, where x is the independent variable, y is the dependent variable, m is
the slope, and b is the y-intercept. The slope and the sorted to origin b are calculated
from the following equations.

mzn*Z(x*y)—Zx*Zy
n*2x2—|2x|2

b:Zy*sz—Zx*Zw*y
nxy x’ —|Zx|2

The summation is denoted by the Greek capital letter sigma (}’); n is the amount of
data in the sample. The method is calculated for measured data pairs and slope values,
and y-intercept sources are calculated to create the best data fit to a line. By substituting
in the general equation, you get the equation of the line for the dataset.

To illustrate the method, let’s look at the following example using the points for the
dependent and the independent variables.

In[71]:= data={{-1,10},{0,9},{1,7},{2,5},{3,4},{4,3},{5,0},{7,-1}};
Grid[Transpose[Prepend[data, {"X","Y"}]],Dividers->{2->True,2->
True},Alignment-> Center]

Out[72]=

X|]-10123457

=

10975430-1
Next, calculate the data needed to get the slope and y-intercept.

In[73]:=n = Length[data];

sumX = Total@data[[All, 1]];

sumY = Total@data[[All, 2]];

sumXY = Total[data[[All, 1]]*data[[All, 2]]];
sumXSqr = Total@(data[[All, 1]]72);
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=
1]

N@( (n*sumXY-sumX*sumY) /n*sumXSqr-Abs[sumX]2);
N@( (sumY*sumXSqx - sumX*sumXY) /n*sumXSqr-Abs [ sumX]"2);

(o
]

Use the Solve command to solve the equation of the shape y = mx + b. The first
argument is the equation, and the second is for the variable to solve. You must use the
same double notation to enter the equation since a single equal is for set instruction.

In[80]:= Solve[SetPrecision[y==m*x+b,3],y]
Out[80]= {{y->8.47-1.47 x}}

This results in the equation of the line being y = 1.47 x + 8.47. Given this equation,
you plot the points and the line that best fits these points (see Figure 6-22).

In[81]:= Show[Plot[b + m*x,{x,-1,8}, PlotLegends->Placed["Linear Fit: y=-
1.47x+8.47",{0.6,0.8}],PlotRange->Automatic], ListPlot[data, PlotStyle

-> Red]]

Out[81]=

Linear Fit: y=-1.47 x + 8.47

Figure 6-22. Plot of data and fitted curve

Having obtained the equation, you observe that this is a model with a negative slope,
corroborated by the equation graph shown in blue.
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Pearson Coefficient

The measure that tells you that both the points fit the equation is the Pearson correlation
coefficient named r. When the points are found with a positive slope, r has a positive
value. When the points are negatively sloped, r has a negative value. The coefficient
value determines the correct setting, ranging from -1 to 1. When the r value is 1 or -1, it
tells you that the points are adjusted exactly to the line. The closer r is to -1 or 1 indicates
that there appears to be a linear relationship between the study variables. Otherwise,
when r is equal to 0, it tells you that the setting is not correct, and therefore, it can be
concluded that there is no apparent linear relationship.

The equation for determining the coefficient is as follows.

3 Cov(x*y)

b

r
0.0,

Cov represents the covariance of x, y. The symbols ox and oy represent the standard
deviations of x and y.

Now, you proceed to calculate the coefficient r for the created adjustment. For this,
you must introduce only the points of x and y, for calculating covariance and standard
deviations.

In[82]:= r= N@(Covariance@@{data [[All,1]],data [[All,2]]} /
(StandardDeviation@data[[All,1]]*StandardDeviation@data[[All,2]]))
Out[82]= -0.987814

The result is close to 1; therefore, the straight is adequately fair to the data. Although
itis possible to calculate it through the equation, Mathematica has a function for this
calculation. Correlation calculates the coefficient from two lists, so you need to enter
only the x data in one list and the data from y in another list.

In[83]:
out[83]

N@Correlation[data[[All,1]],data[[All,2]]]
-0.987814

And you get the same result as the previous one.
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Linear Fit

Mathematica has functions that specialize in finding the best linear model using
LinearModelFit. Given the dataset, you write the LinearModelFit command with the
data to work and the variable to write the equation. In addition, you can specify the level
of precision for adjustment with WorkingPrecision.

In[84]:= model=LinearModelFit[data,x,x,WorkingPrecision->10]
Out[84]= FittedModel[8.473684211-1.466165414 X]

The same equation returns to you but with better precision. Within the model, you
can access different properties related to the data, the model, and other adjustment
parameters, as well as measures of the goodness of the fit, among others. To illustrate
this, you see how to do it for the BestFit, BestFitParameters, and Function options, which
return the best-fit equation as a list, the best parameters, and model construction for a
pure function, respectively.

A critical aspect is that trying to make predictions about a future value using
the fitted equation (8.47 - 1.47 x), with values of x outside the range, could generate
abnormal values since you have not established whether the relation of the equation
outside the range of x is met. Figure 6-23 shows the fitted curve calculations.

In[85]:= {"\n" Framed["Best Fit Parameters b and m: " <>

ToString[model[ "BestFitParameters"”]], Background -> LightYellow], "\n"
Framed["Equation: " <> ToString[model["BestFit"]], Background ->
LightYellow], "\n" Framed["Pure Function:" <> ToString[SetPrecision[model][
"Function"], 3]], Background -> LightYellow], "\n" Framed["r coeficcient:"
<> ToString[r], Background -> LightYellow]}

Out[85]=

¢
4

|Be5t Fit Parameters b and m: (8.473684211, -1.466165414} |,

|Equation: 8.473684211 - 1.466165414 x|,

|Pure Function:8.47 - 1.47 zl &

Ir coeficcient:79.987814“

Figure 6-23. Fitted parameters, equation, and Pearson coefficient
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Since you have the line that best fits, you should consider whether a relationship
exists between x and y. How do you know if the adjustment adequately describes the
linear relationship between the x and y variables? To solve this problem, there is the
concept of residual.

Model Properties

Residuals can be used as a measure to know how good the fit of the line is to the study
points. Residuals are vertical deviations, either positive or negative. A residual point

is the difference between the observed value of the dependent variable and the value
that predicts the adjustment. To get the residual points, write the FitResiduals property
within the model.

In[86]:= model["FitResiduals"]
Out[86]= {0.06015038,0.52631579,-0.00751880,-0.54135338,-0.07518797,
0.39097744,-1.14285714,0.78947368}

With these points, you can get the residual plot (see Figure 6-24), which is the x
variable vs. the residual points.

In[87]:= ListPlot[model["FitResiduals"],PlotStyle->{Red,Thick},
PlotLabel->"Residual Plot",AxesLabel-> {Style["X",Bold], Style["residual
points",Bold]},Filling->Axis]

Out[87]=
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Figure 6-24. Residual plot of the fitted data
To show only the observed and predated values for the single prediction, use the
SinglePredictionConfidencelntervalTable option.

In[88]:= model["SinglePredictionConfidenceIntervalTable"]
Out[88]=

Observed Predicted Standard Error Confidence Interval

10 9.93984962 0.78481739 {8.0194706,11.8602286}
9 8.47368421 0.74856412 {6.6420138,10.3053546}
7 7.00751880 0.72287410 {5.2387096,8.7763280}
5 5.54135338 0.70889670 {3.8067456,7.2759611}
4 4.07518797 0.70732661 {2.3444221,5.8059538}
3 2.60902256 0.71824519 {0.8515399,4.3665052}
0 1.14285714 0.74110068 {-0.6705509,2.9562652}
-1 -1.78947368  0.81811053 {-3.7913180,0.2123707}

In addition to the residual points, you can extract the table from the parameters of
the model adjusted with the ParameterTable property.

In[89]:= model["ParameterTable"]
Out[89]=
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Estimate Standard Error t-Statistic P-Value
1 8.473684211 0.34167121 24.800697 2.8278226*10"-7
X -1.466165414 0.094310214 -15.5461996 4.4832546*10"-6

The coefficients are shown in the table. The first coefficient is the ordinate to
the origin, and the coefficient associated with the e variable is the slope. The two
coefficients have their respective standard errors. To know the confidence interval for the
parameters, you write the ParameterConfidencelntervalTable property.

In[90]:= model[ "ParameterConfidenceIntervalTable"]

Out[90]=

Estimate Standard Error Confidence Interval
1 8.473684211 0.34167121 {7.63764488,9.30972355}
X -1.466165414 0.094310214 {-1.69693419,-1.23539663}

The default confidence interval is 95%. With these confidence values, you can plot
the points inside or outside this range (see Figure 6-25), extracting the values from the
predictions and setting the option for the confidence interval to 0.95.

In[91]:= model[x];

model["SinglePredictionBands", Confidencelevel -> 0.95]; Show[
ListPlot[data, PlotStyle -> Red], Plot[{Model[x],
Model["SinglePredictionBands", Confidencelevel -> 0.95]}, {x, -1, 10},
Filling -> {2 -> {1}}], PlotRange -> {Automatic, {-1, 10}}, Frame -> True,
ImageSize -> 400]

Out[92]=

268



CHAPTER 6  STATISTICAL DATA ANALYSIS

o 2 a "6 8 10
Figure 6-25. The filled region denotes the 95% confidence interval

Finally, to obtain the properties related to the sum of the squared errors, you use the
ANOVATable property.

In[93]:= model[ "ANOVATable"]

Out[93]=
DF SS MS F-Statistic P-Value
X 1 107.213346 107.213346 241.68432 4.48325*%10"-6
Error 6 2.6616541 0.44360902
Total 7 109.8750000
Summary

This chapter covered the concepts and techniques for conducting statistical analysis
using the Wolfram Language and how to perform linear adjustments (least squares,
linear fit) through equations and implement specialized statistical functions—
demonstrating that the Wolfram Language is an effective statistical tool. In addition,
you also view the reference functions available in Mathematica for numerical and
approximate calculations of descriptive statistics, random distributions, numbers, and
sampling methods.
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Data Exploration

This chapter looks at the basics of data management through the Wolfram Data
Repository online platform and its use in Mathematica. You also learn how data is
viewed inside datasets and how to apply user functions and query commands.

Wolfram Data Repository

The Wolfram Data Repository is a data repository in the cloud. This data repository
contains information from different categories, such as computer science, meteorology,
agriculture, sports, text and literature education, and many more. Although
this repository belongs to Wolfram Research, it is characterized by being in the
public domain.

The Wolfram Data Repository consists of computable data selected, structured, and
cured for direct use to perform numerical calculations, estimates, analysis, statistics,
or demonstrations. The content hosted in this repository is data from many sources,
globally known datasets, and publication data. All this information is designed so that
any individual can access it globally. The Wolfram Data Repository system provides a
data source that, in turn, also enables the storage of new information. The information
stored in the repository is designed to directly implement the Wolfram Language.

As you saw in the data import section, you know whether the website is active by
receiving an HTTP-type response, as shown in Figure 7-1.

In[1]:= URLRead["https://datarepository.wolframcloud.com/"]
Out[1]=
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HTTPReSponSe[  Status: OK
Content type: text/html;charset=utf-8

Figure 7-1. HTTP response object of the Wolfram Data Repository. As you can see,
you have received a successful response.

Wolfram Data Repository Website

To access this website, enter the following URL address in your favorite browser:
https://datarepository.wolframcloud.com. Figure 7-2 shows the welcome page of the
Wolfram Data Repository.

|yl WOLFRAM DATA REPOSITORY

The Wolfram Data Repository is a public resource that hosts an expanding collection of
computable datasets, curated and structured to be suitable for immediate use in
computation, visualization, analysis and more,

ramework and the Walfram Language, the Wolfram Data Repository provides a uniferm

datasets of many

diately compu

amn Data Repository is built to be a global resource for public data and data-backed publication, Step!

Categories

Computational
G Agriculture ¢ ™ Astronomy Chamistry Universe
o Computer Systems § Culture i Demographics v EarthScience
7 Economics @ Education Geography T Government
) Health . History 11 Human Activities Ty Images ]

Figure 7-2. Wolfram Data Repository website

Note The images that appear are links that redirect to the dataset associated
with that image.

Once the site is loaded, you see a menu of options to navigate the site, either by
categories or data type. Within that menu, you find the different categories and data
types: text, numerical data, images, and so forth. You also find the contact option,
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in this case, Life Science.
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II| I |I Immediate Computable Access to Curated Contributed Data

Q) Life Science Categories > Content Types >

Life Science

Show Filters SORT BY: Relevance v

National Science Foundation Grants - 2015 »

CHAPTER 7  DATA EXPLORATION

custom searches, and Submit New Data among the menu options. The latter is the
option that redirects to another page that displays the instructions for publishing

and uploading new data to this repository. Scrolling down, you also see the existing
categories and the data types. If so, there is the possibility to browse all resources by
clicking the Browse All Resources link (bottom of the web page). To browse categories,
you can choose the category from the menu or by clicking the category name at the
initial site. Figure 7-3 shows what the site looks like once you have selected a category—

Submit New Data

285 items

Data on National Science Foundation grants and associated investigators and institutions awarded in the year 2015

Amniote Life History Database »
Life-history database for a wide variety of amniotes

Coauthorships in Network Science Network »

Weighted network of coauthorships between scientists working on network science

Figure 7-3. Life Science category of the Wolfram Data Repository

Note

The same process is for navigating by data type. As new data is added,
content is updated regularly.
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Selecting a Category

Each category shows the title, the number of elements in that category, and the option
to filter the category’s contents by the data type. Regarding the content, each sample
data type is displayed with its title, a small description of the data it contains, and the
different tags associated with that sample data. For example, the image shows Fisher’s
Irises’ known dataset. Once you select a sample dataset, it takes you to the site where the
relevant information about that dataset is contained, as shown in Figure 7-4, where the
Fisher’s Irises dataset is selected.

Q search Categories > Content Types » Submit New Data

Source Notebook

Sample Data: Fisher's Irises

Fisher's iris data

» Details

(4 columns, 150 rows)

> Examples #&| Example Notebook

BIBLIOGRAPHIC CITATION

Wolfram Research, "Sample Data: Fisher's Irises” from the Wolfram Data Repository (2020) https://dei.org/10.24097
Jwolfram.89373.data

DATA RESOURCE HISTORY
Date Created: 28 January 2016

SOURCE METADATA

Title: Contributions to Mathematical Statistics
( r: R.A. Fisher

: John Wiley & Sons

Jate: 1950

anguage: English

Figure 7-4. Fisher’s Irises dataset

When a sample dataset is selected, a brief description of the dataset is shown, as
well as the different calculations that can be made and different formats to download
the data or the notebook. Besides this, it also includes relevant information such as the
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bibliographic citation, data resource history, and data source. In some instances, the
data can be downloaded for different types of formats, such as comma-separated value
(CSV), tab-separated value (TSV), JavaScript object notation (JSON), and others. Before
starting to download data from the Wolfram Data Repository, it is necessary to have a
Wolfram ID. This ID is an account that gives you access to the content of the Wolfram
Data Repository in addition to other benefits, such as Wolfram One and Wolfram Alpha.
To log in from Mathematica, head to the menu in Help » Sign in, and a window appear
like the one in Figure 7-5.

#X WOLFRAM

SignIn

Email

Don't have a Wolfram ID? Create one.

Or sign in with Single Sign-On (SSO)

Figure 7-5. Wolfram Cloud sign-in prompt

In the new window, you enter your email and password to access the contents of the
Wolfram Data Repository from Mathematica.

Extracting Data from the Wolfram Data Repository

Let’s start by looking at the information and properties of the Fisher’s dataset; for this,
you must retrieve the information through a ResourceObject. With ResourceObject (see
Figure 7-6), you can now view the different properties of the published data by clicking
the plus icon. Detailed information about the data is displayed, such as sample name,
type, version, size of the data, and many more.
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In[2]:= ResourceObject["Sample Data: Fisher's Irises"]
Out[2]=

Name: Sample Data: Fisher's Irises »
Type: DataResource
v Fisher's iris data
: Statistics, Life Science, Machine Learning
ses: Numerical Data
biclogy, statistics, ExampleData, Iris
tion: https:, itory.: id .comresources/b71632f7-9c5f-dadd-a73e-446cc2856164)
on: Cloud
3217-9¢5f-4add-aT3e-446cc2656(64
n: 3.0.0
Size: 186. kB
“lements: ColumnDescriptions, ColumnTypes, Content, DataType, Dimensions, ObservationCount, RawData, Source, TrainingData, TestData

ResourceObject [ |

Figure 7-6. ResourceObject Fisher’s Irises

If you want to look at the properties of the resource object, enter the following
code. This code gives you a list of properties that can be accessed and related to the

data sample.

In[3]:= ResourceObject["Sample Data: Fisher's Irises"]["Properties"]
Out[3]= {AllVersions, AutoUpdate, Categories, ContentElementlLocations,
ContentElements, ContentSize, ContentTypes, ContributorInformation,
DatedElementVersions, DefaultContentElement, Description, Details,
Documentation, DocumentationLink, DOI, DownloadedVersion, ExampleNotebook,
ExampleNotebookObject, Format, InformationElements, Keywords,
LatestUpdate, Name, Originator, Properties, PublisherUUID, ReleaseDate,
RepositorylLocation, Resourcelocations, ResourceType, SeeAlso, ShortName,
SourceMetadata, UUID, Version, VersionInformation, VersionsAvailable,
WolframLanguageVersionRequired}

Knowing the list of properties related to information, you can now download from
Mathematica the exercise notebook of the data sample.

In[4]:=ResourceObject["Sample Data: Fisher's Irises"]["ExampleNotebook"]
Out[4]= NotebookObject[Sample Data: Fisher's Irises | Example Notebook]
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Once you finish evaluating the code, it automatically opens the new notebook. If you
want to operate the notebook from the cloud, you can type NotebookObject. This output
gives you back a cloud-like object associated with a hyperlink.

In[5]:= ResourceObject["Sample Data: Fisher's Irises"]

[ "ExampleNotebookObject"]

Out[5]= CloudObject[https://www.wolframcloud.com/obj/5e59b79e-d95e-4f6f-
a7c8-f1276ba17be2]

If you press the link of the new notebook, it opens the Internet browser and shows
you that it is in the Wolfram Cloud. Figure 7-7 shows this.

#& WOLFRAM NOTEBOOK

Basic Examples

View the data: I

ResourceData[ResourceObject["Sample Data: Fisher's Irises"]]

Species SepalLent Sepalwid! PetalLeng PetalWidt
setosa S5.1cm 3.5cm 1.4cm 0.2cm
setosa 4.9cm 3.cm l.4cm 0.2cm
setosa 4.7cm  [3.2em  1.3cm | 0.2cm
setosa 4.6cm 3.1em 1.5cm |0.2cm
setosa 5.cm 3.6cm 1.4cm 0.2cm
setosa 5.4cm 3.9ecm 1.7cm | O.4cm
setosa 4.6cm 3.4cm 1.4cm 0.3cm
setosa S5.cm 3.4cm 1.5cm 0.2em
setosa 4.4cm 29cm 14cm 0.2cm
setosa 4.9cm 3.1cm 1.5cm 0.1cm
setosa S5.4cm 3.7cm 1.5cm 0.2cm
setosa 4.8cm 3.4cm 1.6cm 0.2cm
setosa 4.8cm 3.cm l4cm |0.1cm
setosa 4.3cm 3.cm 1.1cm 0.1cm
setosa 5.8cm  |[4.cm 1.2cm |0.2cm
setosa 5.7cm 4.4cm 1.5cm 0.4cm
setosa S5.4cm 3.9cm 1.3cm 0.4cm
setosa S5.icm 3.5cm 1.4cm 0.3cm
setosa 5.7cm 3.8cm 1.7cm 0.3cm

setosa 5.l1cm 3.8cm 1.5cm 0.3cm

B A

Figure 7-7. Fisher’s Irises data sample, open from the Wolfram Cloud
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To access the original sample data site from Mathematica, enter Documentation,
which gives you a URL object that you can enter by clicking the double chevron icon.

In[6]:= ResourceObject["Sample Data: Fisher's Irises"] ["Documentation"]
Out[6]=URL[https://datarepository.wolframcloud.com/resources/
b7f632f7-9c5f-4ad4-a73e-446cc2656164/ ]

Accessing Data Inside Mathematica

The same initiative is applied to downloading the data using the ResourceData to the
object resource. With ResourceData, you access the contents of the specified resource; in
this case, it is the Fisher’s Irises data sample (see Figure 7-8).

In[7]:= ResourceData[ResourceObject["Sample Data: Fisher's Irises"]]
out[7]=
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Species
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa

setosa

N A rows1-200f150 Vv A

SepalLength SepalWidth PetalLength PetalWidth

5.1cm
49cm
4.7cm
4.6cm
5.cm

5.4cm
4.6cm
5.cm

4.4cm
49cm
5.4cm
4.8cm
4.8cm
4.3cm
5.8cm
57cm
5.4cm
51cm
57cm

51cm

3.5¢cm
3.cm

3.2cm
3.1cm
3.6cm
3.9cm
34cm
3.4cm
29cm
3.1cm
3.7cm
3.4cm
3.cm

3.cm

4.cm

4.4cm
3.9cm
3.5cm
3.8cm

3.8cm

Figure 7-8. Fisher’s Irises dataset object

As shown in Figure 7-8, the returned object is a ResourceData to use with a head
of the dataset. Performing a visual inspection of the data sample, you observe that it
is a dataset of 150 values containing five columns: Species, SepalLength, SepalWidth,
PetalLength, and PetalWidth. If you pay attention, you can see how the values of the

l.4cm
l4cm
1.3cm
1.5cm
l4cm
1.7cm
l4cm
1.5cm
l.4cm
15cm
1.5cm
1.6cm
l4cm
1l.lcm
1.2cm
1.5¢cm
1.3cm
l4cm
1.7cm

1.5cm
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0.2cm
0.2cm
0.2cm
0.2cm
0.2cm
0.4cm
0.3cm
0.2cm
0.2cm
0.1cm
0.2cm
0.2cm
0.1cm
0.1cm
0.2cm
0.4cm
0.4cm
0.3cm
0.3cm

0.3cm

DATA EXPLORATION

SepalLength, SepalWidth, PetalLength, and PetalWidth columns are quantities. Moving

further down the entire dataset, the species are divided into three categories: setosa,
versicolor, and virginica. If you want to access the information related to the dataset,
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you must do it through the resource object and retrieve it through a ResourceData form,
as shown.

In[8]:=ResourceObject["Sample Data: Fisher's Irises"]
["ContentElements" ]

Out[8]= {ColumnDescriptions, ColumnTypes, Content, DataType, Dimensions,
ObservationCount, RawData, Source, TrainingData,

TestData}

With the ContentElements property, you are accessing the elements of the data
sample, which are the ones that appear within the resource object. ContentElements
shows you the information associated with the sample data, such as column
information, data source, training data, and test data—not to be confused with the
properties of the resource object created, as it is not the same since you can construct
aresource object for another associated name. To retrieve the information from the
ContentElements, you must do it with ResourceData. This command gives you access to
the contents of the data sample—in this case, the Fisher’s Irises. Now, let’s get the data
type of the columns.

In[9]:= ResourceData[ResourceObject["Sample Data: Fisher's
Irises"],"ColumnTypes"]
Out[9]= {Numeric,Numeric,Numeric,Numeric,Categorical}

The second argument of the ResourceData command is the element you are looking
for. Running the code mentioned above shows you that there are four data types: three
numeric and one categorical. Using a pure function, you can obtain information in a
single expression. If you add the Column command, it is possible to have a better view of
the information.

In[10]:= Column[ResourceData[ResourceObject["Sample Data: Fisher's
Irises"],#]&/@{"ColumnDescriptions”,"Dimensions"”,"Source"}]

Out[10]= {Sepal length in cm.,Sepal width in cm.,Petal length in cm.,Petal
width in cm.,Species of iris}

{150,4}

Fisher,R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
Mathematical Statistics" (John Wiley, NY, 1950).
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This way, you get to know the type of information in the columns, such as
dimensions, which are 150 rows per four columns, and the data source.

Data Observation and Querying

This section explains how to observe data inside a dataset. You use the Iris dataset,
which has been extracted from the Wolfram Data Repository. Let’s start by naming the
data sample Fisher; this variable contains the dataset with quantities included.

In[11]:= fisher=ResourceData[ResourceObject["Sample Data: Fisher's
Irises"]];

In the dataset, the numbers have units and magnitude. Having a dataset, you can
perform endless processes, such as grouping the content by the category variable, which
is the type of species. (This example accessed the dataset contained in the Fisher’s
variable.) Let’s look at the data that includes each column grouped by species (see
Figure 7-9).

In[12]:
Out[12]

fisher[GroupBy[ "Species"]]
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Species SepalLength SepalWidth PetalLength PetalWidth
setosa setosa 5.1cm 3.5cm l4cm 0.2cm
setosa 49cm 3.cm l4cm 0.2cm
setosa 4.7cm 3.2¢cm 1.3cm 0.2cm
setosa 46cm 3.1cm 1.5¢cm 0.2cm
setosa 5.cm 3.6cm 1.4cm 0.2cm
versicolor versicolor 7.cm 3.2cm 4.7cm l.4cm
versicolor 6.4cm 3.2cm 4.5cm 1.5¢cm
versicolor 6.9cm 3.1cm 49cm 1.5ecm
versicolor 5.5cm 2.3cm 4.cm | 1.3cm
versicolor 6.5cm 2.8cm 4.6cm 1.5cm
virginica virginica 6.3cm 3.3cm 6.cm 2.5cm
virginica 5.8cm 2.7cm 5.1cm 1.9cm
virginica 7.1cm 3.cm 59cm 2.1cm
virginica 6.3cm 2.9cm 5.6cm 1.8cm
virginica 6.5cm 3.cm 5.8cm 22cm

Figure 7-9. Iris data grouped by species

Let’s look at how the data is divided into three categories: setosa, versicolor, and
virginica. Each category contains a number 50 at the end of the Species column of each
category. This means that there are 50 more rows in addition to those shown, making a
total of 50 for each category, which is 150 rows in total, which matches the number of 150
you review the dimensions of the sample data.

In the meantime, clicking one of the categories shows you the columns for that
category alone, as shown in Figure 7-10. The same happens if you select a specific column
within a category—it shows only that column for that category; try it to see what happens.
There is also the possibility to click any column, and this shows you only the chosen
column for the three categories. This means that if you choose SepalLength, for example,
you see the contents of that column for the three species, as shown in Figure 7-10.
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Figure 7-10. SepalLength column selected

BR all» Al » SepalLength

setosa

versicolor

virginica

51cm
54cm
54cm
5.7¢cm

5.4cm

s total»
7.cm
5.7cm
5.cm
6.7cm

5.9cm

50 total »

6.3cm
7.6cm
6.5cm
6.4cm

6.9cm

50 total »

-49cm
: 4.6cm
48cm
:5.4cm

-5.1cm

6.4 cm
i 6.3cm
:59cm
5.6cm

6.1cm

5.8cm
‘49cm

6.4cm
6.5cm

5.6cm

4.7cm

5.cm

4.8cm
:5.1cm

.4.6 cm

6.9cm
4.9cm

6.cm

5.8¢cm

6.3cm

‘T.1cm

‘7.3cm

6.8cm
7.7¢cm

7.7¢cm

4.6cm
4.4cm
4.3cm
5.7cm

5.1cm

5.5cm
6.6cm
6.1cm
6.2cm

6.1cm

6.3cm
6.7cm
5.7cm
7.7cm

6.3cm
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5.cm

4.9cm
58cm
5.1cm

4.8cm

6.5cm
5.2cm
5.6cm
56cm

6.4cm

6.5cm
7.2cm
5.8cm
6.cm

6.7cm
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It is possible to group by species and choose only the columns that contain

numeric values. This helps if, for example, you want to visually inspect the dataset (see

Figure 7-11).

In[13]:= Query[GroupBy[ Key["Species"] -> KeyTake[{"SepallLength",
"SepalWidth", "PetallLength",

Out[13]=

"PetalWidth"}]]][fisher]
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SepalLength SepalWidth PetalLength PetalWidth

setosa 5.1cm 3.5cm l4cm 0.2cm
4.9cm 3.cm l4cm 0.2cm
4.7cm 3.2ecm 1.3cm 0.2cm
4.6 cm 3.1cm 1.5cm 0.2cm
5.cm 3.6cm l4cm 0.2cm
sototal

versicolor 7.cm 3.2cm 4.7cm l4cm
6.4cm 3.2cm 4.5cm 1.5¢cm
6.9cm 3.1cm 4.9cm 1.5cm
5.5cm 2.3cm 4.cm 1.3cm
6.5cm 2.8cm 4.6cm 1.5cm
S0 total

virginica 6.3cm 3.3cm 6.cm 2.5¢cm
5.8cm 2.7cm 5.1cm 1.9cm
T.lcm 3.cm 5.9cm 2.1cm
6.3cm 2.9¢cm 5.6cm 1.8cm
6.5cm 3.cm 5.8cm 2.2cm

Figure 7-11. Dataset with the species column suppressed

In the latter code, you use the Key command to access the keys of the species
column. Once these keys are accessed, you write a transformation rule so that
each extracted key is assigned the associations extracted (KeyTake) from columns
(SepalLength, SepalWidth, PetalLength, PetalWidth), then grouped and applied to
Fisher’s dataset.

If you wanted to count the data elements in Fisher’s dataset, you could add an ID
column as a label (see Figure 7-12) to list the data it contains. To achieve this, first, create
an association with keys and values that go from 1 to the length of the dataset. Then,
this instruction is applied to the dataset object Fisher’s, which adds the IDs as labels for
the rows.

In[14]:= Query[AssociationThread[Range[Length@#]—Range[Length@#]]]
[fisher]&[fisher]
Out[14]=
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Species
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa
setosa

setosa

SepallLength SepalWidth PetalLength PetalWidth

5.1cm
49cm
4.7cm
4.6 cm
5.cm

5.4cm
4.6 cm
5.cm

4.4cm
4.9cm
5.4cm
4.8cm
4.8cm
4.3cm
5.8cm
5.7cm
5.4cm
5.1cm
5.7cm

5.1cm

rows 1-200f 150 Vv A

3.5cm
3.cm

3.2cm
3.1cm
3.6cm
3.9cm
3.4cm
3.4cm
2.9cm
3.1cm
3.7cm
3.4cm
3.cm

3.cm

4.cm

44cm
3.9cm
3.5cm
3.8cm

3.8cm

Figure 7-12. IDs added to the Fisher’s dataset

If you drag down the bar, you see that the counter reaches 150 elements.

l.4cm
l4cm
1.3cm
1.5cm
l4cm
1.7cm
l4cm
1.5cm
l.4cm
1.5cm
1.5¢cm
1.6cm
l4cm
1llcm
1.2cm
1.5cm
1.3cm
l4cm
1.7cm

1.5cm
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0.2cm
0.2cm
0.2cm
0.2cm
0.2cm
0.4cm
0.3cm
0.2cm
0.2cm
0.1cm
0.2cm
0.2cm
0.1cm
0.1cm
0.2cm
0.4cm
0.4cm
0.3cm
0.3cm

0.3cm
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You can use the Counts command if you don’t want to add an enumerated column

to count the elements (see Figure 7-13).

In[15]:= Fisher[Counts,"Species"]

Out[15]=
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setosa 50
versicolor 50
virginica 50

Figure 7-13. Counted elements on the dataset

This results in 50 data belonging to setosa, versicolor, and virginica. If you add
them up, you get 150. You can also use the Query command, Query[Counts, “Species”]
[Fisher].

Now, let’s look at how to get the average of the three categories for each column. It
would be possible if you knew the average of SepalLength, SepalWidth, PetalLength, and
PetalWidth for the species, setosa, versicolor, and virginica, as exhibited in Figure 7-14.

In[16]:=Query[GroupBy[Key["Species"]—KeyTake[{"SepalLength","SepalWidth",
"Petallength","PetalWidth"}]],Mean][fisher]
Out[16]=

SepalLength SepalWidth PetalLength PetalWidth

setosa 5.006 cm 3.428cm 1.462 cm 0.246 cm
versicolor 5.936 cm 2TTam 4.26cm 1.326 cm
virginica 6.588 cm 2974cm  5.552cm 2.026 cm

Figure 7-14. Mean for the four columns, divided by species

But, if you want to get the average of the columns for all categories, one way to get it
would be by applying Mean as a query to the number of columns in the entire dataset
(see Figure 7-15).

In[17]:= Query[Mean][fisher[[All,2;;5]]]
Out[17]=

SepalLength  5.84333cm
SepalWidth 3.05733 cm
PetalLength 3.758 cm

PetalWidth 1.19933 cm

Figure 7-15. Average values for the four columns of all species
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Note The Mean command works with the quantities and returns the average to
use as a quantity.

Descriptive Statistics

This section demonstrates how to perform descriptive statistics of the Irises data and
computations inside the dataset format and how to create custom grid formats. Let’s
start by building the function that calculates the maximum, minimum, mean, median,
first, and third quartile.

In[18]:

stats[data_]:=

{{#[{"Max: ",Max@data}]},

{#[{"Min: ",Min@data}]},

{#[{"Mean: ",Mean@data}]},

{#[{"Median: ",Median@data}]},

{#[{"1st quartile: ",Quantile[data,0.25]}]},
{#[{"3rd quartile: ",Quantile[data,0.75]}]}
}&[Row]

Now, apply the created function to each of the columns. This function is to get
overall statistics for SepalLength, SepalWidth, PetalLength, and PetalWidth (see
Figure 7-16).

In[20]:= {{#1,#2,#3,#4},{Fisher[Stats,#1],Fisher[Stats,#2],Fisher[Stats,
#3],Fisher[Stats,#4]}}&[ "SepallLength", "SepalWidth", "PetallLength",
"PetalWidth"]//Grid

Out[20]=

287



CHAPTER 7  DATA EXPLORATION

SepallLength
Max:7.9 cm
Min:4.3 cm
Mean:5.84333 cm
Median:5.8 cm
1st quartile:5.1 cm

3rd quartile:6.4 cm

SepalWidth

Max:4.4 cm

Min:2. cm
Mean:3.05733 cm
Median:3.cm

1st quartile:2.8 cm
3rd quartile:3.3 cm

PetalLength
Max:6.9 cm
Min:1. cm
Mean:3.758 cm
Median:4.35cm
1st quartile:1.6 cm
3rd quartile:5.1 cm

Figure 7-16. Function Stats applied to each column

Figure 7-17).

PetalWidth
Max:2.5 cm
Min:0.1 cm
Mean:1.19933 cm
Median:1.3 cm
1st quartile:0.3 cm

3rd quartile:1.8 cm

This also can be displayed in a compact form in a tab format with TabView (see

In[21]:= TabView[{#1->Fisher[Stats,#1],#2->Fisher[Stats,#2],#3->
Fisher[Stats,#3],#4->Fisher[Stats,#4]},ControlPlacement-> Left]&
["SepallLength","SepalhWidth","PetallLength","PetalWidth"]

Out[21]=

Max: 7.9 cm
Min: 4.3
SepalLength 2
SepalWidth Mean: 5.84333 cm
PetalLength Median: 5.8 cm
PetalWidth | 1st quartile: 5.1 cm

3rd quartile: 6.4 cm

Figure 7-17. Tabview format

are SepalLength, SepalWidth, PetalLength, and PetalWidth.
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Table and Grid Formats

An alternative is to create a table for each species. In this way, you better present the data
and thus be able to read it properly. You extract the data by applying the Nest command.
With this command, you can specify the number of times a command or function is
applied; in this case, you apply it twice.

In[22]:= Short[Values[Nest[Normal,fisher,2]]]
{sLall,sWall,pLall,pWall}=5%[[A1l,#]]&/@{2,3,4,5};

Out[22]//Short= {{setosa,5.1cm,3.5cm,1.4cm,0.2cm},{setosa,4.9cm,3.cm,1.4cm,
0.2cm},<<146>>,{virginica,6.2cm,3.4cm,5.4cm,2.3cm},{virginica,5.9cm,3.cm,
5.1cm,1.8cm}}

Having the values of all species separated by columns, you create a list instead
of a function, where the statistics are displayed according to each column, adding
calculations such as variance, standard deviation, skewness, and kurtosis. Then, you
assign the calculations in the DescriptiveStats variable.

In[23]:={Max[#],Min[#],Median[#],Mean[#],Variance[#],StandardDeviat
ion[#],Skewness[#],Kurtosis[#],Quantile[#,0.25],Quantile[#,.75]}8/@
{sLall,sWall,pLall,pWall};

A table (see Figure 7-18) can be created with these calculations and adding the rows
and column headings.

In[24]:= tableHeads={Style["Sepal Length",#1,ColorData["HTML"]
["Maroon"],#2,#3],Style["Sepal Width",#1,ColorData["HTML"]["YellowGreen"],
#2,#3],Style["Petal Length",#1,ColorData["HTML"]["SteelBlue"],#2,#3],Style
["Petal Width",#1,ColorData["HTML"]["Orange"],#2,#3]}&["Title",Italic,20];
tableRows={Style[ "Max",#1,#2],Style[ "Min",#1,#2],Style[ "Median",#1,#2],
Style[ "Mean",#1,#2],Style[ "Variance",#1,#2],Style[ "Standard\n Deviati
on",#1,#2],Style[ "Skewness",#1,#2],Style[ "Kurtosis",#1,#2],Style["1st
quartile",#1,#2],Style["3rd quartile",#1,#2]}8["Text",Italic];TableForm
[descriptiveStats,TableHeadings->{tableHeads,tableRows}]
Out[25]//TableForm=
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Max Min Median Mean Variance Standard Skewness Kurtosis Istquortile  3rd quartile
Deviation
Sepollength | 7.9ca 4.3cm  5.8cm 5.84333cm  0.685694cm 828066cm  0.311753  2.42643 S.lcm
4.4 2. cs 3 3.05733 0.18997¢ 8.435866 8.315767 3.18098 2.8cs 3.3
Petal Length 0.272128  1.60446

3.1cm

-0.181934

1.66393

Figure 7-18. Table showing descriptive statistics by the four features

Note that the statistics are calculated with their units, except for skewness and

kurtosis, since, by definition, they are dimensionless. However, you can create a better
structure from Grid because it is possible to add dividers like a spreadsheet format.

To do this, you add the TableRows to the data and then apply a transpose so that each

calculated statistic is with its respective name. Subsequently, you add the column titles.

In[26]:=

Transpose[Prepend[descriptiveStats,tableRows]];

{" ",Style["Sepal Length",#1, ColorData["HTML"]["Maroon"],#2,#3],
Style["Sepal Width",#1,ColorData["HTML"]["YellowGreen"],#
2,#3],Style[ "Petal Length",#1, ColorData["HTML"]["SteelBlue"],#2,

#3], Style["Petal Width",#1,ColorData["HTML"]["Orange"],

#2,#3]}8&[ "Title",Italic,20];
newTable=Prepend[%%,%] ;

Next, create the table as a spreadsheet (see Figure 7-19).

In[27]:= Grid[newTable,ItemSize->{{None,Scaled[0.11], Scaled[0.11],
Scaled[0.11]}},Background->{{LightGray},None}, Dividers->{{False},
{1,2,3,4,5,6,7,8,9,10,11->True,-2->Blue}}, Alignment->Center]

Out[27]=
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Sepal Length Sepal Width Petal Length Petal Width

Max 7.9cm 4.4 cm 6.9cm 2.5cm
Min 4.3cm 2.cm 1.cm 0.1cm
Median 5.8cm 3. cm 4.35cm 1.3cm
Mean 5.84333 cm 3.05733 cm 3.758 cm 1.19933 cm
Variance  0.685694 cm? 0.183979 cm? 3.11628 cm*  0.581006 cm®
Standard 0.828066 cm 0.435866 cm 1.7653 cm 0.762238 cm
Deviation
Skewness 0.311753 0.315767 -0.272128 -0.101934
Kurtosis 2.42643 3.18098 1.60446 1.66393
1st quartile 5.1cm 2.8cm 1.6cm 0.3cm
3rd quartile 6.4cm 3.3cm 5.1cm 1.8cm

Figure 7-19. Grid view of the descriptive statistics

To build the table for each species, you must first separate the dataset by species with
the Cases command. You should use Cases since it allows you to work with patterns.
First, write the code to extract the raw data. Instead of using Short, use Shallow to
suppress the 150 values.

In[28]:= Shallow[Values[Nest[Normal,fisher,2]],1]
Out[28]//Shallow= {<<150>>}

Create the table for the versicolor species, extract the values for versicolor, and store
the values of the columns in the SLVersi, SWVersi, PLVersi, and PWVersi variables.

In[29]:= Shallow[Cases[%,{"versicolor", }],1]
{sLVersi,sWVersi,pLVersi,phWersi}=%[ [All,#]]&/@{2,3,4,5};
Out[29]//Shallow= {<<50>>}

Next, repeat the process to calculate the statistics, but instead of the white space,

add the name “Versicolor” in the Style text, to distinguish that the table belongs to the
versicolor species.

In[30]:= tableRows;
{Max[#],Min[#],Median[#],Mean[#],Variance[#],StandardDeviation[#], Skewness

[#],Kurtosis[#],Quantile[#,0.25],Quantile[#,.75]}&/@{sLVersi,skVersi,
pLVersi,pWVersi};

descriptiveStats2=Prepend[%,%%];
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Transpose[descriptiveStats2];
{Style["Versicolor","Text",Red,Italic,20],Style["Sep

al Length",#1,ColorData["HTML"]["Maroon"],#2,#3],Style["Sepal
Width",#1,ColorData[ "HTML" ][ "YellowGreen"],#2,#3],Style[ "Pet

al Length",#1,ColorData[ "HTML"]["SteelBlue"],#2,#3],Style[ "Petal
Width",#1,ColorData[ "HTML" ][ "Orange"],#2,#3]}&[ "Title",Italic,20];
newTable2=Prepend[%%,%];

Next, build the table (see Figure 7-20) for the species versicolor.

In[31]:= Grid[newTable2,ItemSize-> {{None,Scaled[0.11],Scaled[0.11],
Scaled[0.11]}},Background->{{LightGray},None}, Dividers-> {{False},
{1,2,3,4,5,6,7,8,9,10,11->True,-2->Blue}},Alignment-> Center]
Out[31]=

Versicolor Sepal Length Sepal Width Petal Length Petal Width
Max 7.cm 3.4cm 5.1cm 1.8cm
Min 4.9cm 2. ¢cm 3. cm 1.cm

Median 5.9¢cm 2.8cm 4.35cm 1.3cm
Mean 5.936 cm 2.77cm 4.26 cm 1.326 cm

Variance 0.266433 cm®  0.0984694 cm®  0.220816cm® ©.0391061 cm?

Standard 0.516171cm ©.313798 cm 0.469911 cm ©.197753 cm
Deviation

Skewness 0.10219 -0.351867 -0.588159 -0.0302363
Kurtosis 2.40117 2.55173 2.9256 2.51217

1st quartile 5.6cm 2.5cm 4. cm 1.2¢cm

3rd quartile 6.3cm 3. cm 4.6cm 1.5¢cm

Figure 7-20. Descriptive stats for the versicolor species

You have only done this for the versicolor species; the same process is performed for
each species. For example, if you choose Cases with the other species, you would change
the text to the corresponding species.
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Dataset Visualization

Having viewed the capabilities of the Wolfram Language to perform descriptive statistics
within the dataset, statistical charts can be implemented inside the dataset format, as
you see in this fragment.

You can have a better perspective from graphs; you use the dataset format (see
Figure 7-21) to display the graphs by their species.

In[32]:= fisher[GroupBy["Species"],DistributionChart[#,Plo
tTheme-> "Classic",PlotlLabel->"Petallength cm",GridlLines->
Automatic]&,"PetallLength"]

out[32]=

PetalLength cm

setosa ] ;
PetalLength cm

|

versicolor j v !
-+ - .i. ——

' i
PetalLength cm

virginica

lah

Figure 7-21. Distribution chart plot

You can perform the same process but for the box whiskers plot (see Figure 7-22),
but choose another column.

In[33]:= fisher[GroupBy["Species"],BoxWhiskerChart[#,"Outliers",PlotThe
me-> "Detailed",ChartLabels->Placed[{"SepallLength cm"},Above],BarOrigin->
Right,ChartStyle->Blue]&, "SepallLength"]
Out[33]=

293



CHAPTER 7  DATA EXPLORATION

... SepalLengthcm .
setosa = EE X

....SepalLength.cm ...
versicolor a A

.. SepalLengthcm ...
virginica .

Figure 7-22. Box whiskers plot
If the specie is clicked, it amplify the graph (see Figure 7-23).

B8 virginica

SepallLength cm

Figure 7-23. Box whiskers plot for virginica species
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The same applies to histograms. When the graph is extensive, it appears suppressed
within the dataset, but you can still select it, as shown in Figure 7-24.

In[34]:=fisher[GroupBy[ "Species"], Labeled[Histogram[#, ColorFunction ->
(Hue[3/5, 2/3, #] &)], {Rotate["Frequency"”, 90 Degree], "SepalWidth cm"},
{Left, Bottom}] &, "SepalWidth"]

out[34]=

B8 versicolor

12

-
o

"Frequency"
(=]

25 3.0 35
"SepalWidth cm"

Figure 7-24. Histogram plot for versicolor

Here, you show the 3D scatter plots for each species (see Figure 7-25) for sepal length
(x) vs. sepal width (y).

In[35]:=Fisher[GroupBy[ "Species"], Labeled[ListPlot[{#, #}], {Rotate["Sepal
width cm", 90 Degree], "Sepal length cm"}, {Left, Bottom}] &,
{"SepalLength","SepalhWidth"}]

Out[35]=
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EH : setosa

4.5

o w s
o o o

"Sepal width cm"

[}

44 48 48 50 52 54 58 58
"Sepal length cm"

Figure 7-25. 2D scatter plot

To return to the full dataset, click the dataset icon as with any other.

Data Outside Dataset Format

The truth is that there is also the possibility of extracting the data crudely, as follows.
You'll do this to have better data handling. You use the Short command since the list is
quite long.

In[36]:= Short[ResourceData[ResourceObject["Sample Data: Fisher's
Irises"],"RawData"]]

Out[36]//Short= {<|Species->setosa,Sepallength-

>5.1cm, SepalWidth->3.5cm,Petallength->1.4cm,PetalWidth-

>0.2CM| >, <[ <<1>> | >,<<146>>,< | <<1>> | >, < |<<1>> | >}

With the data already extracted, you can get the values with the Values function and
convert them to normal expressions.

In[37]:= Short[Normal[Values[%]]]

Out[37]//Short= {{setosa,5.1cm,3.5cm,1.4cm,0.2cm},{setosa,4.9cm,3.cm,1.4cm,
0.2cm},<<146>>,{virginica,6.2cm,3.4cm,5.4cm,2.3cm},{virginica,5.9cm,3.cm,
5.1cm,1.8cm}}
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With the help of MapAt, you can extract the magnitudes of the quantities. The MapAt
command lets you choose where to apply the Quantity function. You decided to apply
it to all rows with All, but only from columns 2 to 4, which is where the quantities are
located.

In[38]:= Short[iris=MapAt[QuantityMagnitude,%,{All,2;;5}]]
Out[38]//Short={{setosa,5.1,3.5,1.4,0.2},<<148>>,{virginica,
5.9,3.,5.1,1.8}}

Why remove the units if calculations can be made with them? You extract the
magnitudes for all quantities because they have the same order of magnitude (cm), so
each calculation is in the same units, except if you make conversions or transformations
to the data.

2D and 3D Plots

On the other hand, it is easier to manipulate lists with Wolfram Language. Having the
data in the form of lists, you now plot the three columns in a box plot and a distribution
graph (see Figure 7-26). You only choose the three columns.

In[39]:=

Row[ {BoxWhiskerChart[{iris[[All, #1]], iris[[All, #2]], iris[[All,

#3]], iris[[All, #4]]}, "Outliers", PlotRange -> Automatic, FrameTicks

-> True, ChartStyle -> "SandyTerrain", Plotlabel -> "All Species",
GridlLines -> Automatic, ChartlLegends -> Placed[{"SepallLength",
"SepalWidth", "Petallength", "PetalWidth"}, Bottom], ImageSize -> Small],
DistributionChart[{iris[[All, #1]], iris[[All, #2]], iris[[All, #3]],
iris[[All, #4]]}, PlotRange -> Automatic, FrameTicks -> True, ChartStyle ->
"SouthwestColors", PlotLabel -> "All Species", ChartlLegends ->
Placed[{"SepalLength", "SepalWidth", "Petallength", "PetalWidth"}, Bottom],
PlotTheme -> "Detailed", GridLines -> Automatic, ImageSize -> Small]}] &[2,
3, 4, 5]

Out[39]=
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All Species All Species
= [
=] ‘
: ’ ¢
| = : ‘

B SepalLength [ SepalWidth @ PetalLength B PetalWidth B SepalLength @ SepalWidth 0O PetalLength B PetalWidth

o ~N e o =

Figure 7-26. Box whiskers plot and distribution chart for all species

To improve this, let’s graph for each species. You use Cases to separate the list with
their respective species (see Figure 7-27).

In[40]:= Short[setosa=Cases[iris,{"setosa", }11;
Short[versi=Cases[iris,{"versicolor", }]];
Short[virgin=Cases[iris,{"virginica", }]];
Column@{BoxWhiskerChart[{setosa[[All,#1]],setosa[[All,#2]],setosa[[All,#3]],
setosa[[All,#4]]}, "Outliers”,PlotRange->Automatic,FrameTicks->True,
ChartStyle->"Rainbow",PlotLabel->"Setosa",ChartLegends->Placed
[{"SepalLength","SepalWidth","PetallLength","PetalWidth"},Bottom],
GridLines->Automatic],BoxWhiskerChart[{versi[[ALll,#1]],versi[[All,#2]],
versi[[All,#3]],versi[[All,#4]]}, "Outliers",PlotRange->Automatic,
FrameTicks->True,ChartStyle->"Rainbow",PlotLabel->"Versicolor",ChartlLegends->
Placed[{"SepallLength","SepalWidth","PetalLength","PetalWidth"},Bottom],
GridLines->Automatic],BoxWhiskerChart[{virgin[[All,#1]],virgin[[All,#2]],v
irgin[[AlLl,#3]],virgin[[All,#4]]}, "Outliers",PlotRange->Automatic,FrameTicks->
True,ChartStyle->"Rainbow",PlotLabel->"Virginica",ChartLegends-> Placed
[{"SepalLength","SepalWidth","PetallLength","PetalWidth"},Bottom],GridLines->
Automatic]

}&[2,3,4,5]

Out[40]=
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Figure 7-27. Box whiskers plot for every species with the four features

In addition, you can join the scatter plots of sepal width vs. sepal length for all
species (see Figure 7-28).

In[41]:= ListPlot[{setosa[[All, {2, 3}]], versi[[All, {2, 3}]],
virgin[[All, {2, 3}]]}, FrameTicks -> All, Frame -> True,

AspectRatio -> 1, PlotStyle -> {Blue, Red, Green},

FrameLabel -> {Style["Sepal length (cm)", FontSize -> 20],
Style["Sepal width (cm)", FontSize -> 20]}, PlotlLegends -> {"Setosa",
"Versicolor", "Virginica"}]

Out[41]=
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Figure 7-28. 2D scatter plot for all species of the first two features

Or you can make a 3D scatter plot with three features (see Figure 7-29).

In[42]:= ListPointPlot3D[{setosa[[All, {2, 3, 4}]], versi[[All, {2, 3,
4}1], virgin[[All, {2, 3, 4}]]}, Ticks -> All, AspectRatio -> 1,
PlotStyle -> {Blue, Red, Green}, AxesLabel -> {Style["Sepal length cm",
FontSize -> 13], Style["Sepal width cm", FontSize -> 13],

Style["Petal Length cm", FontSize -> 13]}, PlotlLegends -> {"Setosa",
"Versicolor", "Virginica"}, PlotTheme -> "Detailed", ViewPoint ->

{o, -3, 3}]

Out[42]=
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Figure 7-29. 3D scatter plot of three features for every species

Now, when you have finished working with the resource object, you need to delete it
so that the local cache of the resource is removed correctly.

In[43]:=Clear[fisher]
DeleteObject[ResourceObject["Sample Data: Fisher's Irises"]]

Summary

This chapter explored data exploration using the Wolfram Language. It starts by covering
the Wolfram Data Repository, where instructions to navigate the website and select
appropriate data categories effortlessly are addressed. The chapter continues to guide by
showing how to extract data from the repository, offering insights on accessing, filtering,
and observing the data within Mathematica. Additionally, the descriptive statistics
section provides the reader with an understanding of table and grid formats. By the end
of the chapter, it assists in mastering the visualization of datasets for 2D and 3D plots.
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CHAPTER 8

Machine Learning
with the Wolfram
Language

This chapter introduces the gradient descent algorithm as an optimization method

for linear regression; the corresponding computations are shown, as well as the
concept of the learning curve of the model. Later, you see how to use the specialized
functions of the Wolfram Language for machine learning, such as Predict, Classify,

and ClusterClassify, in the case of linear regression, logistic regression, and cluster
search. The different objects and results generated by these functions and the metrics to
measure the model are shown for these functions. In each case, the parts of the model
that are fundamental for the correct construction using the Wolfram Language are
explained. This part of the book uses examples of known datasets such as the Fisher’s
Irises, Boston Homes, and Titanic datasets.

Gradient Descent Algorithm

The gradient descent is an optimization algorithm that finds the minimum of a function
through an iterative process. To build the process, the squared error loss function is
minimized with the linear model hypothesis of the shape of (x;) = 6, + 6, * x;, around the
point x;. The following expression gives the loss function.

J(0)= 2*1Nﬁ:(f(xj)—yj)2

j=1

303
© Jalil Villalobos Alva 2024

J. Villalobos Alva, Beginning Mathematica and Wolfram for Data Science,
https://doi.org/10.1007/979-8-8688-0348-2_8


https://doi.org/10.1007/979-8-8688-0348-2_8#DOI

CHAPTER 8 MACHINE LEARNING WITH THE WOLFRAM LANGUAGE

J(0) is the cost function, N is the number of observations, f(x;) is the predicted output
for observation j, and y; is the actual output for observation j. The iterative process of
the algorithm consists of calculating the coefficients until convergence is obtained. The
following expressions give the coefficients.

i+l i 1 i i
0, :90_0{_2(9 +6] #x, - j)J

52

i+ i 1< i i
0" =6, —aENZ(GO +6] *x, —yj)*xj]

J=1

Here, gi*' and g*' represent the updated parameters after the i+1 th iteration.
9(;’ and 911' indicate their current values at the ith iteration, « is the learning rate, a
hyperparameter for updating 6, and 6,, that minimizes error during the learning process.
At the same time, N is the total number of dataset observations. x; and y; are the jth
observations of the independent and dependent variables in the dataset, respectively.
The summations are obtained from partial derivatives concerning 6, and 6,. For more
mathematical depth about the method and demonstrations, see Artificial Intelligence: A
Modern Approach by Stuart Russell and Peter Norvig (Prentice Hall, 2010).

Getting the Data

First, you define the data with the RandomReal function and establish a seed. This is to
maintain the reproducibility of the data in case of practicing the same example.

In[1]:=

SeedRandom[888];
x=RandomReal[{0,1},50];
y=-1-x+0.6*RandomReal[{0,1},50];

Therefore, let’s observe the data with a 2D scatter plot Figure 8-1.

In[4]:= ListPlot[Transpose[{x,y}],AxesLabel->{"X axis","Y
axis"},PlotStyle->Red]
Out[4]=
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Figure 8-1. 2D scatter plot of the randomly generated data

Algorithm Implementation

Let’s now proceed to implement the algorithm with the Wolfram Language. The
algorithm defines the constants, the number of iterations, and the learning rate.
Then, you create two lists containing initial values of zero, in which the values of the
coefficients for each iteration are stored. Later, you calculate the coefficients through
a loop with Table, which does not end until you reach the number of iterations. In this
case, you establish several iterations of 250 with a learning rate of 1.

In[5]:=

itt=250; (*Number of iterations*)

\[Alpha]=1; (*Learning rate*)

\[Theta]0=Range@@{0,itt}; (* Array for values of Theta 0*)
\[Theta]1=Range@@{0,itt}; (* Array for values of Theta 1*)
Table[{\[Theta]o[[i+1]]=\[Theta]o[[i]]-\[Alpha]/Length@x* Sum[(\
[Thetalo[[1]1+\[Thetal2[[i]1* x[[311-y[[3]1),{j,1, Lengthex}];
\[Theta]1[[i+1]]=\[Theta]1[[i]]-\[Alpha]/Length@x*Sum[( \[Theta]o[[i]]+\
[Thetala[[1]1*x[[311- YI[311)* X[[311,{3,1, Lengthex} 15}, {i,1,itt}];
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Since you have determined the calculation of the coefficients, you build the linear
adjustment equation by constructing a function and using the coefficient values of the
last iteration, which are in the previous position of the lists 6,y ;.

In[10]:= F[X_] := \[Theta]o[[Length@\[Theta]o]] + \[Theta]1[[Length@\
[Theta]1]]*X

To know the shape of the best fit, you add the X variable as an argument. This gives
you the form F(X) = 6, + 6, *X.

In[11]:
Out[11]

FX]
-0.707789-0.923729 X

Look at how the line fits the data in Figure 8-2.

In[12]:= Show[{Plot[F[X],{X,0,1},PlotStyle->Blue,AxesLabel->{"X axis",
"Y axis"}],ListPlot[Transpose[{x,y}],PlotStyle->Red]}]
Out[12]=

X axis

Figure 8-2. Adjusted line to the data

Since you have built the linear model, you can make a graphical comparison of the
variation of the learning rate with the number of iterations and the loss value given by
the function J. But first, you must declare the loss function J. For the summation, you can
either use the special symbols of sigma (D) or write Sum [expr, {i,ina})-

In[13]:= J[Thetao , Theta1i ] := 1/(2*Length[x])* Sum[ (Thetao +
(Thetar*x[[1]]) - y[[i]])"2, {i, 1, Length@x}]
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Multiple Alphas

Having seen the previously constructed process, you can repeat the process for different
alphas. Following is the graph of loss vs. each interaction for learning rate values of al=1,
a2=0.1, ®3=0.01, «4=0.001, and a5=0.001, when repeating the process.

In[14]:=\[Alpha]1=Transpose[{Range[0,itt],I[\[Theta]o,\[Theta]1]}
In[20]:=\[Alpha]2=Transpose[{Range[0,itt],I[\[Theta]o,\[Theta]1]}
In[26]:=\[Alpha]3=Transpose[{Range[0,itt],][\[Theta]o,\[Theta]1]}
In[32]: 1, }
In[38]: 1,

I
I
I
].
]

)

32]:=\[Alpha]4=Transpose[{Range[0,itt],I[\[Theta]o,\[Theta]1]
38]:=\[Alpha]5=Transpose[{Range[0,itt],I[\[Theta]o,\[Theta]1]}

)

Graph with ListLinePlot and visualize the learning curve for different alphas (see
Figure 8-3). When changing the alpha value, check how the adjusted line changes.

In[39]:=ListLinePlot[{\[Alpha]1,\[Alpha]2,\[Alpha]3,\[Alpha]4,\
[Alpha]5},FrameLabel->{"Number of Iterations","Loss Function"},Frame-
>True,PlotlLabel->"Learning Curve",PlotlLegends-> SwatchLegend[{Style["\
[Alpha]=1",#],Style["\[Alpha]=0.1",#],Style["\[Alpha]=0.01",#],Style["\
[Alpha]=0.001",#],Style[ "\[Alpha]=0.0001",#]}, LegendLabel->Style[ "Learning
rate",White], LegendFunction->(Framed[#,RoundingRadius->5,Background-
>Gray]&)]]&[White]

Out[39]=
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Figure 8-3. The learning curve for the gradient descent algorithm
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In the previous graph (see Figure 8-3), you can visualize the size of iterations
concerning cost and how it varies depending on the alpha value. With a high learning
rate, you can cover more ground at each step but risk exceeding the lowest point. To
know whether the algorithm works, you must see that each new iteration’s loss function
is decreasing. The opposite case would indicate that the algorithm is not working
correctly; this can be attributed to various factors, such as a code error or an incorrect
learning rate value. As the graph shows, adequate alpha values correspond to small
values between a scale of 1 to 10. It is not necessary to use these exact values; you can
use values within this range. Depending on the form of the data, the algorithm may or
may not converge with different alpha values as the same for the iteration steps. If you
choose minimal alpha values, the algorithm can take a long time to converge, as you can
see for alpha values 10 or 10

Linear Regression

Despite being able to build the algorithms to perform a linear regression, the Wolfram
Language has a specialized function for machine learning. In the case of linear
regression problems, there is the Predict function. The Predict function can also work
with different algorithms, not only regression task algorithms.

Predict Function

The Predict function helps you predict values by creating a predictor function using the
training data. It also allows you to choose different learning algorithms, the purpose

of which is to predict a numerical, visual, categorical value or a combination. The
methods to choose from are decision tree, gradient boosted tree, linear regression,
neural network, nearest neighbors, random forest, and Gaussian process. Each method
has options within it; the options vary depending on the algorithm chosen to train the
predictor function. Let’s look at the linear regression method. The input data for Predict
can be in the form of a list of rules, associations, or a dataset.
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Boston Dataset

Let’s look at the first example of loading the Boston Homes data from the Wolfram

Data Repository (see Figure 8-4). This dataset contains information about housing in

the Boston, Massachusetts, area. For more in-depth information, refer to the article

“Hedonic Housing Prices and the Demand for Clean Air,” by David Harrison and Daniel

Rubinfeld, in the Journal of Environmental Economics and Management (1978; 5[1],

81-102. https://doi.org/10.1016/0095-0696(78)90006-2) or Regression Diagnostics:
Identifying Influential Data and Sources of Collinearity: 546 by David Belsley, Edwin Kuh,

and Roy Welsch, (Wiley-Interscience, 2013).

In[40]:= bstn=ResourceData[ResourceObject["Sample Data: Boston Homes"]]

Out[40]=

CRIM
0.00632
0.02731
0.02729
0.03237
0.06905
0.02985
0.08829
0.14455
0.21124
0.17004
0.22489
0.11747
0.09378
0.62976
0.63796
0.62739
1.05393
0.7842
0.80271
0.7258

Figure 8-4. Boston Homes price dataset
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8.14

CHAS

tract does not bound Charles river
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tract does not bound Charles river
tract does not bound Charles river
tract does not bound Charles river
tract does not bound Charles river
tract does not bound Charles river
tract does not bound Charles river
tract does not bound Charles river
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tract does not bound Charles river
tract does not bound Charles river
tract does not bound Charles river
tract does not bound Charles river
tract does not bound Charles river
tract does not bound Charles river

tract does not bound Charles river

of1a > ¥

NOX

0.538ppm
0.469 ppm
0.469 ppm
0.458 ppm
0.458 ppm
0.458 ppm
0.524ppm
0.524ppm
0.524ppm
0.524ppm
0.524ppm
0.524ppm
0.524ppm
0.538 ppm
0.538ppm
0.538ppm
0.538 ppm
0.538 ppm
0.538 ppm
0.538ppm

RM
6.575
6421
7.185
6.998
7.147
6.43
6.012
6.172
5.631
6.004
6.377
6.009
5.889
5.949
6.096
5.834
5.935
5.99
5.456
5.727

65.2
78.9
61.1
45.8
4.2
58.7
66.6
96.1
100

943
829

61.8
845
56.5
29.3
81.7
36.6
69.5

DIs
4.09
4.9671
4.9671
6.0622
6.0622
6.0622
5.5605
5.9505
6.0821
6.5921
6.3467
6.2267
5.4509
47075
4.4619
4.4986
4.4986
4.2579
3.7965
3.7965

RAD

(X

& & & & & B & U UV U U U VUV W W W

Data not in notebook. Store now O

Try using the scroll bars to have a complete view of the dataset. Let’s look at the

descriptions of the columns and show them in TableForm.
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In[41]:= ResourceData[ResourceObject["Sample Data: Boston

Homes" ], "ColumnDescriptions"]//TableForm

Out[41]//TableForm= Per capita crime rate by town

Proportion of residential land zoned for lots over 25000 square feet
Proportion of non-retail business acres per town

Charles River dummy variable (1 if tract bounds river, 0 otherwise)
Nitrogen oxide concentration (parts per 10 million)

Average number of rooms per dwelling

Proportion of owner-occupied units built prior to 1940

Weighted mean of distances to five Boston employment centers

Index of accessibility to radial highways

Full-value property-tax rater per $10000

Pupil-teacher ratio by town

1000(Bk-0.63)"2 where Bk is the proportion of Black or African-American
residents by town

Lower status of the population (percent)

Median value of owner-occupied homes in $1000s

Model Creation

You create a model capable of predicting housing prices in the Boston area through the
number of rooms in the dwelling. To achieve this, the columns of interest correspond
to RM (average number of rooms per dwelling) and MEDV (median value of owner-
occupied homes) since you want to find out if there is a linear relationship between the
number of rooms and the price of the house. Applying some common sense, the houses
with the most significant number of rooms are more extensive and, therefore, can store
more people, increasing the price.

Look at the MEDV and RM scatter plots in Figures 8-5.

In[42]:= MEDVvsRM=Transpose[{Normal[bstn[All,"RM"]],Normal[bstn[All,"
MEDV"]]}1;
ListPlot[MEDVvsRM,PlotMarkers->"OpenMarkers",Frame->True,FrameLabel->
{Style["RM",Red],Style[ "MEDV",Red]},GridLines->Al1l,PlotStyle->

Black, ImageSize->Medium]

Out[43]=
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MEDV

Figure 8-5. 2D scatter plot of MEDV vs. RM

As seen in Figure 8-5, the house price increases as the average number of rooms
increases. This suggests that there is a direct proportional relationship between these
two variables. Given what is seen in the graph, let’s know the correlation value between
these variables. You show this through a correlation matrix by first computing the
correlation of the values, assigning the ticks’ names, and plotting it with MatrixPlot (see
Figure 8-6).

In[44]:=correlat=SetPrecision[Correlation[Transpose[{Normal[bstn[All,"RM"]],
Normal[bstn[All,"MEDV"]]}1]1,2];
xTicks={{1,"RM"},{2,"MEDV"},{1,"RM"},{2, "MEDV"}};
yTicks={{1,"RM"},{2,"MEDV"},{1,"RM"},{2, "MEDV"}};
postionsValues={Text[#1,{0.5,1.5}],Text[#1,{1.5,0.5}],Text[#2,{1.5,1.5}],
Text[#2,{0.5,0.5}]}&[correLat[[1,1]],correLat[[1,2]]];
MatrixPlot[correlLat,ColorFunction->"DarkRainbow",FrameTicks->{ xTicks,
yTicks,xTicks,yTicks},Epilog->{White,postionsValues},PlotLegends->
BarLegend[{"DarkRainbow",{0,1}},4],ImageSize->180]

Out[48]=
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RM MEDV I 1.0
0.8
RM RM
0.6
0.4
MEDV | MEDV 02

RM MEDV

Figure 8-6. A matrix plot combined with a correlation matrix

By observing the matrix plot (see Figure 8-6), it can be concluded that there is an
excellent linear relationship between RM and MEDV.

Let’s now shuffle the dataset randomly and establish a list of rules with Thread
because the data to be entered in the predictor function must be as follows: {x - y}—in
other terms, input, and target value.

In[49]:= newData = RandomSample[Thread[Normal[bstn[All, "RM"]] ->
Normal[bstn[All, "MEDV"]]]1];

Once randomly sampled, you select the first 354 elements (70%); this is the training
set, and the remaining 152 (30%) is the test set. When splitting, common ratios include
70/30 (training/testing), 80/20, and 60/40. Where the training set is used to train the
model and usually the majority of the data. The remaining portion, the test set, is an
independent dataset to assess the model performance on unseen data. The choice
depends on factors like the size of the dataset and the detailed conditions of the
machine-learning task you want to do.

In[50]:= {training, test} = {newData[[;; 354]], newData[[355 ;;]]};

You train the model, a predictor for the average values of owner-occupied homes
(MEDV) as a target. As a method, you choose linear regression. When training a model,
specification of the option of training report includes Panel (dynamical updating of
the Panel), Print (periodic information including time, training example, best method,
current loss), ProgressIndicator (simple progress bar), SimplePanel (dynamic update
panel with no plots), and None. Panel is the default option (see Figure 8-7).

In[51]:=pF=Predict[training,Method->"LinearRegression",TrainingProgress
Reporting->"Panel"]
Out[51]=
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» Input type: Numerical 1

PredictorFunction [ Method: LinearRegression J

Figure 8-7. PredictorFunction object of the trained model

When entering the code, depending on the option added to
TrainingProgressReporting, a progress bar and panel report should appear (see
Figure 8-8). The time of the panel displayed depends on the training time of the model.
To set a specific time for the training, add TimeGoal as an option, which specifies how
long the training should last for the model. Time values are seconds of CPU time—that
is, the number with no units. With units of time (seconds, minutes, and hours), the use
of Quantity command is needed, like TimeGoal » Quantity [“time magnitude,” #] & / @
{“Second,” “Minute,” “Hour”}.

Predict Progress (w)

Time elapsed 0.752s
Training examples used 283/ 354 (80%)
Current best method = LinearRegression
Standard deviation 6.32
Current loss  3.27

< Standard deviation >

0.5

10 20 5 100 200
training examples used

-~

Figure 8-8. Progress report of the PredictorFunction
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Let’s go back to the model. Figure 8-7 shows that the return object is a predictor
function (try using Head to verify it). When assigning a name to the predictor function,
additional information about the model can be obtained; the command Information
is used (see Figure 8-9). The information works for every other expression, not just for
machine learning purposes.

Predictor information
Data type = Numerical
Standard deviation = 6.37+0.72
Method = LinearRegression
Single evaluation time | 1.35ms/example
Batch evaluation speed = 393. examples/ms
Loss | 4.06 = 0.53
Model memory = 300. kB
Training examples used 354 examples

Training time | 3.02s

< Standard deviation >

10 ' 20 S s0 11':Jn - ?dry

training examples used

Figure 8-9. Information report of the trained model

Note If you want fixed results involving random data, you need to set the seed
before every random operation; this ensures consistent outputs.

In[52]:
Out[52]

Information[pF]
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The information panel in Figure 8-9 includes data type, root mean squared
(StandardDeviation), method, batch evaluation speed, loss, model memory, number of
examples for training, and training time. The graphics at the bottom of the panel are for
standard deviation, model learning curve, and learning curve for the other algorithms.
Hovering the cursor pointer over the numerical parameters shows the confidence
intervals and units. If the method’s name is correct, it shows the parameters of the linear
regression method. Since you did not select a specific optimization algorithm within
the LinearRegression method, Mathematica tries to search through the algorithms for
the best one (this can be viewed in the learning curve for all algorithms). You see how to
access these options further down the line.

Note Every method used in the predict function has options and suboptions; for
full customization, use the Wolfram Language Documentation Center.

Table 8-1 shows the standard options that can be used for model training, as well as
their definition and possible values for the training process of a PredictorFunction.

Table 8-1. Most Common Options for Predict Function

Option Definition

Method AlgorithmPossible values: DecisionTree, GradientBoostedTrees,
LinearRegression, NearestNeighbors, RandomForest and
GaussianProcess

PerformanceGoal Performance optimizationPossible values: DirectTraining, Memory,

Quality, Speed, TrainingSpeed, Automatic Combination of values
supported (PerformanceGoal -> {val1, val2})

RandomSeeding Seed for the pseudorandom number generatorPossible values:
Automatic, “custom seed,” Inherited (random seed used in previous
computations)

TargetDevice Specifies a device to perform the training or test processPossible values:

CPU or GPU. If a GPU is installed, the automatic target device is the GPU.
TimeGoal Time spent on the training process

TrainingProgressReporting Progress reportPossible values: Panel, Print, Progressindicator,
SimplePanel, None
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Model Measurements

Once the model is built, you must observe and analyze the performance of the predictor
function in the test set. To carry out this, you must do it within the PredictorMeasurments
command. The predictor function goes in the argument (see Figure 8-10), followed by the
test set and the property or properties to add. Since the latest version, the final model features
predictions are presented instead of just the model of the PredictorMeasurements object.

In[53]:= pRM=PredictorMeasurements[pF,test]

Out[53]=

Predictor Measurements

Predictor method = LinearRegression
Number of test examples 152
Standard deviation 6.75+ 0.85
Standard deviation baseline  9.12+0.78
R—squared 0.452+ 0.17
Mean cross entropy = 3.33 +0.13

Single evaluation time
Batch evaluation speed

50| o

40+

1.49 ms/example

1.6 examples/ms

2 [
- 30;
> |
© [
=2 [
5] t -}
@ 20
B
f 8
ro
10+ b
O?L.'; i S T T S O T O o
0 10 20 30 40 50

predicted value

Figure 8-10. PredictorMeasurements object of the tested model
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The returned object is called PredictorMeasurementsObject. You can add the
properties from the PredictorMeasurements command. You can assign a variable to
the object to access it more simply. Since the new version of 13, the report is given in
the output, so the model report of the test set is suppressed as it returns the same as in
Figure 8-10.

In[54]:= pRM["Report"];

The report in Figure 8-10 shows different parameters, such as the standard deviation
and mean cross-entropy. It shows a graph of the model’s fit and the current and
predicted values. The model is suitable for most cases, except that some outliers still
affect performance.

To better understand the precision of the model, let’s look at the root mean squared
error (RMSE) and RSquared (coefficient of determination) shown in Figure 8-11.

To display the associated uncertainties, use the option ComputeUncertainty with
True value.

In[57]:=Dataset[AssociationMap[pRM[#,ComputeUncertainty-> Truel&, {"Standard
Deviation","RSquared"}]]
Out[57]=

StandardDeviation 6.8 :0.8

RSquared 0.45 :0.17
Figure 8-11. Standard deviation and r-squared values of the linear model

This gives you a slightly high RMSE value, not an excellent r-squared value.
Remember that the r-squared value indicates how good the model is for making
predictions. These two values indicate that although there may be a linear relationship
between the number of rooms and prices, a linear regression does not necessarily
explain this. These observations are also consistent, remembering that you obtained a
correlation value of 0.7.
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Model Assessment

The graphs made within the model are the model graph and the target variable
(ComparisonPlot). To check the distribution of the variance, use the ResidualHistogram
function, and to check the residual plot, use ResidualPlot. These are shown in

Figure 8-12.

In[58]:=pRM[#]8&/@{"ResidualHistogram", "ResidualPlot", "ComparisonPlot"} /.
plot Graphics:>Show[plot,ImageSize->Small]

Out[58]=
S0 _'E 40 v
40 8 3 %
him , w 3 p! % . E o 'gﬁ predictions
i | g .20 e : § &5ls perfect predictions
¢ {5 =] -— 2 10 -
0-10 0 10 20 30 40 -40

actual

10 20 30 40
actual value - predicted value
predicted value 0 10 20 30 40

predicted value

Figure 8-12. ResidualHistogram, ResidualPlot, and ComparisonPlot

You write Properties as an argument to find out all the properties of the Predictor
Measurements object. These properties can vary between methods.

In[59]:= pRM["Properties"”]
Out[59]={BatchEvaluationTime,BestPredictedExamples,ComparisonPlot,
EvaluationTime,Examples,FractionVarianceUnexplained,GeometricMeanProbabili
tyDensity, ICEPlots,LeastCertainExamples,Likelihood,LoglLikelihood,MeanCross
Entropy,MeanDeviation,MeanSquare,MostCertainExamples,Perplexity,PredictorFu
nction,ProbabilityDensities,ProbabilityDensityHistogram,Properties,Rejectio
nRate,Report,ResidualHistogram,ResidualPlot,Residuals,RSquared, SHAPPlots,SH
APValues,StandardDeviation,StandardDeviationBaseline,TotalSquare,WorstPredi
ctedExamples}

If you are not satisfied with the chosen methods or hyperparameters, retraining the
model can be done by configuring the new values for the hyperparameters. You access
the values of the current method with the help of the Information command and add
the properties of Method (shows you the Method used to train the model), method
description (description of the Method used), and MethodOption (method options).
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In[60]:= Information[pF,"MethodOption"]
Out[60]=Method->{LinearRegression,L1Regularization->0,L2Regularization->
1.*10"-6,0ptimizationMethod->NormalEquation}

You see terms such as L1Regularization, L2Regularization, and OptimizationMethod.
The first two terms are associated with regularization methods, and L1 refers to the
Lasso regression name and L2 to the Ridge regression name. Regularization is used to
minimize the complexity of the model and reduce the variation; it also improves the
precision of the model, solving overfitting problems. This is accomplished by adding a
penalty to the loss function; this penalty is added to the sum of the absolute value of the
coefficient A, * Zio|9i

, whereas for L2, it is given by the expression (/12 / 2) * Z]io 07,

where the function to minimize is the loss function (1/ 2)2210( v, — (0., ))2 . For

more mathematical depth, refer Artificial Intelligence: A Modern Approach by Stuart
Russell and Peter Norvig (Prentice Hall, 2010) and An Introduction to Statistical
Learning: With Applications in R by Gareth James, Trevor Hastie, Robert Tibshirani,

and Daniela Witten (Springer, 2017). The third term is which optimization method you
want to choose; the existing methods are NormalEquation, StochasticGradientDescent,
and OrthanWiseNewton. That said, it must be emphasized that using the vector of
coefficients with the L1 and L2 standards is known as an Elastic Net regression model.
Elastic Net might be used when there is a correlation in the parameters. For more theory,
reference The Elements of Statistical Learning: Data Mining, Inference, and Prediction by
Trevor Hastie, Robert Tibshirani, and Jerome Friedman (Springer, 2009).

Retraining Model Hyperparameters

As discussed later, let’s retrain the model but with the values of L1 — 12, L2 — 100

and the optimization algorithm OptimizationMethod — StochasticGradientDescent,
TrainingProgressReporting — None, PerformanceGoal — “Quality,” RandomSeeding —
10000, TargetDevice — “CPU.”

In[61]:= pF2 = Predict[training, Method -> {"LinearRegression",
"L1Regularization" -> 12, "L2Regularization" -> 100, "OptimizationMethod"
-> Automatic}, TrainingProgressReporting -> None, PerformanceGoal ->
"Quality", RandomSeeding -> 10000, TargetDevice -> "CPU"];
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To see the properties related to an example, type properties after the input data
for the PredictorFunction—for instance, PF2[“example,” “Properties”]. Let’s compare
the new model’s performance by showing the graphs and metrics like before (see

Figures 8-13 and 8-14).

Note Standard deviation refers to the root mean square of the residuals, root
mean square error (RMSE).

In[62]:= pRM2=PredictorMeasurements[pF2,test];

pRM2[#]8&/@{ "ResidualHistogram", "ResidualPlot","ComparisonPlot"}/.
plot_Graphics:>Show[plot,ImageSize->Small]
Dataset[AssociationMap[pRM2[#,ComputeUncertainty->True]8&,{"StandardDeviation",
"RSquared"}]]

Out[63]=
Out[64]=
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Figure 8-13. Plots of the retrained model
StandardDeviation 6.8 :0.7
RSquared 0.44 :0.15

Figure 8-14. New values for standard deviation and r-squared
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Observing the graphs and data, you see the model merely decreases to a certain
degree; this agrees with the new r-squared value. However, it is still a poor model for
making future predictions. The poor performance may be due to the optimization
choice, the L1 and L2 parameters. Try to explore different L1 and L2 values for potential
improvement.

Logistic Regression

Logistic regression is a technique commonly used in statistics but also used within
machine learning. The logistic regression works considering that the values of the
response variable only take two values, 0 and 1; this can also be interpreted as a false or
true condition. It is a binary classifier that uses a function to predict the probability of
whether or not a condition is met, depending on how the model is constructed. Usually,
this model type is used for classification since it can provide you with probabilities and
classifications since the values of the logistic regression oscillate between two values. In
logistic regression, the target variable is a binary variable that contains encoded data. For
more information, refer to Introduction to Data Science: A Python Approach to Concepts,
Techniques and Applications by Laura Igual, Santi Segui, Jordi Vitria, Eloi Puertas, Petia
Radeva, Oriol Pujol, Sergio Escalera, Francesc Danti, and Lluis Garrido (Springer, 2017).

Titanic Dataset

For the following example, you use the Titanic dataset, which is a dataset that describes
the survival status of the passengers. The variables used are class, age, sex, and survival
condition. You load the data directly as a dataset (see Figure 8-15) from the ExampleData
and enumerate the rows of the dataset.

Note This section is constructed using Query language so the reader can
understand how to use it more deeply inside datasets.

In[65]:= titanic=Query[AssociationThread[Range[Length@#]->Range[Length@#]]]
[ExampleData[{"Dataset","Titanic"}]]&[ExampleData[{"Dataset","Titanic"}]]
Out[65]=
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class age sex
1 1st 29 female
2 st 1 male
3 i female
4 1st 30 male
5 1st 25 female
6 1st 48 male
7 1st 63 female
8 1st 39 male
9 1st 53 female
10 1st 71 male
11 1st 47 male
12 1st 18 female
13 1st 24 female
14 1st 26 female
15 1st 80 male
16 1st male
17  1st 24 male
18 1st 50 female
19 1st 32 female
20 1st 36 male
7N A rowsl-200f1309 Vv AL

survived
True
True
False
False
False
True
True
False
True
False
False
True
True
True
True
False
False
True
True

False

Figure 8-15. New values for Standard deviation and r-squared

Let’s look at the dimensions of the data using the Dimensions command.

In[66]:= Dimensions@titanic
Out[66]= {1309,4}

Interpreting the result, you see that the dataset comprises 1309 rows and four

columns. The dataset has four columns classified by class, age, sex, and survived status.

Using the space bar shows that some elements do not register data entry. To see which

columns contain missing data, execute the following code by counting the components

corresponding to the pattern missing in each column.
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In[67]:=Query[Count[ Missing],#]@titanic&/@{"class","age","sex","survived"}
Out[67]= {0,263,0,0}

This shows 263 missing values within the age column and zero for the others. Let’s
remove the rows that contain this missing data. First, you extract the row numbers from
the missing data by selecting the elements from the age column equal to missing and
then extracting the row IDs.

In[68]:= Query[Select[#age==Missing[]&]][titanic];

Normal@Keys@%
Out[68]={16,38,41,47,60,70,71,75,81,107,108,109,119,122,126,135,148,153,
158,167,177,180,185,197,205,220,224,236,238,242,255,257,270,278,284,294,
298,319,321,364,383,385,411,470,474,478,484,492,496,525,529,532,582,596,
598,673,681,682,683,706,707,757,758,768,769,776,790,796,799, 801,802,803,
805,806,809,813,814,816,817,820,836,843,844,853,855,857,859,866,872,873,
875,877,880,883,887,888,901,902,903,904,919,921,922,923,924,927,928,929,
930,931,932,941,943,945,946,947,949,955,956,957,958,959,962,963,972,974,
977,983,984,985,988,989,990,992,994,995,998,999, 1000, 1001, 1002,1003,1004,
1005,1006,1007,1010,1013,1014,1015,1017,1019,1023,1024,1028,1029,1030,1031,
1033,1034,1035,1036,1037,1038,1039,1040,1042,1043,1044,1045,1053,1054,1055,
1056,1070,1071,1072,1073,1074,1075,1077,1078,1079,1081,1082,1086,1096,1110,
1115,1116,1117,1122,1123,1124,1125,1129,1133,1136,1137,1138,1139,1150,1151,
1152,1155,1156,1160,1163,1164,1165,1167,1168,1169,1171,1173,1174,1175,1176,
1177,1178,1179,1180,1181,1185,1186,1187,1194,1195,1196,1198,1199,1200,1201,
1203,1213,1214,1215,1216,1217,1220,1222,1242,1243,1244,1246,1247,1248,
1250,1251,1254,1256,1263,1269,1283,1284,1285,1292,1293,1294,1298,1303,
1304,1306}

These numbers represent the rows containing the age column’s missing data. You
use the DeleteMissing command to eliminate them, considering there is missing data at
level 1. The final dataset is seen in (see Figure 8-16).

In[69]:= titanic=DeleteMissing[titanic,1,1]
Out[69]=
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class age sex
1 st 29 female
2 Ist 1 male
3 st 2 female
4 1st 30 male
5 1st 25 female
6 Ist 48 male
7 1st 63 female
8 1st 39 male
9 1st 53 female
10 1st 71  male
11 1st 47 male
12 1st 18 female
13  1st 24 female
14 1st 26 female
15 1st 80 male
17 1st 24 male
18 1st 50 female
19 1st 32 female
20 1st 36 male
21 1st 37 male
7N A rows1-200f1046 Vv N

survived
True
True
False
False
False
True
True
False
True
False
False
True
True
True
True
False
True
True
False

True

Figure 8-16. Titanic dataset without missing values

To corroborate that there is no missing data, you could apply the same code with

counts or by looking at the keys of the removed rows, for example.

In[70]:
Out[70]

titanic[Key[16]]

Missing[KeyAbsent,Key[16]]

This means that there is no content associated with key number 16. If you want to

check all keys, use the row list of the missing data.

324



CHAPTER 8 MACHINE LEARNING WITH THE WOLFRAM LANGUAGE

Data Exploration

Once you have removed the missing data, you can count the elements of each class, sex,
and survival status (see Figure 8-17).

In[71]:= Dataset@<|"Class" -> Query[Counts, "class"]@titanic, "Sex
-> Query[Counts, "sex"]@titanic, "Survival status" -> Query[Counts,
"survived"]@titanic|>

Out[71]=

st 284
Class 2nd 261

3rd 501

female 388

Sex male 658

True | 427
Survival status False 619

Figure 8-17. Basic elements count for class, sex, and survival status

After eliminating the rows with the missing elements, the dataset consists of 284
elements in the first class, 261 in the second class, and 501 in the third class (see
Figure 8-18). Also, note that more than half of the registered passengers were male and
that there were more deaths than survivors. It is possible to verify this graphically by
showing the percentages. The same approach is applied to the column’s class and sex.

In[72]:= Row[{PieChart[{N@(#[[1]]/Total@#),Ne(#[[2]]/Total@#)}&[ Counts
[Query[All,"survived"][titanic]]], PlotLabel->Style["Percentage of
survival”,#3,#4], ChartLegends-> {"Survived", "Died"}, ImageSize->#1,
ChartStyle->#2,LabelingFunction->(Placed[Row[{SetPrecision[100#,3],"%"}]1,
"RadialCallout"]8)],
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PieChart[{N@(#[[1]]/Total@#) ,Ne(#[[2]]/Total@#)}&[Counts[Query[All,"sex"
[titanic]]], PlotLabel->Style["Percentage by sex",#3,#4], ChartlLegends->
{"Female", "Male"}, ImageSize->#1,ChartStyle->#2,LabelingFunction->(Placed
[Row[{SetPrecision[100#,3],"%"}], " "RadialCallout"]&)],
PieChart[{N@e(#[[1]]/Total@#),N@(#[[2]]/Total@#),N@(#[[3]]/Total@#)}&
[Counts[Query[All,"class"][titanic]]], PlotLabel->Style["Percentage by
class",#3,#4], ChartLegends->{"1st", "2nd","3rd"}, ImageSize->
#1,ChartStyle->#2,LabelingFunction->(Placed[Row[{SetPrecision[100#,3],"%"}],

"RadialCallout"]&)]},"----"18&[200,{ColorData[97,20],ColorData[97,13],
ColorData[97,32]},Black,20]

Out[72]=

Percentage of survival Percentage by sex Percentage by class

INA%

7%
o 1st
@ 2nd
o 3rd

@ Survived S
@ Died

® Female -
@ Male

Figure 8-18. Pie charts for class, sex, and survival status

This example looks at the survival status of Titanic passengers. It builds a model that
classifies whether a given class, age, and sex survived and which did not. The features
are class, age, and sex; the target is survival status. These variables are the features,
which the model then uses to classify whether a class, age, and sex survived, which is the
target variable. The dataset is divided into 80% training (837 elements) and 20% test (209
elements). To split the dataset, first do a random sampling; afterward, extract the keys of
the IDs and create a new dataset divided by the train and test sets (see Figure 8-19).

In[73]:= BlockRandom[SeedRandom[8888];

RandomSample[titanic]];

Keys@Normal@Query[Al1l][%];

{train,test}={%[[1;;837]],%[[838;;1046]]};
dataset=Query[<|"Train"->{Map[Key,train]},"Test"->{Map[Key,test]} |> ]
[titanic]

Out[77]=
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class age sex survived
Train 410 2nd 36 male False
537 2nd 32 female True

874 3rd 42 male False
691 3rd 22 male False
1021 3rd 21 male False

852 3rd 45 female True

705 3rd 21 male False
743 3rd 45 male True
515 2nd 2 male True

658 3rd 1 female True

Test 1227 3rd 19 male False
188 1st 16 female True
397 2nd 34 female True
944 3rd 37 female False
262 1st 35 male True
95 st 4 male True
1080 3rd 22 female True

918 3rd 39 male True
517 2nd 37 male False
425 2nd 30 male False

Figure 8-19. Titanic dataset divided by train and test set

Classify Function

The Classify command is another super function used in the Wolfram Language
machine learning scheme. This function can be used in tasks that solve a classification
problem. The data that this function accepts are numerical, textual, sound, and image
data. This function’s input data can be the same as the Predict function {x — y}. However,
entering data as a list of elements, an association of elements, or a dataset is also
possible. In this case, you introduce it as a dataset.

In this case, you extract the data from the dataset format by specifying that
the columns’ input (class, age, sex) points to the target (survived). Now, let’s build
the classifier function (see Figure 8-20) with the following options: Method —
{LogisticRegression, L1 - Automatic, L2 — Automatic}. When choosing Automatic,
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you let Mathematica choose the best combination of L1 and L2 parameters. For the
OptimizationMethod, set the StochasticGradientDescent method. And for performance
goal set Quality. Finally, you choose a seed with a value of 100,000 and the CPU unit as
the target device. The optimization methods for the logistic regression are the limited
memory Broyden-Fletcher-Goldfarb-Shanno algorithm, StochasticGradientDescent,
and Newton method. These are for estimating the parameters of the logistic function.
The rule construction is done from the data inside the dataset using the Query language.

In[78]:= cF = Classify[Flatten[Values[Normal[Query["Train", All,

All, {#class, #age, #sex} -> #survived &][dataset]]]], Method ->
{"LogisticRegression", "LiRegularization" -> Automatic,

"L2Regularization" -> Automatic, "OptimizationMethod" ->
"StochasticGradientDescent"}, PerformanceGoal -> "Quality", RandomSeeding
-> 100000, TargetDevice -> "CPU", TrainingProgressReporting -> None]
Out[78]=

s+ Input type: {Nominal, Numerical, Nominal} ]
\' Classes: False, True

Method: LogisticRegression

Number of training examples: 837

Classi f'ierFunct'ion[

Figure 8-20. ClassifierFunction object

After training, like with the Predict function, the Classify function returns a classifier
function object (see Figure 8-21) instead of a predictor function. Inspecting the
classifier function, you can see the two input data types—nominal and numerical—
and the classes, which are the survival status—true or false. The method used (logistic
regression) and the number of examples (837). To obtain information on the model, use
the Information command. Let’s look at the model report.

In[79]:= Information[cF]
Out[79]=
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Classifier information
Data type  {Nominal, Numerical, Nominal}
Classes False, True
Accuracy (79.3+2.0)%
Method = LogisticRegression
Single evaluation time | 1.96 msfexample
Batch evaluation speed = 206. examples/ms
Loss | 0.513 +0.025
Model memory = 500. kB
Training examples used = B37 examples

Training time | 26.8s

= Learning curves for all algorithms >

0.8F

”1-0 I - -50-”;160 . . .5t.)0.-“

training examples used

Figure 8-21. Information about the trained classifier function

Note If you click the arrows above the graphs, three plots are shown: Learning
curve, accuracy, and Learning curve for all algorithms. If you hover the pointer over
the line of the last one, a tooltip appears with the corresponding parameters along
with the method used, as shown in Figure 8-22.
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Classifier information

Data type {Nominal, Numerical, Nominal}
Classes False, True

Accuracy | (79.3+2.0)%
Method LogisticRegression
Single evaluation time = 1.96 ms/example
Batch evaluation speed = 206. examples/ms
Loss 0.513 + 0.025
Model memory = 500. kB
Training examples used 837 examples

Training time  26.8s

< Learning curves for all algorithms o
0.8! '
0.7h, L /
- ' LogisticRegression
f :+\ L1Regularization 0.001
: ' L2Regularization 100 000.
0‘5: OptimizationMethod StochasticGradientDescent
10 50 100 500

training examples used

Figure 8-22. Algorithm specifications tooltip from the method logistic regression

You see that the model’s accuracy is approximately 79%. You also observe by clicking
the arrows of the plots that the learning curve and accuracy curve both experience
variation at 500 training examples used. To access all the properties of the trained model,
add Properties as an option in Information.

In[80]:= Information[cF,"Properties"]
Out[80]={AcceptanceThreshold,Accuracy,AnomalyDetector,BatchEvaluationSpeed,
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BatchEvaluationTime,Calibrated,Classes,ClassNumber,ClassPriors,Evaluation
Time, ExampleNumber, FeatureExtractor,FeatureNames, FeatureNumber,FeatureTypes,
FunctionMemory, FunctionProperties,IndeterminateThreshold,LearningCurve,Max
TrainingMemory,MeanCrossEntropy,Method,MethodDescription,MethodOption,Method
Parameters,MissingSynthesizer,PerformanceGoal,Properties,TrainingClassPriors,
TrainingTime,UtilityFunction}

Note Depending on the method used, properties may vary.

Let’s examine the probabilities for the data: class = 3rd, age = 23, and sex = male.
Probability — name or number of class or TopProbabilities - number of most likely
classes.

In[81]:= cF[{"3rd",23,"male"},{"Probability"->
False,"TopProbabilities"-> 2}]
Out[81]= {0.676982,{False->0.676982,True->0.323018}}

The probabilities of the latter example show that the passenger’s survival status may
be more inclined to the False status.

To see the complete properties of a new classification, type the example followed
by Properties. The properties included are Decision (best choice of class according to
probabilities and its utility function) and Distribution (categorical distribution object).
Probabilities of each class are displayed as associations: ExpectedUtilities (expected
probabilities), LogProbabilities (natural logarithm probabilities), Probabilities (all
classes), and TopProbabilities (most likely class). This is displayed in the following
dataset (see Figure 8-23).

In[82]:= Dataset@

AssociationMap[cF[{"3rd",23,"male"},#]
&,{"Decision","Distribution","ExpectedUtilities","LogProbabilities",
"Probabilities","TopProbabilities"}]

out[82]=
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Decision False

& b b Input type: Scalar
istributi ategoricalDistribution ]
Distribution g Categories: False True

ExpectedUtilities <| False » 0.676982, True - 0.323018, Indeterminate - 0. |>
LogProbabilities <] False -» —0.39011, True -+ - 1.13005 | >

Probabilities <| False - 0.676982, True - 0.323018 | >

TopProbabilities {False - 0.676982, True - 0.323018}

Figure 8-23. Properties for the classifier function of the trained model

Note To check the logarithm result, use the Log command, Log[base, number].

Testing the Model

You now test the model on the test data using the ClassifierMeasurements command,
adding the function and the test set as arguments and the uncertainty computation.
Like PredictionMeasurement, the output returned shows details about the model (see
Figure 8-24).

In[83]:= cM = ClassifierMeasurements[cF,Flatten[Values[Normal[Query][
"Test", All, All, {#class, #age, #sex} -> #survived &][dataset]]]],
ComputeUncertainty -> True, RandomSeeding -> 8888]

out[83]=
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Classifier Measurements

Classifier method LogisticRegression
Number of test examples 209
Accuracy @ (73.7 £3.1)%
Accuracy baseline  (60.8 +3.4)%
Geometric mean of probabilities 0.563 + 0.012
Mean cross entropy | 0.575 + 0.021
Single evaluation time = 2.33 ms/example

Batch evaluation speed = 11.1examples/ms

3 g
& =

g False

o

Q

w©

E

Q

®  True

D
I ©
e

predicted class
Figure 8-24. ClassifierMeasurements object of the classifier function

The object returned is called a ClassifierMeasurementsObject (see Figure 8-25),
which is used to look for the properties of the ClassifierFunction after testing the test
set. Just like with the linear regression model, the report of the test set is suppressed as it
returns the same as in Figure 8-24.

In[84]:=cM["Report"];
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The report in Figure 8-24 shows information such as the number of test examples, the
accuracy, and the accuracy baseline, among others. It also shows you the confusion
matrix, which shows you the prediction results for the classification model, showing the
number of correct and incorrect predictions; these being broken down by class, in this
case, return either false or true, which gives you an idea of the errors the model is making
and the type of error it is making. It shows you the true positives and true negatives and

false positives and false negatives for each class.
Let’s look at the graph (confusion matrix) concretely (see Figure 8-25).

In[85]:
Out[85]

cM["ConfusionMatrixPlot"]

True

False 127

actual class

140 £ . False
N

True 48 82

[+2]
w

predicted class

Figure 8-25. Confusion matrix plot of the tested model

To get the values of the confusion matrix, use CM[“ConfusionMatrix”] or class
CM[“ConfusionFunction”].

Looking at the plot, you see that the model classified, starting from left to right at the
top, 106 examples of false correctly classified, 21 examples of false as true, 34 examples of
true as false, and 48 examples of true correctly. To better visualize the performance, look
at each class’s ROC curves (see Figure 8-26), their respective values, and the Matthews

correlation coefficient and AUC values.

In[86]:= {cM["ROCCurve"],Dataset@<|{"AUC"->cM[ "AreaUnderROCCurve"]},
{"MCC"->cM[ "MatthewsCorrelationCoefficient"]}|>}
0ut[86]=
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10

AUC False 0.763635
— ROC curve & ,. : — ROC curve IR0
oo — No-discrimination lins |:‘ ’ MCC False 0.436095 |

True 0.436095

{ \'l False -+ 3
—— No-discrimination line

Figure 8-26. ROC curves for each class, along with AUC and MCC values

The two classes have different values in the AUC, but comparing the ROC curve;
the class False has better classification than the True class. Let’s look at which class has
worse examples. You can show the less accurate results of the model, which has the
highest entropy distribution and mean cross-entropy for each class.

In[87]:= cM[{"LeastCertainExamples","ClassMeanCrossEntropy"}]

Out[87]= {{{1st,4,male}->True, {1st,19,male}->False, {1st,22,male}->
False, {1st,24,male}->False, {1st,25,male}->False, {1st,27,male}->
False, {1st,29,male}->False, {1st,30,male}->False, {1st,33,male}->False,
{1st,35,male}->True}, <|False->0.552204,True->0.611137|>}

To get the values of the MCC coefficient, use the following properties:
FalseDiscoveryRate, FalsePositiveRate, FalseNegativeRate (for each class),
FalseNegativeExamples, FalseBegativeNumber (true negatives), FalsePositive and
FalsePositiveNumber (true positive). These are shown in a short form here.

In[88]:= cM[#] & /@ {"FalseDiscoveryRate", "FalseNegativeRate",
"FalsePositiveRate"}

Out[88]= {<|False->0.242857,True->0.304348|>,<|False->0.165354,True->
0.414634|>,<|False->0.414634,True->0.165354|>}

Another way to see if the model behaves consistently in predictions is to look at key
metric values like accuracy, recall, F1 score, precision, and the accuracy rejection plot
(see Figure 8-27). Let’s look at these metrics for the model.

In[89]:= cM[{"Accuracy", "Recall", "FiScore",
"Precision”, "AccuracyRejectionPlot"}] // TableForm
Out[89]//TableForm=
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0.736842

<|False -» 0.834646, True —» 0.585366 >
<|False » 0.794007, True » 0.635762 >
<|False - 0.757143, True » 0.695652 |>

1.0 - R ]

0.6/

Accuracy

0.4}

0.2}

00 02 04 06 08 10

RejectionRate

Figure 8-27. TableForm for the values of Accuracy, Recall, F1Score, Precision, and
AccuracyRejectionPlot

To see related metrics about the accuracy, type the following properties: Accuracy
(number of correctly classified examples), AccuracyBaseline (accuracy of predicting
the standard class), and AccuracyRejectionPlot (ARC plot, accuracy rejection curve).
However, to find information about probability and the predicted class of the test set,
use the following properties: DecisionUtilities (value of the utility function for every
example in the test set), Probabilities (probabilities for every example in the test set), and
ProbabilityHistogram (histogram of class probabilities). Let’s look at how the probability
behaves by plotting the probability of a passenger’s survival status (see Figure 8-28),
remembering that the false state means that a passenger did not survive, and True

means that a passenger did survive.

In[90]:= plotClass[classi , class2 , class3 , gender , prob ,
frame , ticks ,
imgSize ] := Plot[{cF[{class1, age, gender}, "Probability" -»>
prob], cF[{class2, age, gender}, "Probability" -> prob], cF[{class3,
age, gender}, "Probability" -> prob]}, {age, 0, 90}, PlotlLegends ->

{gender <> " in 1st class", gender <> " in 2nd class", gender
<> " in 3rd class"}, FramelLabel -> {Style["Age in years", Bold,
15], Style["Probability", Bold, 15]}, Frame -> frame, FrameTicks ->
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ticks, GridLines -> {{20, 40, 60, 80}},

ImageSize -> imgSize]

truPlot = {plotClass["1st", "2nd", "3rd", "male", True, True,

All,
All,

Medium],
Medium]};

plotClass["1st", "2nd", "3rd", "female", True, True,

falsePlot = {plotClass["1st", "2nd", "3rd", "male", False, True,

All, Medium],
All, Medium]};

headings = {Style["True class", Black, 20,
Style["False class", Black, 20, FontFamily -> "Arial

Rounded MT"],
Rounded MT"]};

Grid[{{headings[[1]], headings[[2]]}, {truPlot[[1]],
Alignment -> {{Center, Center}, {None,

{truPlot[[2]], falsePlot[[1]]}},
None}}, Dividers -»> {False, 1}]
out[92]=

plotClass["1st", "2nd", "3rd", "female", False, True,

FontFamily -> "Arial

falsePlot[[2]]},

True class

False class

0 20 40 B0 80

0.50
10.45
040 —— male in 1st class

— female in 1st class

g T~ ** — malein2ndclass — female in 2nd class
= 030 \h\\“-—\ T—={0.30 ) i
_ = male in 3rd class — female in 3rd class
0.25 T—_{0.25
© 20 40 60 80
Age in years Age in years
0 20 40 60 80 0 20 40 60 0
0.75| —10.75
e = | —
£ .t . : ] £ o0 st __~{070 )
:E gy = -5 79 = female in 1st class :’E‘ 0655/ -r"_’,,- Qs — male in 1st class
2 085 ~— T—__|085 — female in 2nd class ] 0.60 —— male in 2nd class
= 4 4 [
o 060 \ 080 — female in 3rd class & 055 — male in 3rd class

Age in years

0 20 40 60 80
Age in years

Figure 8-28. Probabilities of each class, depending on the class, age, and sex

The graphs shown in Figure 8-30 clearly show that males’ probability of survival

decreases as age increases, even to hit values below 20% of chance, whether 1st, 2nd, or

3rd class. This is contrary to the probability of survival for females, where it starts with

values above 80% of chance and decreases as age increases, too, hitting values above

50% for 1st class.

337



CHAPTER 8 MACHINE LEARNING WITH THE WOLFRAM LANGUAGE

Data Clustering

The data clustering method is unsupervised learning, as referenced by M. Emre Celebi,
and Kemal Aydin in Unsupervised Learning Algorithms (Springer, 2018). It is generally
used to find structures and characteristics of data clusters, where the points to be
observed are divided into different groups by which they are compared based on unique
characteristics.

The following example creates a bivariate data series and plot the list of points (see
Figure 8-29). To find clusters, there is the Find Clusters command; this command makes
a partition of the points according to their similarities.

In[93]:= BlockRandom[

SeedRandom[321];

rndPts=Table[{i,RandomReal[{0,1}]},{i,1,450}];]
ListPlot[rndPts,PlotRange->All,PlotStyle->Directive[Thick,Blue],Frame->
True, FrameTicks->All]

out[93]=
0 100 200 300 400
10 . ' . Y ’ LY Tar 10
- o 3 e .'.. LI | - = : « ® 4
B oo B S g KL ape w L,
de ; :- .t e . . 4 4 "
L :e, 5 * - .. i g
06 . L3 - ': - u' » w e g . , - OG
> - — *e . - v
A B - X L TN LR T
[ . N S o a :|' " .‘ ':' "]
gl %ye i 3w SV e e 0Tt 02
. .' L 3 g J 1 .~ % ? » : .. - |
T . ' . - LR i *
Mgk . 0% 3% Pt Lsath =300
0 100 200 300 400

Figure 8-29. 2D scatter plot of random data

Clusters Identification

The FindClusters function is used to detect partitions within a set of data with
similar characteristics. This function gathers the cluster elements into subgroups
that the function finds. When you do not add options to the Find Clusters command,
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Mathematica automatically sets the cluster identification parameters. Options for
other machine learning methods can also be used for this command; for example,
PerformanceGoal, Method, and RandomSeeding.

In[94]:= clusters=FindClusters[rndPts,PerformanceGoal->"Speed",Method-
>Automatic,DistanceFunction->Automatic,RandomSeeding->1234];
Short[clusters,1]
Out[95]//Short={{{1,0.924416},{8,0.951038},<<162>>,{443,0.824999}},{<<1>>},
{<<1>>}}

Let’s look at how many clusters were identified. You use the Length command; this
way, you obtain the general form of the list.

In[96]:= Length[clusters]
Out[96]= 3

You see that the result is three. This can be interpreted as follows: the list contains
three elements (that is, three sublists), each list represents a cluster, and within each
cluster, there is a sublist, which includes the points of each identified cluster. To
determine how many elements are included in each cluster, use the Map command and
apply the Dimension command at the specification level.

In[97]:= Map[Dimensions,clusters,1]
Out[97]= {{165,2},{143,2},{142,2}}

This tells you that the first cluster contains 165 elements, the second cluster contains
143 components, and the third cluster contains 142 elements; these are the same
number of points you created earlier, totaling 450. Each cluster consists of a two-point
coordinate system. The FindClusters command returns the points where it identifies the
clusters. Figure 8-30 exhibits the plot of the clusters generated.

In[98]:= ListPlot[clusters,PlotStyle->{Red,Blue,Green},PlotLegends->
Automatic,Frame->True,FrameTicks->All,PlotLabel->Style["Cluster Plot",
Italic,20,Black],Prolog-> {LightYellow,Rectangle[Scaled[{0,0}],

Scaled[{1,1}]]1}]
Out[98]=
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Cluster Plot
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Figure 8-30. 2D scatter plot of the three clusters identified

Find Clusters automatically colors the clusters. To explicitly establish the number of
clusters to search, you add the desired number as the second argument—that is, in the

” «

form FindCluster [“points,” “a number of clusters”]. In the previous example, you set the
method option to automatic. The different methods for finding the clusters are shown
here. Agglomerate (which is the algorithm of single linkage clustering), density-based
spatial clustering of applications with noise (DBSCAN), NeighborhoodContraction
(nearest-neighbor chain algorithm), JarvisPatrick (Jarvis\[Dash]Patrick clustering
algorithm), KMeans (k-means clustering), MeanShift (mean-shift clustering), KMedoids
(k-medoids partitioning), SpanningTree (minimum spanning tree clustering), Spectral

(spectral clustering), and GaussianMixture (Gaussian mixture model).

Choosing a Distance Function

In addition to the method option, there is also the DistanceFunction, which was given
the value of Automatic. This option defines how the distance between the points is
calculated. In general, when you choose automatic, the square Euclidean distance is
used (D(y; — x;)»). There are also other values for the distance function,

Euclidean distance (3 /( Y, =X, )2 ), Manhattan distance ()’ | x; — yi|), Chessboard

distance, or Chebyshev distance ((Jx; — yi|) ), among others. Now that you know how the
clusters are identified, you want to know the centroid of each one. For this it is necessary to
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calculate the mean of the points of the clusters. The centroid of a series of points is obtained

from the expression ( U=y ﬁ} which can be interpreted as the average of the points. For
n

the calculation, you extract the data from each cluster and calculate its arithmetic mean.

In[79]:={clusteriCentroid,cluster2Centroid,cluster3Centroid}={N@Mean@
clusters[[1,A11]],N@Mean@clusters[[2,A11]],N@Mean@clusters[[3,A11]]}
Out[79]= {{224.806,0.810328},{105.14,0.331805},{347.514,0.31097}}

Let’s plot the clusters with their centroids to visualize how the points are classified
for each centroid (see Figure 8-31).

In[99]:= clusterPlot=ListPlot[clusters,PlotStyle->{Red,Blue,Green},
PlotLegends->{"Cluster 1","Cluster 2","Cluster 3"}];
centroidPlot=ListPlot[{clusteriCentroid,cluster2Centroid,cluster3Centroid},
PlotStyle->Black];
Show[{clusterPlot,centroidPlot},Prolog->{LightYellow,Rectangle[Scaled[{0,0
}1,Scaled[{1,1}]]},Frame-> True,FrameTicks-> All,PlotLabel->Style["Cluster
Plot",Italic,20,Black]]

Out[100]=
Cluster Plot
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Figure 8-31. 2D scatter plot of the three clusters identified with their respective centroids
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To make sure the first cluster corresponds to the red points, try using ListPlot to plot
the points contained in clusters|[1, All]], as well as those in the second cluster (blue) and
third cluster (green). Alternatively, you can highlight the area of the centroids by adding
the Epilog option to the plot. Epilog is another graphic option like Prolog, but you can
use it to highlight the location of the centroid points (see Figure 8-32).

In[101]:= Show[{clusterPlot, centroidPlot}, Prolog -> {LightYellow,
Rectangle[Scaled[{0, 0}], Scaled[{1, 1}]]}, Frame -> True,
FrameTicks -> All, Epilog -> {Opacity[0.2], PointSize[0.1],

Point[clusteriCentroid], Point[cluster2Centroid],
Point[cluster3Centroid]}]
Out[101]=
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Figure 8-32. 2D scatter plot of the three clusters identified with their respective
centroids

Identifying Classes

Once the clusters are identified by the command FindClusters, you can use

the ClusteringComponents command to label or identify the different classes
found. You must specify the number of clusters and where to look for the clusters
within the ClusteringComponents command since there are several ways to use
ClusteringComponents.
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In[102]:= classes=ClusteringComponents|clusters,3,2,Method->Automatic,
DistanceFunction->Automatic,RandomSeeding-> 1234,PerformanceGoal->"Speed"]
//Shallow
Out[102]={{1,2,1,2,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,2,1,2,
1,2,2,1,1,1,1,2,1,1,2,1,1,2,1,2,2,2,2,1,1,2,2,1,2,2,2,2,2,2,1,1,2,2,2,2,1,
2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2},{1,1,1,1,1,1,1,1,1,1,1,1,1,
i,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
i,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,3,1,1,3,1,3,1,1,1,1,1,1,1,1,3,1,3,3,1,
3,1,1,3,1,1,1,1,3,1,3,1,1,1,3,3,1,3,3},{3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,2,2,3,3,3,3,3,2,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,2,
2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,
2,3,3,3,3,3,2,3,3,3,3,2,3,3}}

In this way, numbers that correspond to the three classes appear. The command
only identifies three types of classes; it does not mention what each class means. This is
because cluster methods are often performed on unlabeled data, so interpretation is part
of the analysis. Let’s count how many elements of each class you have.

In[103]:= Flatten[classes]//Counts
Out[103]= <|1->174,2->132,3->144|>

The command returns that class one contains 174, class two contains 132, and class
three contains 144. One point to clarify is why the clusters identified with FindClusters
and ClusteringCompnents defer. This is because by setting the automatic option in the
distance function, you are telling Mathematica to find the optimal distance function.
Depending on the data, one function might gather elements in different forms, as you
see later.

K-Means Clustering

Thus far, you have seen how to search for clusters in a generic way. This section focuses
on the k-means method. The k-means is a technique to find and classify data groups
(k) so that the elements that share similar characteristics are grouped similarly for the
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opposite case (not similar characteristics). The method calculates the distance between
the data for a centroid to distinguish whether the data contain similarities. The elements
that have less distance between them is those that share similarities. This technique is
an iterative process in which the groups are adjusted until they reach a convergence.
The k-means method, a simple algorithm, makes a classification employing specific
partitions in different groups, where each point or observation belongs to the group.
Clustering is done by minimizing the sum of the distances between each object and

the centroid of its group. The k-means clustering technique tries to build the clusters

to have the least variation within a group. This is done by minimizing the expression

(€)=2

p; represents the centroid of each cluster. The square term of the function is the distance

2
X, = yl.| , where C, represents the ith cluster, x; represents the points, and

function; the most used is the square Euclidean distance, as in this case.

To learn more about the mathematical foundation behind this technique, consult the
reference An Introduction to Statistical Learning: With Applications in R by Gareth James,
Daniela Witten, Trevor Hastie, and Robert Tibshirani. (1st ed. 2013, Corr. 7th printing
2017 ed.: Springer).

The Fisher’s Irises dataset in ExampleData is used in the following example.
Recalling the dataset’s features, execute the following code.

In[104]:
Out[104]
width in cm.,Species of iris}

ExampleData[{"Statistics","FisherIris"},"ColumnDescriptions"]

{Sepal length in cm.,Sepal width in cm.,Petal length in cm.,Petal

Let’s extract the dataset and assign the variable iris to it.

In[105]:= iris=ExampleData[{"Statistics",
Short[iris,6]

Out[106]//Short= {{5.1,3.5,1.4,0.2,setosa},{4.9,3.,1.4,0.2,setosa},{4.7,3.2
,1.3,0.2,setosa},{4.6,3.1,1.5,0.2,setosa},{5.,3.6,1.4,0.2,setosa},{5.4,3.9,
1.7,0.4,setosa},{4.6,3.4,1.4,0.3,setosa},<<136>>,{6.8,3.2,5.9,2.3,virginica
},{6.7,3.3,5.7,2.5,virginica},{6.7,3.,5.2,2.3,virginica},{6.3,2.5,5.,1.9,
virginica},{6.5,3.,5.2,2.,virginica},{6.2,3.4,5.4,2.3,virginica},{5.9,3.,
5.1,1.8,virginica}}

FisherIris"}];
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Dimensionality Reduction

Since the iris dataset consists of four features classified into three species types, you use
the PCA method, as this method is used to reduce high-dimensionality problems. In
this case, you want to represent these features through two main components. For this,
you proceed to standardize the data—that is, they have zero mean and one standard
deviation since the variables with larger variance are more likely to affect the PCA.

In[107]:= sT=Standardize[iris[[All,{1,2,3,4}]]]; (*Showing only the first
4 terms*)

%[[1;;4]]//TableForm

Out[108]//TableForm= -0.897674 1.0156 -1.33575 -1.31105

-1.1392 -0.131539 -1.33575 -1.31105
-1.38073 0.327318 -1.3924 -1.31105
-1.50149 0.0978893 -1.2791 -1.31105

There are two ways to do the process, either using the DimensionReduce command
or the DimensionReduction command, which are used to reduce the dimensions of
the data. The difference between the two is that the first returns the values as a list. The
second returns a DimensionReducerFunction (see Figure 8-33) as output, as in the
case of Predict and Classify. Both belong to the Wolfram Language special functions for
machine learning. For this case, you use the DimensionReduction command. Since you
have the data, you introduce the standardized data as arguments, followed by specified
target dimensions (2), with the PrincipalComponentAnalysis method. This gives you the
DimensionReducerFunction that assigns the name DR.

In[109]:= dR=DimensionReduction[sT,2,Method->"PrincipalComponentsAnalysis"]
Out[109]=
DimensionReducerFunction[ ':",- "'f)"t l”:'? _N_u_m_ericawecmr @) ]
#* Qutput dimension: 2
Method: PrincipalComponentsAnalysis
Number of training examples: 150

Figure 8-33. DimensionReductionFunction object
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The properties of the function are “ReducedVectors” (list of reduced vectors),
“OriginalData” (deduction from the original data list given the reduced vectors),
“ReconstructedData” (data reconstruction by reduction and inversion), “ImputedData”
(missing values replaced by imputed ones). You call the standardized data values
function, showing the first five. The coordinates x and y are for the principal components
1 and 2, respectively.

In[110]:= pCA=dR[sT, "ReducedVectors"]; TableForm[%[[1;;5]],TableHeadings
->{None, {"First principal component","Second Principal component"}},
TableAlignments->Center]

Out[111]//TableForm= First principal component Second Principal component
2.2647 -0.480027

2.08096 0.674134

2.36423 0.341908

2.29938 0.597395

2.38984  -0.646835

This calculates the variance of each component, followed by the total to find the
proportion of variance explained. PC1 represents 76% of the data dispersion, and
PC2 represents 23%. To obtain the accumulated percentage, you add the variations
of each component. To view more depth about the proportion of variation, refer to
An Introduction to Statistical Learning: With Applications in R by G. James, D. Witten,
T. Hastie, and R. Tibshirani (Springer, 2017).

In[112]:= Variance@pCA[[All, All]]/Total@Variance@pCA[[A1ll, All]]
// TableForm[#, TableHeadings -> {{"First PC variation", "Second PC
variation"}, None}] &

Out[112]//TableForm=
First PC variation | 0.761507
Second PC variation | 0.238493

You look at the plot (see Figure 8-34) of the main components made by the previous
process. If you look over the complete iris data from the ExampleData, the first 50
elements correspond to the setosa species, the next 50 to versicolor, and the last 50 to
virginica.
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In[113]:= labels={Style["First principal component", Black, Bold],
Style["Second Principal component”,Black,Bold]};ListPlot[{pCA[[1 ;; 50]],
pCA[[51 ;; 100]], pCA[[100 ;; 150]]},PlotLegends->Placed
[{Placeholder["setosa"], Placeholder["versicolor"], Placeholder
["virginica"]}, Right], PlotMarkers -> "OpenMarkers", GridLines -> All,
Frame -> True, Axes -> False, FrameTicks -> All, Framelabel -> labels]
Out[114]=
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Figure 8-34. Scatter plot of the two principal components

Applying K-Means

Now, let’s find the clusters with k-means using the Manhattan distance. You assume

that the data can be divided into three clusters by specifying to look for three clusters.
You know the original data belongs to three species (setosa, versicolor, and virginica).
The plot of the clusters is shown here (see Figure 8-35), with their respective centroids.
When choosing the k-means method, suboptions can be added, like InitialCentroids.
Costum start centroids (a list of centroid coordinates) can be typed, or you can leave the
automatic option. To enter the centroids coordinates, you use the following form Method
— {“KMeans,” InitialCentroids” — {{x1, y1}, {x2,y2}, {x3,y3} ... }}, where x1, y1 represent
the centroid of the C1 (cluster 1). Initial centroids are not given to the command
FindClusters to keep some randomness.
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In[115]:= clstr = FindClusters[pCA, 3, Method ->

"KMeans", DistanceFunction -> SquaredEuclideanDistance, RandomSeeding
-> 8888];ListPlot[clstr, PlotRange -> All, Frame -> True, AspectRatio ->
0.8, Axes -> False, PlotStyle -> {ColorData[97, 1], ColorData[97, 2],
ColorData[97, 3]}, PlotLabel ->  Style["K-

means clustering for K=3", FontFamily -> "Times", Black, 20, Italic],
FrameTicks -> All, PlotLegends -> Placed[{Placeholder[Style["Cluster 1",
Bold, Black, 10]], Placeholder[Style["Cluster 2", Bold, Black, 10]],
Placeholder[Style["Cluster 3", Bold, Black, 10]]}, Right], PlotMarkers

-> "OpenMarkers", FramelLabel -> labels, GridLines -> All, Epilog ->
{Opacity[1], PointSize[0.01], Point[Mean@clstr[[1, All]]], Point[Mean@
clstr[[2, A11]]], Point[Mean@clstr[[3, A11l]]]}]

Out[115]=
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Figure 8-35. 3 clusters identified of the two principal components

In Figure 8-35, the method identifies the left points as a single cluster (setosa specie),
whereas some points between clusters 2 and 3 might be misclassified.
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Changing the Distance Function

Changing the DistanceFunction can modify how the clusters are arranged; the following
code shows the plot for k = 3 and choosing a different distance function. In the next
block of code, the computation of the clusters is made for the same k (3), with a different
distance function, and stored into their respective variables. Then, the clusters are
plotted (see Figure 8-36) for each of the different distance functions, and finally, they are
displayed within a graphic grid.

In[116]:= clusteringPlot[distanceName_, distanceFunction ]

:= Module[{clusters, pltTitles, points}, clusters = FindClusters[pCA,
3, PerformanceGoal -> "Quality", Method -> "KMeans", DistanceFunction
-> distanceFunction, RandomSeeding -> 8888]; points = Point[Mean[#]]

& /@ clusters; pltTitles = distanceName; ListPlot[clusters, Frame ->
True, AspectRatio -> 0.8, PlotMarkers -> "OpenMarkers", PlotStyle ->
{ColorData[97, 1], ColorData[97, 2], ColorData[97, 3]}, GridlLines -»
All, PlotRange -> Automatic, ImageSize -> 300, Framelabel -> labels,
Axes -> False, FrameTicks -> All, Epilog -> {Opacity@1, PointSize@0.03,
points}, PlotLabel -> Style[pltTitles, Black]]]

eDplt = clusteringPlot["Euclidean Distance", EuclideanDistance];
mhDplt = clusteringPlot["Manhattan Distance", ManhattanDistance];
chDplt = clusteringPlot["Chessboard Distance", ChessboardDistance];
cosDplt = clusteringPlot["Cosine Distance", CosineDistance];

legendsText = {Placeholder[Style["Cluster 1", Bold,

Black, 10]], Placeholder[Style[ "Cluster 2", Bold,

Black, 10]], Placeholder[Style["Cluster 3", Bold, Black,
10]]};Labeled[Legended[ GraphicsGrid[{{eDplt, mhDplt},

{chDplt, cosDplt}},Frame->All,Background->White,Spacings->1],
PointLegend[{ColorData[97,1], ColorData[97,2], ColorData[97,3]},
legendsText, LegendMarkers -> "OpenMarkers"]], Style["K-means clustering
for K=3", FontFamily -> "Times", Black, 20, Italic], Top]

Out[117]=
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K-means clustering for K=3
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Figure 8-36. K-means clustering for K = 3, for different distance functions

The clusters can have different arrangements with different distance functions; one
thing to note also is that the cluster’s centroids change in each of the subfigures.

Different k’s

Having seen that for different distance functions, the clusters can vary, let’s now
construct the process but with different k's—that is, for k=2, 3, 4, and 5, as exhibited in
Figure 8-37.

In[117]:= findKClusters[k , PCA ] := FindClusters[PCA, k,
PerformanceGoal -> "Speed", Method -> "KMeans",DistanceFunction ->
SquaredEuclideanDistance, RandomSeeding -> 8888];

plotKClusters[k , clusters ] := ListPlot[clusters, Frame -> True,
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AspectRatio -> 0.8, PlotMarkers -> "OpenMarkers", PlotStyle ->
ColorData[97, "ColorList"][[;; k]], GridLines -> All, PlotRange ->
Automatic, ImageSize -> 260, FramelLabel -> labels, Axes -> False,
FrameTicks -> All, Epilog -> {Opacity@1, PointSize@0.015, Point[Mean
/@ clusters]}, PlotLabel -> Style["K=" <> ToString[k], Black]];

kvalues = {2, 3, 4, 5};

kClusters = findKClusters[#, pCA] & /@ kValues;

kPlots = plotKClusters[#, kClusters[[#2]]] & @@@ Transpose[{kValues, Range@
Length@kValues}];

legendsText2 = {Placeholder[Style["Cluster " <> ToString[#], Bold, Black,
10]]} & /@ Range@s;

Labeled[Legended[ GraphicsGrid[Partition[kPlots, 2], Frame ->

All, Background -> White, Spacings -> 1], PointlLegend[ColorData[97,
"ColorList"][[;; 5]], legendsText2, LegendMarkers ->

"OpenMarkers"]], Style["K-means clustering for K=2,3,4,5", FontFamily ->
"Times",  Black, 20, Italic], Top]

Out[120]=
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K —means clustering for K=2,34,5
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Figure 8-37. K-means for K from2to 5

The arrangement of the clusters also depends on the number of ks. Complementing
with ClusteringComponents, you can count the number of labels registered for a k = 3.

In[120]:= ClusteringComponents[clstr,3,2,Method->"KMeans",DistanceFunction
->SquaredEuclideanDistance,RandomSeeding->8888]

Counts[Flatten[%]]
Out[121]={{1,2,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},{2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2},{3,3,3,3,2,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,2,3,2,
3,3,3,3,3,3,2,3,3,2}}

Out[122]= <|1->50,2->51,3->49]|>
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Given a clustering problem, the k-means technique is meant to be used for

unlabeled data—that is, data without defined categories. Some factors that can alter the

operation of the method include the following.

The spread, or how far apart the points are. This is reflected if
the data contains outliers or are in various scales, which can be
erroneously classified as part of a cluster when the opposite is
observed visually.

The dimensionality of the data. Given that more information and
features are often added to the model, the number of dimensions
grows, leading to the “curse of dimensionality.” This type of problem
can be solved using data transformation methods, as in the example
seen from PCA, but with some restrictions since the PCA method can

lose sensitive information on the features.

The value of k is determined manually, but when there are high-cost
function values, it can be interpreted that the intra-cluster variation is
high. With low-cost function values, the intra-cluster variation is low.
The last two assumptions can also be attributed to the fact that for lower
values of k, many observations can be grouped into large individual
clusters. For high values of k observations, they can be a proper group.

Cluster Classify

Another command that belongs to the cluster functions is called ClusterClassify (see
Figure 8-38). This command works in the same way as Classify does. The following

example uses this command to see how the k-means cluster classifies the species based

on Sepal length and Sepal width. Split the data into halves when you randomly sample.

In[122]:

= BlockRandom[

SeedRandom[ 88888];
RandomSample[iris[[All,{1,2}]]];]
trainingSet=%[[1;,;75]];
testSet=%%[[76;;150]];

In[123]:

= cC=ClusterClassify[trainigSet,3,Method->"KMeans",

DistanceFunction->Automatic,PerformanceGoal->"Speed",RandomSeeding->8888 ]

Out[123]
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Classif“ierFunct“ion[ . :".- Input type: NumericalVector (2) ]
e N Classes: 1, 2, 3

Method: KMeans
Number of training examples: 756

Figure 8-38. ClassifierFunction of the cluster classification model

Figure 8-38 shows the details of the cluster classification model. The input vector is a
numerical vector, the number of classes (three), the method, and the number of training
examples.

Note To correctly use the k-means method, the number of clusters needs to be
specified; otherwise, the command does not execute correctly.

Use the Information command to see the classifier information (see Figure 8-39).

In[124]:= Information[cC]
Out[124]=

Classifier information

Data type = NumericalVector (2)
Classes 1,2,3
Method = KMeans
Single evaluation time = 1.79 ms/example
Batch evaluation speed | 228. examples/ms
Model memory = 73.9kB
Training examples used = 75 examples

Training time = 30.4ms

Figure 8-39. Classifier information for k-means

354



CHAPTER 8 MACHINE LEARNING WITH THE WOLFRAM LANGUAGE

More detailed information about the classifier function is shown in Figure 8-39.
To get the complete list of properties, type “Properties” as a second argument. Many
metrics, such as BatchEvaluationSpeed, BatchEvaluationTime, and TrainingTime, can
compare times with different methods.

In[125]:= Information[cC,"Properties"”]
Out[125]={AcceptanceThreshold,AnomalyDetector,BatchEvaluationSpeed,BatchEv
aluationTime,Calibrated,Classes,ClassNumber,ClassPriors,DistanceFunction,
EvaluationTime, ExampleNumber,FeatureExtractor,FeatureNames,FeatureNumber,
FeatureTypes, FunctionMemory, FunctionProperties,IndeterminateThreshold,
LearningCurve,MaxTrainingMemory,Method,MethodDescription,MethodOption,
MethodParameters,MissingSynthesizer,PerformanceGoal,Properties,Training
ClassPriors,TrainingTime,UtilityFunction}

Let’s now get the information about the classes identified from the cluster classifier,
the number of classes, distance function, feature names, and the training class
probabilities.

In[126]:=Information[cC,#]&/@{"Classes","ClassNumber","DistanceFunction",
"FeatureNames","TrainingClassPriors"}
Out[126]= {{1,2,3},3,EuclideanDistance,{f1},<|1->0.333333,2->0.293333,

3->0.373333[>}

There are three classes: class 1, class 2, and class 3. The distance function used is
EuclideanDistance, and the name f1 refers to the numeric vector features. A simple
example is chosen by choosing a sepal length of 1 and a sepal width of 2 to show the
different properties that can be used when testing the data, shown in the dataset form
(see Figure 8-40). The example is first written, followed by the properties Decision
(cluster that belongs to the example), Distribution (categorical distribution object
for histogram plots), ExpectedUtilities (expected probabilities and indeterminate
threshold), LogProbabilities (log probabilities), Probabilities (probabilities of the test
data based on classes), and TopProbabilities (best probabilities for the test data).

In[127]:=Dataset[AssociationMap[cC[{1,2},#]&,{"Decision","Distribution”,

"ExpectedUtilities"”,"LogProbabilities","Probabilities","TopProbabilities"}]]
Out[127]=
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Decision 3

c icalDi ibuti Input type: Scalar
Distribution ategoricalDistribution Categories: 1]2|3

ExpectedUtilities| ¢ | 1 - 0.0238517,2 - 2.72758 x 107, 3 - 0.976148, Indeterminate - 0. | »
LogProbabilities | <|1 - -3.7359, 2 - -35.8379, 3 - -0.0241407 | >
Probabilities | ¢|1-»0.0238517,2 - 2.72758 x 10,3 - 0.976148 | »

TopProbabilities | {3 —» 0.976148}

Figure 8-40. The dataset of the simple Iris example

The example belongs to the third cluster and that the associated probability is 3 —
0.976148. Look at the rest of the data and plot the cluster classification. The classified
data plot is shown in Figure 8-41.

In[128]:= ListPlot[Pick[testSet,cC[testSet],#]&/@{1,2,3},
PlotMarkers->"OpenMarkers",GridLines->Automatic,PlotLegends->
{Placeholder[Style[ "Cluster 1",Bold,Black,10]],Placeholder[Style["Cluster
2",Bold,Black,10]],Placeholder[Style[ "Cluster 3",Bold,Black,10]]},
Frame->True,FrameTicks->All,FrameLabel->{"Sepal Lenght","Sepal Width"}]
Out[128]=

4.5 5.0 5.5 6.0 6.5 7.0 7.5

4 & 80 & \.,'4
<&, A 1
3% o9 O app A ]
- A AAA AA, !
3tos B0 0 00 0 O AAA AAl3
£ | o 890 00 00 A . O Cluster1
£ 8.0 ovT T | D
= o (o) o o
8 2t o) 42 A Cluster2
»
< Cluster3
! 11
") (Y WPIEY DPPE DU (PRI DS PR lo
45 5.0 55 6.0 6.5 7.0 7.5

Sepal Lenght

Figure 8-41. Cluster classification on the example of the iris data for the first
two features
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As a complement, a probability restriction for values below an established
probability value can be added with IndeterminateThreshold, as depicted in Figure 8-42.

In[129]:= ListPlot[Pick[testSet,CC[testSet,IndeterminateThreshold->
0.6],#]8/@{1,2,3,Indeterminate},PlotMarkers-> "OpenMarkers",PlotLegends->
{Placeholder[Style["Cluster 1",Bold,Black,10]],Placeholder[Style["Cluster
2",Bold,Black,10]],Placeholder[Style[ "Cluster 3",Bold,Black,10]],Placeholder
[Style[ "Indeterminate”,Bold,Black,10]]},Frame->True,FrameTicks->
All,FramelLabel->{"Sepal Lenght","Sepal Width"},GridLines->Automatic]
Out[129]=

45 5.0 55 6.0 6.5 7.0 75
T T T
4| < 80 o 14
o® D Aan An _
L 30 B 000 0 O _AaA A A3 O Cluster1
E o 880 080 00 & i
= o B o il | A Cluster2
g 2 o 2
(5] < Cluster 3
1] 1 0 Indeterminate
45 5.0 55 6.0 6.5 7.0 75
Sepal Lenght

Figure 8-42. Cluster classification on the example of the iris data for the first two
features with a probability restriction

Summary

The first part of the chapter discussed machine learning, the gradient descent algorithm,
and its comprehensive implementation. Then, the linear regression model was
introduced by exploring the Boston dataset and the guide to creating, measuring, and
refining the created model. This previous process is also carried out for the logistic
regression but with the Titanic dataset. As the chapter concluded, you learned about
data clustering and k-means clustering.
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CHAPTER 9

Neural Networks with
the Wolfram Language

This chapter starts with the basic foundations of the neural network framework in the
Wolfram Language. The chapter begins with the concepts of layers, how to use the
commands for different layers, and the most common layers. You learn how to enter
data into the layers by the net port and the different forms of equivalent expression of the
layers. This topic is followed by how to distinguish different layers by their symbol. You
see that layers can have multiple options that enable them to have various specifications
by viewing the concept of a layer in the Wolfram Language scheme, comparing different
layers with different purposes, and performing different computations. You also achieve
this by looking at the various activation functions supported by the Wolfram Language
and inspecting the plots of each function in addition to different syntax forms. Next,

you learn about encoders and decoders and how these tools are used to construct a
neural network model, depending on the task to be fulfilled. You then learn how these
encoders and decoders are used to convert different data types to numeric arrays and
how to convert the numeric arrays back to the initial data. You introduce the concept

of a container, what it means for the created models, and what types exist. You see how
to handle and build containers with different commands and graphically visualize the
created model. You see how the Wolfram Neural Net Framework supports MXNet-
related operations and how to export a network to the format of the MXNet operation.
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CHAPTER9  NEURAL NETWORKS WITH THE WOLFRAM LANGUAGE

Layers

It is necessary to understand that neural networks, in general and in the Wolfram
Language, are built from layers. A layer is a term that can be applied to a collection of
nodes that operate together at a specific level within the neural network. The layer is an
essential and straightforward member for constructing a neural network.

Input Data

The data handled by the layers is of a numeric type and not of another kind. Input
variables can be vectors, a unidimensional list, matrixes, a two-dimensional list, arrays,
a list of lists, or any other numeric tensor. These input variables can be either features or
attributes of the dataset of study, with a known or multidimensional shape. These types
of input attributes are associated with the input layer, for which the feature size, in turn,
must be equal to the input size of a layer, but not every layer receives the same input and
returns the same output; every input varies depending on the type of layer to be used.
This definition is one of the most basic ideas in neural networks since they are a crucial
component of the whole structure that involves the term neural network. A remark here
is to distinguish input from input layer since they do not mean the same.

Linear Layer

A linear layer is the most common and widely used layer in a neural network. To build
the simplest layer in the Wolfram Language, use the LinearLayer command.

In[1]:
Out[1]=

LinearLayer["Input"->1,"Output"”->2]

Li nearLayer[ u:.:uf.n_x:d Input: vector (size: 1)
¥ Output: vector (size: 2)

Figure 9-1. LinearLayer object

Figure 9-1 represents the LinearLayer object in the Wolfram Language. Clicking the
plus icon shows the internal parameters, including details about the layer port’s input
and output and array rank of the weights and biases of the linear layer, as shown in
Figure 9-2.
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e B B
LinearlLayer [ uninitialized Parametery

¢ % QutputDimensions: 2
Arrays
Weights: matrix (size: 2x1)
Biases: optional vector (size: 2)
Input Port
Input: vector (size: 1)
Output Port
Qutput: vector (size: 2)

Figure 9-2. Expanded LinearLayer object

Each layer has an input port and an output port. Each port has an associated size of
what is entering the layer and what is going out. In the latter case, a vector of size one is
entering, and the layer returns a vector of size two.

Weights and Biases

The general form of a linear layer is given by the following expression of the dot product
w-x + b, where x is the data vector, w represents the matrix of the weights, and b is the
vector of the biases. Linear layers have other associated names, like fully connected
layers, as in the MXnet framework. The input of the layers in the Wolfram Language
receives numerical tensors as input—that is, they only act on numerical arrays. To
explicitly enter the size of input and output, you write the form of the input port and

the output port followed by different options: “Input” or “Output” — {size, Options.}.
Options include defining a real number (Real), a vector of form n (single number n),

an array ({nl *n2 * n3} ...), or a NetEncoder, which you see later. Following are some
equivalent ways to write layers, as depicted in Figure 9-3.

In[2]:= LinearLayer["Input"->{2,"Real"},"Output”->{3,1}]
Out[2]=

uﬁipig?al_izga Input: vector (size: 2) ]

LinearLayer [ nitiali
Output: matrix (size: 3x2)

Figure 9-3. LinearLayer with different input and output rank arrays
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As shown in Figure 9-3, the layer receives a vector of size two (list of length 2),
comprised of real numbers, and the output is a matrix of the shape 3x2. When a real
number is specified within the Wolfram Neural Network Framework, it works with the
precision of a Real32. When no arguments are added to the layer, the input and output
shapes are inferred. To manually assign the weights and biases, write “Weights” —
number, “Biases” — number; None is also available for no weights or biases. This is
shown in the following example, where weights and biases are set to a fixed value of 1
and 2 (see Figure 9-4).

In[3]:= LinearLayer["Input"-> 1,"Output”-> 1,"Weights"-> 1,"Biases"-> 2]
Out[3]=

A7 Input: vector (size: 1

LinearLayer1 2

Output: vector (size: 1

Figure 9-4. Initialized linear layer, with fixed biases and weights

Initializing a Layer

Another command allows you to initialize the layer with random values:

Netlnitialize. So, to establish hold values of weights or biases, you can also use the
LearningRateMultipliers option (see Figure 9-5). Besides this, LearningRateMultipliers
also mark the rate at which a layer learns during the training phase.

In[4]:= NetInitialize[LinearLayer["Input"-> "Real","Output"->
"Real",LearningRateMultipliers->{"Biases"->1}]]
Out[4]=
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. ®.® P Parameters

LimearLayee &% QutputDimensions: {} (scalar)
Arrays
Weights: matrix (size: 1x1)
Biases: vector (size: 1)
Input Port
Input: real
Output Port
Qutput: real

Training Parameters
LearningRateMultipliers: {Biases — 1}

Figure 9-5. LinearLayer with training parameters

When a layer is initialized, the uninitialized text disappears. If you observe the properties
of the new layer, they appear within the training parameters where fixed biases have been
established, and a learning rate has been set. The options for NetInitialize are Method and
RandomSeeding. The available methods are Kaiming, Xavier, Orthogonal (orthogonal
weights), and Random (weights selection from a distribution). For example, you can use the
Xavier initialization sampling from a normal distribution, as seen in Figure 9-6.

In[5]:= NetInitialize[LinearLayer["Input"-> "Real","Output”->
"Real",LearningRateMultipliers->{"Biases"->1}],Method->

{"Xavier","Distribution"->"Normal"},RandomSeeding->888]
Out[5]=
= A7 Input real
L L -
b ayer[ ¥ % output: real

Figure 9-6. LinearLayer initialized with the Xavier method

Note The Option command is recommended to see the options set for a layer.

Despite being able to establish the weights and biases manually, it is advisable to
start the layer with random values to maintain a certain level of complexity in the overall
structure of a model since, on the contrary, this could have an impact on the creation of
a neural network that does not make accurate predictions for non-linear behavior.
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Retrieving Data

NetExtract retrieves the value of the weights and biases in the form NetExtract [net,
{levell, level2, ...}. The weights and bias parameters of the linear layers are packed in
NumericArray objects (see Figure 9-7). This object has the values, dimensions, and
type of the values in the layer. NetExtract also serves to extract layers of a network with
many layers. NumericArrays are used in the Wolfram Language to reduce memory
consumption and computation time.

In[6]:= linearL=NetInitialize[LinearLayer[2, "Input"->
1],RandomSeeding->888];
NetExtract[linearL,#]&/@{"Weights","Biases"}//TableForm
Out[7]//TableForm=

Type: Real32 ]

NumericArray [ Dimensions: {2, 1}

Type: Real32

mericAr . .
NumericA ray[ Dimensions: {2}

Figure 9-7. Weights and biases of a linear layer

With Normal, you convert them to lists.

In[8]:=TableForm[SetPrecision[{{Normal[NetExtract[linearL, "Weights"]]},
{Normal[NetExtract[linearL,"Biases"]]}},3],TableHeadings->{{"Weights

->","Biases ->"},None}]

Out[8]//TableForm=
Weights -> -0.779
0.0435

Biases -> 0

0

For instance, a layer can receive a length of one vector to produce an output vector

of size 2.
In[9]:= linearlL[4]
Out[9]= {-3.11505,0.174007}
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The layer can only be evaluated when input is introduced in the appropriate shape.

In[10]:= linearL[{88,99}]

During evaluation of In[10]:= Linearlayer::invindatal: Data supplied
to port "Input" was a length-2 vector of real numbers, but expected a
length-1 vector.

Out[10]= $Failed

The weights and biases are the parameters that the model must learn from, which
can be adapted based on the input data that the model receives, which is why it is
initialized randomly since if you try to extract these values without initializing, you
cannot because they have not been defined

Layers have the property of being differentiable. It is achieved with NetPortGradient,
which can represent the gradient of a net output for a port or a parameter. For example,
give the derivative of the output concerning the input for a particular input value.

In[11]:= linearL[2,NetPortGradient["Input"]]
Out[11]= {-0.735261}

Mean Squared Layer

Until now, you have seen the linear layer, which has various properties. Layers with the
icon of a connected rhombus (see Figure 9-8), by contrast, do not contain any learnable
parameters, like MeanSquaredLossLayer, AppendLayer, SummationLayer, DotLayer,
ContrastiveLossLayer, and SoftmaxLayer, among others.

In[12]:
Out[12]

MeanSquaredLossLayer]| ]

MeanSquaredLossLayer | e e INPutPorts
. Input array

Target array

Output Port
Loss real

Figure 9-8. MeanSquaredLossLayer
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MeanSquaredLossLayer[] has more than one input because this layer computes the
mean squared loss, which is the following expression (1/n) )’ (Input - Target)? and has
the property that compares two numeric arrays. With the MeanSquaredLossLayer, the
input/output ports’ dimensions are entered in the same form as a linear layer, and the
input and target values are entered as Associations.

In[13]:= MeanSquaredLosslLayer["Input"->{3, 2},"Target" -> {3, 2}][
Association["Input" -> {{1, 2}, {2, 1}, {3, 2}}, ‘"Target" -> {{2, 2},
{1, 1}, {1, 3}}]]

Out[13]= 1.16667

The latter example computes a MeanSquaredLossLayer for input/output dimensions
of three rows and two columns or by defining first the layer and then applying the layer
to the data.

Note Use the Matrixform[{{1, 2}, {2, 1}, {3, 2}}] command to verify the matrix
shape of the data.

In[14]:= losslLayer=MeanSquaredLosslLayer["Input"->{3,2},"Target"->{3,2} 1;
lossLayer@<| "Input"->{{1,2},{2,1},{3,2}}, "Target"->{{2,2},{1,1},{1,3}}|>
Out[15]= 1.16667

To get more details about a layer (see Figure 9-9), use the Information command.

In[16]:
Out[16]

Information[lossLayer]
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Net Information

Layers Count 1
Arrays Count 0
Shared Arrays Count 0
Input Port Names {Input, Target}
Qutput Port Names {Loss}
Arrays Total Element Count 0

Arrays Total Size 0B

Figure 9-9. Information about the loss layer To know the layer options, use the
following

To know the layer options, use the following.

In[17]:= MeanSquaredLossLayer["Input"->"Real","Target"->"Real"]//Options
Out[17]= {BatchSize->Automatic,NetEvaluationMode->Test,RandomSeeding->
Automatic,TargetDevice->CPU,WorkingPrecision->Real32}

The input port and target port options are similar to that of the linear layer with the
different forms, Input — Real, n (a form of a vector n), {n1 x n2 x n3} ... (an array of n
dimensions), Varying (a vector or varying form) or a NetEncoder, but with the exception
that the input and target must have the exact dimensions. A few forms of layers are
shown in Figure 9-10.

In[18]:= {MeanSquaredlLossLayer["Input"->"Varying","Target"->"Varying"],
MeanSquaredLossLayer["Input"”-> NetEncoder["Image"],"Target"-> NetEncoder["I
mage"]],MeanSquaredLossLayer["Input"->1,"Target"->1]}//Dataset

Out[18]=
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Input Ports

Input: vector of n scalars
MeanSquaredLosslLayer| Target: vector of n scalars J

Output Port

Loss: real

Input Ports

Input: image
MeanSquaredLosslLayer| Target: image ]

Output Port

Loss: real

Input Ports

Input: vector (size: 1)
MeanSquaredLosslLayer [ Target: vector (size: 1) ]

Output Port

Loss: real

Figure 9-10. Loss layers with different input and target forms

Activation Functions

Activation functions are a crucial part of the construction of a neural network. The role
of an activation function is to return an output from an established range, given an
input. In the Wolfram Language, activation functions are treated as layers. The layer that
is frequently used for activation function definition in the Wolfram Language neural

net framework is the ElementwiseLayer. With this layer, you can represent layers that
can apply a unary function to the input data elements—in other words, a function that
receives only one argument. These functions are also known as activation functions. For
example, one of the most common functions used is the hyperbolic tangent (Tanh([x]),
shown in Figure 9-11.

In[19]:= ElementwiselLayer[Tanh[#]&](* Altnernate form
Elementwiselayer[Tanh]*)
Out[19]=
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ElementwiselLayer ) INput: ~EEE ]
Output: array

Figure 9-11. Tanh/[x] function layer

Elementwise layers do not have learnable parameters. The pure function is used
because layers cannot receive symbols. If the plus icon is clicked, detailed information
about the ports and the parameters with the associated function, Tanh, are shown.
Having defined an ElementwiseLayer, it can receive values like the other layers.

In[20]:= Elementwiselayer[Tanh[#]&];

Table[%[i],{i,-5,5}]

out[21]= {-0.999909,-0.999329,-0.995055,-0.964028,-0.761594,0.,0.761594,
0.964028,0.995055,0.999329,0.999909}

When no input or output shape is given, the layer infers the type of data it receives
or returns. For instance, by specifying only the input as real, Mathematica infer that the
output is real (see Figure 9-12).

In[22]:= tanhLayer=Elementwiselayer[Tanh,"Input"-> "Real"]
Out[22]=

Elementw*iseLayer[ o()-e Input: e ]

Output: real

Figure 9-12. ElementwiseLayer with the same output as the input

Or, this can be inferred by entering only the output (see Figure 9-13) for a rectified
linear unit (ReLU).

In[23]:= rampLayer=ElementwiselLayer[Ramp,"Output"-> {1}](*or Elementwiselay
er[ "ReLU","Output” -> "Varying"]*)
Out[23]=

Elementwi seLayer[ e O ¢ Input: vector (size: 1)
Qutput: vector (size: 1) -

Figure 9-13. Ramp function or ReLU
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Note Clicking the plus icon shows the elementwise layer’s established function
and the layer ports’ details.

Every layer in the Wolfram Language can be run through a graphics processor unit
(GPU) or a central processing unit (CPU) by specifying the TargetDevice option. It is
essential to ensure your computer supports the specified functionality, so if you do not
have a GPU, the compulsory target device is the CPU. For example, plot the previously
created layers with the TargetDevice on the CPU (see Figure 9-14).

In[24]:= GraphicsRow@{Plot[tanhLayer[x, TargetDevice -> "CPU"], {x, -12,
12}, PlotLabel -> "Hiperbolic Tangent", AxeslLabel -> {Style["x", Bold,

12], Style["f(x)", Italic]}, PlotStyle -> ColorData[97, 25], Frame ->
True], Plot[rampLayer[x, TargetDevice -> "CPU"], {x, -12, 12}, PlotlLabel

-> "RelLU",AxesLabel -> {None, Style["f(x)", Italic]},FrameLabel -> {{None,
None}, {Style["x", Bold, 12], None}}, PlotStyle -> ColorData[97, 25], Frame
-> Truel}

Out[24]=
Hiperbolic Tangent RelLU
f(x) f(x)
e 7 == imm s qg [
j ' 10}
0.5}
! 8
0.0+ 4 X 6|
E n
-0.5} ;
[ 2|
-1.0}. . 0= .
-10 -5 0 5 10 =10 -5 0 5 10
X

Figure 9-14. Tanh[x] and Ramp|[x] activation functions

Other functions can be used by their name or Wolfram Language syntax—for
instance, the SoftPlus function, as demonstrated in Figure 9-15.
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In[25]:= GraphicsRow@{Plot[ElementwiselLayer["SoftPlus"][x, TargetDevice

-> "CPU"], {x, -12, 12}, PlotLabel -> "SoftPlus", AxesLabel -> {None,
Style["f(x)", Italic]},FrameLabel -> {{None, None}, {Style["x", Bold, 12],
None}}, PlotStyle -> ColorData[97, 25], Frame -> True], Plot[Log[Exp[x]

+ 1], {x, -12, 12}, PlotLabel -> "Log[Exp[x]+1]", AxesLabel -> {None,
Style["f(x)", Italic]}, FrameLabel -> {{None, None}, {Style["x", Bold, 12],
None}}, PlotStyle -> ColorData[97, 25], Frame -> True]}

Out[25]=
SoftPlus Log[Exp[x]+1]

f(x) f(x)
G . ; g i
105 f 105
8! ! 8!

6! 6|
N 4
2| 2|
-10 -5 0 5 10 -10 -5 0 5 10
X X

Figure 9-15. SoftPlus function generated by the associated name and pure function

Other standard functions are shown in the next plots, such as the scaled exponential
linear unit, sigmoid, hard sigmoid, and hard hyperbolic tangent (see Figure 9-16). To
view the functions supported, visit the documentation and type ElementwiseLayer in the
search box.

In[26]:= GraphicsGrid@Partition[Table[If[Or[activation == "Sigmoid",
activation == "HardSigmoid"], Plot[Elementwiselayer[activation]

[x, TargetDevice -> "CPU"], {x, -10, 10}, FramelLabel -> {Style["x",

Bold], None}, AxesLabel -> {None, Style["f(x)", Italic]}, PlotStyle

-> ColorData[97, 25], Frame -> True, PlotlLabel -> activation],
Plot[ElementwiselLayer[activation][x, TargetDevice -> "CPU"], {x, -10, 10},
AxesLabel -> {Style["x", Bold], Style["f(x)", Italic]}, PlotStyle ->
ColorData[97, 25], Frame -> True, PlotlLabel -> activation]], {activation,
{"ScaledExponentiallLinearUnit", "Sigmoid", "HardSigmoid", "HardTanh"}}], 2]
Out[26]=
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ScaledExponentialLinearUnit Sigmoid
f(x) f(x)
T I 1'05' .............
8 0.8
o 0.6
4} |
' 0.4 |
2} ;
0l = [:,2E
Qf—— | [ et
-10 -5 0 5 10 -10 -5 0 5 10
X
HardSigmoid HardTanh
f(x f(x)
o e —— e T
0'8. 05
0.6/ }
¢ 0.0_- X
0.4 I
02! -0.5
OO el || |, L -1.0};
-10 -5 0 5 10 -10 -5 0 5 10

Figure 9-16. Plot of four different activation functions

Softmax Layer

Exp (x_ )
SoftmaxLayer is a layer that uses the expression 5 (x)= Z”TM , where x represents
a vector and x; the components of the vector. This expression is known as the Softmax
function. The functionality of this layer consists of converting a vector to a normalized
vector, which consists of values in the range of 0 to 1. This layer is generally used to
represent a partition of the classes based on the probabilities of each one, and it is used
for tasks that involve classification. The input and output forms in the SoftmaxLayer can

be entered as the other common layers except for the shape of “Real”
In[27]:= sFL=SoftmaxLayer["Input"-> 4,"Output”-> 4];
Now, the layer can be applied to data.

In[28]:= SetAccuracy[sFL[{9,8,7,6}],3]
Out[28]= {0.64,0.24,0.09,0.03}
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The total of the latter equals 1. SoftmaxLayer allows you to specify the level depth
of normalization, which is seen in the parameter’s properties of the layer. A level
of -1 produces the normalization of a flattened list. Also, SoftmaxLayer can receive
multidimensional arrays, not just flattened lists.

In[29]:= SoftmaxLayer[1,"Input"->{3,2}];
SetPrecision[%[{{7,8},{8,7},{7,8}}],3]//MatrixForm
Out[30]//MatrixForm=

0.212 0.422
0.576 0.155
0.212 0.422

Summing the elements of the first columns gives the same for the second column.
Another practical layer is called CrossEntropyLossLayer. This layer is widely used as a
loss function for classification tasks. This loss layer measures how well the classification
model performs. Entering the string Probabilities as an argument of the loss layer
computes the cross-entropy loss by comparing the input class probability to the target
class probability.

In[31]:= CrossEntropylLossLayer["Probabilities","Input"->3 ];

Now, the target form is set to the probabilities of the classes; the inputs and targets
are entered the same way as with MeansSquaredLoss.

In[32]:= %[<|"Input"->{0.2,0.5,0.3},"Target"->{0.3,0.5,0.2}|>]
Out[32]= 1.0702

Setting the Binary argument in the layer is used when the probabilities constitute a

binary alternative.

In[33]:= CrossEntropylLosslLayer["Binary","Input"-> 1];
%[<|"Input"-> 0.1,"Target"-> 0.9]>]
Out[34]= 2.08286

To summarize the properties of layers in the Wolfram Language, the inputs and
outputs of the layers are always scalars and numeric matrixes. Layers are evaluated using
lower number precision, such as single-precision numbers. Layers have the property
of being differentiable; this helps the model to perform efficient learning since some
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learning methods go into convex optimization problems. The Wolfram Language has
many layers, each with specific functions. To display all the layers within Mathematica,
check the documentation or write ?* Layer, which gives you the commands with the
word layer associated at the end. Each layer has different behaviors, operations, and
parameters, although some may resemble other commands, such as Append and
AppendLayer. It is important to know the different layers and what they can do to best
use them.

Function Layer

Another recently introduced (version 12.2) and updated (version 13) layer is the
FunctionLayer. Unlike the ElementwiseLayer, this layer allows users to apply custom
functions that do not come by default in the documentation library. This makes

it a flexible tool for more complex operations, where the function to be applied is
determined by the user (see Figure 9-17).

In[35]:= FunctionlLayer[#*48&]
Out[35]=

Funct‘ionLayar[ 3 oo InpUt: array ]
Qutput: array

Figure 9-17. A function layer that multiplies the input (#) by 4, and & is the pure
function

The input and output definitions are similar to the previous layers you have seen. It
can be an arbitrary array of input with no shape specification. However, the output shape
is determined based on the function used within the layer; for instance, in the previous
example, the input is a scalar (represented as a one-element array) and returns a scalar.

In[36]:= FunctionLayer[1/(1+Exp[-#])&];
%[{2)'3)4}]
Out[37]= {0.880797,0.0474259,0.982014}

With FunctionLayer, built-in functions can also be used instead of user-defined
functions, for instance, the logistic sigmoid function, which returns the same as the
latter code.
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In[38]:= FunctionlLayer[LogisticSigmoid];
%[{2)_3)4}]
Out[39]= {0.880797,0.0474259,0.982014}

A difference between FunctionLayer and ElemewiseLayer is that you can apply a
function to each element independently in the first. On the other hand, it performs
element-wise operations, ensuring shape consistency.

Encoder and Decoders

Suppose audio, images, or other types of variables are intended to be used. In that case,
this type of data needs to be converted into a numeric array to be introduced as input
into a layer. This is where encoders and decoders come into play.

Encoder

Layers must have a NetEncoder attached to the input to perform a correct construction.
The NetEncoders interpret the image, audio, and data to a numeric value to be used
inside a net model. Different names are associated with the encoding type. The most
common are Boolean (True or False, encoding as 1 or 0), Characters (string characters
as one-hot vector encoding), Class (class labels as integer encoding), Function (custom
function encoding), Image (2D image encoding as a rank 3 array), and Image3D (3D
image encoding as a rank 4 array). The arguments of the encoder are the name or the
name and the corresponding features of the encoder (see Figure 9-18).

In[40]:= NetEncoder["Boolean"]

Out[40]=
= TyPE: Boolean
NetEnCOder[ * Dimensions:  {} (scalar) ]
Output: boolean

Figure 9-18. Boolean type NetEncoder To test the encoder, you use the following.

To test the encoder, you use the following.

Print["Booleans:",{%[True],%[False]}]
Booleans:{1,0}

In[41]:
Out[40]
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A NetEncoder can have classes with different index labels. Like a classification of
class X and class Y, this corresponds to an index of the range from 1 to 2 (see Figure 9-19).

In[42]:= NetEncoder[{"Class",{"Class X","Class Y"}}]
Out[42]=

Type: Class

NELENEoRer [ Labels: {"Class X", "Class Y"} ]

Output Form: Index

Dimensions: {} (scalar)

Multilabel: False

Output: index (range: 1..2)

Figure 9-19. Class type NetEncoder

In[43]:= Print["Classes:", %[Table[RandomChoice[{"Class X", "Class Y"}],
{i, 10}]]]

Out[43]= Classes:{1,1,2,2,2,2,2,1,1,1}

The following is used for a unit vector.

In[44]:= NetEncoder[{"Class",{"Class X","Class Y","Class Z"},
"UnitVector"}]; Print["Unit Vector:",%[Table[RandomChoice[{"Class X",
"Class Y","Class Z2"}],{i,5}]]] Print["MatrixForm:",%%[Table[RandomChoice[{"
Class X","Class Y","Class Z"}],{i,5}]]//MatrixForm[#]&]

Out[47]= Unit Vector:{{o,1,0},{0,1,0},{0,1,0},{1,0,0},{0,0,1}}

MatrixForm:

- O O O
o O = O O
o O O -

Depending on the name used inside NetEncoder, properties related to the encoder
may vary. This is depicted in the different encoder objects that are created. To attach a
NetEncoder to a layer, the encoders are entered at the input port—for example, for an
ElementwiseLayer (see Figure 9-20). In this case, the input port of the layer has the name
Boolean; the layer recognizes that this is a NetEncoder of a Boolean type. Clicking the
name Boolean shows the relevant properties.

In[47]:= Elementwiselayer[Sin,"Input"->NetEncoder["Boolean"]]
Out[47]=
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i nput: bool
Elementwiselayer o ) NP oolean ]

Output: real
Figure 9-20. Layer with an encoder attached to the input port

For a LinearLayer, use the following form.

In[48]:= LinearLayer["Input"->NetEncoder[{"Class",{"Class X","Class Y"}}],
"Output"->"Scalar"]
Out[48]=

Clicking the input port shows the encoder specifications, as Figure 9-21 shows.

LinearLayer unilaized Parameters
¥ ®  QutputDimensions: 1
Arrays
Weights: matrix (size: 1x1)
Biases: optional vector (size: 1)
Input Port
Input: class
Output Port
Qutput: scalar

Figure 9-21. Class encoder attached to a Linear Layer

A NetEncoder is also used to convert images into numeric matrixes or arrays by
specifying the class, the size or width, and height of the output dimensions, and the color
space, which can be grayscale, RGB, CMYK, or HSB (hue, saturation, and brightness);
for example, encoding an image that produces a 1x28x28 array in grayscale, or 3x28x28
array in an RGB scale (see Figure 9-22), no matter the size of the input image. The first
rank of the array represents the color channel, and the other two represent the spatial
dimensions.

In[49]:= Table[NetEncoder[{"Image",{28,28},"ColorSpace"-> Color}],
{Color,{"Grayscale","RGB"}}]
Out[49]=
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Image

{NetEncoder[ _aos ‘}
array ( siz 28

, NetEncoder
J L array (s

Figure 9-22. NetEncoders for grayscale and RGB scale images

Once the encoder has been established, it can be applied to the desired image; then,
the encoder creates a numeric matrix with the specified size. Creating a NetEncoder
for an image shows relevant properties such as type, input image size, and color space,
among others. Applying the encoder generates a matrix in the size previously established.

In[50]:=I imgEncoder = NetEncoder[{"Image", {3, 3}, "ColorSpace" ->
"CMYK"}]; Print["Numeric Matrix:", SetPrecision[%[ExampleData[{"TestImage",
"House"}]], 3] // MatrixForm]

Out[50]=

0.255)( 0.145 )(0.0784
0.168 || 0.00392 | 0.0116
0.255 ) 0.255 ){ 0.0274
0.153)( 0.2 )(0.259
0.196 | 0.31 || 0.349
0.129 ){ 0.255 )| 0.306
0.047 )(0.164 )/ 0.262
0.102 || 0.321 || 0.384
0.00784 )\ 0.164 )\ 0.146
0.16 [ 0.255)(0.325
0.262 || 0.408 || 0.388
0.184 )\ 0.478 )| 0.569

The output generated is a numeric matrix that is now ready to be implemented in
a network model. If the input image shape is in a different color space, the encoder
reshapes and transforms the image into the established color space. The image used in
this example is obtained from the ExampleData[{“TestImage,” “House"}].
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Pooling Layer

Encoders can be added to the ports of single layers or containers by specifying the
encoder to the port—for instance, a PoolingLayer. These layers are used primarily on
convolutional neural networks (see Figure 9-23).

In[52]:= poollLayer=Poolinglayer[{3,3},{2,2},PaddingSize->0,"Function"->
Max, "Input"-> NetEncoder[{"Image",{3,3},"ColorSpace"-> "CMYK"}](*Or
ImgEncoder*)]

Out[52]=

" Parameters
Pooli ngLaye"[ ' ._<> KernelSize: {3, 3}

Stride: {2, 2}
PaddingSize:  {{0, 0}, {0, O}}
Function: Max

Dimensionality: 2
Interleaving: False

Input Port

Input: image

Output Port

Qutput: array (size: 4x1x1)

Figure 9-23. PoolingLayer with a NetEncoder

The latter layer has a specification for a two-dimensional PoolingLayer with a
kernel size of 3x3 and a stride of 2x2, which is the step size between kernel applications.
PaddingSize adds elements at the beginning and the end of the input matrix. This is
done so that the division between the matrix and kernel sizes is an integer, preventing
the loss of information between layers. Function indicates the pooling operation
function, which is Max; this calculates the maximum value in each filter patch. It can
also compute the mean and total for the average and summation of the filter values,
respectively. Sometimes, they might be known as max, average, and sum pooling layers.

In[53]:=SetPrecision[poollLayer[ExampleData[{"TestImage", "House"}]],3]
//MatrixForm
Out[53]//MatrixForm=
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(0.255)
(0.349)
(0.384)
(0.569)

Decoders

Once the net operations are finished, it return numeric expressions. On the other hand,
in some tasks, you do not want numeric expressions, such as in classification tasks where
classes can be given as outputs, where the model can tell that a particular object belongs
to a class A and another object belongs to a class B, so a vector or numeric array can
represent a probability of each class. To convert the numeric arrays into other forms of
data, a NetDecoder is used (see Figure 9-24).

In[54]:= decoder=NetDecoder[{"Class",CharacterRange["W","Z"]}]
Out[54]=

Type: Class

NetDecoder[ B obels: ["W, 1xn, myn nze) ]

Input Depth: 1

Multilabel: False

Dimensions: 4

Input: Class

Figure 9-24. NetDecoder for four different classes

The dimension of the decoder is equal to class construction. You can apply a vector
of probabilities, and the decoder interprets it and tells you the class to which it belongs.
It also displays the probabilities of the classes.

In[55]:= decoder@{0.3,0.2,0.1,0.4}(*This is the same as Decoder[{0.3,0.2,0.
1,0,4},"Decision™] *)
Out[55]= Z

TopDecisions, TopProbabilites, and uncertainty of the probability distribution are
displayed as follows.

In[56]:= TableForm[{decoder[{0.3, 0.2, 0.1, 0.4},
"TopDecisions" -> 4](* or {"TopDecisions", 4} the same is for
TopProbabilities*), decoder[{0.3, 0.2, 0.1, 0.4}, "TopProbabilities"
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-> 4], decoder[{0.3, 0.2, 0.1, 0.4}, "Entropy"]}, TableDirections
-> Column, TableHeadings -> {{Style["TopDecisions", Italic],

Style[ "TopProbabilities", Italic], Style["Entropy", Italic]},
None}]Out[56]//TableForm=

TopDecisions YA W X Y
TopProbabilities Z->0.4 W->0.3 X->0.2 Y->0.1
Entropy 1.27985

Given the list of values, input depth is added to define the class’s application level.
In[57]:= NetDecoder[{"Class",CharacterRange["X","Z"],"InputDepth"—2}];
Applying the decoder to a nested list of values produces the following.

In[58]:= TableForm[{%[{{0.1, 0.3, 0.6}, {0.3, 0.4, 0.3}}, "TopDecisions" ->
3](* or {"TopDecisions", 4} the same is for TopProbabilities*), %[{{0.1,
0.3, 0.6}, {0.3, 0.4, 0.3}}, "TopProbabilities" -> 3], %[{{0.1,

0.3, 0.6}, {0.3, 0.4, 0.3}}, "Entropy"]}, TableDirections -»

Column, TableHeadings -> {{Style["TopDecisions", Italic],

Style[ "TopProbabilities", Italic], Style["Entropy", Italic]}, None}]
Out[58]//TableForm=

TopDecisions YA Y
Y X
X z

Z->0.6 Y->0.4
TopProbabilities Y->0.3 X->0.3
X->0.1 Z->0.3
Entropy 0.897946 1.0889

A decoder is added to the output port of a layer, container, or network model.
In[59]:=SoftmaxLayer[ "Output"—NetDecoder[{"Class",{"X","Y","Z"}}]];
Applying the layer to the data produce the probabilities for each class.

In[60]:= {%@{1,3,5},%[{1,3,5},"Probabilities"],%[{1,3,5}, " "Decision"]}
Out[60]= {Z,<|X->0.0158762,Y->0.11731,Z->0.866813|>,Z}

381



CHAPTER9  NEURAL NETWORKS WITH THE WOLFRAM LANGUAGE

Applying Encoder and Decoders

You are ready to implement the whole process of encoding and decoding in Figure 9-25.
First, the image is resized by 200 pixels in width to show how the original image looks
before encoding.

In[61]:= Img=ImageResize[ExampleData[{"TestImage", "House"}],200]
out[61]=

Figure 9-25. Example image of a house when the encoder and decoder are defined

In[62]:= encoder=NetEncoder[{"Image",{100,100},"ColorSpace"-> "RGB"}];
decoder=NetDecoder[{"Image",ColorSpace-> "Grayscale"}];

Then, the encoder is applied to the image, and the decoder is applied to the numeric
matrix. The dimensions of the decoded image are checked to see if they match the
encoder output dimensions (see Figure 9-26).

In[64]:=encoder[img];
decoder[%]
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Figure 9-26. Example of the decoded house

Figure 9-26 shows that the image has been converted into a grayscale image with

new dimensions.

In[66]:= ImageDimensions[%]
Out[66]= {100,100}

As seen, the picture has been resized. Try to look at the steps in the process, like
viewing the numeric matrix and the objects corresponding to the encoder and decoder.
Using the encoders and decoders involves the data type you use because every net
model receives different inputs and generates different outputs.

NetChains and Graphs

Neural networks consist of different layers, not individual layers on their own. The
NetChain command or the NetGraph command is used to construct more complex
structures with more than one layer.

Containers

Containers are valuable for properly operating and constructing neural networks in the
Wolfram Language. In the Wolfram Language, containers are structures that assemble
the infrastructure of the neural network model. Containers can have multiple forms.
NetChain is useful for creating linear and non-linear structures’ nets. This helps the
model to learn non-linear patterns. You can think that each layer in a network has a
level of abstraction that detects complex behavior, which could not be recognized if you
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only worked with one single layer. As a result, you can build networks in a general way,
starting from three layers: the input layer, the hidden layer, and the output layer. When
there are more than two hidden layers, it is deep learning; for more information, refer to
Introduction to Deep Learning: From Logical Calculus to Artificial Intelligence by Sandro
Skansi (Springer, 2018).

NetChain can join two operations. They can be written as a pure function instead of
just the function’s name (see Figure 9-27).

In[67]:=NetChain[{Elementwiselayer[LogisticSigmoid@#&],ElementwiselLayer[S

in@#&]}]
out[67]=
. Input array
NetCha'm[ D‘I:l’l 1 LogisticSigmoid array
2 Sin array
Output array

Figure 9-27. NetChain containing two elementwise layers

The object returned is a NetChain, and the icon of three colored rectangles appears.
This means that the object created (NetChain) or referred to is a net chain and contains
layers. If the chain is examined, it shows the input, first (LogisticSigmoid), second (Sin),
and output layers. The operations are in order of appearance, so the first layer is applied
and then the second. The input and output options of other layers are supported in
NetChain, such as a single real number (Real), an integer (Integer), an “n”-length vector,
and a multidimensional array (see Figure 9-28).

In[68]:= NetInitialize@NetChain[{3,4,12,Tanh},"Input"->1]
0ut[68]=

Netchain [ I:l’@‘l Input vector(size: 1) ]
i 1 LinearLayer vector(size: 3)

2 LinearLayer vector(size:4)
3 LinearLayer vector(size:12)
4  Tanh vector(size: 12)

Output vector(size: 12)

Figure 9-28. NetChain with multiple layers
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NetChain recognizes the Wolfram Language function names and associates them with
their corresponding layers, like 3, 4, and 12. They represent a linear layer with outputs of
sizes 3, 4, and 12 (see Figure 9-28). The Tanh function represents the elementwise layer.

Let’s append a layer to the chain created with NetAppend (see Figure 9-29) or
NetPrepend. Many of the original commands of the Wolfram Language have the same
meaning—for example, to delete in a chain would be NetDelete[net_name, #_of_layer].

In[69]:=NetInitialize@NetChain[{1,Elementwiselayer[LogisticSigmoid@#&]},"In
put"-> 1];

netCH2=NetInitialize@NetAppend[%,{1,ElementwiselLayer[Cos[#]&]}]

Out[70]=

CNBECHALH [ D}I}I Input vector(size: 1) ]
1 LinearLayer vector(size: 1)
2 LogisticSigmoid vector(size: 1)
3 LinearLayer vector(size: 1)
4 Cos vector (size: 1)
Output vector(size: 1)

Figure 9-29. NetChain object with different added layers

Different options are available when a net is applied to data, such as
NetEvaluationMode (mode of evaluation, either train or test), TargetDevice, and
WorkingPrecision (numeric precision).

In[71]:= netCH2[{{0},{2},{44}},NetEvaluationMode-> "Train",TargetDevice->
"CPU",WorkingPrecision-> "Real64",RandomSeeding-> 8888](*use N@Cos[Sin[Logi
sticSigmoid[{0,2,44}]]] to check results*)

Out[71]= {{0.967873},{0.990894},{1.}}

Another form is to enter the explicit names of layers in a chain, which is typed as an
association (see Figure 9-30).

In[72]:= NetInitialize@NetChain[<|"Linear Layer 1"->LinearlLayer[3],

"Ramp"-> Ramp,"Linear Layer 2"->Linearlayer[4],"Logistic"-> Elementwiselayer
[LogisticSigmoid]|>, "Input”-> 3]

Out[72]=
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NetChain [ D'D‘I Input vector(size: 3) ]
Linear Layer 1 LinearLayer vector(size: 3)

Ramp Ramp vector(size: 3)
inear Layer 2 LinearLayer vector(size: 4)
Logistic LogisticSigmoid vector(size: 4)
Output vector(size: 4)

Figure 9-30. NetChain object with custom layer names

Inspecting the layer’s contents should appear after clicking the layer’s name or the
layer. If a layer wants to be extracted, then NetExtract is used along with the name of
the corresponding layer. The output is suppressed, but the layer should pop out if the
semicolon is removed.

In[73]:=NetExtract[%, "Logistic"];

To extract all of the layers in one line of code, Normal does the job (see Figure 9-31).
In[74]:= Normal[netCH2]//Column
Out[74]=

e S A Input: vector(size: 1)

LinearLa er[
y ® ® Qutput: vector(size: 1)

Input: vector(size: 1)
Output: vector(size: 1)

ElementwiselLayer [ r<>o

& A # Input: vector (size: 1) ]

LinearlLa er[ B\ .
y ® ® Qutput:  vector(size: 1)

Elementwi seLayer[ w oo INPUL: pechonietzesl)
x b Output: vector(size: 1)

Figure 9-31. Layers of the NetChain NetCH2

Multiple Chains

Chains can be joined with a nested chain (see Figure 9-32).

In[75]:= chaini=NetChain[{12,SoftmaxLayer[]}];
chain2=NetChain[{1,ElementwiselLayer[Cos[#]&]}];
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nestedChain=NetInitialize@NetChain[{chain1,chain2},"Input"-> 12]
Out[77]=
. Input vector(size: 12)
NetChain [ I:I)!’l 1 NetChain (2 nodes) vector(size: 12)

2 NetChain (2 nodes) vector(size: 1)

Output vector(size: 1)
1: NetChain
Input vector(size: 12)

1 LinearLayer vector(size: 12)
2 SoftmaxLayer vector(size: 12)
Output vector(size: 12)

Figure 9-32. Chain 1 selected of the two chains available

This chain is divided into two NetChains, each representing a chain. In this case, you

see chainl and chain2, and each chain shows its corresponding nodes. To flatten the

chains, use NetFlatten (see Figure 9-33).

In[78]:
Out[78]

NetFlatten[nestedChain]

NetChain [ [:H:I,I Input vector(size:
1

LinearLayer vector(size:
2 SoftmaxLayer vector(size:
3 LinearLayer vector(size:
4 Cos vector(size:
Qutput vector(size:

Figure 9-33. Flattened chain

NetGraphs

12)
12)
12)
1)
1)
1)

The NetChain command only joins layers in which the output of a layer is connected

to the input of the next layer. NetChain does not work in connecting inputs or outputs

to other layers; it only works with one layer. To work around this, the use of NetGraph

is required. Besides allowing more inputs and layers, NetGraph represents the neural

network’s structure and process with a graph (see Figure 9-34).
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In[79]:= NetInitialize@NetGraph[{ LinearLayer["Output"-> 1,"Input"-> 1],
Cos,SummationLayer[]},{}]

Out[79]=
O a
NetGraph o > °
" Output3
3
o /N o
Inputs 2 Output2
W ©
1 Output1
Input Port
Input: vector(size: 1)
Output Ports
Output1: vector(size: 1)
Output2: vector(size: 1)
Output3: real

Figure 9-34. Expanded NetGraph

The object crafted is a NetGraph, represented by the figure of the connecting
squares, as seen in Figure 9-35. The input goes to three different layers, each with its
output. NetGraph accepts two arguments: the first is for the layers or chains, and the
second is to define the graph vertices or connectivity of the net. For example, the net has
three outputs in the latter code because the vertices were not specified. SummationLayer
is a layer that sums all the input data.

In[80]:= net1=NetInitialize@NetGraph[{ LinearLayer["Output"-> 2,"Input"->
1],Cos,SummationLayer[]},{1-> 2-> 3}]
0ut[80]=
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2 = .
NetGraph[ 5 ) | 5 W 7N 3 "
nput 1 2 3 QOutput
Input Port
Input: vector(size: 1)
OQutput Port
Output: real

Figure 9-35. Unidirectional NetGraph

The vertex notation means that the output of a layer is given to another layer, and so
on. In other words, 1 — 2 — 3 means that the output of the linear layer is passed to the
next layer until it is finally summed up in the last layer with the summation layer (see
Figure 9-35), thus preserving the order of appearance of the layers. However, you can
alter the order of each vertex. The net can be modified so that outputs can go to other
layers of the net, such as 1 to 3 and then to 2 (see Figure 9-36). With NetGraph, layers and
chains can be entered as a list or an association. The vertices are typed as a list of rules.

In[81]:= net2=NetInitialize@NetGraph[{ LinearLayer["Output"-> 2,"Input"->
1],Cos,SummationLayer[]},{1-> 3->2}]

Out[81]=
O O
NetGr‘aph [ | o I;?,.l Z /\ -
O
Input 1 3 2 QOutput

Input Port
Input: vector(size: 1)
Output Port
QOutput: real

Figure 9-36. NetGraph structure of Net2

The inputs and outputs of each layer are marked by a tooltip that appears when
passing the cursor over the graph lines or vertices. Because input and output are not
specified, NetGraph infers the data type in the input and output port; this is the case for
the capital R in the input and output of the layer used, which stands for real.
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With NetGraph, layers can be entered as a list or association. The connections are
typed as a list of rules (see Figure 9-37).

In[82]:= NetInitialize@NetGraph[<|"Layer 1"-> LinearLayer[2,"Input"->
1],"Layer 2"-> Cos,"Layer 3"-> SummationLayer[]|>,{"Layer 2"-> "Layer 1"->
"Layer 3"}]

out[82]=
O ]
NetGraph[ o ~ AN wssl ) =
E .0
foput Layer 2 Layer 1 Layer 3 St

Input Port
Input: vector(size: 1)
Output Port
Output: real

Figure 9-37. NetGraph initialized with named layers

It is possible to specify how many inputs and outputs a structure can have from the
NetPort command (see Figure 9-38).

In[83]:= NetInitialize@ NetGraph[{ LinearLayer[3, "Input" ->

1], LinearLayer[3, "Input" -> 2], LinearlLayer[3, "Input" -> 1] ,
TotallLayer[]}, {NetPort["1st Input"] -> 1, NetPort["2nd Input"] ->
2, NetPort["3rd Input"] -> 3, {1, 2, 3} -> 4}] (*Or NetInitialize@
NetGraph[<|"L1"\[Rule] LinearLayer[3,"Input"\[Rule] 1],"L2"\[Rule]
LinearLayer[3,"Input"\[Rule] 1], "L3"\[Rule] LinearLayer[3,"Input"\
[Rule] 1] ,"Tot L"\[Rule] TotalLayer[]|>,{NetPort["1st Input"]\
[Rule] "L1", NetPort["2nd Input"]\[Rule] "L2",NetPort["3rd Input"]\
[Rule]"L3",{"L1","L2","L3"} -> "Tot L"}]*)

Out[83]=
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o ]
NetGraph ] = W
O
3rd Input 3
(e} ‘.-?-.,. + o
2nd Input 5 4 Output
o Y
1st Input
1
Input Ports

IstInput:  vector(size: 1)
2nd Input:  vector(size: 2)
3rd Input:  vector(size: 1)

Output Port
Output: vector(size: 3)

Figure 9-38. NetGraph with multiple inputs and a single output

If you have more than one input, each input is entered in the specified port.

In[84]:= %[<|"1st Input"-> 32.32,"2nd Input"-> {2,\[Pi]},"3rd Input"-> 1]|>]
Out[84]= {82.4758,-42.202,-37.4852}

If having more than one output, the results are displayed for every different output
(see Figure 9-39).

In[85]:= NetInitialize[NetGraph[{LinearLayer[1,"Input"->
1],LinearLayer[1,"Input"-> 1],LinearLayer[1,"Input"-> 1],Ramp,El
ementwiselayer["ExponentiallinearUnit"],LogisticSigmoid},{1->4->
NetPort["Output1"],2->5-> NetPort["Output2"],3-> 6-> NetPort["Output3"]}],
RandomSeeding->8888] %[{1}]

Out[85]=
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NetGraph > o > ess ° ]
Output3

ol

Input Output2

o W S 0
5

e — °
a4

1 Output1
Input Port
Input: vector(size: 1)
Output Ports
Output1: vector(size: 1)
Output2: vector(size: 1)
Output3: vector(size: 1)

Figure 9-39. NetGraph with single input and three outputs

Out[86]= <|Outputi->{0.},0utput2->{-0.289052},0utput3->{0.860635}|>

NetChain containers can be treated as layers with NetGraph (see Figure 9-40). Some
layers, such as the CatenateLayer, accept zero arguments.

In[87]:= NetInitialize@NetGraph[{LinearLayer[1,"Input"-> 1], NetChain[{L
inearlLayer[1,"Input"-> 1], Elementwiselayer[LogisticSigmoid[#]&]}],NetCh
ain[{LinearLayer[1,"Input"-> 1],Ramp}], Elementwiselayer["Exponentiallin
earUnit"],

Catenatelayer[]},{1->4,2->5,3-> 5,4-> 5}]

Out[87]=
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NetGraph[ : O 2 i ]

o W e }—) o

Input Output

i

Input Port
Input: vector(size: 1)

Output Port
Output: vector(size: 3)

Figure 9-40. NetGraph with multiple containers

Clicking the chain or the layer shows the relevant information, and clicking the layer
inside a chain gives the information about the layer on the selected chain.

Combining Containers

NetChains, and NetGraphs can be nested to form different structures, as seen in the
following example (see Figure 9-41), where a NetGraph and vice versa can follow a
NetChain.

In[88]:= ni1=NetGraph[{1,Ramp,2,LogisticSigmoid},{1-> 2,2-> 3,3-> 4}];
n2=NetChain[{3,SummationLayer[]}];
NetInitialize@NetGraph[{n2,n1},{2-> 1},"Input”-> 22]

Out[90]=
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Figure 9-41. Nested NetGraph and NetChain

From the graph in Figure 9-40, it is clear that the input goes to the NetGraph, and the
output of the NetGraph goes to the NetChain. A NetChain or NetGraph that has not been
initialized appears in red. A fundamental quality of the containers (NetChain, NetGraph)
is that they can behave as a layer. With this in mind, you can create nested containers
involving only NetChains, NetGraphs, or both.

Just as a demonstration, more complex structures can be created with NetGraph, like
those in Figure 9-42. Once a network structure is created, properties about every layer or
chain can be extracted. For instance, with SummaryGraphic, you can obtain the graphic
of the network graph.

In[91]:= net = NetInitialize@ NetGraph[{LinearlLayer[10], Ramp, 10,
SoftmaxLayer[], TotallLayer[], ThreadinglLayer[Times]}, {1 -> 2 -> 3 -> 4,
{1, 2, 3} -> 5, {1, 5} -> 6}, "Input" -> "Real"];

Information[net, "SummaryGraphic"]

out[92]=

394



CHAPTER9  NEURAL NETWORKS WITH THE WOLFRAM LANGUAGE

— — x
s 4 6
o w +
Input LY
% /5
..\\\. s
2\
"Q‘:‘é" L e . ° 1
3 4 utput

Figure 9-42. Compound graph net structure

Network Properties

—0

Output2

The properties related to the numeric arrays of the network are Arrays (gives each array

in the network), ArraysCount (the number of arrays in the net), ArraysDimensions

(dimensions of each array in the net), and ArraysPositionList (position of each array in

the net), as depicted in Figure 9-43.

In[93]:={Dataset@Information[net, "Arrays"],Dataset@Information[net, "Arrays

Dimensions"],Dataset@Information[net,"ArraysPositionList"]}
Out[93]=

- F Type: Real32
1 Biases Numer'chrray[ Dimensions: {10}
; : Type: Real32 1 Biases {10}
1 Weights Numeri CAFFEY[ Dimensions: {10, 1} 1 Weights {10, 1)
{ . . Type: Real32 il ! Biases {10}
3 Biases Numer-chrraY[ Dimensions: {10} ] 3 Weights | (10, 10}
. 2 Type: Real32
3 Weights Numer-chrray[ o T ]

Figure 9-43. Datasat containing various properties

[75]

Biases
Weights
Biases }

Weights
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Information related to the variable type in the input and output ports are shown with
InputPorts and OutputPorts.

In[94]:= {Information[net,"InputPorts"],Information[net,"OutputPorts"]}
Out[94]= {<|Input->Real|>,<|Outputi->10,0utput2->10|>}

You can see that the input is a real number, and the net has two output vectors of
size 10. The most used properties related to layers are Layers (returns every layer of
the net), LayerTypeCounts (number of occurrences of a layer in the net), LayersCount
(number of layers in the net), LayersList (a list of all the layers in the net), and
LayerTypeCounts (number of occurrences of a layer in the net). Figure 9-44 shows for
Layers and LayerTypeCounts.

In[95]:=Dataset@{Information[net,"Layers"],Information[net,"LayerType
Counts"]}
Out[95]=
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Figure 9-44. Information about the layers contained in the symbol Net

Visualization of the net structure (see Figure 9-45) is achieved with the properties

LayersGraph (a graph showing the connectivity of the layers), SummaryGraphics

(graphic of the net structure), MXNetNodeGraph (MXNeT raw graph operations), and
MXNetNodeGraphPlot (annotated graph of MXNet operations). MXNet is an open-
source deep learning framework that supports a variety of programming languages,

and one of them is the Wolfram Language. In addition, the Wolfram Neural Network

Framework works with MXNet structure as backend support.
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In[96]:= Grid[{{Style["Layers Connection",Italic,20,ColorData[105,4]],Style
["NetGraph",Italic,20,ColorData[105,4]]},{Information[net,"LayersGraph"],In
formation[net, "SummaryGraphic"]},{Style[ "MXNet Layer Graph",Italic,20,Color
Data[105,4]],Style[ "MXNet Ops Graph",Italic,20,ColorData[105,4]]},{Informat
ion[net, "MXNetNodeGraph"],Information[net, "MXNetNodeGraphPlot"]}},Dividers-

>A11,Background-> {{{None,None}},{{Opacity[1,Gray],None}}}]

out[96]=
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MXNet Layer Graph
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MXNet Ops Graph
I; |§
o b4
FC a
.
: 5> o> o .
FG 5 c
5
« Tensor @ relu @ _copy ® elemwise_mul

0

Output2

Figure 9-45. Grid showing multiple graphics

Passing the cursor pointer over a layer or node in the MXNet symbol graph, a tooltip

shows the properties of the MXNet symbols like ID, name, parameters, attributes,

and inputs.
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Exporting and Importing a Model

Because of the interoperability of the Wolfram Language and MXNet, the Wolfram
Language supports the import and export of neural nets, initialized or uninitialized. You
create a folder on the desktop with the MXNet Nets name and export the network found
in the Net variable.

In[97]:= fileDirectory="/Users/macosx/Desktop";
Export[FileNameJoin[{dileDirectory, "MxNet.json"}],net,"MXNet","ArrayPath"->
Automatic, "SaveArrays"-> True]

Out[98]= /Users/macosx/Desktop/MxNet.json

Exporting the network to the MXNet format generates two files: a JSON file that
stores the topology of the neural network and a file of type .params that contains
the required parameters (numeric arrays used in the network) data for the exported
architecture; once it has been initialized. With ArrayPath set to Automatic, the params
file is saved in the same net folder. Otherwise, it can have a different path. SaveArrays
indicate whether the numeric arrays are exported (True) or not (False). Let’s check the
two files created in the MXNets Nets folder.

In[99]:= FileNames[All,File@fileDirectory]
Out[99]= {/Users/macosx/Desktop/MxNet.json,
/Users/macosx/Desktop/MxNet.params}

To import an MXNet network, the JSON and params files are recommended to be
in the same folder because the Wolfram Language assumes that a certain JSON file
matches the pattern of the params file. There are various ways to import a net, including
Import[file_name.json, “MXNet”] and Import|[file_name.json,{“MXNet,” element}] (the
same as with .param files). Since version 13, nets are no longer imported as net chains or
net graphs but can now be imported as net external objects. However, if you don’t intend
to use the neural network outside of the Wolfram Language, it's much simpler to store
it as a WLNet, which facilitates easier saving and retrieval within the Wolfram Language
environment. To export the net to the WLNet format, you can use the following code:
Export[“file_name.wlnet’, <net_symbol or variable_name>]. Then, you can import the
net using Import[“file_name.wlnet”]

In[100] :=Import[FileNameJoin[{fileDirectory, "MxNet.json"}],{"MXNet",
"NetExternalObject"},InputPorts-><|"Input"->{1}|>,"ArrayPath"->None];
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The latter net was imported with the .params file automatically. To import the net
without the parameters, use ArrayPath set to None or set the params file path. Importing
the net parameters can be done with a list (ArrayList), the names (ArrayNames), or an
association (ArrayAssociation), as shown in Figure 9-46.

In[101]:= Row[Dataset[Import[FileNameJoin[{fileDirectory, "MxNet.
json"}],{"MXNet",#}]]&/@{"ArrayAssociation", "ArrayList", "ArrayNames"}]
Out[101]=

. Type: Real32 . Type: Real32
i N Array[ L Array| ]
1.Biases Umer1cArray | bimensions: {10} UMErTCATTaY | Dimensions: {10)
igh NumericArra [ lype Jeaiat NumericArra [ it -Blases
1.Weights Y| Dimensions: {10,1) Y| Dbimensions: {10, 1} 1 Weights
. Type: Real32 . Type: Real32 3.Biases
3.Biases Numeri cArray[ y ¥ ] NumericAr ray[ A : ]
Dimensions: {10} Dimensions: {10} 3.Weights
] . Type: Real32 . [ Type: Real32
3.Weights Numeri CArray[ Dimensions: {10, 10} J NumericArray Dimensions: {10, 10}

Figure 9-46. Different import options of the MXNet format

The elements of the net to import are InputNames, NetExternalObject, NodeDataset
(a dataset of the nodes of the MXNet), NodeGraph (nodes graph of the MXNet),
NodeGraphPlot (plot of nodes of the MXNet). The following dataset shows a few options
listed before Figure 9-47.

In[102]:= {Import[FileNameJoin[{fileDirectory, "MxNet.json"}],{"MXNet", "Node
Dataset"}], Import[FileNameJoin[{ileDirectory, "MxNet.json"}],{"MXNet", "NodeG
raphPlot"}]}//Row

Out[102]=
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op attrs inputs
Input null
1.Weights | null

1.Biases null

1 FullyConnected  :wui | {0, 0, 0}
3total»
2 1 12
. o L]
250 relu {3,0, 0}
3.Weights  null ! o P
3.Biases null
g 3
3 FullyConnected 2w {4, 0, 0}
3total » § 3 g %
450 softmax 1otals | {7, 0, O}
5
Outputl  _copy {8, 0, 0} i
e Tensor @ relu ® _copy ® elemwise_mul
5 add_n 1otals | {3, 0, 0} @ FullyConnected @ softmax @ add_n
3total »
650 elemwise_mul {3,0, 0}
Output2 _copy {11, 0, 0}

Figure 9-47. Node dataset and MXNet ops plot

Some operations between the Wolfram Language and MXNet are not reversible.
If you pay attention, the network input, exported to MXNet format, was set as a real
number, unlike the network input imported in MXNet format, which marks that the
input is an array with specifying dimensions.

When constructing a neural network, there is no restriction on how many net
chains or net graphs a net can have. For instance, the following example is a neural
network from the Wolfram Neural Net Repository, which has a deeper sense of
construction (see Figure 9-48). This net is called CapsNet, which is used to estimate
the depth map of an image. To consult the net, enter NetModel[“CapsNet Trained
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on MNIST Data,” “DocumentationLink”] for the documentation web page; for the
notebook on the Wolfram Cloud, enter NetModel[“CapsNet Trained on MNIST Data,’
“ExampleNotebookObject”] or just ExampleNotebook for the desktop version.

In[103]:= NetModel[ "CapsNet Trained on MNIST Data"]
Out[103]=

NetGraph; E ] =

Input
ReLUConviPrimaryCa..PrimaryPr.

(@)~ (Ee) @)~

...... Classific..

DynamicRo.. DigitCaps Norm
:

Reconstru.
Pick Reconstru..
Input Port
Input: image

Qutput Ports

Classification: class
Reconstruction: image
DigitCaps: NetGraph

uhat Output
s v
D .®
b

C
Input Ports
b: vector(size: 11520)
uhat: amray (size: 1152x10x16)
OQutput Port
Qutput: matrix (size: 10x16)

Data not in notebook. Store now

Figure 9-48. CapsNet neural net model

Summary

This chapter introduced the neural network scheme in the Wolfram Language and
covered basic layers components: data input, weight, and biases. Additionally, the
chapter focuses on the encoders and decoders, explaining its structure.
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Neural Networks
Framework

This chapter explores training a neural network model in the Wolfram Language, how
to access the results and the trained network. You review the basic commands to export
and import a net model. You end the chapter by exploring the Wolfram Neural Net
Repository and reviewing the LeNet network model.

Training a Neural Network

The Wolfram Language contains a very useful command that automates neural
network model training. This command is NetTrain. Training a neural network
consists of fine-tuning the internal parameters of the neural network. The whole point
is that the parameters can be learned during training. This general process is done

by an optimization algorithm called gradient descent, which is computed with the
backpropagation algorithm.

Data Input

With NetTrain, data can be entered in different forms. First, the net model goes as the
first argument, followed by the input — target, {inputs, ...} — {target, ...} or the name

of the data or dataset. Once the net model is defined, the next argument is the data,
followed by an optional argument of All. The All option creates a NetTrainResultsObject,
which shows the NetTrain results panel after the computation and stores all relevant
information about the trained model. The options for training the model are entered

as the last arguments. Standard options used in layers and containers are available in
NetTrain.
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The next example uses the perceptron model to build a linear classifier. The data to
be classified is shown in the following plot (see Figure 10-1).

In[1]:= plt=ListPlot[{{{-1.8,-1.5},{-1,-1.7},{-1.5,-1},{-1,-1},{-0.5,-1.2},
{'11'0'7}}) {{111}) {1‘7J1}J {O'SJZ}J {O°1)0'3}: {O°5)1}: {0°611°3}}})
PlotMarkers->"OpenMarkers",Frame->True,PlotStyle->{Green,Red}]

Out[1]=

[ A
1} A A A
j A
0t
O
-1 0 (o}
0
[o
T O 1 1
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Figure 10-1. ListPlot showing two different plot points

Let’s define the data, target values, and the training data.

In[2]:=data={{-1.8,-1.5},{-1,-1.7},{-1.5,-1},{-1,-1},{-0.5,-1.2},{-1,-0.7},
{1,1},{1.7,1},{0.5,2},{0.1,0.3},{0.5,1},{0.6,1.3}};
target={-1,-1,-1,-1,-1,-1,1,1,1,1,1,1};
trainData=MapThread[#1->]{#2}8&,{Standardize[data],target},1];

The Standardize function is crucial in the latter code because it normalizes the input
data before training the neural network. This step ensures that each feature contributes
equally to the learning process during the training phase, preventing any single feature
from dominating the others. This process can lead to faster convergence during training
and improves the overall performance of the net model. Next, let’s define the net model.
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In[3]:= model=NetChain[{LinearLayer[1,"Input"->2],
ElementwiselLayer[Ramp[#]&]}];

Training Phase

Having prepared the data and the model, you proceeded to train the model. Once the
training begins, a progress information panel appears with four main results.

e Summary: contains relevant information about the batches, rounds,

and time rates
o Data: involves processed data information

¢ Method: shows the method used, batch size, and device used for
training
¢ Round: the current state of loss value
In[6]:=net=NetTrain[model,trainData,All,LearningRate->0.01,
PerformanceGoal->"TrainingSpeed",TrainingProgressReporting->"Panel",

TargetDevice->"CPU", RandomSeeding->88888,WorkingPrecision->"Real64" ]
out[6]=
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Figure 10-2 shows the loss plot against the training rounds.

NetTrain Results

summary batches: 10000, rounds: 10000,
time: 25s, examples/s: 4907

data training examples: 12,
processed examples: 120000,
skipped examples: 0

method ADAM optimizer, batch size 12, CPU
round  loss: 5.22x107"

rounds

NetTra‘inResultsObj ect l 2000 4000 6000 8000 10000

loss
—

Figure 10-2. NetTrainResultsObject

The Adam optimizer is a variant of the Stochastic gradient descent, which you see
later. The object generated is called NetTrainResultsObject.

Model Implementation

Once the training is done, getting the trained net and model implementation is as
follows in Figure 10-3.

In[7]:
Out[7]=

trainedNet1=net["TrainedNet" ]

NetChain [ D‘D'I Input port: vector (size: 2)
; Outputport:  vector (size: 1)

Figure 10-3. Extracted trained net
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Let’s look at how the trained net identifies each point by plotting the boundaries with
a density plot (see Figure 10-4).

In[8]:= Show[DensityPlot[trainedNet1[{x,y}],{x,-2,2},{y,-3,3},PlotPoints->
50,ColorFunction->(RGBColor[1-#,2*#,1]&)],P1t]
out[8]=

= - = = @9 & 2

Figure 10-4. Net classification plot

The graphic shows that the boundaries are not well defined and that points near zero
might be misclassified. This result can be attributed to the ramp function, which gives
0 if it receives any negative number, but for any positive value, it returns that value. This
model can still be improved, perhaps by changing the activation function to a hyperbolic
tangent to have robust boundaries.
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Batch Size and Rounds

If the batch size is not indicated, it has an automatic value, almost always a value of

64 or powers of two. Remember that the batch size indicates the number of examples
the model uses in training before updating the internal parameters of the model. The
number of batches is the division of the examples within the training dataset by the
batch size. The processed examples are the number of rounds (epochs) multiplied by the
number of training examples. The batch size is generally chosen to divide the training
set’s size evenly. The MaxTrainingRounds option determines the number of times the
training dataset is passed through during the training phase. When you go through the
entire training set just once, it’s called an epoch. To better understand this, a batch size
of 12 was automatically chosen in the earlier example, which is equal to the number of
examples in the training set. This means that it enters a batch of 12/12 -> 1 for epoch

or round. Now, the number of epochs was automatically chosen to 10000; this tells you
that there are 1 * 10000 batches. Also, the number of processed examples is 12 * (10000),
which is equal to 120000. If the batch size does not evenly divide the training set, the
final batch has fewer examples than the other batches.

Furthermore, adding a loss function layer to the container or the loss with the
LossFunction -> Loss Layer option has the same effect. In this case, you use the
MeanSquaredLossLayer as the loss function option, change the activation function to
Tanh[x], set the Batchsize to 5, and adjust MaxTrainingRounds to 1000.

In[9]:= net2=NetTrain[NetChain[{LinearLayer[1,"Input"->2], Elementwiselayer
[Tanh[#]8&]}],trainData,All,LearningRate->0.01, PerformanceGoal->
"TrainingSpeed",TrainingProgressReporting->"Panel", TargetDevice->
"CPU",RandomSeeding->88888,WorkingPrecision->"Real64", LossFunction->
MeanSquaredLosslLayer[],BatchSize->5,MaxTrainingRounds->1000]

Out[9]=

Figure 10-5 shows that the loss has dropped considerably.

408



CHAPTER 10  NEURAL NETWORKS FRAMEWORK

NetTrain Results

summary batches: 3000, rounds: 1000,
time: 9.0s, examples/s: 1663

data training examples: 12,
processed examples: 15000,
skipped examples: 0
method  ADAM optimizer, batch size 5, CPU

round loss: 8.12x107%
rounds

NetTrainResultsObjectl \ 200, 200, 820, 800, 1090

loss

Figure 10-5. Training results of the Net2

Let’s determine the classification.

In[10]:= trainedNet2=net2["TrainedNet"];
Show[DensityPlot[trainedNet2[{x,y}],{x,-2,2},{y,-3,3}, PlotPoints->50,
ColorFunction->(RGBColor[1-#,2*#,1]&)],P1t]

Out[11]=
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Figure 10-6 shows how the two boundaries are better denoted.

3[

_3-1 i i i ] L L
-2 -1 0 1 2

Figure 10-6. Net2 classification plot

The previous models represent a prediction of a linear layer, in which this
classification is compared with the targets so that the error is less and less.

To obtain the graph that shows the value of the error according to the number
of rounds carried out in the training, you do it through the properties of the trained
network. You can also see the network model’s appearance once the loss function
is added.

In[12]:= Dataset[{Association["LossPlot"->net2["LossPlot"]],
Association["NetGraph"->net2["TrainingNet"]]}]
Out[12]=

Figure 10-7 shows the loss graph as it decreases rapidly according to the number
of rounds.
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EH 1 LossPlot

"rounds"

[1 200 400 600| 800/ 1000

"loss"

Figure 10-7. LossPlot contained in the dataset

To see the network used for training, execute the next code. Mathematica
automatically adds a loss function to the neural network (see Figure 10-8) based on the
model’s layers.

In[13]:
Out[13]

net2[ "TrainingNet"]
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NetGraph[ g-. . @ . ]

Qutput VissNat Output
° it |
Input

> Net
Input Ports
Input: vector (size: 2)
Output: vector (size: 1)
Output Port
Output: real

Figure 10-8. Network model before the training phase

To see the model’s properties, you add the string Properties as an argument.

In[14]:= net2["Properties"]

Out[14]= {ArraysLearningRateMultipliers,BatchesPerRound,BatchesPerSecond,Ba
tchLosslList,BatchMeasurements,BatchMeasurementslLists,BatchSize,BestValidati
onRound, CheckpointingFiles,ExamplesProcessed,FinallLearningRate,FinalPlots,I
nitiallearningRate,InternalVersionNumber,LossPlot,MeanBatchesPerSecond,Mean
ExamplesPerSecond,NetTrainInputForm,OptimizationMethod,ReasonTrainingStoppe
d,RoundLoss,RoundLossList,RoundMeasurements,RoundMeasurementslLists,RoundPos
itions,SkippedTrainingData,TargetDevice,TotalBatches,TotalRounds,TotalTrain
ingTime,TrainedNet,TrainingExamples,TrainingNet, TrainingUpdateSchedule,Vali
dationExamples,Validationloss,ValidationlLossList,ValidationMeasurements,Val
idationMeasurementslLists,ValidationPositions}

Training Method (NetTrain)

Let’s look at the training method for the previous network with OptimizationMethod.
Some variants of the gradient descent algorithm are related to batch size. The first one
is the stochastic gradient descent (SGD). The SGD takes a single training batch at a
time before taking another step. This algorithm goes through the training examples in
a stochastic form—without a sequential pattern and only one instance at a time. The
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second variant is the batch gradient descent, meaning that the batch size is set to the
size of the training set. This method utilizes all training examples and makes only one
update of the internal parameters. The third variant is the mini-batch gradient descent,
which consists of dividing the training set into partitions smaller than the whole dataset
to update the model’s internal parameters to achieve convergence frequently. To see

a mathematical of the SGD and mini-batch SGD, visit the article “Efficient Mini-Batch
Training for Stochastic Optimization,” by Mu Li, Tong Zhang, Yugiang Chen, and
Alexander J. Smola (2014, August: pp. 661-670; In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining).

In[15]:= net2["OptimizationMethod" ]

Out[15]= {ADAM, Beta1->0.9, Beta2->0.999, Epsilon->1/100000,
GradientClipping->None, L2Regularization->None, LearningRate->0.01,
LearningRateSchedule->None, WeightClipping->None}

The method automatically chosen is the Adam optimizer, which uses the SGD
method with an adapted learning rate. The other available methods are the RMSProp,
SGD, and the SignSGD. Within the available methods, there are also options to indicate
the learning rate, when to scale, when to use the L2 regularization, the gradient, and
weight clipping.

Measuring Performance

In addition to the methods, you can establish what measures to consider during the
training phase. These options depend on the type of loss function used and which is
intrinsically related to the task, like classification, regression, and clustering. In the

case of MeanSquaredLossLayer or MeanAbsoluteLossLayer, the common option is
MeanDeviation, which is the absolute value of the average of the residuals. MeanSquare
is the mean square of the residuals, RSquared is the coefficient of determination,

and standard deviation is the root mean square of the residuals. After completing the
training, the measure appears in the net results (see Figure 10-9). The soft sign activation
function is used in this example to try out a different activation function and observe

its use.

In[16]:= net3 = NetTrain[ NetChain[{LinearlLayer[1, "Input" -> 2],
Elementwiselayer["SoftSign"]}], trainData, All, LearningRate -> 0.01,
PerformanceGoal -> "TrainingSpeed", TrainingProgressReporting -> "Panel",
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TargetDevice -> "CPU", RandomSeeding -> 88888, WorkingPrecision ->
"Real64", Method -> "ADAM", LossFunction -> MeanSquaredLosslLayer[],
BatchSize -> 5, MaxTrainingRounds -> 1000, TrainingProgressMeasurements ->
{"MeanDeviation", "MeanSquare", "RSquared", "StandardDeviation"}]

Out[16]=

NetTrain Results

summary batches: 3000, rounds: 1000,
time: 12s, examples/s: 1271

data training examples: 12,
processed examples: 15000,
skipped examples: O
method ADAM optimizer, batch size 5, CPU
round loss: 2.25x10'2, res. mean dev.: 1.42x107",
res. mean sqr.: 2.25x 10'2,
res.r: 9.77 x 10‘1, res. s.d.:1.5x10™"

I
NetTrainResultsObject : 89 :

rounds

200 400 600 800 1000

loss

Figure 10-9. Net results with new measures added
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Model Assessment

To access the values of the measures chosen, use the NetResultsObject. In the case

of the training set values, these are found in the properties of RoundLoss (gives the
average value of the loss), RoundLossList (returns the average values of the loss during
training), RoundMeasurements (the measurements of the training of the last round),
and RoundMeasurementsLists (the specified measurements for each round). This result
is depicted in Figure 10-10.

In[17]:= net3[#]&/@{"RoundMeasurements"}//Dataset[#]&
Out[17]=
Loss 0.0224971
MeanDeviation 0.141845
MeanSquare 0.0224971
RSquared 0.977402
StandardDeviation 0.14999

Figure 10-10. Dataset with the new measures

To get all the plots, use the FinalPlots option.
In[18]:= net3["FinalPlots"]//Dataset;

To replicate the plots of the measurements, extract the values of the measurements
of each round with RoundMeasurementsLists.

In[19]:= measures=net3[#]&/@{"RoundMeasurementslLists"};
Keys[measures]
Out[20]= {{Loss,MeanDeviation,MeanSquare,RSquared,StandardDeviation}}

Let’s plot the values for each round, starting with Loss and finishing with
StandardDeviation. You can also see how the network model makes the classification
boundaries (see Figure 10-11).

In[21]:= trainedNet3 =

net3["TrainedNet"]; Grid[{{ListLinePlot[{measures[[1, 1]]
(*Loss*), measures[[1, 2]] (*MeanDeviation*), measures[[1, 3]]
(*MeanSquare*), measures[[1, 4]] (*RSquared*), measures[[1, 5]]
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(*StandardDeviation*)}, PlotStyle -> Table[ColorData[101, i], {i,

1, 5}], Frame -> True, FramelLabel -> {"Number of Rounds", None},

PlotLabel -> "Measurements Plot", GridlLines -> All, PlotlLegends ->
SwatchLegend[{Style["Loss", #], Style["MD", #], Style["MS", #],

Style["RS", #], Style["STD", #]}, LegendLabel -> Style["Measurements"”, #],
LegendFunction -> (Framed[#, RoundingRadius -> 5, Background -> LightGray]
&)], ImageSize -> Medium] &[Black], Show[DensityPlot[trainedNet3[{x, y}],
{x, -2, 2}, {y, -3, 3}, PlotPoints -> 50, ColorFunction -> (RGBColor[1 - #,
2%, 1] &)], plt, ImageSize -> 200]}}]

Out[21]=
Measurements Plot
. N
1.0} .
= | | Measurements
06 | M Loss
[ o MD
04+ g | . MS
| ! H RS
0.2}
[ B STD
0_0' L A
o 20 400 60 80 1000

Number of Rounds

Figure 10-11. Round measures plot and density plot

The Loss and MeanSquared have the same values (since the loss is a mean squared
error loss function), which is why the two graphics overlap. The mean deviation and
standard deviation have similar values but not the same. Three models are constructed,
and the activation function changes in each process. Looking at the plots, you see how
each function changes how the neural network model learns from the training data.

In the previous examples, the graphics were the loss plot for the training process and
other measurements related to the means squared loss layer. Make sure to consult
the documentation to confirm the measurements’ names; remember that not all
measurements apply to all loss functions.

In the subsequent section, you see how to generate the loss plot and the validation
plot during the training phase to validate that the LeNet model is learning during
training and how well the model can perform in data never seen before (validation set).
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Exporting a Neural Network

Once a net model has been trained, you can export this trained net to a WLNet format so
that the net can be used without the need for training in the future. The export method
also works for uninitialized network architectures.

In[22]:= Export["/Users/macosx/Desktop/TrainedNet3.
wlnet",net3["TrainedNet"]]
Out[22]= /Users/macosx/Desktop/TrainedNet3.wlnet

Importing them back is done precisely as any other file, but imported elements can
be specified. Net imports the net model and all initialized arrays; UninitializedNet and
ArrayList imports for the numeric array’s objects of the linear layers; ArrayAssociation
imports for the numeric arrays in association form, and WLVersion is used to see the
version of the Wolfram Language used to build the net. The following dataset shows all
the options (see Figure 10-12).

In[23]:=Dataset@AssociationMap[Import["/Users/macosx/Desktop/TrainedNet3.
wlnet",#]&,{"Net","UninitializedNet", "ArrayList", "ArrayAssociation",
"WLVersion"}]

Out[23]=
" Input port: vector(size: 2)
Net NEtCha1nl Qutput port: vector(size: 1) ]
e . Input port: vector(size: 2) ]
UninitializedNet NEtCha1n[ QOutput port: vector(size: 1)
R ’ N [ype: Real64 p I'ype: Real64 }
NumericArra = NumericArra
ArrayList { y[ Dimensions: {1, 2} ]’ )‘[ Dimensions: {1}

Type: Real64

Dimensions: {1, 2)

Type: Real64
ArrayAssociation ype: Rea ]|)

Dimensions: {1}

{1, Weights} - NumerEcArray[ ], {1, Biases} » NumericAn’ay[
WLVersion 13.3.0

Figure 10-12. Dataset with the available import options
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Wolfram Neural Net Repository

The Wolfram Neural Net Repository is a free-access website containing a repertoire
of various pre-trained neural network models. The models are categorized by the
input and data types, be it audio, image, numeric array, or text. Furthermore, they are
also categorized by the kind of task they perform, from audio analysis or regression to

classification. The main page of the website is shown in Figure 10-13.

The Wolfram Neural Net Repository is a public resource that hosts an expanding collection of trained and
untrained neural network models, suitable for immediate evaluation, training, visualization, transfer
learning and more.

Building on the Wolfram Language neural net framework, the Wolfram Neural Net Repository provides a uniform
system for storing neural net models in an immediately computable form. Including models from the latest research
papers, as well as ones trained or created at Wolfram Research, the Wolfram Neural Net Repository is built to be a
global resource for neural net models.

AUDIO ANALYSIS

= CREPE Pitch Detection Net
Trained on Monophonic Signal Data «
= Wolfram Audioldentify V1
Trained on AudioSet Data «

Figure 10-13. Wolfram Neural Net Repository home page

Enter https://resources.wolframcloud.com/NeuralNetRepository/ in your
favorite browser to access the web page, or run SystemOpen from Mathematica, which
opens the web page in the system’s default browser.

Once the site is loaded, net models can be browsed by either input or task. The
models in this repository are built in the Wolfram Language, allowing you to use them
within Mathematica. This leads to the models being found in a form that can be accessed
from Mathematica or the Wolfram Cloud for prompt execution. If you scroll down, you
see that the models are structured by name and the data used for training, along with
a short description. Such is the case, for example, for the Wolfram Audioldentify V1

418


https://resources.wolframcloud.com/NeuralNetRepository/

CHAPTER 10  NEURAL NETWORKS FRAMEWORK

network, which is trained with the AudioSet Data and identifies sounds in audio signals.
To browse categories, you can choose the category from the menu. Figure 10-14 shows
the site’s appearance after an input category is chosen; in this case, the neural networks
that receive images as inputs.

WOLFRAM NEURAL NET REPOSITORY

Immediate Computable Access to Neural Net Models

Input Domain

Image

109 items

= 2D Face Alignment Net
Tramed on&OOWLargePose Data -

ermine the location from a facial image
= 3D Face Alignment Net
Trained on 300W Large Pose Data ..
Determine the 2D projection of 30 keypoints from a facial image
= AdalN-Style
Tra ned on MS-COCO and Painter by Numbers Data .
ransfer the style of one image to another image
= Ademxapp Model A

Tralned on Imagehlet Cumpehunn Data
y the m: ting nage

Figure 10-14. Category site, based on the input image

Selecting a Neural Net Model

Once a category is chosen, it shows all the net models associated with the selected input
category. Like with the Wolfram Data Repository, once the model is selected, it shows
relevant information, like in Figure 10-15, where the selected net model is the neural
network Wolfram Imageldentify Net V1.
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WOLFRAM NEURAL NET REPOSITORY

Immediate Computable Access to Neural Net Models

Input Domains » Task Types »

Wolfram Imageldentify Net V1

Identify the main object in an image

Released in 2017 by Wolfram Research, this net was trained on over 4,000 classes of objects. It is part of the back end for the Imageldentify
function in Wolfram Language 11.1. It was designed to achieve a good balance among classification accuracy, size and evaluation speed.
Number of layers: 232 | Parameter count: 14,713,147 | Trained size: 65 MB

TRAINING SET INFORMATION

Internal Wolfram Imageldentify training set, consisting of over 3 million training images and over 4,000 classes of objects (not publicly available).

Examples a7 T~
»Resource retrieval
> Basic usage
»> Feature extraction
»Visualize convolutional weights
> Transfer learning
»Net information

» Export to MXNet

Figure 10-15. Wolfram Imageldentify Net V1

It is possible to navigate from the website and download the notebook containing
the network model, but it is also possible from Mathematica. In other words, search for
network models through ResourceSearch. The example shows the search if you were
interested in knowing the models of the networks that contain the word image (see
Figure 10-16).

In[24]:= ResourceSearch[{"Name"->"Image","ResourceType"-> "NeuralNet"}]
//Dataset[#,MaxItems->{4,3}]&
Out[24]=

420



CHAPTER 10  NEURAL NETWORKS FRAMEWORK

Name ResourceType  ResourceObject

Colorful Image Colorization Trained on ImageNet Competition Data Neuralhet ResourceObject|“Colorful image Cok Trained on 13 < Data")
ColorNet image Colorization Trained on ImageNet Competition Data Neuralhet ResourceObject|“ColorNet image Colorization Trained on imageNet Competition Data”)
EfficientNet Trained on iImageNet NeuralNet ResourceObject| “EfficientNet Trained on ImageNet”)

Wolfram Imageldentify Net V1 NeuralNet ResourceObject|"Wolfram imageldentify Net V1%]

Figure 10-16. Resource Dataset

The dataset shown in Figure 10-16 has only three columns for display purposes, but
you can navigate through the entire dataset using the slider. The columns not shown in
the image are Description, Location, and DocumentationLink. The last column provides
the link that leads to the web model page.

Accessing Inside Mathematica

To access the model architecture, add the object argument; for example, do the following
for the Wolfram Imageldentify Net V1 Network (see Figure 10-17).

In[25]:= ResourceSearch[{"Name"->"Wolfram ImageIdentify","ResourceType"->
"NeuralNet"}, "Object"]
Out[25]=

[Resourceohject[ @ :jl:!:l".;:::f;;‘ﬂeltmwﬁenlﬂyNel Vis ]}

tion: Identify the main object in an image

ype: Classification

Ke rds ify, object

Data Location: None

UUID: 044dd5d5-5895-4252-8891—167729b1a6d3

Uriniti dEvaluationNet, Constructi — ion, Evaluati

Figure 10-17. Wolfram Imageldentify Net V1 resource

Note To avoid problems accessing the Wolfram Net Repository from
Mathematica, ensure you are logged in to the Wolfram Cloud or your Wolfram
account.
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The following code is suppressed here to access the pre-trained model, but removing
the semicolon returns the NetChain object of the pre-trained neural network.

In[26]:= ResourceSearch[{"Name"->"Wolfram ImageIdentify","ResourceType"->
"NeuralNet"},"Object"][[1]]//ResourceData;
0ut[26]=

Retrieving Relevant Information

Information about the model is accessed from ResourceObject. The following is the
relevant information from the Imageldentify model in a dataset (see Figure 10-18). To
see all information in the dataset format, type ResourceObject [“Wolfram Imageldentify
Net V1”][All]//Dataset [#] &.

In[27]:= Dataset[AssociationMap[ResourceObject["Wolfram ImageIdentify Net V1i"],

{"Name", "RepositoryLocation", "ResourceType", "ContentElements","Version",

"Description","TrainingSetInformation","InputDomains","TaskType","Keywords",

"Attributes","LatestUpdate", "DownloadedVersion","Format",

ReleaseDate", "ShortName",

"ContributorInformation”,"DOI","Originator",
"WolframLanguageVersionRequired"}]]

out[27]=
Name Wolfram Imageldentify Net V1
RepositoryLocation https:Hwww wollramcloud comiobjiresourcesystem/iap..
ResourceType NeuralNet
ContentElements G i initiali s [«
Version L1100
Description Identify the main object in an image
TrainingSetinformation Internal Wolfram Imageidentify training set, consisting of over 3 million training images and over 4,000 classes of objects (not publicly available).
InputDomains Image
TaskType Classification
Keywords {Imageldentily, object classification)
Mtributes {LocalCopyable, CloudCopyable, Multipart}
LatestUpdate Fri 28 Feb 2020 00:00:00
DownloadedVersion L10.0
Format <| - WLNet, dEval =+ WLNet, Ci -+ NB, ionExample -» WIF |>
Contributoriaformation €| lisherlD -» Wolfram, Di =+ Wolfram Research |»
ool doi.org/10. i 4204.data
Originator Wolfram Rescarch
ReleaseDate Man 20 Feb 2017 16:00:00
ShortName Wolfram—Imageldentify-Net-V1
WolframLanguageVersionRequired 11

Figure 10-18. Dataset of some properties of the Wolfram Imageldentify Net V1
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Here, in a few steps, is the way to access the trained neural network and much
relevant information associated with the neural network. It should be noted that the
process is also used to find other resources in the Wolfram Cloud or local resources, not
only neural networks, since, in general, ResourceSearch looks for an object within the
Wolfram Resource System. Such is the case of the neural network models in the Wolfram
Neural Net Repository.

LeNet Neural Network

The following example examines a neural network model named LeNet. Despite being
able to access the model from a Wolfram resource, as you saw previously, performing
operations with networks found in the Wolfram Neural Net Repository with the
NetModel command is possible. To get a better idea of how this network is used, let’s
first look at the description of the network, its name, how it is used, and where it was
proposed for the first time.

LeNet Model

The neural network LeNet is a convolutional neuronal network within the deep learning
field. The neural network LeNet is recognized as one of the first convolutional networks
that promoted deep learning. This network was used for character recognition to identify
handwritten digits. Today, architectures are based on LeNet neural network architecture,
but you focus on the Wolfram Neural Net Repository version. This architecture consists
of four key operations: convolution, non-linearity, subsampling, or pooling and
classification. To learn more about the LeNet convolutional neural network, see Neural
Networks and Deep Learning: A Textbook by Charu C. Aggarwal (Springer, 2018). With
NetModel, you can obtain information about the LeNet network that has been previously
trained.

In[28]:= NetModel["LeNet Trained on MNIST Data",#]&/@{"Details","ShortName"
, "TaskType", "SourceMetadata"}//Column

Out[28]= This pioneer work for image classification with convolutional
neural nets was released in 1998. It was developed by Yann LeCun and his
collaborators at AT&T Labs while they experimented with a large range of
machine learning solutions for classification on the MNIST dataset.
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LeNet-Trained-on-MNIST-Data

{Classification} <|Citation->Y. LeCun, L. Bottou, Y. Bengio, P. Haffner,
"Cradient-Based Learning Applied to Document Recognition," Proceedings of
the IEEE, 86(11), 2278-2324 (1998),Source->http://yann.lecun.com/exdb/
lenet,Date->DateObject[{1998},Year,Gregorian,-5.]|>

Note To access all the properties of a model with NetModel, add properties as
the second argument—NetModel[“LeNet Trained on MNISt Data,” “Properties”].

The input this model receives consists of images in grayscale with a size of 28 x 28,
and the model’s performance is 98.5% on the MNIST dataset.

In[29]:= NetModel["LeNet Trained on MNIST Data",#]&/@{"TrainingSetInformati
on","InputDomains"”,"Performance"}//Column

Out[29]= MNIST Database of Handwritten Digits, consisting of 60,000
training and 10,000 test grayscale images of size 28x28.

{Image}

This model achieves 98.5% accuracy on the MNIST dataset.

MINST Dataset

This network is used for rating, just as it appears in TaskType. The digits are in a database
known as the MNIST database. The MNIST database is an extensive database of
handwritten digits (see Figure 10-19) that contains 60,000 images for training and 10,000
for testing, the latter being used to get a final estimate of how well the neural net model
works. To observe the complete dataset, you load it from the Wolfram Data Repository
with ResourceData and ImageDimensions to verify that the dimensions of the pictures
are 28 x 28 pixels.

In[30]:= (*This is for seven elements randomly sampled, but you can check
the whole data set.*)
TableForm[

SeedRandom[900];

RandomSample[ResourceData[ "MNIST", "TrainingData"], 7],

TableDirections -> Row]
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Map[ImageDimensions, %[[1 ;; 7, 1]]]
(*¥Test set : ResourceData["MNIST","TestData"] *)
Out[30]//TableForm=

o‘a95.59~a2a-zc.eo,e“‘»7
Figure 10-19. A random sample of the MNIST training set

out[31]= {{28,28},{28,28},{28,28},{28,28},{28,28},{28,28},{28,28}}

Figure 10-19 shows the images of the digits, the class to which they apply, and the
dimensions of each image. You extract the training sets and test sets, which you use later.

In[32]:= {trainData,testData}={ResourceData[ "MNIST","TrainingData"],
ResourceData[ "MNIST","TestData"] };

LeNet Architecture

Let’s start by downloading the neural network from the NetModel command, which
extracts the model from the Wolfram Neural Net Repository. The next exercise loads
the network that has not been trained since you do the training and validation process.
It should be noted that the LeNet model in the Wolfram Language is a variation of the
original architecture (see Figure 10-20).

In[33]:= uninitLeNet=NetModel["LeNet Trained on MNIST Data",
"UninitializedEvaluationNet"](*To work locally with the untrained
model: NetModel["LeNet"]*)

out[33]=
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I

NetChain [ uﬁimifz:'d age: .
L Input array (size: 1x28x28) |
1  ConvolutionLayer array (size: 20x24x24)

2 Ramp array (size: 20x24x24)

3 PoolingLayer array (size: 20x12x12)

4  ConvolutionLayer array (size: 50x8x8)

5 Ramp array (size: 50x8x8)

6 PoolingLayer array (size: 50x4x4)

7  FlattenLayer vector (size: 800)

8 LinearLayer vector (size: 500)

9 Ramp vector (size: 500)

10 LinearLayer vector (size: 10)

11 SoftmaxLayer vector (size: 10)
Output class

Figure 10-20. LeNet architecture

The LeNet network in the Wolfram Neural Net Repository is built from 11 layers. The
layers that appear in red are layers with learnable parameters: two convolutional layers
and two linear layers.

MXNet Framework

With the MXNet framework, let’s first visualize the process of this network through the
MXNet operation graph (see Figure 10-21).

In[34]:= Information[uninitLeNet,"MXNetNodeGraphPlot"]
out[34]=
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® Convolution ® Pooling @ FullyConnected @ _copy

Figure 10-21. MXNet graph of the LeNet architecture

LeNet architecture starts at the input with the operation that converts the image to
a numeric array, followed by the first operation. This convolution returns a 20-feature
map with a rectified linear unit (ReLU) activation function immediately following
nodes 3 and 4. Then, the first max-pooling operation (subsampling layers) selects the
maximum value in the pooling node 5. Then, the second convolutional operation
returns a 50-feature map with a ReLU activation function immediately following nodes
8 and 9. The last convolution operation is followed by another max-pooling operation
(node 10), followed by a flattening operation (node 11), which flattens the output of the
pooling operation into a single vector. The last pooling operation gives an array of 50*4*4,
and the flatten operation returns an 800-vector that is the input of the next operation.
Next, you see the first fully connected layer (node 14); the first fully connected layer
has a ReLU function (node 15), and the second fully connected layer has the softmax
function (node 19). The last fully connected layer can be interpreted as a multilayer
perceptron (MLP) that normalizes the output into a probability distribution to indicate
the probability of each class. Finally, the tensor is converted to a class with the decoder.
Nodes 4, 9, and 15 are the layers for non-linear operations (ReLU), and node 19 applies
the softmax function for output classification. In summary, the architecture is as follows:
Tensor (input), Convolution, ReLU, Pooling, Convolution, ReLU, Pooling, Flatten, Fully
Connected (with ReLU), Fully Connected (with softmax), and Class output.
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Preparing LeNet

Since LeNet is a neural network for image classification, an encoder and decoder must
be used. The NetEncoder is inserted in the input NetPort, and the NetDecoder is on

the output NetPort. Looking into the NetGraph (see Figure 10-22) might be useful in
understanding the process inside the Wolfram Language. Clicking the input and output
shows the relevant information.

In[35]:= NetGraph[uninitLeNet]

Out[35]=
Netﬁraph[ uninitiakized ~ qtr. iy “(‘: % iV : 5 E aar (G o %
OPS 1 2 3 4 5 E 10 1 iril
Input Port
nput: image
Output Port
Output class

Figure 10-22. NetGraph of the LeNet model

You can extract the encoder and decoder to inspect their infrastructure. The encoder
receives an image of the dimensions of 28 x 28 of any color space and encodes the image
into a color space set to grayscale, returning then an array of the size of 1 x 28 x 28. On
the other hand, the decoder is a class decoder that receives a 10-size vector, which tells
the probability for the class labels thatare 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

In[36]:={enc=NetExtract[uninitLeNet,"Input"],dec=NetExtract[uninitLeNet,
"Output"]}//Row;

First, let’s look at how the net model works with NetInitialize; for example, use an
image of 0 in the training set.

In[37]:= testNet=NetInitialize[uninitLeNet,RandomSeeding->8888];
testNet@trainData[[1,1]](*TrainData[[1,1]] belongs to a zero*)
Out[38]= 9

The net returns that the image belongs to class 9, which means that the image is
a number 9; clearly, this is wrong. Let’s try NetInitialize again but with the different
methods available. Writing all, as the second argument to NetInitialize, overwrites any
pre-existing learning parameters on the network.
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In[39]:= {net1, net2, net3, net4} = Table[NetInitialize[uninitLe

Net, All, Method -> i, RandomSeeding -> 8888], {i, {"Kaiming",
"Xavier", "Orthogonal", "Identity"}}]; {neti[trainData[[1, 1]]],
net2[trainData[[1, 1]]], net3[trainData[[1, 1]]], net4[trainData[[1, 1]]]}
Out[40]= {9,9,7,3}

Every net model fails to classify the image in the correct class. This result is
because the neural network has not been trained, unlike NetInitialize, which only
randomly initializes the learnable parameters without proper training. This is why, with
Netlnitialize, the model fails to classify the image given correctly. But first, let’s establish
the network graph to better illustrate the model, as seen in Figure 10-23.

In[41]:= leNet=NetInitialize[NetGraph[<|"LeNet NN" -> uninitLeNet, "LeNet
Loss" -> CrossEntropylLossLayer@"Index"|>, {NetPort@"Input" -> "LeNet NN",
"LeNet NN" -> NetPort@{"LeNet Loss", "Input"}, NetPort@"Target" -> NetPort@
{"LeNet Loss", "Target"}}], RandomSeeding -> 8888]

Out[41]=
O [ |
NetGraph o ' .
0o (o] o]
Target Lt Tans Loss
° —{IH
Input
LeNet NN

Input Ports
Input: image
Target: index (range: 1..10)
Output Port
Loss: real

Figure 10-23. LeNet ready graph
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Before you train the net, you must make the validation set suited for the
CrossEntropyLossLayer in the target input because the classes start at 0 and end at 9,
and the Index target begins at 1 and goes on. So, the target input needs to be between
1 and 10.

In[42]:= trainDts=Dataset@loin[AssociationThread["Input"->#]& /@Keys[train
Data],AssociationThread[ "Target"-> #]&/@Values[trainData]+1,2];
testDts=Dataset@Join[AssociationThread["Input"->#]& /@Keys[testData],
AssociationThread["Target"-> #]&/@Values[testData]+1,2];

The training set and validation set have the form of a dataset. Only four random
samples are shown in Figure 10-24.

In[44]:= BlockRandom[SeedRandom[999];
{RandomSample[trainDts[[A11]],4],RandomSample[testDts[[A11]],4]}]
Out[44]=

Input | Target Input  Target

[2.528

Figure 10-24. The dataset of the training and test set

LeNet Training

Now that you have grasped the process of this neural net model, you can proceed to train
the neural net model. With NetTrain, you gradually modify the learnable parameters of
the neural network to reduce the loss. The next training code is set with the options seen
in the previous section, but here, you add new options also available for training. The
first one is TrainingProgressMeasurements. TrainingProgressMeasurements can specify
measures such as accuracy and precision. These are measured during the training phase
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by round or batch. The ClassAveraging is used to specify to get the macro-average or
the micro-average of the measurement specified <|"Measurement” -> “measurement”
(Accuracy, RSquared, Recall, MeanSquared, etc.), “ClassAveraging”->"Macro”|>.

The second option is the TrainingStoppingCriterion, which is used to add an early
stopping to avoid overfitting during the training phase based on different criteria, such as
stopping the training when the validation loss is not improving, measuring the absolute
or relative change of a measurement (accuracy, precision, loss, etc.), or stopping the
training when the loss or other criteria does not improve after a certain number of
rounds <|Criterion->"measurement” (Accuracy, Loss, Recall, etc.), “Patience”-> # of

rounds|>.

In[45]:= netResults = NetTrain[leNet, trainDts, All, ValidationSet ->
testDts, MaxTrainingRounds -> 15, BatchSize -> 2096, LearningRate ->
Automatic, Method -> "ADAM", TargetDevice -> "CPU", PerformanceGoal

-> "TrainingMemory", WorkingPrecision -> "Real32", RandomSeeding

-> 99999,  TrainingProgressMeasurements -> {<|"Measurement" ->
"Accuracy”, "ClassAveraging" -> "Macro"|>, <|"Measurement"

-> "Precision", "ClassAveraging" -> "Macro"|> , <|"Measurement"

-> "F1Score", "ClassAveraging" -> "Macro"|> , <|"Measurement”

-> "Recall", "ClassAveraging" -> "Macro"|> , <|"Measurement" ->
"ROCCurvePlot", "ClassAveraging" -> "Macro"|> , <|"Measurement"

-> "ConfusionMatrixPlot", "ClassAveraging" -> "Macro"|> b
TrainingStoppingCriterion -> <|"Criterion" -> "Loss", "AbsoluteChange" ->
0.001|>]

Out[45]=
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The final results of the training phase are depicted in Figure 10-25.

NetTrain Results

summary

data

method

round

validation

NetTrainResultsObject

loss

batches: 406, rounds: 14,
time: 17min, examples/s: 838

training examples: 60000,

validation examples: 10000,

processed examples: 850976,

skipped examples: 0

ADAM optimizer, batch size 2096, CPU

loss: 2.67 x 1072, acc.: 99.220%,
prec.: 99.215%, F1: 99.214%, recall: 99.213%

loss: 3.43% 1072, acc.: 98.85%,
prec.: 98.85%, F1: 98.84%, recall: 98.84%

loss >

rounds

— training set — validation set

Figure 10-25. Net results of LeNet training

Extracting the trained model and appending the net encoder and decoder is done
because the trained net does not come with an encoder and decoder at the input and

output ports.

In[46]:=NetExtract[netResults["TrainedNet"],"LeNet NN"];
trainedLeNet=NetReplacePart[%, {"Input"->enc,"Output”->dec}];

LeNet Model Assesment

The following grid (see Figure 10-26) shows the tracked measurements and plots of
the training set. The measurements of the training set are in the RoundMeasurements
property. To get the list of the values in each round, use RoundMeasurementsLists.
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The performance of the training set is assessed with the round measurements, and the
test set is evaluated with the validation measurements. Also, the ROC curves and the
confusion matrix plot are shown in both cases.

In[48]:= netResults["RoundMeasurements"][[1 ;; 5]];

Normal[netResults["RoundMeasurements"][[6 ;; 7111;

Grid[{{Style["RoundMeasurements", #1, #2], Style[%[[1, 1]], #1, #2],
Style[%[[2, 1]], #1, #2]}, {Dataset[%%], %[[1, 211, %[[2, 2]11}},

Dividers -> Center] &[Bold, FontFamily -> "Alegreya SC"]

Out[50]=

ROUNDMEASUREMENTS ROCCuRrvVEPLOT CoNrFusioNMATRIXPLOT

0.8

Loss 0.0267054
Accuracy 0992202 | ©6
Precision  0.992146
FlScore  0.992138 | ©4

recall

actual class

Recall 0.992131
0.2

0.0 0.2 0.4 0.6 0.8 1.0

false positive rate predicted class

Figure 10-26. Training set measurements

To see how the model performed on the validation set (see Figure 10-27),
see ValidationMeasurements. To get the list of the values in each round, use
ValidationMeasurementsLists.

In[51]:= netResults["ValidationMeasurements"][[1 ;; 5]];
Normal[netResults["ValidationMeasurements"][[6 ;; 7]111;
Grid[{{Style["ValidationMeasurements", #1, #2],

Style[%[[1, 1]], #1, #2], Style[%[[2, 1]], #1, #2]}, {Dataset[%%], %[[1,
211, %[[2, 2]]}}, Dividers -> Center] &[Bold, FontFamily -> "Alegreya SC"]
Out[53]=
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VALIDATIONMEASUREMENTS

ROCCurvEPLOT

ConFusioNMATRIXPLOT

Loss 0.0343405

Accuracy  0.9885
Precision  0.988506
FlScore  0.988406

Recall 0.988365

recall

0.8

06

0.4

0.2

02 04

false positive rate

Figure 10-27. Validation set measurements

Testing LeNet

06 08

1.0

actual class

I M

- - w & ~ - - 2

2 5 2 3 1980

3 1 2 3 11135
1 1 1 11032

predicted class

Having finished the training and reviewed the round and validation measures, you are

now ready to test the trained LeNet neural network with some difficult images to see how

it performs (see Figure 10-28).

In[54]:=expls=Keys[{testData[[2150]],testData[[3910]],testData[[6115]],test
Data[[6011]],testData[[7834]]}]

Out[54]=

[9: 3. 667!

Figure 10-28. Difficult examples from the MNIST test set

The selected images belong to the numbers 2, 3, 6, 5, and 7.

In[55]:= trainedLeNet[expls,"TopProbabilities"]

out[55]= {{2->0.999397},{3->0.999856},{6->0.906024},{6->0.990975},{7->

0.999853}}
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Write all of the results with the top probabilities with TableForm.

In[66]:= TableForm[Transpose@{trainedLeNet[ expls,{"TopDecisions",
2}],TrainedLeNet[ expls,{"TopProbabilities",2}]},TableHeadings->
{Map[ToString,{2,3,6,5,7},1],{"Top Decisions","Top Probabilities "}},
TableAlignments->Center]
Out[66]//TableForm=

|Top Decisions Top Probabilities

2 |3 3->0.000580186
|2 2->0.999397
|

3 19 9->0.0000792077
13 3-5>0.999856
|

6 |o 0->0.0904324
|6 6->0.906024
|

5 |5 5->0.00699159
|6 6->0.990975
|

7 |3 6->0.990975
|7 7->0.999853

The trained net has misclassified the image of the number 5 because the top
decisions are either a 5 or a 6, being 6 with top probability, which is wrong. Also, you
can see the probabilities of the top decisions. Another form to evaluate the trained net
in the test set is using NetMeasurements to set the net model, test set, and the interested
measure. In the example, the measure of interest is the ConfusionMatrixPlot (see
Figure 10-29).

In[67]:= NetMeasurements[trainedLeNet,testData,"ConfusionMatrixPlot"]
Out[67]=
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o - o~ ™ < n © ™~ @ )
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3T 2 4 1 5 1 1010
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Figure 10-29. ConfusionMatrixPlot from NetMeasurements

GPT and LLM Basics

This section explores the neural network GPT models available in the Wolfram
Language. You learn the basics of generative pre-trained transformers (GPT), the
architecture of some GPT models inside Mathematica, and new LLM (large language
model) Mathematica features.
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A Brief Overview

GPT is a series of Al models that uses deep learning and transformer architecture

to generate human-like text by analyzing preceding text. LLM is a broader category
encompassing models trained to understand and generate human-readable text. GPT
models fall under the LLM category, representing just one kind of model within the
broader LLM framework.

LLM in the Wolfram Language
The Wolfram Language offers several new LLM-based functionalities, including the
following.

o Chat Notebooks: a new feature enabling efficient and accessible
conversations with LLM (GPT-3, among others) like a traditional
Mathematica notebook

e Wolfram Prompt Repository: a collection of useful prompts made by
a community for easy access to LLM scope applications

e LLM Function Integration: seamless incorporation of LLM functions
within Mathematica

e GPT-1 and GPT-2: available from the Wolfram Neural Net Repository

Note For LLM services in Mathematica, external APl access is needed. Ensure
your API key is valid; for example, for OpenAl, an active Chat GPT account

with billing details is required. Be aware that API costs are separate from their
subscription plans and vary based on the model used. Make sure to read OpenAl
documentation for pricing and account details.

To connect to OpenAl GPT services, you first need to establish a connection. The
most direct path to connect is through the settings or preferences section. Select the Al
settings option from there, which shows various tabs related to chat notebooks, services,
personas, and tools. The default tab has the general setting for the persona, LLM service,
and temperature (model creativity), among other settings. To proceed, go to the Services
tab and click Authentication, followed by Connect. This triggers a WolframConnector
pop-up that requests the key access, as shown in Figure 10-30.
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[ ] Preferences

it Al Settings

[ Appearance B

Notebooks Services Personas Tools

Al Settings
LM, chae, Registered Services
o Security LLM Service: & Openal Model: Connect for model list
Service Authentication
o, Kernels
o otal, remate, paralie @ OPEH-M Connect
® Connect to OpenAl
=z Internet & Mail ;
P s cch L A\ Anthropic
ﬂ WolframConnector
G PalM
o Advanced e
OpenAl
Step 1. Get Credentials for the service:
) Reset to Defaults... Step 2. Enter credentials:
API Key: J
By proceeding, you agree to OpenAl Terms of Use

Save this Connection

Figure 10-30. Al settings to connect LLM service from Mathematica

To get started, enter the key, save it by clicking the checkbox, and agree on the terms
of use. Once linked, a checkmark appears under Authentication, like Figure 10-30. If a
valid API is not linked, LLM services won't work. To remove the key, click Disconnect
and repeat the previous steps.

Note For quick APl and LLM support, visit https://support.wolfram.com/

Chat Notebooks

New types of notebooks have been developed apart from regular notebooks. These
notebooks are specialized for LLM tasks. These are Chat-Enabled and Chat-Driven
Notebooks. To create a new one, go to File » New, then select Chat-Enabled or Chat-
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Driven Notebook. By default, chat-enabled use input chat cells with the code assistant
persona (sets the LLM’s response style), while chat-driven cells use PlainChat (basic
dialog, no Wolfram code execution), as seen in Figure 10-31.

:m v & v + InsertCell.. v 2] B] & & ab ¥ O E QA

@ — Thisis a Chat Input cell (CodeAssistant)

— This is a Side Chat Cell (PlainChat)

& _ This is a Chat Block Divider

& — Thisis a Chat Block Divider  penal

v G GPT-3.5Turbo

Personas
Plain Chat @ GPT-3.5 Turbo 16k
] Raw Model @ 6pPT-4
v |8 Code Assistant @ GPT-4Turbo (Preview)
@ GPT-4 Vision (Preview)
[@] ChatBlock Settings...
Snapshot Models
95 Add &Manage Personas... Services @ GPT-3.5 Turbo 16K (June 13)
P e v @ Opena > @ GPT-3.5 Turbo (January 25)
@ Models » A Anthropic > @& GpT-35Turbo (June 13)
(= .
[l Advanced Settings » W ENEY > ‘@ GPT-3.5Turbo (March 1)
@@ GPT-3.5 Turbo (November 6)
@ GPT-4 (January 25) (Preview)
@ GPT-4(June 13)
@ GPT-4(November 6) (Preview)
'

Figure 10-31. Multiple Chat cells and OpenAl available models

Apart from the different cells, Figure 10-31 show the various personas and GPT
models for use. You can select the one that fits your needs. The base model version used
in the following examples is with GPT-3.5 Turbo.
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To create a new chat cell, press (‘) once. Press it twice for a side chat and three times
for chat system input. To enable it in a regular notebook, click the chat cell icon in the
top right corner (see Figure 10-31). Select “Enable Al chat features” to activate. Select
the “Do automatic result analysis” option for LLM tips on output code. Try the example
shown in Figure 10-32 to see if everything is working.

Print["Hello World:!"]

I need a brief and concise "Hello World!" example code with a two-sentence explanation.

= Certainly! Here's a brief "Hello World!" example code in Wolfram Language:
414 Print["Hello World:")
This code uses the Print function to display the text "Hello World!" in the output. The Print
function is used to output expressions or text to the Wolfram Language front end.
| I need a brief and concise "Hello World!" example code with a two-sentence explanation.
Sure! Here is a brief "Hello World!" example in Python:
414 print ("Hello World:!")
This Python code uses the print () function to output the text "Hello World!" to the console. It
is a simple and common introductory program used to demonstrate the basic syntax of a
programming language.
S
I need a brief and concise "Hello World!" example code with a two-sentence explanation.
L)
: print ("Hello World:")
;r; e @ ; o g
the print() function in Python to display the text "Hello World!" to the
con: Insertcontentasnewinput cell below and evaluate ple used to demonstrate the basic syntax of a
programming language.
A

Figure 10-32. Sample prompt and output for CodeAssistant, PlainChat, and
RawModel
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In Figure 10-32, a chat icon is visible in the right cell bracket; this option lets you use
LLM with Wolfram code like you use it in Mathematica. The chat history is sequential,
and the conversation history output can also be accessed using the chat arrows.

Side chat cells or blocks/delimiters separate chats. Distinct personas yield different
responses; the CodeAssistant chat implies prompts in Wolfram code, whereas the Plain
and RawChat yield output but do not imply that it’s related to Wolfram code (unless
specified in the prompt), resulting in Python code being used instead. Hovering over the
code part allows you to either insert it as a newly evaluated cell, insert it, or copy it.

Note Keep your prompts concise; always verify the chosen model to avoid
unexpected fees since models have different costs based on token count.

Chat cells can rerun the prompt and regenerate the response. But remember that the
LLM prompts are not run by Mathematica kernel, so history is saved on the notebook.
So, closing the notebook does not erase the conversation.

Wolfram Prompt Repository

The Wolfram Prompt Repository gives you access to a large, curated base of prompts,
from LLM prompts, personas, and costume functions. Navigating is similar to other
repositories. Select from the accessible sections to find your desired prompts or persona
for costume-style conversations. Once a prompt is selected various options are available,
like chat samples and how to use it inside Mathematica. The platform further supports
uploading, downloading, and utilizing various LLM components, as Figure 10-33 shows.
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WOLFRAM
PROMPT REPOSITORY

A curated collection of prompts, personas, functions, & more for LLMs (large language model Als)

Announcement post »

Q, Search Personas » Functions > Modifiers » Submit a Prompt

PERSONAS (prompts defining chat etc. interactions)
MadHatter = Mockinterviewer Cheerleader = TechSupportBot = OldTimeGangsterSpeak = Birdnardo ®
SouthernBelleSpeak = SportsCoach = PirateSpeak = WilliamPlaywright = RecipeBot SeussGoose = | SEEALLSS PROMPTS

) Advisor Bots A1t Character Types % Fictional Characters «* Purpose Based ‘g Roles £ Writers

« Writing Genres

Q WOLFRAM  oemremy
% PROMPT REPOSITORY

personas, functions, &

FUNCTIONS (prompts to generate output from existing text etc.)

ELI5 = TitleSuggest = FTFY ® HeadlineSuggest = Na

Moodify = Emojify = GlossaryGenerate ® InformalRep

ResumeToNarrative ® [ SEEALL 121 PROMPTS MockInterviewer Install

An Al that will act like a mock interviewer for a specified job
++ Al Guidance =™ Chats @ Content Derived from Tex

AaG | Text Manipulati 9 Linguistics (&) Promg

W Text Analysis 7] TextGeneration (@ WolframLangy > CHAT EXAMPLE

» PROGRAMMATIC ACCESS

© PR periem Al gy reserved Logel & Privacy Puiy | Comtactin | Wlmeipha snm | Wil oo

MODIFIERS (prompts to modify output coming from the LLM)

Moodified ElevatorPitch = ELIS = SimpleWordsPreferred = Translated = LimerickStyled = Emojified =

Figure 10-33. Wolfram Prompt Repository with the MockInterviewer prompt page

the
tab

For instance, you can format output with different personas; select the persona from
drop-down menu (see Figure 10-31). To download a persona, go to the Personas
in the Al setting and install via the prompt repository (see Figure 10-33) or enter the

persona URL. Once installed, it should be available as depicted in Figure 10-34; this can

also be done via Add & Manage Personas.
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(@] Add & Manage Personas
Add & Manage Personas

Install Personas

Install from Prompt Repository # URL

Manage and Enable Personas

In Menu Name Version
o & code Assistant 1.4.0
v & cCode Writer 2 1.4.0
> Plain Chat 1.4.0
b @ Birdnardo 2 1.4.0
@ Rr02 2 500 [uf
¥ [J Raw Model 1.4.0
% & wolfie iz 1.4.0

Figure 10-34. The Add & Manage Personas screen shows the R2D2 persona
selected

Apart from personas, a combination of prompt modifiers can be used. These act
on the input or output of a prompt. So, to invoke an input persona, use the character
‘@persona. To call for a function input modifier, use ‘!prompt’; to call an output
modifier, use ‘#param ‘; input and output modifiers go at the beginning and end of the
prompt. To insert parameters to function modifiers, use the vertical bar to separate, like
‘#prompt|param ‘ as defined in Figure 10-35.
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‘@ | PromptName "Prompt text"

@

@R2D2 | |CommentSuggest| 2 [For{i = 1, i <= 5, i++, Print[i]] #HaikuStyled

@ Beep boop beep boop beep
Loop from one to five, then print

bl Beep boop beep beep boop
3/3

Figure 10-35. R2D2 code comment in Haiku style

LLM Functionalities

Chat objects are used along with chat evaluate to manage LLM conversations within
Mathematica. The chat object provides a convenient interface for interacting with the
LLM and managing conversations in a notebook environment. What happens is that
internally, LLM commands work as synthetic functions, which allows the LLM model to
access the Wolfram tools (see Figure 10-36).

In[68]:= ChatEvaluate[ ChatObject[], "Break down this code in 3 simple
points? For[i=1,i<=5,i++,Print[i]", LLMEvaluator -> <|"Prompts" ->
{LLMPrompt["ELI5"]}|>] (*Explain Like I'm Five*)

0ut[68]=

Answer questions as if the listener is a five year old child.

Break down this code in 3 simple points? For[i=1,i<=5,i++,Print[i]
Chatobject[

(1  1.Thiscode is telling the computer to count from 1to 5.
2. It is using the "for" loop to make this happen.
3. Every time it counts a number, it will print that number on the screen.

Figure 10-36. Chatobject for an LLM text prompt
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To retrieve the chat contents and tokens, use the words “Messages” and “Usage”.

In[69]:=

%[ "Messages" ]

%%[ "Usage"]

Out[2]= {<|"Role" -> "User", "Content" -> "Answer questions as if the
listener is a five year old child. Break down this code in 3 simple points?
For[i=1,i<=5,i++,Print[i]", "Timestamp" -> DateObject[{2024, 2, 22,
11, 22, 5.627397}, "Instant", "Gregorian", -6.], "Annotations" -> <|{1,
129} -> "Prompt"|>|>, <|"Role" -»> "Assistant", "Content" -»

"1. This code is telling the computer to count from 1 to 5.

2. It is using the \"for\" loop to make this happen.

3. Every time it counts a number, it will print that number on the \
screen.", "Timestamp" -> DateObject[{2024, 2, 22, 11, 22, 6}, "Instant”,
"Gregorian", -6.], "Annotations" -> <|{1, 184} -> "Completion"|>|>}
Out[70]= 92 tokens

Like the previous example, you can set a prompt with a specific configuration with
LLMConfiguration evaluated with LLMEvaluator, like the base model, temperature, stop
tokens, and so forth. It can also be used to generate text (LLMSynthesize), retrieve text
(LLMPrompt), or use a template function (LLMFunction), as the following code shows.

In[70]:= 1lmConfig = LLMConfiguration[<|"Prompts" -> LLMPrompt["ELI5"],
"Model" -> "GPT-3.5-Turbo", "Temperature" -> 0.1, "MaxTokens"

-> 5|>]; LLMSynthesize["Break down this code in 3 simple points?
For[i=1,i<=5,i++,Print[i]", LLMEvaluator -> 1lmConfig]

Out[71]= Sure! Here's a

Note The default LLM configuration is in $LLMEvaluator but can be overridden.

In[72]:= $LLMEvaluator=LLMConfiguration[<|"Prompts"-> LLMPrompt["ELI5"],
"Model"->"GPT-3.5-Turbo", "Temperature"->0.1,"MaxTokens"-> 5|>]

Out[72]= LLMConfiguration[Model: <|Service->Automatic,Name-
>GPT-3.5-Turbo|>]
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GTP-1 and GPT-2 Models

Besides external LLM services, open models like GPT-1 and GPT-2 are accessible in
Mathematica. These models are predecessors to recent GPT models. GPT -1 is one of
the initial models trained on a large book dataset, and GPT-2 is an improved version of
GPT-1, trained on the WebText dataset. Let’s look at some information about GPT-1 and
GPT-2; note that the output here is truncated, given the large text.

In[72]:= Row[{Short[NetModel[ "GPT Transformer Trained on BookCorpus
Data", #] & /@ {"Details", "ShortName"} // Column, 4],  Short[NetModel]
"GPT2 Transformer Trained on WebText Data", #] & /@ {"Details","ShortName"}
// Column, 4]}]

Out[72]= Released in 2018, this Generative Pre-Training Transformer (GPT)
model is pre-trained in an unsupervised fashion on a large corpus of
English text. This model can be further fine-tuned with additional output
layers to create highly accurate NLP models for a wide range of tasks.

It uses bi-directional causal self-attention, often referred to as a
transformer decoder.

GPT-Transformer-Trained-on-BookCorpus-Data

Released in 2019, this model improves and scales up its predecessor
model. It has a richer vocabulary and uses BPE tokenization on UTF-8
byte sequences and additional normalization at the end of all of the
transformer blocks.

GPT2-Transformer-Trained-on-WebText-Data

You can try to retrieve other data, like in the LeNet example. Let’s look at model
variants and task types examples.

In[73]:= NetModel["GPT Transformer Trained on BookCorpus Data", #] & /@
{"ParametersAllowedValues", "Variants"}

NetModel["GPT2 Transformer Trained on WebText Data", #] & /@
{"ParametersAllowedValues", "Variants"}

Out[73]= {<|Task->{FeatureExtraction,LanguageModeling}|>,{{GPT Transformer
Trained on BookCorpus Data,Task->FeatureExtraction},{GPT Transformer
Trained on BookCorpus Data,Task->LanguageModeling}}}

Out[74]= {<|Task->{FeatureExtraction,LanguageModeling},Size-
>{117M,345M,774M} |>,

446



CHAPTER 10  NEURAL NETWORKS FRAMEWORK

{{GPT2 Transformer Trained on WebText Data,Task->FeatureExtraction,Size->117M},
{GPT2 Transformer Trained on WebText Data,Task->FeatureExtraction,Size->345M},
{GPT2 Transformer Trained on WebText Data,Task->FeatureExtraction,Size->774M},
{GPT2 Transformer Trained on WebText Data,Task->LanguageModeling,Size->117M},
{GPT2 Transformer Trained on WebText Data,Task->LanguageModeling,Size->345M},
{GPT2 Transformer Trained on WebText Data,Task->LanguageModeling,Size->774M}}}

As seen in the output, variants have different task types and a specific number of
parameter sizes, like 117M, 354M, and 774M million parameters. You can pick a model
by specifying the parameters, for instance, picking the language-trained model and
trying to generate text based on the prediction of the next token (see Figure 10-37).

In[75]:= gpti=NetModel[{"GPT Transformer Trained on BookCorpus
Data","Task"-> "LanguageModeling"}]

gpt2=NetModel[{"GPT2 Transformer Trained on WebText Data","Task"->
"LanguageModeling"}]

Out[75]=
NetChain ' U»B»l Sfg
L Input vector of n indices (range: 1..40478)
embedding NetGraph (5 ncdes) » matrix (size: nxX768)
decoder NetChain (12 nodes) matrix (size: nx768)
last SequencelastLayer vector(size: 768)
classifier LinearLayer » vector (size: 40478)
probabilities  SoftmaxLayer vector (size: 40478)
Output class
Data not in notebook. Store now —)
NetChain| & D*Dbl string
L Input vector of n indices (range: 1..50 257)
embedding  NetGraph (4 nodes) » matrix (size: nx768)
decoder NetChain (13 nodes) matrix (size: nx768)
last SequencelastLayer vector (size: 768)
classifier LinearLayer /» vector (size: 50257)
probabilities SoftmaxLayer vector (size: 50257)
Output class

Data not in notebook. Store now —)

Figure 10-37. GPT-1 and GPT-2 embedded architectures
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For the token function, the input parameters are the initial text, token count (default
10), and temperature (default 1). In simple terms, this function samples predictions. It
attaches each new token to the original string for the fixed token count and returns the
initial text plus the generated tokens text.

In[76]:= generateText[LLmodel ][initialText , tokenCount :
10, temperature_ : 1] := Fold[StringJoin[#1, LLmodel[#1, {"RandomSample",
"Temperature" -> temperature}]] &, initialText, Range[tokenCount]]

Where a token refers to a unit of text that the model reads. It can be as short as one
character or as long as one word, like “a” or “app.” The model looks at these tokens
individually to understand and generate text based on them. So, for GPT-2, BPE
tokenization is a method used to break down words into smaller parts.

In[77]:= generateText[gpt1]["Alan Turing was a British mathematician
and logician who is considered a pioneer in the field of computer
science.",20,0.5]
Out[77]= Alan Turing was a British mathematician and logician who is
considered a pioneer in the field of computer science.he is a physicist and
is a very good scientist .

he is also a friend of george w.

In[78]:= generateText[gpt2]["Alan Turing was a British mathematician

and logician who is considered a pioneer in the field of computer
science.",20,1]

Out[78]= Alan Turing was a British mathematician and logician who is
considered a pioneer in the field of computer science. At the time of his
independence he was selected to pen one of the first (173) contributions to

As seen comparing both responses, there is still room for improvement. GPT-1
output seems incoherent with unrelated elements. In contrast, GPT-2 shows more
context talking about Turing’s career but still lacks clear, complete sentences.

Final Remarks

In summary, the following road map for the general schematics, construction, testing,
and implementation of a machine learning or a neural network model within the
Wolfram Language scheme are in Figure 10-38.
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Data Preparation

**__ Data pre-processing.
**__ Dafine input target features.

**__ Training set preparation. Encading
**Data chearing, spiitting. Data encoding process.
lone-hot, label encoding).

| Model Preparation

**__ Establish a model architecture.
" __ Hyperparameter settings. __**__ Preparaticn of validation set.

__**__Model Testing
/ __"*__Performance Metrics
Decoding
é Data post-processing steps
Model Deployment ] T = I
idation
**_Selection of candidate model, ‘ Data encoding

1Ll

Training Phase

Manitaring learning
curves |

Evaluation Phase

=

**__ Testing the trained mode on new data.

Model Assesment

=

__**__ Model Performance.
__**__Training set and Validation set.

Figure 10-38. Model overview for training and testing

The diagram shows a route that can be followed directly; despite this, there may be
intermediate points between each process within the route since the route may vary
depending on the type of task or problem being solved. However, the route focuses on
exposing the important and general points to construct a model using the Wolfram
Language. Within the data preparation phase are previous processes, such as data
integration, the type of data collected (structured or unstructured), transformations in
the data, cleaning in data modules, and so on. So before moving on to the next phase,
there must be a pre-processing of the data, to have data ready to be fed to the model.

Model preparation covers aspects such as the choice of the algorithm or the methods
to use, depending on the type of learning; establishing or detecting the structure of the
model; and defining the characteristics, input parameters, and type of data that is used,
whether it be text, sound, numerical data, and tools to be used. All this is linked to a
process called feature engineering, whose primary goal is to extract valuable attributes
from data. This is needed to move on to the next point, the training phase.

The evaluation phase and model assessment consists of defining the evaluation
metrics, which vary according to the task or problem being solved, and preparing the
validation used later. The model’s output is converted back to a clear, interpretable
format at the decoding phase, readying for practical use. At this point, it is necessary to
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emphasize that the preparation of the model, training, evaluation, and assessment can
be an iterative process, including tuning of hyperparameters, adjustments on algorithm
techniques, and model configurations such as internal model features. The purpose is
to establish the best possible model capable of delivering adequate results and finally
reaching the model deployment phase, which defines the model chosen and tested on
new data.
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A

AccuracyRejectionPlot, 336
Activation functions, 368, 370, 372, 427
Algebraic equations, 34-37
Algebraic expressions, 33, 34
Algorithm specifications tooltip, 330
Alphas, 307
AND operator, 32, 36
Arithmetic mean, 239, 341
Arithmetic operations, 18, 89-91
ArrayPath, 399
Arrays

arrangements, 69

Array command, 68

characteristics, 70

ConstantArray function, 69

data array, 69

F function, 69

MatrixForm, 71

sparse array, 71

SparseArray command, 70
ArraysCount, 395
AspectRatio, 190
Assigning values to variables, 19-21
Assistance

autocomplete pop-up menu, 50, 51

documentation, 51

functions output, 52, 53

Head command, 52

RandomPolygon function, 51
Associations
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Association command, 101

associations, 102

AssociationThread, 102

complex structures, 103

entries, 101

error, 102

forms, 101

position, 101

semicolon, 101

uses, 101

values and keys, 102
AtomQ function, 26, 33

B

Bar chart grid, 244
Bar graphs, 242, 243
Basic plotting
AxesLabel option, 29, 30
cubic plot, 27, 28
dashed tangent function, 29
multiple functions, 28
PlotLabel option, 29
BatchEvaluationSpeed, 355
BlockRandom, 235
Boolean operators, 31, 32
Boston Homes data, 309
Boston Homes price dataset, 309
Box plot, 252, 253
BoxWhiskerChart, 252
multiple, 254
Whiskers, 253
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Box whiskers plot, 294, 298, 299
Built-in functions, 22, 23, 32
Business and Minimal plot themes, 229

C

CapsNet, 401
CapsNet neural net model, 402
Ceiling function, 63
ChartElementFunction option, 258
Chart Element Schemes

palette, 256, 257
Chart Type, 258, 259
Chat-Driven Notebooks, 438
ClassAveraging, 431
Classifier function, 332
ClassifierFunction object, 328
ClassifierMeasurements, 332
ClassifierMeasurementsObject, 333
Classify command, 327

Cluster classification model, 354, 356, 357

ClusterClassify, 353
ClusteringCompnents, 343
Clusters, 340
CodeAssistant chat, 441
Code efficiency, 41
Code performance, 42, 43
ColorData object, 217
ColorFunction, 222, 227
Color palette, 216
Column graphics, 212
Combining plots
Column command, 208
cosine and sine plot, 207
graphic objects, 206
graphics, 206
graphs, 206
Comma-separated value (CSV),
148-150, 275
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Complex numbers, 57
Computations

FullForm, 48

HoldForm command, 49

InputForm, 47

StandardForm, 47

Trace command, 49, 50

TreeForm, 47-50
ComputeUncertainty, 317
ConfusionMatrixPlot, 334, 435, 436
ContentElements property, 280
Contour lines, 223
ContourPlot command, 222
CrossEntropyLossLayer, 373, 430
Cross-hatching fillers, 204
Customized 3D plot, 220
Customizing plots

labeled axes and functions, 198

PlotLabel, 197

3D plots, 197

Wolfram Language, 197

D

Databases, 184, 186
Data clustering method, 338
Data exploration
column’s class and sex, 325
elements, 325
Datasets, 103, 274, 303
adding values
associations, 116
AssociationThread, 114
column, 114, 115
ID column dataset, 114, 115
ReplacePart function, 116
row, 113
associations, 107
column headers, 105



column name, 105, 106
columns and values, 111, 112
create, 109
customization, 134
animal dataset, 135, 137, 138
Background option, 135
bold style, 136
ExampleData, 134
HiddenlItems, 136
mixing colors, 135, 136
options, 136
suppressed rows and columns,
136, 137
Dataset function, 104
decimal form, 124
dropping values, 117, 118
filtering values
clear symbols, 122
count data, 121
filtered data, 120
grouping, 121, 122
pure functions, 120, 121
selected subjects, 120
tagged dataset, 119
forms, 104
joining/merging, 132-134
labeled rows, 107
list of association, 104, 106
name/age, 110
Normal function, 111
numeric dataset, 122, 123
position, 104
quantities
DateObject, 162
ID/sales per day, 161, 162
magnitudes, 161
Normal command, 161
price column, 161

INDEX

quantity type, 160
Rule command, 163

timeline, 163
queries, 111
reversed elements, 124, 125
rows and columns, 108
row selection, 107, 108
select data, 109
sorted data, 123, 124
square root function, 125, 126
Take function, 112
uses, 103
Values command, 109-111
value selection, 108
Data visualization
AspectRatio, 190
DateListPlot, 195
Date plot, 195
ListLinePlot, 195
logarithm scale, 187
Mathematica, 187
PlotRange, 188, 189
tools, 187
2D plots, 187
types of graphs, 187
Date and time
date format, 24
DateObject command, 23, 24
DatesString, 25
Natural language, 24
sunrise and sunset times, 24
TimeObject, 25
time zone, 24
DateListPlot, 195
3D bar charts grid, 245
Debugging, 45, 47
Decoded house, 383
Decoder, 380, 381
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DensityHistogram, 259, 260
Density plots, 225, 226
Descriptive statistics

function, 287

grid view, 291

Irisis data and computations, 287

TabView, 288

versicolor species, 292

Wolfram Language, 293
DescriptiveStats variable, 289
Digits, 60, 61
Dimensionality problems, 345
DimensionReducerFunction, 345
DimensionReduction, 345
Dispersion measurements, 240
DistanceFunction, 340, 349
Distribution chart plot, 293
Documentation, 50, 51

E

EchoTiming function, 43
ElementwiseLayer, 368, 369, 371, 374
ElemewiseLayer, 375
Encoder, 375, 377
Boolean type NetEncoder, 375
Class type, 376
and decoder, 382
NetEncoder, 376
Encoding, 375, 382
Equivalent operator, 32
EuclideanDistance, 340, 355
ExampleData, 346
Exponentials, 62
Export
CarStoppingDistance, 171, 172
ColumnDescriptions, 171
ContentObject function, 177
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CSV format, 170, 172

DAT format, 169

ExampleData command, 170

Export command, 167

file extensions, 179

FileNames command, 178

files, 170, 173

FindFile, 178

JSON format, 174-176

list of names, 170

NotebookDirectory command,

167,178

prime numbers, 167

SetDirectory, 167, 178

sheets name, 168

SystemOpen, 168

tables, 169

tabular data, 168

TVS format, 170

working directory, 167

XLS format, 173

XLSX format, 173
$ExportFormat, 166
Expressions, 19
External connections, 179, 180
External resources

arrow function, 182

custom functions, 182

FindExternalEvaluators[“NodeJS”], 182

Math.sqrt, 182

node.jsfunction, 183

registered key, 182
Extracted trained net, 406

F

Factorial, 63, 123
File operations, 184, 186



Filled horizontal style, 204
Filled plots, 203
FindClusters function, 338, 342
Fisher’s dataset, 284, 285
Fisher’s Irises data, 277
Fisher’s Irises dataset object,
274,279, 344
Flattened chain, 387
Floor function, 63
Framed ListPlot, 201
Frame option, 200
FromDigits function, 61
FunctionLayer, 374, 375
Functions, 122
column/row
ceiling function, 127
DeleteDuplicates function, 129-131
DuplicateFreeQ function, 130
GroupBy, 132
MapAt function, 128
output, 127, 128

G

Generative pre-trained
transformers (GPT)
Al models, 437
architecture, 436
LLM category, 437
GPT-1 and GPT-2 embedded
architectures, 447
Gradient color, 217
Gradient descent algorithm, 303, 307
Gradient technique, 205
GraphicsColumn, 213
GraphicsGrid, 213, 214, 251
GraphicsRow, 213
Grid command, 67

INDEX

Gridded plot, 201
GridLines command, 202, 222

H

Handling errors, 43, 44
Hash tables, 138
add row, 145
assigned value, dataset, 144
associations, 139, 140
dataset representation, 141, 142
framed levels, keys, 142, 143
graphic representation, 139
KeyDrop, 144
KeyExistQ, 143
KeyMemberQ, 143
Keys command, 140
KeySelect, 144
KeyTake, 144
Lookup, 143
MaplIndexed, 140, 141
operations, 140
User key, 141
uses, 139
Histograms, 245, 261
density, 258
origin, 246
origins, 248
PairedHistograms, 247
PDF and CDF plots, 249
random real numbers, 246
shapes grid, 247
variable classes, 245
for versicolor, 295
Hue color function, 220
colored Hue values, 221
3D scatter plots, 221
Hyperbolic cosine plot, 191
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imensionReductionFunction, 345

Import command, 148

Infix notation, 30, 59

Input Assistant, 50

IntegerDigits function, 60

Integers, 56

Integrated Global Radiosonde
Archive (IGRA), 156

InterquartileRange function, 242

Iris data, 282

J

JavaScript Object Notation (JSON)
files, 153-156

K

k-means method, 343
classifier information, 354
elements, 344
FindClusters, 347
principal components, 348
vmathematical foundation, 344
k-means technique, 353

L

Large language model (LLM)
Al settings, 438
API, 438
Chatobject, 444
framework, 437
GPT-1 and GPT-2, 446
LLMEvaluator, 445
parameter sizes, 447
scope applications, 437
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tasks, 438
Wolfram code, 441
Wolfram Language, 437
Wolfram tools, 444
Lasso regression name, 319
Learning curve, 307
LearningRateMultipliers, 362
LeNet, 423, 446
architecture, 425-427
MNIST dataset, 424
NetModel command, 423
neural network, 423, 434
RoundMeasurements, 432
training, 432
vNetGraph, 428
Wolfram Language, 428

LinearLayer object, 360, 361, 363, 364, 377

Linear model, 306
LinearModelFit command, 265
Linear regression model, 308, 312, 333
correlation matrix, 311
MEDV and RM scatter plots, 310
model creation, 310
predict function, 308
Linear relationship, 266
ListContourPlot, 224
ListLinePlot, 192, 193, 307
ListPlot, 191, 342
Lists, 55
alternatives, 87
Apply function, 92
ArrayReshape function, 83
arrays, 67
assigning/removing values
Append/Prepend, 80
ArrayPad function, 81, 82
Delete command, 80
Drop, 80



Insert function, 81
item position, 79
new values, 80
one-sided terms, 81
Replace function, 80
Cases function, 84-87
commands, 92
computations, 91
conditional matching, 87
definition, 55, 56
elements, 65
Flatten function, 83
functions, 68
Grid command, 67
identifier/symbol, 65

increment/decrement operators, 68

iterator, 67

joining, 91

level of specification, 87

list of lists, 66

manipulation, 77

Map function, 92

nested lists, 71, 72, 82, 83

objects, 65

partitions, 82, 83

pattern shape, 84

Pick command, 84

PrimeQ function, 93

RandomChoice function, 85

random integers, 68

Range functions, 65

retrieving data
backward indices, 78
elements, 77
in-depth list, 79
index notation, 77
nested list, 78
Part function, 77

INDEX

Rest function, 79
span notation, 78
Take function, 79
Reverse command, 82
Select command, 84
SortBy, 83
sorting, 82
TableForm, 67
Table functions, 65-67
underscore function, 86
to variables, 65
Logarithmic functions, 62
Logical operators, 30
Logistic regression, 321
DeleteMissing command, 323
learning curve and accuracy
curve, 330
missing data, 323
standard deviation and r-squared, 322
TopProbabilities, 331
variable, 321
LogProbabilities, 331

Machine learning, 314, 327, 357
gradient descent, 303
hyperparameter, 304
RandomReal function, 304
Wolfram Language, 303

Machine precision, 59, 60

Manhattan distance, 347

Mathematica, 218, 264, 265, 275, 301, 315,

369, 411, 441
capacity, 4
cells, 7
computation, 7
definition, 1
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Mathematica (cont.)
expression, 19
input, 7
interface, 6
kernel, 6
notebook, 5,7, 8
precision, 18
preferences window, 8
structure
cells, 5
input types, 5, 6
notebook, 4
welcome screen, 3
suggestion bar, 7
uses, 2
Mathematica version, 198
Matrix
definition, 73
drawn lines, 74
list of lists, 74
MatrixQ, 74
operations, 75
restructuring, 76
transpose, 74
MatrixPlot, 311, 312
Max and Min functions, 64
Mean function, 240
MeanSquare, 413
Mean squared layer
MeanSquaredLossLayer, 366
NetEncoder, 367
parameters, 365
MeanSquaredLossLayer,
366, 413
MeansSquaredLoss, 373
Median function, 240
MersenneTwister method, 235
Mesh option, 192
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MethodOption, 318

MNIST database, 424
Model deployment phase, 450
Model preparation, 449
MultiAxisArrangement, 210
Multiple plots, 197, 207
MXNet format, 400

MXNet framework, 361, 426
MXNet network, 399
MXNet operation, 359
MXNet ops plot, 401
MXNet symbols, 398

N

National Oceanic and Atmospheric
Administration (NOAA), 156

Negation operator, 32

Nest command, 289
Nested chain, 386

Net2 classification plot, 410
NetChain, 384-387, 392, 393
NetChain NetCH2, 386

Net classification plot, 407
NetDecoder, 380
NetEncoder, 376, 377
NetEvaluationMode, 385
NetExtract, 364

NetFlatten, 387

NetGraph command, 383, 388-394

Netlnitialize, 429
NetMeasurements, 435
NetPort, 390
NetPortGradient, 365
NetResultsObject, 415
NetTrainResultsObjec, 406
Neural network

batch size, 408



containers, 383
data, 360
layers, 359
LeNet, 423
linear layer, 360
MaxTrainingRounds, 408
model implementation, 406
MXNet operation, 359
Net2, 409
NetChain, 384
NetTrain, 403
perceptron model, 404
progress information panel, 405
ResourceSearch, 420
Standardize function, 404
training data, 404
WLNet format, 417
Wolfram Language, 360, 403
N function, 59
NormalEquation, 319
Notches, 254
Notebook, 1, 4, 12
feature, 15-17
security, 53
style, 15-17
UL 9
abort options, 9, 10
application toolbar menu, 11
cell management functions, 10
code inputcell, 11
extensive options, 9, 10
options, 10
prominent toolbar Ruler, 12
text cell options, 10
toolbar, 9
NotebookObiject, 277
Number notations, 59
Numeric expressions, 380

INDEX

O

OptimizationMethod, 319
Ordinary least squares method, 262
equations, 262
points, 263
summation, 262
OR operator, 32, 36
OrthanWiseNewton, 319

P

PaddingSize, 379

Palettes, 14, 15

ParameterConfidencelntervalTable
property, 268

ParameterTable property, 267

Pattern matching, 84

Pearson coefficient, 264

Pie charts, 250, 326

PlotMarkers, 193

PlotStyle, 193

PlotTheme, 227, 228

Plotting commands, 196

Plotting graphs, 191

PoolingLayer, 379

Predict function, 308, 315, 328

PredictorFunction, 313

PredictorMeasurements, 316

PredictorMeasurementsObject, 317

Prefix notation, 59

Probability density functions (PDFs), 248

ProbabilityHistogram, 336

Pure functions, 95

Q

Quantity function, 297
Quartile calculation, 241
Query command, 286
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R

Ramp function, 369
Random data, 338
Randomlnteger function, 233, 234
Random numbers, 123
BlockRandom function, 235
functions, 233
MersenneTwister method, 235
sublist, 234
RandomReal function, 23
Random sampling
expression, 236
RandomChoice function, 235
replacement, 237
weights and elements, 236
RandomSeeding, 339, 363
Rational numbers, 56, 58, 64
Raw]JSON, 153, 155
R2D2 code comment, 444
RealDigits, 60
Real numbers, 57
Rectified linear unit (ReLU), 369
ReducedVectors, 346
Relational operators, 30, 31
ReLU activation, 427
ResidualHistogram, 318
ResidualPlot, 318
Residuals, 266
ResourceData command, 278, 280
Resource Dataset, 421
ResourceObiject, 275, 422
ResourceObiject Fisher’s Irises, 276
Retraining model hyperparameters
graphs and metrics, 320
plots, 320
Root mean squared error (RMSE), 317
Round function, 63
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RoundLossList, 415
RoundMeasurementsLists, 415
r-squared value, 317

S

Sector chart, 251
SectorChart command, 251
SeedRandom, 234
Semanticlmport
comparison, 164
costume import, 164-166
CSV file, 157
datasets (see Datasets)
import data, 158
quantities, 158-160
Semantic objects, 158
SepalLength, 282, 283
SetPrecision, 60
SinglePredictionConfidencelnterval
Table option., 267
Six-digit precision, 60
Softmax function, 372
SoftmaxLayer, 372, 373
SoftPlus function, 370
Solve function, 35
Standard deviation, 241
Standard normal distribution, 249
Standard score, 241
Statistical Charts
bar graph, 242
Mathematica, 242
qualitative variable, 243
Statistical measures
data analysis, 239
StatsFun function, 124
StochasticGradientDescent method,
319, 328



Stochastic gradient
descent (SGD), 412
Adam optimizer, 413
mathematical, 413
Strings, 25-27
SummationLayer, 388
Syntax notations, 68
System sampling, 237
elements, 237, 238
interval, 237
MapAt and Style, 238
non-random numbers, 239

T

TableRows, 290
Tables
automated forms, 98
Background option, 100
contents, 96
dividers and spacers, 100
Grid, 99
headers, 99
labeling, 98
rows and columns, 97
TableForm, 96
Titles, 97
Tab-separated value (TSV), 148-150, 275
Tanh[x] function layer, 369
Text, 25
Text cells, 25
Text formats, 25
Text processing, 12, 13
3D graphics, 219
3D grid charts, 252
3D plot figure, 218
3D scatter plot, 228, 300, 301
Titanic dataset, 321, 324, 327

INDEX

Tooltip, 200

curve expression, 199

plot expression, 199
Tooltips, 199
ToString command, 26
Trained classifier function, 329
TrainingProgressMeasurements, 430
TrainingProgressReporting, 313
Training set measurements, 433
Transcendental numbers, 58
Transpose function, 126
Trigonometric functions, 61, 62
2D and 3D plots, 301
2D graphics, 219
2D plot theme, 229
2D scatter plot, 296, 300, 305
Two-variable function, 222

U

UninitializedNet, 417
UntrustedPath directories, 54
User-defined functions, 93, 94, 196
User interfaces (Uls), 9

\'

Validation set measurements, 434
Variables, 19, 21

Vectors, 72, 73

Violin diagram, 254

Violin plots, 255, 256

w

Web data, 156, 157
Wolfram Alpha, 37
algebraic equations, 37
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Wolfram Alpha (cont.)
input code, 38, 39
population of Australia, 39
query, 37, 38, 40
Tesla stock, 39
Wolfram Data Repository, 271, 275, 281,
301, 419, 424
HTTP response object, 272
life Science category, 273
Mathematica, 275
website, 272
Wolfram Documentation Center, 50, 52
Wolfram Imageldentify Net V1, 421
Wolfram Language, 2, 3, 6, 226, 269, 297,
305, 327, 360, 361, 370, 373, 397
and MXNet, 399
Wolfram Neural Net Repository, 418,
425, 437
AudioSet Data, 419

462

neural network models, 418
Wolfram Neural Network, 362
Wolfram Prompt Repository, 441

XY
Xavier method, 363
XLSX files
CharacterEncoding option, 151
grocery list dataset, 152
import data, 150
NaN-filled dataset, 152, 153
SheetCount and Sheets, 151
TableView command, 151, 152
XOR operator, 32
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z-score, 241
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